ANL[DIs[eP-10IMUE

THE TRANSPORTATION SYSTEM CAPABILITY MODEL (TRANSCAP):R E C E { Vv E D
A MIXED LANGUAGE DEVELOPMENT APPROACH FOR JU
AN ARMY DEPLOYMENT SIMULATION L 0 2000

Richard I. Love, James F. Burke, Jr., Charles M. Macal, Dawn L. Howard, and Jill Jackson
Argonne National Laboratory
Decision and Information Sciences Division
9700 S. Cass Ave. Bldg. 900
Argonne, IL 60439

KEYWORDS

mixed language, inter-process communication,
class framework, discrete-event simulation

ABSTRACT

The Transportation System Capability
(TRANSCAP) model is a discrete-event simula-
tion model designed to simulate deployment of
forces from army bases — the first step of an
army deployment. Argonne National Laboratory
(Argonne) collaborated with the Military Trans-
portation Management Command Transportation
Engineering Agency (MTMCTEA) to develop
TRANSCAP. The model, which dynamically
sitnulates the loading and transport of military
cargo from an installation, will be used to plan
real-world operations and to train army trans-
portation specialists, TRANSCAP was designed
with pre- and post-processing modules (devel-
oped in Java separately from the discrete-event
simulation module, which was developed in
MODSIM III). Multiple programming languages
were used to meet the needs of this simulation.
This paper highlights the function of each mod-
ule, describes how the modules interact, identi-
fies the benefits of the separation, and describes
the programming languages used to develop the
modules. The paper also discusses a reusable
deployment simulation framework of classes that
implements the Army Modeling and Simulation
Office’s (AMSO’s) standard Transportation
Class Hierarchy. This framework has proved
flexible enough to be reused in other deployment
simulations.

INTRODUCTION

During a military deployment, both people
and equipment are transported from a fort to a
tactical assembly area and then to the final desti-
nation: the forward line of troops. Such “fort-to-
foxhole” deployments are not practiced often

because of the cost; when practiced, they are
rarely conducted under realistic circumstances.
As a result, the deployment analysts are not fully
aware of the constraints and complexities of a
deployment.

To address this issue, the MTMCTEA and
others are developing simulations to analyze,
plan, train for, and execute deployments. New
simulation models and technologies are good
investments because simulating deployments on
a computer is more efficient and cost effective
than testing them in the real world.

MTMCTEA collaborated with Argonne and
others to develop a suite of four force projection
models (FPMs). The suite is part of a strategic
vision for simulating most of the military de-
ployment process. The Enhanced Logistics Intra-
theater Support Tool (ELIST) simulates the in-
frastructure between ports and forts, The Port
Simulation (PORTSIM) Model and the Coastal
Integrated Throughput models simulate through--
put at first-class, commercial ports and austere
ports. The TRANSCAP model simulates instal-
lation transportation operations, computes time-
phased outloading capability, compares com-
puted capability to outloading requirements, and
identifies system and infrastructure constraints
and installation-specific force departure profiles.
Because it simulates the first step of a military
deployment, TRANSCAP’s main role will be to
present these departure profiles to ELIST for
simulation of the next leg, which is movement to
the port. Not only is TRANSCAP a component
of the FPM suite, but it can be used for fort in-
frastructure analysis, force deployment analysis,
practice, and training.

This paper discusses the components and
function of TRANSCAP’s six modules, the
benefits of separating the modules, and the three
programming languages used to develop the
modules.




DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States

Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.




COMPONENT MODULES

TRANSCAP comprises four categories of
component modules: pre-processing, simulation,
post-processing, and inter-process comrnunica-
tion.

¢ The pre-processing module includes the
Installation, Force & Scenario Manager and
the Scenario Report Manager. These pre-
processing modules manage data input, se-
lect the installation, specify pieces for de-
ployment, identify the method of deploy-
ment (e.g., convoy), and specify deployment
characteristics (e.g., the method used to
form the convoy groups).

o The simulation module contains the heart of
TRANSCAP — the discrete-event simula-
tion.

