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INFERENCES FROM ROSSI TRACES

KENNETH M. HANSON AND JANE M. BOOKER
Los Alamos National Laboratory, MS P940
Los Alamos, New Mexico 87545, USA t

Abstract.
We present an uncertainty analysis of data taken using the Rossi technique,

in which the horizontal oscilloscope sweep is driven sinUS9hlally in.time.while the
vertical axis follows the signal amplitude. The anaIysis is done within a Bayesian
framework. Complete inferences are· obtained by \ising the Markov·chain Monte
Carlo -technique, which produces random samples from the posterior probability
distribution expressed in terms of the parameters.

Key words: R6ssi -technique, Bayesian inference, Markov Chain Monte. carlo
(MCMC), Rossi alpha, smoothing splines -

1. Introduction

We present a Bayesian analysis of data acquired using-the Rossi technique.-This
analysis problem is interesting because the inferred time-dependent signal is not
linearly related to the basic measurements. Rather than going for a maximumpos­
terior estimate, -we will emphasize the probabilistic character of Bayesian analysis
by using MCMC to make inferences. The MCMC samples from the posterior can
be displayed in terms of the inferred signal to visualize its overall uncertainties.
The posterior mean estimate is obtained, along with uncertainty estimates.

2. Rossi technique

It often happens that one wants to record a signal that is monotonically increasing
with time. H that signal is supra-exponential, most of the amplitude increase may
occur at the end of the time interval being recorded. H the signal is being recorded
on an oscilloscope, the trace may fall mostly outside the oscilloscope's central sweet
spot, the area in which the linearity is best.

In the Rossi technique for displaying a time-dependent signal, the horizontal
sweep of an analog oscilloscope is driven sinusoidally in time and the vertical sweep

tEmail: kmh@lanl.gov, jmb@lanl.gov
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Figure 1. A simulated photograph of a Rossi trace on an analog oscilloscope (left) and the
points that might be obtained by manually reading a portion of such a film, compared to the
underlying true Rossi trace.

x(t) =XR cOS(21rJR(t - to» , (1)

(2)
Idy

aCt) =-­
V dt

where IRis the Rossi frequency and to is the time at which the Rossi sweep starts.
We describe the measured points along the trace as the data set, {Xi, Vi}'

The aim of the present analysis is to determine from the measurements not
merely yet), but the relative time rate of change of the signal amplitude, called
alpha, as a function of time:
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Figure 2. The contribution to the likelihood for each data point is based on the components of
the shortest vector between the data point and the modeled Rossi curve...

This quantity, often referred to as the Rossi alpha [1], is a measure of the criticality
of an assembly of fissile material, in which the amplitude signal y is the measured
flux from the assembly. We assume that the signal being recorded is band limited
and has a known time-resolution func;:tion. In this analysis, we will assume that
the frequency response of the input circuitry drops to 50% at the Rossi frequency
JR. We will not attempt to recover higher frequencies in a(t) than beyond the pass
band of the input signal, which constitutes the ill-posed problem of deblurring or
signal recovery..

Figure 2 shows our approach to assigning the likelihood, which quantifies the
probability of the measurements for any specified Rossi curve. We propose using
for the minus-log-likelihood .

where (Xi,Yi) is the measured position of the ith data point and (xt,y;) is the
position of the nearest point· on the Rossi curve. The uncertainties in x and Y,
given by the (Tz and (Ty, are assumed to independent of i. Of course, in any given
application, it is best. to confirm that the likelihood model properly adheres to
the probability distribution of the actual uncertainties in the data. The quadratic
form of this expression comes from the assumption that the uncertainties follow
Gaussian distributions. The sum over individual data points is valid only if the
uncertainties in measuring a point is independent of other measurements. Gull [2]
used a similar model for the likelihood to tackle the complex problem of fitting a
straight to,data points that have uncertainties in both x and y.

3. Model-based analysis

3.1. SPLINE EXPANSION

We directly model the function of interest, alpha vs. time, in terms of a cubic
B spline. The spline is chosen for its smoothness properties. For uniformly spaced
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Figure 9. The model used to interpret the Rossi da.ta. In the alpha. domain, we uSe a spline"to'"
model alpha as function of time. The spline knot positions iLre !Shown as dotS'.

basis functi~ns, we write the continuous alpha curve as

(4)

where 4>('A~.) is a basis function centered on the time t~ aridA,tiSthe spacing of
the knots. To respect the assumed band limit of the syste~mentioned above, we
choose ~t = O.25/i1

• The corresponding Nyquist frequency is 2JR' high enough
to accomodate signals with the assumed 50% attenuation at JR.

