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Ground cover identification and mapping 
by CO2 Iidar imaging 

Bernard R. FoyrBIianJ}~1McVey, Roger R. Petrin, Joe J. Tiee, and Carl WilsOJll '" 

Los Alamos National Laboratory 
MS J567, Los Alamos, NM 87545 

ABSTRACT 

We report examples of the use of a scanning tunable CO2 laser lidar system in the 9-11 !lID region to construct images of 
vegetation.and rocks at ranges of up to 5 km from the instrument. Range information is combined with horizontal and vertical 
distances to yield an image with three spatial dimensions simultaneous with the classification of target type. Reflectance 
spectra in this region are sufficiently distinct to discriminate between several tree species, between trees and scrub vegetation, 
and between natural and artificial targets. Limitations imposed by laser speckle noise are discussed. 

Keywords: lidar, mUltispectral imaging, matched-filter analysis, vegetation mapping 

1. INTRODUCTION 

Infrared remote sensing instruments have been developed and applied to many different applications involving imagery of the 
earth's surface.· In principle, both passive instruments (detecting reflected or emitted light) and active instruments (using 
reflected laser light) can provide such spatial and spectral information, but only passive instruments are generally used 
because of their greater simplicity. In this paper, we demonstrate an application of a multispectrallidar platform to mapping 
of vegetation and rock. Active lidar imagery provides three spatial dimensions rather than two, simultaneously with the 
identification of the physical target sampled by the laser. At longer wavelengths accessible by a CO2 laser, terrestrial features 
can be identified by their distinct spectral signatures. 

Udar sensing of vegetation offers some complementary charncteristics to passive remote sensing. In the thermal infrared (8-
12 Jlm), lidar interrogation of natural targets is essentially a pure reflectance measurement, unaffected by topographical 
shading and spatial variations in temperature. Differential measurements using CO2 lasers have been known for some time to 
be useful in discriminating between vegetation types,2-4 tree species, and rock types.s We have investigated the utility of a 
scanning CO2 DIAL system in constructing vegetation maps for broad areas. Although the scanning of a narrow lidar beam is 
a time-consuming process compared to imaging sensors, the detailed spectral characteristics in the reflectance information 
may be useful in many applications. 

2. EXPERIMENTAL APPROACH 

The lidar system for these measurements utilizes a CO2 laser developed at Los Alamos that combines advantages of high 
repetition rate, rapid and broad tunability, moderate pulse energy, and good quality spatial profile. The" ~cousto-optically 
(AO) tuned laser has been described in detail,6 so only major features will be repeated here. The oscillator" consists of an rf­
excited waveguide laser operating at 5 kHz. A pair of AO modulators selects the laser wavelength and Q-switches the laser to 
provide pulses with temporal FWHM of -200 ns. The wavelength is changed on ev~~y shot to a different CO2 laser line, 
sweeping through both the 9.6 and 10.6 !lID bands of CO2 and providing 44 wavelengths. Uie 44-wavelength pattern is 
repeated to give a net frequency of 113 spectra per second. The pulse energy is amplifi~ V5iih two w~veguide modules 
identical to the oscillator, producing an average pulse energy (over weak and strong linesj-cif ":0;8 mJ. Th¢ laser ene(gy.,is 
measured on every shot with a thermoelectrically cooled HgCdTe detector at -40·C, and is teim~ hei-eithe- "reference 
signal." Spatial profile and spectral content are monitored with on-line diagnostics. The beam is expanded ;~~.iefli'<,(;tA've 
optics to an initial beam waist of -5 cm and a beam divergence of -300-350 J.!cud (2wo parameter). Spatial profireAof the 
beam at different wavelengths were measured and are overlapped to within 1A of a beam diameter. This is required so'that the 
various wavelengths interrogate the same target or mixture of targets. 