The two post-processing modules include the
Results Display Manager, which manages the
reporting and presentation of simulation results,
and the Export Manager, which exports results to
other simuiation models.

¢ The Inter-process Communication Manager
enables interaction between the pre- and
post-processing modules and the simulation
module.

Discrete-Event Simulation

The goal of TRANSCAP’s discrete-cvent
simulation is detailed analysis. Because ELIST
can perform a high-level, aggregate analysis of
the operations at a fort, TRANSCAP was written
at the lowest possible level of data and process.
It was also written in an object-oriented pro-
gramming language to foster the greatest amount
of modularity and potential for reuse in future
simulation projects.

The following are descriptions of the three
types of low-level data that TRANSCAP uses:
transportation and cargo, iafrastructure, and re-
source. Transportation and cargo data are Level
6, which means that details are available for each
individual piece of cargo and transport, rather
than an aggregated data description based on
tonnage or category. Infrasiructure data are the
most detailed type of data about quantity and
exact measurements of existing infrastructure.
For example, rather than using an aggregate ca-

pacity for all marshaling areas or rail yards, spe-
cific data for each are used. Resource data in-
clude information about such existing facility
resources as the quantity and location of each
truck loading ramp, rail end ramp, inspector,
mechanic, or tie-down crew.

There are three types of processes in de-
ployment simulations. TRANSCAP processes
are implemented in an object-oriented program-
ming langnage. These processes are at a low
level because of how transportation and cargo,
infrastructure, and resources are modeled. Trans-
portation and cargo are modeled at a low level
because there is a different class for each type of
cargo, transpert, and locomotive. Also, each in-
dividual piece of cargo, transport, and locomo-
tive is instantiated as its own object — aggrega-
tion is not used. Processes simulating infra-
structure use are modeled at a low level because
the process times of the movements of trans-
ports, cargo, and locomotives are based on the
actual distances in the infrastructure that is trav-
ersed, rather than on stochastic (or random) dis-
tributions. Resources, like transportation and
cargo, are modeled at a low level because there
is a different class for each type of resource, and
each individual resource is instantiated as an
object. Also, each resource is assigned a specific
responsibility and a specific service time; multi-
ple processes are never represented by a general
rate,

Installation, Force & Scenario Manager

The first pre-processing module, called the
Installation, Force & Scenario Manager, encap-
sulates most of TRANSCAP's graphical user
interface (GUI). It manages the installations
available for simulation, the forces resident at the
installations, and the deployment scenarios. This
module allows the user to specify and generate
the scenarios needed for the simulation module.
For TRANSCAP’s purposes, an installation
(e.g., Fort Stewart) consists of a resident force; a
modeled infrastructure consists of landmarks and
routes. A scenario is a description of a deploy-
ment, which includes the installation from which
the items are deployed, the items to be deployed,
and other deployment characteristics. A resident
force must exist to create an installation, and an
installation must exist to create a scenario.

If a desired installation does not exist in
TRANSCAP’s database, it can be created in the
Installation, Force & Scenario Manager module,




Creation of an installation requires the input of
force data and detailed infrastructure data or the
creation of notional infrastructure data. When
creating notional infrastructure, the user must
enter the location of the landmarks and the dis-
tances of the routes. By using varying force or
infrastructure data, the user can create multiple
versions of an installation.

The user creates a scenario by selecting an
installation, selecting a portion of the installa-
tion’s resident force to be deployed, selecting the
pieces to be deployed, specifying how those
pieces will be deployed, and selecting other de-
ployment options (e.g., hours for daylight opera-
tions). Most deployment options have defaults,
50 the user may only need to change a few op-
tions. An existing scenario can be displayed for
review, modified, and saved as a new scenario,
or selected for immediate execution in the dis-
crete-event simulation module. The user can also
perform what-if analyses by creating scenarios,
varying deployment characteristics, or basing
those scenarios on multiple versions of installa-
tions.

