AOk[ots/ (P lotmyy,

MODELING FORCE DEPLOYMENT FROM ARMY INSTALLATIONS
USING THE TRANSPORTATION SYSTEM CAPABILITY (TRANSCAP) MODEL

James F. Burke, Jr., Richard J. Love, Charles M. Macal, Dawn L. Howard, and Jill Jackson C E, v Ea
Argonne National Laboratory
Decision and Information Sciences Division
9700 S. Cass Avenue, Bldg. 900
Argonne, IL 60439

KEYWORDS

deployment, transportation, discrete-event simu-
lation, logistics

ABSTRACT

Planning a military deployment is a com-
plex, multi-phased problem. Deployment plan-
ners must consider the constraints, options, and
available infrastructure at each installation, from
the beginning of the transportation system in the
United States to the end of the deployment in the
host country. The Military Transportation Man-
agement Command Transportation Engineering
Agency (MTMCTEA), in collaboration with
Argonne National Laboratory (Argonne), devel-
oped the Transportation System Capability
(TRANSCAP) model 10 simulate deployment of
forces from army bases. TRANSCAP uses so-
phisticated simulation processes to conduct de-
tailed analyses, plan real-world operations, and
train army transportation specialists.
TRANSCAP’s design separates its pre- and post-
processing modules (developed in Java) from the
simulation module (developed in MODSIM III).
The pre-processing module uses a graphical user
interface (GUI) to manage database and geo-
graphic information system (GIS) linkages and
to create, modify, and display simulation sce-
narios. The post-processing module displays the
simulation results in reports and graphs. The
simulation module contains the heart of
TRANSCAP, the discrete-event simulation
(DEVS).

This paper desctibes TRANSCAP’s model-
ing approach, its use of classes with fields and
methods specific to army installations, and its
reusable deployment simulation framework of
classes, the Transportation Class Hierarchy. This
framework has been adopted by the Army Mod-
eling and Simulation Office (AMSO) as a stan-
dardized code structure for object-oriented de-
ployment simulations to ensure meaningful data
exchanges. The framework has proved flexible

enough to be reused in other deployment simu-
lations.

INTRODUCTION

During a military deployment, both person-
nel and equipment are transported from a fort to
a tactical assembly area and then to the final
destination — the forward line of troops. Such
“fort-to-foxhole” deployments are not practiced
often because of the cost: when practiced, they
are rarely conducted under realistic circum-
stances, As a result, the deployment analysts are
not fully aware of the constraints and complexi-
ties of a deployment.

To address this issue, the MTMCTEA and
others are developing simulations to analyze
military deployments. Simulations are used to
analyze, plan, train for, and execute deploy-
ments. New simulation models and technologies
are a good investment because simulating de-
ployments first on a computer is more efficient
and cost effective than testing them in the real
world.

MTMCTEA collaborated with Argonne and
others to develop a suite of four force projection
models (FPMs). The suite is part of a strategic
vision for simulating most of the military de-
ployment process. The Enhanced Logistics Intra-
theater Support Tool {ELIST) simulates the in-
frastructure between ports and forts. The Port
Simulation (PORTSIM) and the Coastal Inte-
grated Throughput models simulate throughput
at austere ports. The TRANSCAP model simu-
lates installation transportation operations, com-
putes time-phased outloading capability, com-
pares computed capability to outloading re-
quirements, and identifies system and infra-
structure constraints and installation-specific
force clearance profiles. Not only s
TRANSCAP a component of the FPM suite, but
it can be used for fort infrastructure analysis,
force deployment analysis, practice, and training.

JUL 10 2000
0SsT)

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

" DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

TRANSCAP is part of a multi-mode] archi-
tecture that simulates a corridor or an entire
theater. The model uses sophisticated simulation
processes that allow the user to conduct a de-
tailed analysis of the critical installations in a
theater of operations. ELIST simulates trans-
porting cargo across U.S. infrastructure to air-
ports and seaports. ELIST also performs an ag-
gregate installation-process simulation for most
of the installations in a theater of operations on
which the user is not focusing. A similar model
suite, with data exchange between ELIST and
TRANSCAP, is also being developed for the
theater of operations in the host country.

TRANSCAP was written at the lowest pos-
sible level of data and process. It was also writ-
ten in an object-oriented programming language
to foster the greatest amount of modularity and
potential for reuse for future MTMCTEA simu-
lation projects.