The receiver system of the lidar bench consists of a Cassegrain telescope with 30 cm aperture. A series of lenses focuses the 
return light with fll imaging onto a HgCdTe detector cooled to 35 K. An 8-12 Jlm bandpass filter cooled to 77 K is situated 



in front of the detector to reduce background photons. The return signal is integrated with a 1 IlS boxcar gate, as is the 
reference signal for the pulse energy. Reference and return data for individual laser shots are stored on a data system. In all 
cases, the return signal was divided by the reference energy to account for minor variations of the pulse energy (typically 3-
5% over a few minutes). For target ranging, time traces of the return signal are collected with a digitizer. Software is used to 
locate the peak of this averaged signal in time, monitor changes in the value, and feed this back to the data acquisition system 
in an automated fashion. The automated ranging system follows range changes as the lidar system is scanned across terrain 
with an accuracy of -10 ns, equivalent to a range accuracy of -1.5 m. The laser is vertically polarized when it exits the 
optical train, and no polarization filtering is used in the receiver. 

The transmitter and receiver optical paths are made collinear before reflecting off a rotating gimbal mirror and exiting the 
lidar bench. The gimbal mirror is positioned with stepper motors to an accuracy of -30 Ilrad, or about 1110 of the beam size. 
Angle steps of the mirror are controlled by the operating system in a manner coordmated with data collection. The step size 
was generally 350 Ilrad, or about one increment of the beam size. Lidar images were obtained by sweeping the lidar line of 
sight across scenes in a raster manner. Two visible cameras were coaligned with the lidar line of sight, viewing visible light 
reflected from ZnSe beamsplitters. The visible scenes were videotaped to provide an exact record of the object interrogated at 
each mirror position, so that lidar data could later be overlaid on the visible image. Due to limitations of the gimbal 
controller, it is necessary to wait -0.5 s at each location for the motion to cease before collecting data. The typical data 
accumulation time employed was one second at each mirror location, giving a total of 256 seconds for a 16XI6 grid of points 
over a scene. 

2.1 Signal Averaging Considerations 

Noise in the measurement of the hard-target lidar return energy can arise from a variety of factors, including detector "dark 
current," thermal radiation from the scene, atmospheric turbulence, and laser instability. Laser speckle noise produced by the 
beam on the target can be a limiting factor for lidar measurements in the LWIR region. Goodman7 derived the following 
expression for the speckle signal-to-noise ratio in lidar measurements of this type. 

SIN=.Ji;i"", Sm =.JS:!::... ( J
I/2 

Sc ZA 
(1) 

where M is approximately the number of detected speckles in the image of the beam spot (for M» I), Sm is the telescope 
area, Sc is the speckle area on the target, A. is the wavelength, z is the range to target, and L is the width of the beam on target. 
Uz is the beam divergence. For our optical setup, the speckle SIN can be varied from 3.3 to 12.5 by changing the beam 
divergence, and for most of the work reported here it was set at -8, equivalent to speckle fluctuations of -13%. 

Ideally, speckle noise and the other noise sources are reduced by signal averaging as the square root of the number of shots.8 

Consequently, high-repetition rate is an important characteristic in producing good-quality !idar spectra. In a one-second 
measurement for a given target, the speckle noise would be reduced from 13% to 1.2% (assuming 113 shotsls at each 
wavelength). We observed, however, that ideal averaging was not obtained in all cases. Experiments on various natural 
targets such as trees, bushes, and grassy vegetation at short range « 2 km) showed that shot-to-shot fluctuations could be 
reduced by averaging to 1-5%, but then reached a plateau. Similar behavior has been noted in early C~ lidar work by 
Menyuk and Killinger,9 who proposed that non-independent speckle patterns on consecutive laser shots impart a temporal 
correlation to the return signal which impedes signal averaging. While our measurements were performed at much higher 
repetition rate (5000 Hz vs. 10 Hz), similar considerations probably apply. We find that targets such as grass and trees, with 
reflecting elements that are small and mobile, exhibit better averaging (-I %) than targets such as dirt and insulation board 
(-3-5%), which are more fixed. 

