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Abstract. For many nuclei beyond the proton drip line in the Z>72, N>82 region,
both proton and « emission are energetically allowed. In the case of some proton
emitters, there are a-decay chains emanating from both parent and daughter nuclei.
This means that if the mass excess of one member of an a-decay chain is known,
then the mass excesses for all members of both chains can be obtained. In addition,
proton separation energies may be derived for nuclei in the a-decay chain of the proton
emitter. The method of time- and space-correlations also allows the identification of
isomeric states in these nuclei. As an example, a large number of mass excesses and
proton separation energies for ground and metastable states have been derived from
Qa and Q, values obtained from the proton emitters 153198067 1704y 177T] and
their daughters.
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INTRODUCTION OSTI

The search for examples of proton radioactivity has resulted in the discovery of
a large number of proton emitters in the region 50 < Z < 84 [1]. Many of these
proton emitters and their daughters are also c-emitters, and in some cases the
a-decay chain from the daughter terminates on a nuclide closer to stability whose
mass excess is known. This opens up the possibility of using a- and proton-decay
Q-values to determine the mass excesses of a large group of nuclei connected by
particle decay. The Q-values are derived from the measured kinetic energies of the
emitted protons or a-particles. Where the decay chains are not connected to nuclei
with known mass excesses, proton separation energies can be measured in some
cases and derived in others.

For the a-decay of the parent nucleus (Z,A) to the daughter (Z-2,A-4), the fun-
damental energy relations used to convert between Q-value, mass (M) and mass
excess (ME) are:

1‘([(.4H8)Eo, = I\/I(Z - 2, A-— 4‘)E,—ecoﬂ (1)
Qa = Ea + Erecoil (2)
ME(Z,A) = Qa+ ME(Z — 2, A —4) + ME(*He) (3)

In practice, one uses M(*He) ~ 4 and M(Z — 2, A — 4) ~ (A — 4), so that Equa-
tion (3) becomes

ME(Z,A) = E, (ZTA_—L{) + ME(Z —2,A—4)+ ME(*He) (4)
Similarly, for protons, we have
ME(Z,A) = E, (A—"_li) + ME(Z=1,A-1)+ ME(H). (5)

The proton separation energy is obtained from
S,=ME(Z-1,A-1)+ ME(*H)- ME(Z,A) (6)

Atomic mass excess values are used in all cases.

EXPERIMENTS AT ARGONNE

A number of proton emitters have been studied at Argonne National Labo-
ratory, using a double-sided silicon strip detector (DSSD) coupled to the Frag-
ment Mass Analyzer (FMA). The FMA [2] is a recoil mass spectrometer, separat-
ing reaction products from the primary beam, and dispersing them according to
their mass/charge (M/q) at the focal plane. The DSSD allows time- and space-
correlation of implanted ions with their subsequent charged particle decays. In




those cases where the daughter nucleus decays by o emission, extremely clean
spectra can be obtained by correlating the proton and o decays. Figure 1 shows
such a situation, where M/q and time interval gating are used to pick out the very
weak proton decay channels [3].

ANL-P-2018

1 1 I 3 1 3 i
@ I (a) A=167, T<100 ms -
= g+ _
> " 8ng! |67 ]

2 rr
o 6 3
N - -
3 - i
8 2f .
i .}'—\‘ JJU[ |
B i I L} I i ] 1 i
(b) A=167, T<100 s,
> 120 Followed by o "%®0s
23]
X L 167 i
< : Irp
o 80r .
E } -
3

S Ar e N
| Irp J

“a'l'L T T T S —

t 2 3 4 5 6 7
DECAY PARTICLE ENERGY {MeV)

FIGURE 1. (a) Energy spectrum of decay events in the DSSD from 337 MeV "8Kr + °?Mo,
after requiring that the decay occurred in the same pixel within 100 ms following a mass 167
implant. (b} Same as (a} with the additional requirements that a second decay event occured in
the same pixel within 100 ms, having an energy of 6000 keV, the known a-decay energy of 1%¢Q0s.

Mass Excess Measurements from *"Ir Decay

A long a-decay chain leads from !%6Qs, the proton decay daughter of 7Ir, to
¥0Fr, which decays by #7/EC emission to '39Ho. The Qg¢ for the 3°Er decay
to the 27 state in ®°Ho has been measured to be 4108(15) keV [4]. Combining
this with the mass excess of -61950(27) keV determined for the 2~ state in '*°Ho
at ISOLTRAP [5], we obtain a mass excess for '*°Er of -57842(31) keV. Based on
this number and the known Q, values for its a-decay parents [4,6-8], we can derive
mass excesses for the nuclides '*¥Yb, 'S3Hf, 162W, 1%80s, '"°Pt, and !"™Hg from
Equation (4).




