
1

Data Distribution Manager

C. Timmer, D. 1. Abbott, V. H. Gyurjyan, W. G. Heyes, E. Jastrembski, and E. Wolin

Abstract- Jefferson Lab produces voluminous amounts of
data, currently over 10 MB/sec. We developed a software
package designed to manage and distribute all of this data as it is
being produced - in real time. Called the Event Transfer (ET)
system, it allows users to create data (events) and insert them
into the system as well as allow other users to retrieve these
events sequentially. The ET system has fast, local operation
based on shared memory and POSIX threads and mutexes.
Event transfer may also occur over the network to remote users.
The ET system is designed to be easy to use as well as very
robust. Although initially implemented in C on Solaris and
Linux platforms, we completed a recent port to Java. This paper
presents a description of this software package as well as some
performance measurements.

I. INTRODUCTION

The Thomas Jefferson National Accelerator Facility
(Jefferson Lab) is a U.S. Department of Energy, nuclear

physics research laboratory employing a 6 Ge V electron
accelerator . Of the various detectors used at our facility, the
CEBAF Large Angle Spectroineter (CLAS) in experimental
Hall B is the one whose operation currently places the highest
demand on the data acquisition (DAQ) system. With over
40,000 channels and 30 FASTBUSIVME crates, a data rate
of 10 MB/sec is not uncommon. In the future, an experiment
in the proposed Hall D will produce an estimated 1000
MB/sec raw data rate.

To handle these data, the CODA data acquisition toolkit
[1], [2] has been developed to run on Solaris and Linux
systems. Briefly, CODA is composed of software components
that communicate via the network and with a common
database. The ftrst of the four main CODA components is the
readout controller (ROC) which runs in embedded controllers
in FASTBUS or VME crates collecting raw data. ROCs send
their data to the second component, the event builder (EB),
which constructs complete events out of these data fragments.
The EB, in turn, passes complete events to the event recorder
(ER) which writes them to tape.

The Event Transfer (ET) system is responsible for passing
these evems between the EB and ER. The system is also used
to pass the data to other users who may, for example, wish to
monitor the data quality or do some physics analysis. In fact,
the ET system is a general software package, which may just
as easily be used independemly of CODA. The PHENIX
experimem at BNL's Relativistic Heavy Ion ColMer as well

Manuscript received May 25, 2001. This wak was supported by the U.S.
Department of Energy.

All authors are with the Thomas Jeffurson National Accelerator Facility,
12000 Jeffurson Ave., Newport News, 23606, USA (telephone 757-269-
5130, e-mail: timmer @jlab.org).

as the MIT Bates accelerator also use the EI system to do
their data transfer.

II. Ef SYS1EM DESIGN

As software for the transfer of data is such a basic and
important building block for Jefferson Lab's DAQ system, it
had to meet some stringent requirements. Namely, it had to be
fast enough not to be a bottle-neck, extremely reliable,
flexible, and usable by the average physicist.

We achieved our speed requiremems through a number of
means. The POSIX thread (IEEE Std. 1003.1) library, also
known as "Pthreads", was used to make the Ef system a
completely multithreaded, single Unix process. This allowed
us to take full advantage of multi-processor computers.
Currently CLAS runs their ET system on a Sun 3500 with 6
processors with excellent results. Another means was to use
shared memory when transferring events between users on the
same machine. Furthermore, access to this shared memory is
arbitrated by use of Pthread mutexes and condition variables,
which are generally implemented in the users' memory space
as opposed to the kernel and are therefore quite fast.

A reliable system requires constam monitoring of users by
the ET system and monitoring of the system by users. The ET
system process and all users have a thread which provides a
heartbeat and another thread which monitors the system's
heartbeat in the case of users and vice versa. In this way, each
can tell when the other has crashed or disappeared for some
reason. A user is capable of waiting for the return of the ET
system and continuing where it left off. The ET system. on
the other hand, can recover the events that a crashed user was
holding, place them where the user specifies, and continue on_

Flexibility and ease-of-use is due in part to making the ET
system software completely reemram, meaning that multiple
copies may run on the same or different machines. No Unix
environmental variables or static variables are used,
eliminating a whole class of problems. In addition, because
the ET library is thread-safe, there are no worries about the
details of thread usage. Finally, users on remote nodes may
receive events over the network with no change in their code.

m. ET SYSTEM IMPLEMENTATION

Fig. 1 gives a general overview of the ET systera Arrows
in the figure show the flow of events through the system. The
basic idea behind the flow is to have a ordered series of event
repositories called "stations". Each station is primarily
composed of two lists sitting in shared memory. The "input
list" contains events available for use, and the "outut list"
contains events users are f"mished with. The first station,
called GrandCentral, is a special repository with all the

Fig. 1. The ET system architecture and event flow.

unused events which users can get, fill with data. and put back
into the system. Users that create these new events we call
producers. Once produced, the ET system process places
events in other stations "downstream." Users wanting to read
or modify the previously created events we call consumers
and may "attach" themselves to stations downstream from
GrandCentral where they can get and put these events as they
please. Again, the ET system process moves the used events
to the next station downstream.. Once events reach the last
station, they are recycled back to Grand Central.