3. CO2 LIDAR SPECTRA OF OBJECTS 

A few example spectra obtained with our lidar instrument are shown in Figure 1. The spectra were corrected for instrument 
response by dividing them by the observed spectrum of a roughened (flame-sprayed) aluminum target board positioned at 
about the same range and oriented at near-normal incidence to the laser. Roughened aluminum has a reflectance of -80% and 
a nearly flat spectral response in the 9-11 11m range. IO

•
11 There is only a slight upward slope of <I % versus increasing 

wavelength. By taking a ratio to the spectrum of aluminum, atmospheric features are also approximately removed. 
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Figure 1. Lidar spectra of natural and man-made objects. Each spectrum is referenced to aluminum, which is assumed to be spectrally flat 
The two spectra indicated in (b) were reduced to fit. 

The materials of interest in Fig. 1 are grassy vegetation (a mixture of species dominated by Blue Grama Grass, Boute/oua 
gracilis), One-seed Juniper (Juniperus monosperma), Ponderosa Pine (Pinus ponderosa), a synthetic foam insulation board, a 
dirt/gravel mixture, and a shrub called Chamisa (Chrysothamnus nauseosus). Pinyon Pine (Pinus edulis) is not shown but 
appears spectrally similar to Ponderosa Pine. There are distinct differences in the overall reflectance of these objects, and 
slight differences in the spectral shape. The trees, shrubs, and grass have a low reflectance of -1-3%, while the synthetic 
insulation foam (-30%) and the dirt/gravel mixture (-5%) are considerably higher. We find that these differences are 
somewhat reproducible among individuals of the same species, and can be used as a criterion for identification, but further 
work is necessary to clarify the statistical properties of large numbers of objects. Some variation in reflectance is expected 
from the dependence on angle of incidence. 12 The dirt and insulation foam spectra exhibit larger wavelength-to-wavelength 
and shot-to-shot variations than the other objects, which is a result of speckle noise described above. Even apart from 
amplitude differences, many spectra can be distinguished by shape. Grass, for example, has a distinctly rising spectral feature 
at longer wavelengths. The data were taken in early spring when the grasses were mostly dried stalks. The bottom panel 
displays the return signal versus laser line, which will be used in subsequent figures. 

, 4. RESULTS AND DISCUSSION 

Figure 2 shows typical results for an image constructed from the lidar return signal strength. Two disparate wavelengths are 
illustrated, and the sum over all wavelengths is also shown. Included in this scene are a rocky cliff, trees, and grassy 
vegetation, at a range of 4.1 km. A photograph of the scene is shown in Figure 3. The lidar data were obtained over a 16X 16 
grid of points, with the separation between points being close to the beam size (-350 Jlrad). At each pixel location, 128 shots 
were collected at each wavelength, corresponding to a dwell time of 1.1 s. Because of additional mirror settling time, the full 
scan required 8.7 minutes to complete. The outline of the trees is apparent in the sum image, but less distinct at the laser line 
1OP20 (A = 10.59 f.Lm). The contrast between trees and grass and between grass and rock varies depending on wavelength. 
This would indicate that a multispectral analysis will yield more information than single-wavelength images, as expected. 
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Figure 2. Images of Iidar return energy for two selected wavelengths (9.27Ilm and 1O.59Ilm), and summed over all wavelengths. White 
refers to lower return strength, and black to higher return strength. The scene is the same as shown in Fig. 3. The range is 4.1 km, and the 
dimensions of the image are 21 m in both horizontal and vertical directions. 

A useful type of analysis that incorporates the spectral information is ''k-means clustering," which has frequently been 
employed in the analysis of passive images. 1 This approach essentially groups together pixels that have similar spectra, 
organizing them into k different groups or "clusters." Mathematically, the spectra obtained at each pixel (by averaging for 
one second) are denoted as pixel vectors Yb with i denoting the pixel number; each vector has p=:40 components 
corresponding to laser wavelengths. (In practice, a few noisy laser lines are discarded depending on laser performance.) The 
vectors YI have both direction and magnitude in p-dimensional space. They are grouped in the space in k groups and the mean 
vectors Jlk are found. The points for each pixel are moved between groups in an iterative fashion until the overall squared 
distance 

k n ' 