The cubic B-spline basis function is defined as:

(5)

Figure·3 shows the spline curve with the knot positions, the tic in Eq. (4), for
a linear alpha dependence over three Rossi cycles. Two additional spline knots
are present but not shown; one beyond either end of the interval covered by the
data. These are included to provide for the same functional dependence in the end
intervals as elsewhere. This approach differs from the usual assumption that either
the first or second derivative of the function is zero at the end of the interval [3].

3.2. BAYESIAN INFERENCE

Our goal is to make inferences about the spline model for alpha from the data.
In the Bayesian approach, the uncertainty in the value of a model parameter is
represented by a probability density function (pdf). Bayes law gives the pdf for
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the vector of model parameters a, predicated on some data d:

( Id I) = p(dla, I) p(a, I) (6)
p a , p(dII) ,

where p(d Ia, I) is the likelihood, and p(a, I) is the prior on the expansion coefi­
cient. The symbol I represents all background information about the situation at
hand, information about the experiment, the apparatus, etc. I is meant to remind
us that analysis should not done in a vacuum; prior knowledge should always play
a role. From here on in, we will drop I from the probability expressions. p(ald,I)
is called the posterior and summarizes our knowledge about the parameters after
we combine the measurements d with what we knew beforehand.

The denominator in (6) is called the evidence and can be thought of as the
probability of the data (given the model)

p(dII) = jP(d1 a,I)p(a, I) da . (7)

This quantity is required to ensure the proper normalization ofposterior,Jp(ald, I)da =
1. It can be ignored when one is concerned only with the parameters a. However,
as we shall see later, it becomes the focus of attention when we are concerned
about hyperparameters or selecting the best model to describe the data (4].

hi our situation we know that the alpha curve must possess a certain degree
of smoothness because yet) is band limited. While the spline representation is
supposed to provide smoothness to the curves, it tends to produce oscillations, as
we shall see later. These oscillations-can be controlled through the prior in Eq. (6).
To promote the smoothness of a function, one often chooses[3,5] to minimize the
integral over the. interval T of the square of the second derivative of the function:

S(a)=T3L(~~)2dt. (8)

The T 3 factor makes S dimensionless. Using the expansion for aCt), Eq. (4), this
functional can be expressed in terms of the coefficients a. Following common prac­
tice, the minus-log-prior on a(t) is taken to be .\S(a), where .\ determines the.
strength of this prior. The parameter .\ is called a hyperparameter because it
directly affects a pdf, instead of the model describing the signal..

3.3. SYSTEMATIC EFFECTS

In describing the measurements, we glossed over several important aspects of the
measurement process. For example, it is essential to determine the location of the
baseline for the amplitude measurements, Yo, since all values of the y position of the
data points must be referred to this baseline. If Yo is measured in a manner similar
to that for the data points, we expect the uncertainty in Yo to be comparable
to that in the y position of the data points. To include this uncertainty in our
analysis, we add to the minus-log-likelihood for the data points Eq. (3),

~ [(YO -2yo )2] , (9)
(71/0
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where Yo is the measured value of the baseline and Yo is the value in our model.
To take Yo into account in our model, y in Eq. (2) has to be replaced by

y - Yo to calculate the predicted a(t) curve. This baseline represents a systematic
uncertainty because its value impacts many other the model parameters.

Another systematic effect is the amplitude of the Rossi sweep, XR, in Eq (1).
This is a parameter in the model that we are using to predict the x, y data. Since it
is not directly measured in our scenario, there is no contribution to the likelihood.
It must be inferred from the data points.

There are potentially several more aspects of the measurement process that
might be important, e.g., geometrical distortions. We will ignore them in this
paper to simplify the present analysis.

To summarize, the full minus-log-posterior for our analysis is

-log[p(8oI~)] = ~~2 +~_ [(YO ~~o)2] + -\5(80)., , (10)

where !X2 is given by' Eq. (3) a.nd 5(a}byEq. (8). The firsttwo terms represent '
likclmood contributions and ~he laSt term comes from the prior on smoothness.

4. Markov~n.MonteCarlo,. ...., - .

The Markov Chain Monte Carlo (MCMC) technique provides a means to generate
a random sequence of model realizations: that sample the posteriot probabilitY
distribution of a Bayesian 8.nalysis. The sequence may be used to make inferences
about the model uncertainties that derive from measurement uncertainties. The
usefulness of MCM;O in Bayesian inference is well established [H}.