This flow of events is accomplished by multithreading the
ET system process. Each station bas its own event transfer
thread, or "conductor", which is waiting for output events.
When events are ''put'' by the user, the conductor wakes up
and reads all events in the output list, determines which
events go where, and writes them in blocks to each station's
input list. A key optimization in the transferring of events
from station to user and vice versa is to transfer a whole array
at once. This reduces contention for mutexes in proportion to
the number of events in the array and can result in the
increase of speed by over an order of magnitude.

The use of threads have made complete error recovery
possible essentially all of the time. ET system and user
processes each have a heartbeat thread which increments an
integer in shared memory. Simultaneously, in other threads,
the system monitors each user and each user monitors the
system. If the system dies, users automatically return from
any function calls that are currently pending, can determine if
the system is still alive, and can wait for the system's return.

2

If a user's heartbeat stops, the system removes any trace of
that process from the system while all events tied up by the
dead process are returned to the system. These events can be
placed in either: 1) the station's input list, 2) the station's
output list, or 3) GrandCentral station (recycling them).

It is possible for multiple consumers to attach to a single
station. In that way, each consumer receives only a fraction of
the total flow of events through the station. One advantage of
this configuration is that fewer stations means events flow
through the system faster. Another advantage is that several
identical consumers can operate simultaneously.

As for the actual events themselves, there are a number of
ways to determine which are accepted into a station's input
list. Each event bas an associated header containing integers
whose values may be set, effectively tagging them. Stations
may choose to select events based on those tags using either a
default algorithm or a user supplied routine. It is also possible
to prescale so that every Nth event is chosen. Another means
is to make a station "blocking" in which case it receives all
events that match its selection criteria or "nonblocking" in
which case it only receives a fixed number of those events
before its cue is full causing other events to flow around it.

Occasionally, a user will need an event to hold a large
amount of data -larger than the fixed space allocated for each
event when the ET system was started and the event size was
determined. In such cases, a request for a large event will
cause a file to be memory mapped with all the requested
space. When all users are done with it, this temporary event

will be disposed of and its memory freed. Ibis is all
transparent to the user.

Events can be either high or low priority. High priority
events that are placed into the system are always placed at the
head of stations' input and output lists. That is, they are
placed below other high priority, but above all the low
priority items.

Part of the ET system's flexibility is its remote capabilities.
Users can interact with ET systems over the network since
each system has two threads dedicated to that purpose. One
thread responds to the UDP broadcasts of remote consumers
trying to find an ET system of a particular name somewhere
on the network. The response simply sends back the port
number of the socket that the second thread is listening on.
The second thread, meanwhile, is the listening on a socket as
part of a TCP server. That server, in turn, creates other
threads which establish connections with consumers and
handle general and event I/O with them.

The ET system's network capability is what makes it
possible to run on Linux (Redhat 6.0 and later). Currently, the

, Linux kernel does not allow the sharing of Pthread mutexes
and condition variables between processes. This makes it
impossible to access the shared memory of the ET system
safely between processes. However, this problem can be
circumvented by treating local Linux producers and
consumers as remote. The server built into the ET system
handles all ET routines that require handling these mutexes
and send users pointer to events that can then be used to
access events in shared memory. This makes ET systems on
Linux somewhat slower than those on Solaris.

IV. ET SYSTEM ON JAVA

Although the words "Java" and "real time" are seldom
spoken together, the performance of a Java~based ET (JET)
system does not differ that markedly from that of a C~based
ET system operating over the network. Since Java has no
shared memory, an ET system running on it uses sockets for
all communication and so all users are essentially remote.
JET was implemented not to handle the main flow of
experimental data at Jefferson Lab, but to be part of a slow
controls system acting as a data distributor of control
information.

One benefit from having JET is the relative ease of
implementing GUl's on Java. For example, creating a
graphical ET system monitor was done quite easily using
Java's built~in graphics. Things can be made even Simpler by
using graphical widgets available on the internet.

V. ET SYSTEM PERFORMANCE

Measurements of the ET system's speed in the handling of
events can be seen in Fig. 2. We ran tests on both a 4 cpu,
250MHz Spare mtraII Sun workstation running SolariS and
on a 2 cpu, 450MHz Xenon PC running Linux. The
conditions of the test were that the ET system had 3000 total '
events while a producer copied the event size amount of data
into each event. A consumer created and attached to a

....... _-_.. _.-._--------------,

3

blocking station so as to get and then put all events, but no
manipulation of the data was done. The point was to simulate
a bare bones application.