Scenario Report Manager

Because a scenario is defined by such a
large quantity of information, it is useful to view
and analyze it in report form. The Scenario Re-
port Manager displays and organizes the existing
scenario’s raw data into sections and tables. This
report can be viewed in a scrollable window on
the user’s monitor or printed.

Results Display Manager

After the simulation executes a scenario, the
results need to be provided to the user. The Re-
sults Display Manager presents these results in a
variety of reports, graphs, and tables. Each re-
port, graph, or table result is displayed in a sepa-
rate window and can be printed. The user also
has the option to zoom in to highlight specific
results.

Export Manager

Other models may need the results of an
executed scenario. The Export Manager creates
an export file and writes it to a directory location
specified by the user. Currently, TRANSCAP
only exports files to PORTSIM.

Inter-process Communication Manager

Because a different programming language
is used for the simulation module than for the
pre- and post-processing modules, and because
some of these modules execute in separate proc-
esses, a communication mechanism is required
to ensure interaction: the Inter-process Commu-
nication Manager serves this purpose. The In-
stallation, Force & Scenario Manager tells the
discrete-event simulation what scenario file to
execute. The discrete-event simulation provides
execution feedback to the Installation, Force &
Scenario Manager, which displays a percent
completion progress bar in a dialog box and pro-
vides results files for the Results Display and
Export Manager.

The Inter-process Communication Manager
consists of a Transmission Control Proto-
col/Internet Protocol client and server. The
server opens a socket (i.e., a mechanism for cre-
ating a virtual connection between processes) on
the host machine and connects to the client. The
Instaliation, Force & Scenario, Results Display,
and Export Manager interact with the server; the
discrete-event simulation module interacts with
the client; and the server completes a request
from the client to make all connections. The type
of communication TRANSCAP requires is well
suited for socket use. The modules execute on
the same machine and the messages are simple
data strings, so a socket provides an easy and
quick means of communication.

BENEFITS OF MODULE SEPARATION

TRANSCAP generally consists of three
phases: (1) obtaining a scenario {pre-processing),
(2) simulating the scenario, and {3) providing the
results (post-processing). Because the phases are
mostly independent, they have convenient
boundaries for separation. Within each phase,
there are similar boundaries between smaller
phases. Separating TRANSCAP into independ-
ent phases achieves a division of labor; each
phase can be developed as an individual compo-
nent focused on its own task. Each component
may even be written in a language that is best
suited for its task, regardless of the language(s)
in which other components are written.

Separating the compornent modules provides
a layer of abstraction between the simulation and
the data inputs. As data inputs are modified or
added, the Installation, Force & Scenario Man-



ager must also be changed so that it can create
installations and scenarios; the discrete-event
simulation does not need to be changed.

Separation also allows the developer greater
independence. Different engineers can design the
modules with a greater degree of freedom and
focus on each module’s task. This freedom leads
to another benefit — reusable components.
Some modules perform the same, or similar,
task, as required by other simulation models.
When engineers design for it, the modules can be
reused in multiple models. This reuse benefits
the other models; conversely, modules from
other models can also be easily reused in
TRANSCAP. For example, the Results Display
Manager was designed as an independent com-
ponent and is now used by several other models.

Because some modules execute in separate
processes, TRANSCAP may be able to take ad-
vantage of a multi-processor machine or multiple
machines. For example, multiple discrete-event
simulation modules could simultaneously exe-
cute multiple scenarios. The pre-processing
modules could be distributed via the Internet,
and the discrete-event simulation could become a
server, thus allowing Web-based simulations,
Having separate processors or machines could
also assist in the implementation of callback
animations, which would display the simulation
as it executes a scenario,

MULTIPLE LANGUAGES

TRANSCAP takes advantage of the module
separation by writing each module in a language
best suited to its task. The discrete-event simula-
tion is written in MODSIM III. The Installation,
Force & Scenario, Scenario Report, Results Dis-
play, and Export Managers (the pre- and post-
processing modules) are written in Java 2. The
Inter-process Communication Manager utilizes
both Java 2 and C. A trait shared by these lan-
guages is that they are available on both of
TRANSCAP’s target operating systems, Solaris
(UNIX) and Windows NT. A discussion of these
three Janguages follows.