d,!, = L t (y ij -11 j) (y ij - 11 j ) (2) 
j=1 ;=1 

is minimized. Here, Yij is the i'th pixel belonging to the cluster j, and nj is the number of pixels in cluster j. The superscript t 
indicates the vector transpose. The Euclidean distance d is used here for simplicity. The application of this method yields the 
result shown in Figure 3. Four clusters are used in the analysis (k=4) because it corresponds to an intuitive breakdown of the 
scene elements into trees, grassy areas, and two types of rock, each indicated by a different symbol. In the rocky portion of 
the scene in the bottom of the image; detailed features are brought out by the analysis. An area of vegetation appears between 
the rock bands that is not obvious in the photograph. Field inspection confirmed that some sparse vegetation indeed occurs 
here. In the central upper portion of the photograph, an area of dead branches appears within the grouping of Juniper trees. 
That area is also revealed in the lidar data (circle symbol), the cluster most closely matching the spectrum of that pixel. In the 
region of rocks in the bottom half of the scene, the lidar data fall into two clusters. The crosses correspond to rock that is 
either uncovered by lichen or rock that is different in texture because it is partially broken into gravel. 

The resultant spectra that correspond to the clusters in the image are shown in Figure 4. These are the mean spectra JlJ 
obtained for all of the pixels belonging to each cluster. Figure 4 displays spectra in two ways: as absolute return signal 
energies, and as differences from the mean spectrum of the entire image. When viewed in the first way, it is clear that all 
spectra share some common features, particularly evident in the 9 Jlm band The attenuation in this region is well understood 
as absorption from atmospheric ozone (present at - 50 ppb).13 Atmospheric COz and water vapor also contribute to the 
overall spectral shape. We have been able to synthesize these features, based on postulated concentrations, for similar spectra 
taken at ranges up to 7 km. In this way, the lidar system provides an accurate measure of atmospheric concentrations, 
averaged over the propagation length. 

,> 



Figure 3. Photograph of scan area and cluster image representation, generated by the k -means cluster analysis of the Iidar data. The dashed 
line in the left photograph indicates the scan area. On the right, symbols corresponding to the four clusters are overlaid on the same picture. 
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Figure 4. Spectra of the clusters indicated in Fig. 3. Each spectrum is the mean spectrum for ail of the pixels belonging to that cluster. In the 
top panel, the absolute spectra are plotted (referenced to aluminum). In the right panel, the spectra are plotted as the difference from the 
mean spectrum of the entire image. Note that there is a wavelength gap near the center, as shown in Fig. 1. 

The reflectance spectrum of the lidar target is superimposed on the atmospheric absorption spectrum. Thus, it is somewhat 
easier to recognize spectral differences in target types if the atmospheric contribution is first removed. While that can be done 
in principle by using known absorption cross sections for atmospheric constituents, it is somewhat tedious since it must be 
recalculated for each new set of atmospheric concentrations and pathlengths (corresponding to target range). Instead, we used 
a simple method that is approximately equivalent to atmospheric removal: subtraction of the mean spectrum of the entire 
image, with results shown in Fig. 4b. (The difference spectrum is subsequently divided by the mean, yielding a spectrum with 
fractional difference from the mean.) Here it can be seen that different objects in the scene have slowly varying spectra with 
distinct slopes and amplitudes, in agreement with the data of Fig. 1. 

The extent of spectral differences between target types can be visualized with a plot of the signal levels for two selected 
wavelengths, as shown in Figure Sa. The pixels are seen to fall into distinct" groups separated by the hand-drawn boundaries 
(dashed curves). Within one cluster, the spread is quite large, often larger than the distance between cluster centers. Note that 
the classification analysis is performed over the full space of p wavelengths, not just the two shown in the plot (in this 
example, p=39). Despite the large spread, we find that the clustering results are quite reproducible. When the same scene is 
scanned days and even weeks apart, only a few percent of the observed pixels change identity. The amplitude differences 



between clusters are also reproducible. This suggests that overall return signal amplitude is an important criterion in 
distinguishing between target types. 
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Figure 5. (a) "Scatter plot" of lidar signal strengths at two wavelengths, 1OP20 (A::l0.59Ilm) and 9R20 (1..::9.27 Ilm). (b) Plot of first two 
discriminant values, D2 vs. DI for each pixel, labeled by cluster assignment 