The following paragraphs describe the three
types of low-level data that TRANSCAP uses:
transportation and cargo, infrastructure, and re-
source. Transportation and cargoe data are Level
6, which means that details are available for each
individual piece of cargo and transport vehicle,
rather than an aggregated data description based
on tonnage or category. Infrastructure data are
the most detailed type of data about quantity and
the exact measurements of existing infrastruc-
ture. For example, rather than using an aggregate
capacity for all marshaling areas or rail yards, the
model uses specific data for each. Resource data
include information about such existing facility
resources as the quantity and location of each
truck loading ramp, rail end ramp, inspector,
mechanic, or tie-down crew.

There are also three types of processes in
deployment simulations. TRANSCAP processes
are implemented in an object-oriented program-
ming language. These processes are at a low
level because of how transportation and cargo,
infrastructure, and resources are modeled. Trans-
poriation and cargo are modeled at a low level
because there is a different class for each type of
cargo, transport, and locomotive. Also, each in-
dividual piece of cargo, transport, and locomo-
tive is represented as its own object — aggrega-
tion is not used. Processes simulating infra-
structure utilization are modeled at a low level
because the process times for the movements of
transports, cargo, and locomotives are based on
the actual lengths of the infrastructure that is

traversed, rather than on stochastic (or random)
distributions. Resources, like transportation and
cargo, are modeled at a low level because there
is a different class for each type of resource, and
each individual resource is represented as an

.object. Also, each resource is assigned a specific

responsibility and a specific service time, multi-
ple processes are never represented by a general
rate.

This paper describes TRANSCAP’s model-
ing approach, its use of classes with fields and
methods specific to army installations, and its
reusable deployment simulation framework of
classes, the Transportation Class Hierarchy. This
framework has been adopted by the AMSO as a
standardized code structure for object-oriented
deployment simulations to ensure meaningful
data exchanges.

COMPONENT MODULES

TRANSCAP comprises four categories of
component modules: pre-processing, simulation,
post-processing, and inter-process communica-
tion.

e The pre-processing module includes the
Installation, Force, and Scenario Manager
and the Scenario Report Manager. These
pre-processing modules manage data input,
select the installation, specify pieces for de-
ployment, identify the method of deploy-
ment (e.g., convoy), and specify deployment
characteristics {e.g., the method used to
form the convoy groups).

e The simulation module contains the heart of
TRANSCAP — the DEVS.

o The two post-processing modules include
the Results Display Manager, which man-
ages the reporting and presentation of simu-
lation results, and the Export Manager,
which -exports results to other simulation
models.

¢ The Inter-process Communication Manager
enables interaction between the pre- and
post-processing modules and the simulation
module.

REUSABLE DEPLOYMENT SIMULATION
FRAMEWORK

The reusable deployment simulation frame-
work designed for TRANSCAP has been reused
in other MTMCTEA and Argonne deployment
simulations (Burke et al., 1999). The EXtensive
Hierarchy and Object Representation for Trans-
port Simulations (EXHORT) is a collection of
three class hierarchies that together constitute a
standard and consistent class attribute represen-
tation and behavior that could be used directly by
deployment simulations.

The reusable deployment simulation frame-
work was extended for TRANSCAP to develop
military fort-specific subclasses containing logic
for specific interactions between clients, servers,
and areas. An example of how default behavior
from the reusable deployment simulation frame-
work is subclassed is a vehicle being loaded onto
a railcar. The interaction between clients and
servers is implemented as a resource holding a
piece of carge in place for a stochastic process
time and then updating its current status field
when completed. No additional processing is
done to the client or the server during the service
period. However, when a vehicle (i.e., a client)
interacts with a rail end ramp (i.e., a resource)
with the goal of loading that vehicle onto the
next available position on a train of railcars, the
code that chooses a process time stochastically
needs to be overridden. The new code (that over-
rides the old code) will choose a process time on
the basis of the length of the railcars and span-
ners over which the vehicle must drive. In this
way, the generic interaction between a client and
a server, which is found in the reusable deploy-
ment simulation, is subclassed for a specific
situation at a fort.

General Transportation Simulation
Class Hierarchy

The class abstractions in EXHORT are
specified at a detailed level encapsulating de-
ployment simulation characteristics, rather than
at the higher, more generic level that is typically
used in object modeling.