- Sun Solaris, 4x250MHz
..... x86 Linux, 2x450MHz

'O~~~~~~~~~~~4~~~~~~6~O~OO~~-~800~O

Event Size (bytes)
Fig. 2. The speed of the ET system in handling events is given as a

function of the event size in bytes. Dotted lines mark fixed data transfer
rates.

Notice that at the event size used in CLAS (5kB), the ET
system can transfer about 200 MB/sec on the Sun and 160
MB/sec on the PC. That rate is limited primarily by the speed
of copying data into the events. As the event size drops below
512 bytes, the inefficiencies of Linux mutex handling become
apparent while Solaris does much better with these small
events. Operating with the ET system connected to a
consumer over 100 Mbit ethemet shows a rate of over 11
MB/sec, meaning that most of the available bandwidth is
used. The Java Ef system does not do too badly either at over
15MB/sec - better than the network performance. For
compariSon. the previous data distribution system used at
Jefferson Lab is shown.

How the ET system holds up under multiple' users can be
seen in Fig. 3. Solid symbols denote consumers reading and
writing events from a single station. while outlined symbols
indicate each consumer is attached to a different station. The
conditions of the test were that the ET system had 3000 total
events while a single producer was running. Stations were
made to accept every event with each consumer's read and
write containing 100 events. No copying or manipulation of
data was done so as to clearly see the speed of the event
handling itself.

As can be seen. with just a single consumer, an event rate
of 550KHz is possible on the Sun, and a rate of 150KHz is
possible on the PC. These numbers are a bit arbitrary as the
rate can be increased or decreased depending on how many
events are written or read at one time. The large difference in
the rates is due in part to the trouble Linux has with sharing
mutexes between processes and the greater efficiency of
mutex handling on Solaris. Notice also that when consumers
all share the same station. the ET system operates much
faster. This is due to the fact that with fewer stations, the

"

.'
events travel through fewer conductors and less ET system
handling overhead.

BOO

N600
I
~
Q)

cu
a: 400
E
~
w

200

0-0 Sun Solaris, diffent atations
_ Sun Solaria, same station
D-O x86 Unux, different
.... x86 Unux. same
....... Sun Solaris, Java, same
- Sun Solaris, Java. different

246

Number of Consumers
8

Fig. 3. The speed of the lIT system as a function of the number of
consumen;.

Though JET performs well below C-based ET systems,
when only one station is used for all consumers, the event rate
actually stays at a very constant 25kHz. In fact, it performs at
the same rate as a C-based system with 8 different stations
and consumers.

The results of these tests, while accurate, do not reflect the
conditions most users will impose on the system. Users of ET
systems do more than just get and put events. Typically some
analysis of the event data is done. When cpu intensive
programs are figured into the mix, it is their speed and
efficiency that determines at what rate the events flow through
the system. In most cases, the overhead of the ET event
handling is not the bottleneck.

One way to improve the efficiency of the ET system can be
seen in Fig. 4. By simply transferring (getting or putting) an
array of events at a time, instead of one-by-one, the user can
boost performance quite a bit. At roughly 100 events per
transfer most of the performance gains on Solaris have been
achieved, while the Linux data suggest continued
improvements with larger numbers of events per transfer.

VI. CONCLUSIONS

Operation of the ET system at Jefferson Lab is a great
success as it has been running for over 2 years with no
problems. The ET system is extremely reliable, it is simple
enough.for inexperienced programmers to use, and it meets
all the demands placed on it at Jefferson Lab. Significantly,
the bottleneck on the event rate due to the previous data
distribution system has been removed, allowing rates
cwrently limited only by front end hardware.

Future challenges facing the ET system will require
handling the 1000MB/sec raw data rate of the proposed Hall
D experiment. The lesser but more immediate challenge of

, __ ._----_ ... _------------.,

4

incorporating Java-based ET systems into the next generation
of slow controls and data flow management awaits.

N
I
e-
aJ
1ii
a:
"E
aJ
>

W

600

200

100

- Sun Solaria, 4x260MHZl
.... x86 Unux. 2x460MHz
- Sun SolariB, Java ET

200 300 400

Events per Transfer
500

Fig. 4. The speed of the lIT system as a function of the number of events
in one transfer (one get or put call).

VII. REFERENCES

[1] G. W. Heyes, et al., 'The CEBAF On-line Data Acquisition System,"
Procudings oflhe 1994 CHEP Conference, pp. 122-126, Apr. 1994.

[2] D. J. Abbott, W. G. Heyes, E. Jas1:rmmbski, R. W. MacLeod, C.
Timmer, E. Wolin, ''CODA Performance in the Real Wodd,"
Proceedings of the 1999 IEEE Re41 Time Conference, pp. 119~122,
June 1999.