MODSIM HI

A discrete-event simulation requires many
constructs that most general-purpose program-
ming languages do not provide. MODSIM I
has been specifically created for object-oriented,
process-based, discrete-event simulation. Its ob-
jects are inherently capable of synchronous and

asynchronous actions. Therefore, this language is
well suited for developing the discrete-event
simulation module.

TRANSCAP uses object-oriented program-
ming because of its modularity and reusability,
which allow the source code to be constructed
using a layered approach — ensuring the crea-
tion of scalable, portable components for reuse in
TRANSCAP’s development and in other de-
ployment models.

Of all of the object-oriented programming
languages, MODSIM III features the most com-
plete framework of vendor-supplied classes for
discrete-event simulation programming. When
using MODSIM 111, there is almost no need to
write statistical collection or discrete-event
simulation facilitation source code.

Java

Java is an object-oriented language with
advanced features like garbage collection, built-
in security and memory robustness, extensive
error detection and handling, and GUI applica-
tion/programming interfaces. These qualities
make it well suited for GUI development. The
pre- and post-processing modules encapsulate
almost all of the user’s interaction with the
simulation, and thus extensively utilize GUIs.

Java also provides support for network
communication, making it appropriate for the
server portion of the Inter-process Communica-
tion Manager. It is also a multi-threaded lan-
guage that can take advantage of multiple proc-
essors or machines and could help enable a Web-
based simulation.

C

C is a low-level, general-purpose language
that provides socket libraries. C is used in
TRANSCAP because MODSIM III did not pro-
vide socket libraries when the client portion of
the Inter-process Communication Manager was
written. Also, MODSIM III can be extended by
an interface with C code. Therefore, the client
was written in C.

REUSABLE DEPLOYMENT CLASS
FRAMEWORK

The reusable deployment class framework
was designed for TRANSCAP and has been re-




used in other MTMCTEA and Argonne deploy-
ment simulations (Burke et al. 1999). This
framework, called the EXtensive Hierarchy and
Qbject Representation for Transport Simulations
(EXHORT) is a collection of three class hierar-
chies that together censtitute a standard and con-
sistent class attribute representation and behavior
that could be used directly by deployment simu-
lations. The AMSO has officially adopted EX-
HORT’s Transportation Class Hicrarchy as a
standardized code structure for object-oriented
deployment simulation to ensure meaningful
data exchanges.

This reusable deployment class framework
was intended for any deployment, but extended
for TRANSCAP to develop military fort-specific
subclasses. These subclasses contzin logic for
specific interactions between clients, servers, and
areas.

An example of how the reusable deployment
class framework can be subclassed is a vehicle
being loaded onto a railcar. The interaction be-
tween clients and servers is implemented as a
resource holding a piece of cargo in place for a
stochastic process time. When the vehicle is
loaded, its current status is then updated. No ad-
ditional processing is done to the client or the
server during the service period. However, when
a vehicle (i.e., a client) interacts with a rail end-
ramp (i.e.; a resource) to load that vehicle onto
the next available position on a train of railcars,
the code that chooses a process time stochasti-
cally needs to be overridden. The new code (that
overrides the old code) will choose a process
time based on the length of the railcars and span-
ners over which the vehicle must drive. In this
way, the generic interaction between a client and
a server is subclassed for a specific situation at a
fort.