EXHORT allows deployment simulations to
use the same set of underlying class data and
significantly reduce the effort needed to integrate
simulations and to analyze the defense transpor-
tation system. The first hierarchy is the Trans-
portation Class Hierarchy that covers commer-
cial transportation assets and military cargo. The

second hierarchy is the Infrastructure Class Hier-
archy, which addresses the locations where ac-
tivities are performed and the physical infra-
structure, such as a motor pool at a fort or a berth
at a port. The third hierarchy is the Resource
Class Hierarchy, which describes the resources
needed to support deployment (e.g., ramps,
rough terrain container handlers, cranes, and
forklifts).

These class hierarchies encapsulate generic
interactions: {1) between clients — things that
are acted upon (e.g., cargo and transports), (2)
between clients and servers/resources — actors
performing a service (e.g., inspectors, mechan-
ics, end ramps, and cranes), and (3) between
clients and areas at a facility (e.g., landmarks or
areas of activity). The client/server interaction is
simply a client being served for some stochastic
interval, and upon completion, updating the cli-
ent’s status. Examples of an interaction between
a client and an area include movement between
areas or tracking the constraining factors (such as
the maximum number of clients that can wait in
line and then wait around after receiving a serv-
ice). An example of an interaction between serv-
ers and areas is tracking the number of servers
available in each area (e.g., 41 inspectors in mar-
shaling area #1 and 21 in marshaling area #2)
and determining whether the servers (ie., in-
spectors) may travel between areas (e.g., in-
spectors remain in an assigned marshaling area,
but tie-down crews move between rail loading
yards).

Fort-Specific Subclasses

Argonne assembled classes specific to
TRANSCAP and subclassified them from the
generic class hierarchies. Together, these eight
subclasses create an installation deployment
simulation that involves the following nine proc-
esses:

Initialize simulation

Generate vehicles — vehicles depart motor
pool

Process vehicles

Generate truck transport assets

Process truck transport assets

Simulate container movement

Generate trains

Process trains

Call forward locomotive process

® & & & 2 9

BENEFITS OF MODULE SEPARATION

TRANSCAP generally consists of three
phases: (1) obtaining a scenario (pre-processing),
(2) simulating the scenario, and (3) providing the
results (post-processing). Because the phases are
mostly independent, they have convenient
boundaries for separation. Within each phase,
there are similar boundaries between smaller
phases. Separating TRANSCAP into independ-
ent phases achieves a division of labor; each
phase can be developed as an individual compo-
nent focused on its own task. Each component
may even be written in a language that is best
suited for its task, regardless of the language(s)
in which other components are written.

Separating the component modules provides
a layer of abstraction between the simulation and
the data inputs. As data inputs are modified or
added, the Installation, Force, and Scenario
Manager must also be changed so that it can cre-
ate installations and scenarios; the DEVS does
not need to be changed.

Separation also aliows the developer greater
independence. Different engineers can design the
modules with a greater degree of freedom and
focus on each module’s task. This freedom leads
to another benefit — reusable compenents. Some
modules perform the same, or similar, task, as
required by other simulation models. When en-
gineers design for it, the modules can be reused
in multiple models. This reuse benefits the other
models; conversely, modules from other models
can also be easily reused in TRANSCAP. For
example, the Results Display Manager was de-
signed as an independent component, and is now
used by several models.

Because some medules execute in separate
processes, TRANSCAP may be able to take ad-
vantage of a multi-processor machine or multiple
machines. For example, multiple DEVS modules
could simultaneously execute multiple scenarios.
The pre-processing modules could be distributed
via the Internet, and the DEVS could become a
server, thus allowing Web-based simulations.
Having separate processors or machines could
also assist the implementation of callback an-
imations, which would display the simulation as
it executes a scenario.

MULTIPLE LANGUAGES

TRANSCAP takes advantage of the module
separation by writing each module in a language
best suited to its task. The DEVS is written in
MODSIM III. Of all of the object-oriented pro-
gramming languages, MODSIM features the
most complete framework of vendor-supplied
classes for DEVS programming. There is almost
no need to write statistical collection or DEVS
facilitation source code when using MODSIM
III. An object-oriented programming language
was also selected for its modularity and re-
usability, which allow the source code to be con-
structed using a layered approach —- ensuring the
creation of scalable, portable components for
reuse in TRANSCAP’s development and in other
deployment models.