Decay of 167Ir

Figure 2 shows the decay scheme 157Ir [3]. The proton decay Q-value for ¢Ir
[3] enables us to obtain its mass excess, using Equation (5) and the mass excess of
1%60s. The ground-state mass excesses of the *7Ir a-decay daughters '**Re, **°Ta,
5Ly, and '®'Tm, and that of the 1/2% " Au ground state may be obtained from
the *7Ir mass excess and the measured a-decay Q-values [3,9]. Note that each of
these odd-A isotopes has two a-emitting states, with spin 1/2% and 11/2-. Table
1 gives the experimental mass excesses tied to '*7Ir by proton and a-decay, along
with the corresponding values from the 1995 Atomic Mass Evaluation (AME95)

[4]-

1

FIGURE 2. Proton and a decay scheme of *%7Ir.

TABLE 1. Mass excess values of 1%6Q0s, its a-
and proton-decay parents, and the a-decay daugh-

ters of 167]r.

Nuclide Mass Excess (keV)? AME95®
16603 -25 433(32) -25 590(100)
170py -16 300(33) -16 460(100)
174Hg -6 643(34) .

167 e(1/2%) -17 074(33) -17 190(100)
1T Au(1/2%) -7 559(37) -7 660(250)
163Re(1/2+) -26 006(33) -26 110(110)
159Ta(1/2%) -34 449(33) -34 550(120)
155Lu(11/27) -42 555(34) -42 630(130)
LT m(11/27) -50 791(34) -50 830(140)

2 Experimental, see text for references.

® Ref. [4]
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Mass Excess Measurements from !"T1 Decay

As in the case of '%Ir, the proton decay of '""T1 results in a long a-decay chain
extending from the daughter '"Hg down to *®Dy, whose mass excess has been
measured at ISOLTRAP [5]. This allows the mass excesses of all the a- and proton-
decay parents of **Dy to be obtained. The a-decay chain from '*'Tl has been
traced down to '®3Re [9], permitting mass excess values for it, '%°Ir, and "Au to
be derived. Knowing the Q, for ®°Pb [10} also yields a mass excess for ¥°Pb,
Table 2 shows these mass excess values, compared with the values from AME95 [4].

TABLE 2. Mass excess values of ‘"Hg, its
a- and proton-decay parents, and the a-decay
daughters of 77T1.

Nuclide Mass Excess (keV)®>  AME95®
176Hg -11 770(20) -11 720(40)
180pp -1 930(25) -
L7771(1/2) -3 318(28) -2 910(230)
173Au(1/2%) -12 810(28) -12 670(100)
1691p(1/2+) -22 065(29) -21 990(90)
165R6(1/9%) -30 641(30) -30 690(70)
2 Experimental see text for references.

® Ref. [4] '

Proton Separation Energies

For purposes of comparing with mass predictions, the proton separation energy
S, = —@), is nearly as valuable as the mass excess. This quantity is easier to obtain
since it involves mass differences. We obtain S, directly from proton emitters, but
also can derive this quantity for the o daughters of proton emitters, if the proton
daughter nucleus is also an a-emitter. This is illustrated in Figure 3 for the case
of " Au™(11/27) decay.

Q87 = Qp71) » QL U70) - Q71

FIGURE 3. Q-value loop involving the 11/2~ states in '7'Au and '%71r.




Using measured values of @, and Qq, proton separation energies can be derived
for a large number of a-daughter nuclei of proton emitters. Figure 4 shows these
S, values, plotted along with predictions from the Liran-Zeldes mass formula [11].
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FIGURE 4. Proton separation energies for Tm, Lu, Ta, Re, Ir, Au, and T1. Filled circles denote
measured energies, open circles represent derived values, and solid lines are the Liran-Zeldes {11]

prediction.

From Figure 4 one can see the beginnings of systematic trends in the proton
separation energies. There are several sets of pairs of diagonal lines running from
upper left to lower right. Extrapolating down the lower lines of the two central pairs,
one sees that the yet-unobserved nuclides ¥*Ir and "®Au are possible candidates
for proton emission. In addition, the N = 82 nuclide **Ta has a larger proton
separation energy than might be concluded from its neighboring Ta isotopes. The




Liran-Zeldes prediction [11] seems to systematically over-bind the last proton by ~
200 keV in this region of the drip line, except for the Z = 81 proton emitter """ TL.

CONCLUSIONS

Measurements of both proton- and a-decay Q-values for individual proton emit-
ters have enabled the extraction of the mass excesses for nuclides well beyond the
proton drip line. Knowledge of these mass excesses, along with proton separation
energies, helps to precisely delineate the proton drip line. Both quantities also allow
the testing of mass models at and beyond the proton drip line, far from the mass
region where the models were developed.
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