More separation exists between pixels than indicated in Fig. 5a if one considers all wavelengths. One way to illustrate this in 
a two-dimensional fashion is to use discriminant analysis, as it is termed in multivariate statistics. As described by Rencher, 14 

we construct discriminant functions which when applied to the individual pixel vectors YI yield a scalar result that indicates 
the degree of separation between the points. The discriminant functions are labeled OJ = all YI. The value of OJ is a scalar 
obtained as a dot product between the discriminant vector aj and the data vector (or pixel spectrum) YI. The optimal 
discriminants are obtained as eigenvectors of the matrix KIH, where E and H are similar to covariance matrices for the data 
within and between clusters. Specifically, the matrices are defined by the following. 

/; 

H = I,n;('p; -IJ,o,)(JJ; -IJ,o'y 
1=1 

E= ±t&rii -IJJYii -IJ) 

(3) 

;=1 j=1 

Here, Iltot is the mean spectrum of the whole image. Thus, H is a weighted sum of matrices related to the differences between 
clusters, while E is related to the sums of squares between pixel vectors belonging to a given cluster. The largest eigenvalue 
of KIH corresponds to the first eigenvector a10 and the second largest to a2, and so on. Application of these to each pixel in 
the data produces discriminant function values 0 1 and O2• Ouda and HartiS also describe this type of discriminant analysis. 
Values of the first two discriminant functions for the set of pixels is shown in Fig. 5b. It can be seen that there is slightly 
better separation between the four clusters than is apparent in Fig. 5a, where simply the signal values for two wavelengths 
were plotted. The discriminant plot also shows that the various pixels seem to be correctly assigned to clusters, with the 
possible exception of a few near the boundaries between clusters. 

Examination of Fig. 5 shows that there is clearly significant variation within the four clusters of data. This is due to physical 
variation in the scene. For example, the Juniper trees vary in foliage density. The grassy area in the scene is inhomogeneous 
due to a natural distribution of plants on the ground. One might ask whether this extent of variation can be quantified by the 
lidar measurement. One way to do this is to examine the range of values of the discriminant functions within a given cluster. 
An alternative way is to construct matched filters corresponding to each individual cluster and apply the filters to the whole 
scene, looking for variations in the matched filter output. To accomplish this for a given cluster, we segragate the data into 
target (the cluster of interest: trees for example) and background pixels (all other pixels in the scene: rock, grass). If the target 
data has Ylarg and sample covariance matrix Stili'!:' the background data has mean Ybkg and sample covariance matrix Sbkg. than 
an optimal matched filter for the target is 

--."......, .......... --~-.----.. 



SIb -I (y,arg - Y bkg) 

8; = (Y,arg -Ybkg}S,b-I(Y,arg -Ybkg) 
(4) 

where the aRPropriate covariance matrix is the pooled. or weighted average covariance matrix between target and 
background: . 

1 . 
SIb = [(n, -l)s,arg +(nb -l)sbkJ 

n, +nb-2 
(5) 

and nl and nb are the number of pixels belonging to target and background, respectively. For each of the four clusters in the 
current analysis, we choose target and background pixels and generate the four matched filter vectors aJ, a2, a3, 34. Performing 
a dot-product application of each of these to all of the image pixels yields a set of four images as shown in Fig. 6. Now we 
can see that within each cluster, there is a range of values of filter output, i.e. varying degrees of membership to that 
particular cluster. 
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Figure 6. Matched-filter images of data from Fig. 3. Black represents high values of filter output, white is low. Figures from left to right are 
the results for a filter corresponding to cluster I, 2, 3, 4, respectively. 

In all of these images, three dimensional spatial information is obtained concurrently with the spectral information in each 
scene component. The third dimension of "depth" or range from instrument to target is determined by necessity in the lidar 
measurement. The best way to display this information is in a color plot to designate cluster identity. 

Finally, we note that chemical plumes can be imaged in the same fashion as landscape features. If the plume is situated 
between the instrument and the lidar target, it can be detected as an absorption feature. By using clustering and other 
techniques such as Principal Component AnalysiS,I.14 the chemical signature can be optimally retrieved from a background 
with a varying spectral signature. This has been discussed recently in connection with passive infrared imaging.16 
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