The simpleSt MCMC approach is to use the Metropolis algorithm [9} to con­
struct the sequence. In the Metropolis algorithm, one tries to move from thecunent
position in parameter space by· randomly selecting a trial step from a symmetric'
probability distribution. The trial step is either accepted or rejected on,the basis,~­

of the probability of the new position relativetOc the previous one. This algorithm-,,,
is widely employed because of its simplicity. We use the Metropolis algorithm and
omit the details for lack of space.

5. Results

Figure 4 shows five samples drawn from the posterior for our model for two val­
ues of -\. Because successive samples in an MCMC sequence are highly correlated, '
these five samples are separated by 2000 steps to minimize correlations between
them. This kind. of display of model realizations is a good way to visualize- the
characteristics of an inferred model [10]. By showing a representative set of plau­
sible solutions, the degree of variability of this presentation provides the viewer
with a visual impression of the degree of uncertainty in the inferred model.

Of course, MCMC is more than a tool for visualizing uncertainties; it provides
a characterization of the ,posterior from which quantitative estimates of the un­
certainty in the inferred models may be derived. The uncertainty in any aspect
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Figure 4. Five widely separated samples from an MCMC sequence, shown in both the data
domain (left) and the alpha domain (right). The hyperparameter..\ is 0.04 for this case. Viewing
these samples provides one with an understanding of the type of curves that are admissible within
the framework of the model used to interpret the data.

Figure 5. The posterior distributions for the alpha curves for two values of the hyperparameter
that controls the strength of the smoothness prior~ ..\ = 0.0004 on the left and ..\ = 0.4 on the
right. The true alpha curve is shown as a straight line.

of the modetmay be estimated with .respect to any type of uncertainty measure
desiredt for examplet in terms of variance. A notable advantage of MCMC is that
the results are obtained with marginalization with respect to any nuisance param­
eters. In our problem, we are not interested in the two systematic parameterst Yo
and x R. The uncertainties in these parameters are integrated out by the MCMC
process. An MCMC sequence can also be used to estimate the posterior mean (as
an alternative to the posterior mOde).
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Figure 6. . On the left, a vertical slice through Fig. 5 (~ =0.4) at the time 1.5, which gives the
posterior distribution for alpha at that time. Analysis of Fig. 5 (right) yields the posterior mean
and one standard deviation uncertainty band for alpha.

To average over our MCMC sequencet we lay the curves do:wn on a pixelated~

image that spans the region of interest. Each curve adds a value to the pixels it
covers. At the end of the processt the value ofeach pixel in the image is proportional
to the numiler of cUrves that fell on top of it. Figtll.'e 5 shows two such imageS. The
one on the left is obtained with a minimal prior. It demonstrates the tendency of
the splines to oscillate. The peaks and troughs of the envelope occur at the spline
knots. The image on the right is for ~ = OAt which is approximately the value
favored by maximizing the evidence in Bayeslawt Eq. (6)•.The severe oscillations
seen on the left are well controlled by the smoothness prior. The remaining wiggles
are caused by fluctuations away from the true linear alpha curve in the particular·
set data we are analyzing.

The pdf for ~ can be obtained by integrating the joint distribution for ~ and

For a fairly flat prior on~ and a, the most probable ~ occurs when the evidence
p(dla,~) is largest [4}.

This approach is followed here. However, for this to workt it is necessary for
the aCt) curve to possess some structure that doesn't minimize the prior, For
this calculation we used a step function for a(t).The evidence exhibits a broad
maximum around ~. =L

As argued abovet each column of Fig. 5 represents the posterior distribution
for alpha at a given time, as seen in Fig. 6 (left). One can thus determine the
posterior mean alpha and the rms deviation of the posterior as a function of time,

a,

over a:

( Aid) _ p(dla,~)p(at~)
p a, - p(d) . ,

p(Ald) = Jp(at~ld)daocJp(dlat~)p(a,~)da .

(11)

(12)
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as shown in Fig. 6 (right). The plot on the right shows the posterior mean and the
mean plus or minus one standard deviation. These curves represent an uncertainty
envelope for the alpha curves. However, it has to be realized that they really only
refer to the pdf at any particular time without regard to any other time. Details
contained in the posterior distirbution have been marginalized out. Specifically,
the correlations in uncertainties from one time to another can not be inferred from
this envelope. Rather, to get an idea of these correlations, one has to go back to
the MCMC samples and either visualize the correlations, as in Fig. 4. One can
quantify the correlations, for example, by computing the cross correlation over
the MCMC sequence between two different times, to obtain an estimate of the
covariance between the two uncertainties.
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