CONCLUSION

TRANSCAP’s architecture has been de-
signed to take advantage of the independent na-
ture of its major processes. Its pre- and post-
processing component modules have been sepa-
rated from the discrete-event simulation, simpli-
fying the design and development, providing
data abstraction, allowing selection of an appro-
priate language for each module, and providing
greater freedom for future growth. The Inter-
process Communication Manager maintains the
cohesiveness of this team of modules. The po-
tential for reuse is enhanced by having and

sharing well-defined modules and by imple-
menting AMSO’s reusable deployment class
framework. This approach has resulted in a
richer, more dynamic simulation model.

ACKNOWLEDGMENTS

This work was supported under a military
interdeparimental purchase request from the U.S.
Department of Defense, MTMCTEA, through
the U.S. Department of Energy contract W-31-
109-ENG-109.

The authors wish to acknowledge the sup-
port of our program managers, Melvin Sutton
and Maureen Cassada of MTMCTEA.

The authors also thank Mary Fitzpatrick of
Argonne’s Information and Publishing Division
for her editorial assistance.

REFERENCE

Burke, J.F., C.M. Macal, M.R. Nevins, C.N,
VanGroningen, D.L. Howard, and J. Jackson.
1999, “Standardization of Transportation Classes
for Object-Oriented Deployment Simulations.”
In Proceedings of the Simulation Interoperability
Standards Organization 1999 Fall Simulation
Interoperability Workshop (Orlando, FL, Sep-
tember 12-17). SISO, Inc., Orlando, FL, (3)
1142-1152.

AUTHOR BIOGRAPHIES

Richard J. Love, is a software engineer in the
Modeling, Simulation, and Visualization Group
at Argonne National Laboratory. He is project
leader of the 2D Viewer, the animation model
employed by the PORTSIM and TRANSCAP
models and leads development of TRANSCAP’s
Graphical User Interface. He carned an M.S. in
Computer Science and a B.A. in Physics from
North Central College and a B.S. in Electrical
Engineering from the University of Illinois. His
other research interests include object-oriented
design, software agents, and Web-enabling tech-
nologies.

James F. Burke, Jr., is a software engineer in
the Modeling, Simulation, and Visualization
Group at Argonne National Laboratory. He is the
project leader and lead designer of the
TRANSCAP model, which is a part of the Lo-
gistics Modeling and Simulation Program. He is
working on a Ph.D. at the Ilinois Institute of




Technology, studying simulation component
reuse and standardization. He received an M.S.
in computer science from the Ilinois Institute of
Technology and a B.S. in Computer Science
from Benedictine University. His research inter-
ests include reuse and standardization of object-
oriented simulations, CORBA, simulation mod-
eling, and object-oriented software design and
development. He is a member of IEEE and
ACM.

Charles M. Macal directs the Modeling, Simu-
lation, and Visualization Group and leads the
Logistics Modeling and Simulation Program at
Argonne National Laboratory. His research in-
terests include simulation modeling and archi-
tectures and agent-based modeling. He received
a Ph.D. in operations research from Northwest-
ern University, as well as degrees from Purdue
University. He is a registered professional engi-
neer in Illinois and a member of INFORMS, the
American Association for Artificial Intelligence,
the Society for Computer Simulation, and Tau
Beta Pi.

Dawn L. Howard is a software engineer in the
Decision and Information Sciences Division of
Argonne National Laboratory. She is the project
leader of the CITM model being developed in
the Simulation and Visualization Section. She
received her M.S. in computer science from the
Illinois Institute of Technology and has a B.S. in
computer science from St. Xavier University.
She also holds a B.A. in English from DePaul
University. Her research interests include object-
criented development and simulation modeling.

Jill Jackson is a knowledge engineer in the De-
cision and Information Sciences Division of Ar-
gonne National Laboratory. She received her
M.S. in environmental management from the
Illinois Institute of Technology and a B.A. in
communication studies from the University of
Iowa. Her research interests include communi-
cating advanced computer concepts and applica-
tions to users and decision-makers.



