
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

FORM 836 (10/96)

LA-UR-01-1420
Approved for public release;
distribution is unlimited.

Title:
AN ALGORITHM FOR PARALLEL SN SWEEPS
ON UNSTRUCTURED MESHES

Author(s): Shawn D. Pautz

Submitted to:

http://lib-www.lanl.gov/la-pubs/00796072.pdf

AN ALGORITHM FOR PARALLEL SN SWEEPS

ON UNSTRUCTURED MESHES

Shawn D. Pautz

Transport Methods Group, CCS-4, MS-D409

Los Alamos National Laboratory

Los Alamos, NM 87545

pautz@lanl.gov

Keywords: radiation transport, parallel processing, sweeps, scheduling

ABSTRACT

We develop a new algorithm for performing parallel Sn sweeps on unstructured
meshes. The algorithm uses a low-complexity list ordering heuristic to determine
a sweep ordering on any partitioned mesh. For typical problems and with \normal"
mesh partitionings we have observed nearly linear speedups on up to 126 processors.
This is an important and desirable result, since although analyses of structured meshes
indicate that parallel sweeps will not scale with normal partitioning approaches, we
do not observe any severe asymptotic degradation in the parallel eÆciency with mod-
est (� 100) levels of parallelism. This work is a fundamental step in the development
of parallel Sn methods.

1 INTRODUCTION

The standard iterative technique for solving discretized transport equations is source
iteration, in which one alternates between solving for the local scattering source and
inverting the global streaming-plus-collision operator. In the case of discrete ordi-
nates (Sn) equations derived from the �rst-order form of the transport equation the
streaming-plus-collision operator is usually directly inverted by the method of \sweep-
ing." During a sweep this operator is locally solved for each spatial cell in the mesh
in a speci�ed order for a single direction in the discrete ordinates set. This order is
constrained by the interaction of the discrete ordinates set with the spatial mesh; a
cell cannot be solved for a particular direction until its \upstream" neighbors have

1

been solved. Because of these constraints the solution order often resembles a plane
wave \sweeping" across the mesh along the ordinate direction.

Because of the constraints placed on the sweep ordering, parallelization of the
sweep process is diÆcult. Tasks (cell-angle pairs) assigned to a processor cannot
begin until cells upstream from them have been solved; the processor may be idle
for some time if upstream tasks are on other processors. The assignment of tasks to
processors and the ordering of that work must be carefully coordinated in order to
obtain good parallel eÆciencies and speedups. Sweep problems are a subset of the
class of problems known in computer science as \scheduling" problems, which are
diÆcult to solve in general (Gerasoulis, 1992, Kwok, 1999).

For the special case of sweeps on orthogonal hexahedral meshes the KBA
(Koch-Baker-Alcou�e) sweep algorithm has been developed (Koch, 1992, Baker, 1995,
Baker, 1997, Baker, 1998). The KBA algorithm uses a special columnar domain
decomposition and a particular sweep ordering to obtain very high parallel eÆciencies.
This algorithm is diÆcult to generalize to unstructured meshes; it is not obvious what
a \columnar" decomposition on an unstructured mesh is or what the corresponding
ordering should be.

The purpose of this paper is to develop an algorithm for eÆcient parallel
sweeps on unstructured meshes. Our focus is on obtaining a good sweep ordering; we
defer the problem of obtaining a specialized decomposition and use instead a more
traditional decomposition. Although this limits the scalability of our algorithm (one
needs both the \right" decomposition and a good ordering for scalability) we are able
to obtain near-ideal eÆciencies and speedups with over 100 processors. Furthermore,
our ordering algorithms are designed to work with any decomposition and should be
able to exploit favorable properties of specialized partitions as they become available
in the future.

The rest of the paper is organized as follows. First we discuss the nature of
the sweep process and relate it to the general class of scheduling problems. We also
describe the KBA approach for structured meshes. Next we develop an algorithm
for parallel sweeps on unstructured meshes. We then present theoretical performance
estimates of our algorithm and we compare these estimates to computational results.
Finally, we make some conclusions and recommendations for future work.