The Installation, Force, and Scenario; Sce-
nario Report; Results Display; and Export Re-
sults Managers (the pre- and post-processing
modules) are written in Java 2. The Inter-process
Communication Manager utilizes both Java 2
and C. A trait shared by these languages is that
they are available on both of TRANSCAP’s tar-
get operating systems, Solaris (UNIX) and Win-
dows NT.

CONCLUSION

TRANSCAP’s architecture has been de-
signed to take advantage of the independent na-
ture of its major processes. Its pre- and post-
processing component modules have been sepa-
rated from the DEVS, simplifying the design and
development, providing data abstraction, select-
ing an appropriate language to be used for each
module, and allowing greater freedom for future
growth. The Inter-process Communication Man-
ager maintains the cohesiveness of this team of
modules. The potential for reuse is enhanced by
having and sharing well-defined modules and by
implementing AMSO’s reusable deployment
simulation framework. This approach has re-
sulted in a richer, more dynamic simulation
model.

ACKNOWLEDGMENTS

This work was supported under a military
interdepartmental purchase request from the U.S.
Department of Defense, MTMCTEA, through
the U.S. Department of Energy contract W-31-
109-ENG-109.

The authors wish to acknowledge the sup-
port of our program managers Melvin Sutton and
Maureen Cassada of MTMCTEA.

The authors also thank Mary Fitzpatrick of
Argonne’s Information and Publishing Division
for her editorial assistance.

REFERENCE

Burke, JF., CM. Macal, M.R. Nevins, C.N.
VanGroningen, D.L. Howard, and J. Jackson.
1999. “Standardization of Transportation Classes
for Object-Oriented Deployment Simulations.”
In Proceedings of the Simulation Interoperability
Standards Organization 1999 Fall Simulation
Interoperability Workshop (Orlando, FL, Sep-
tember 12-17). SISO, Inc., Orlando, FL (3)
1142-1152.

AUTHOR BIOGRAPHIES

James F. Burke, Jr., is a software engineer in
the Modeling, Simulation, and Visualization
Group at Argonne National Laboratory. He is the
project leader and lead designer of the
TRANSCAP model, which is a part of the Lo-
gistics Modeling and Simulation Program. He is
working on a Ph.D. at the Illinois Institute of
Technology, studying simulation component
reuse and standardization. He received an M.S.
in computer science from the Illinois Institute of
Technology and a B.S. in Computer Science
from Benedictine University. His research inter-
ests include reuse and standardization of object-
oriented simulations, CORBA, simulation mod-
eling. and object-oriented software design and
development. He is a member of IEEE.

Richard J. Love, is a software engineer in the
Modeling, Simulation, and Visualization Group
at Argonne National Laboratory. He is project
leader of the 2D Viewer, the animation model
employed by the PORTSIM and TRANSCAP
models, and leads development of
TRANSCAP’s GUI He earned an M.S. in Com-
puter Science and a B.A. in Physics from North
Central College and a B.S. in Electrical Engi-
neering from the University of Illinois. His other
research interests include object-oriented design,
software agents, and Web-enabling technologies.

Charles M. Macal directs the Modeling, Simu-
lation, and Visualization Group and leads the
Logistics Modeling and Simulation Program at

Argonne National Laboratory. His research in-
terests include simulation modeling and archi-
tectures and agent-based modeling. He received
a Ph.D. in operations research from Northwest-
ern, as well as degrees from Purdue University,
He is a registered professional engineer in Illi-
nois and a member of INFORMS, the American
Association for Artificial Intelligence, the Soci-
ety for Computer Siruiation, and Tau Beta Pi.

Dawn L. Howard is a software engineer in the
Decision and Information Sciences Division of
Argonne National Laboratary. She is the project
leader of the CITM model being developed in
the Simulation and Visualization Section. She
received her M.S. in computer science from the
Ilinois Institute of Technology and holds a B.S.
in computer science from St. Xavier University.
She also holds a B.A. in English from DePaul
University. Her research interests include object-
oriented development and simulation modeling.

Jill Jackson is a knowledge engineer in the De-
cision and Information Sciences Division of Ar-
gonne National Laboratory. She received her
M.S. in environmental management from the

Illincis Institute of Technology and a B.A. in

communication studies from the University of
Iowa. Her research interests include comumuni-
cating advanced computer concepts and applica-
tions to users and decisionmakers.