2 SWEEPS AND THE GENERAL SCHEDULING PROBLEM

As mentioned in the introduction, the problem of eÆciently parallelizing sweeps is
a subset of the class of scheduling problems. Scheduling concerns itself with the
distribution and ordering of tasks among processors, particularly when there are data
dependencies between tasks. In this section we will discuss Sn sweeps and show how
their parallelization can be described in terms of scheduling problems. We also will
discuss the KBA algorithm for scheduling sweeps on structured meshes.

2

2.1 Sn Sweeps and Scheduling Theory

Discretizations of the Boltzmann transport equation are generally solved by means
of source iteration, which we present here for the �rst-order form of the equation:

[
 � r+ �t]
(l+1) =M��(l) + q; (1a)

�(l+1) = D (l+1); (1b)

where is the angular
ux distribution, � is the set of angular
ux moments, l is the
iteration index,
 is the direction of particle travel, D, M , and � are the discrete-
to-moments, moments-to-discrete, and scattering operators, respectively, and �t is
the total cross section. We assume that Eq. (1) has been discretized in the angular
variable by the method of discrete ordinates (Sn) and that some spatial discretization
method has also been applied. In order to solve Eq. (1a) it is necessary to numerically
invert [
 �r+�t], the streaming-plus-collision operator. Although one could globally
invert this operator by iterative methods, with �rst-order Sn methods we may directly
invert this operator by the method of sweeping, as described below.

In Figure 1(a) we depict a small unstructured mesh of triangular and quadri-
lateral elements; we have also depicted a direction
. In order for the streaming-
plus-collision operator to be numerically inverted for
 for a given cell by the method
of sweeping, the incoming
uxes for that cell must be known, i.e. the
uxes along
cell faces for which
 � n is negative, where n is the outward unit normal on the
face. These incoming
uxes are determined either from boundary conditions or from
\upstream" cells previously solved by the sweep. For example, we cannot solve for
 (l+1)(
) in cell 5 until we have solved for (l+1)(
) in cell 6, since angular
uxes
cross over the upper right face of cell 5 from cell 6. On the other hand, cell 6 can be
solved before any other cells, since the only incoming
uxes it has along
 are from
external boundaries, which we assume to be known.

The situation described above and depicted in Figure 1(a) induces the depen-
dency graph shown in Figure 1(b). Each vertex in the graph represents the work to
be done for direction
 for the corresponding cell, and the directed edges represent
the dependencies between the cells. A vertex cannot be solved until all of its imme-
diate predecessors have been solved. There is a dependency graph associated with
every direction in the angular quadrature set. Since the angular
uxes in di�erent
directions are coupled only during the calculation of the scattering source, the sweep
dependency graph for a direction is independent of those for other directions. We note
that the graph in Figure 1(b) contains cyclic dependencies, such as between cells 8
and 9. Such cyclic dependencies have already been encountered in serial unstructured
codes and have generally been handled by arti�cially removing one or more dependen-
cies and using information from previous iterations. This procedure may a�ect the
convergence rate of the source iteration process, but it does not a�ect the converged
solution (Wareing, 1999, Wareing, 2000). Throughout the rest of our analysis we will
assume that all cyclic dependencies have been removed.

3

1
2

3
4

5
6

7 8 9 10

11

12
13 14

15

16

17

18

Ω

(a) Unstructured mesh.

6

5

4 10

3 9 14

2 8 13 16

1 18

7 15 17

12

11

(b) Dependency graph for
.

Figure 1: Unstructured mesh and corresponding dependency graph for
.

For serial codes the ordering of tasks in the sweep is fairly straightforward. For
parallel processing the situation is more complicated. We must distribute tasks among
processors and order those tasks such that we simultaneously satisfy dependency
constraints and eÆciently utilize computer resources.

The above problem is a special case of the general class of scheduling problems.
The scheduling problem is de�ned as the assignment of tasks to processors and the
assignment of start times of tasks such that dependency constraints are satis�ed and
such that some objective is met (Gerasoulis, 1992, Kwok, 1999). The objective is
usually to minimize the solution time of the graph. The general scheduling problem
has been shown to be NP-complete (Garey, 1979), which means that except for special
cases we cannot hope to construct an eÆcient algorithm to calculate an optimal
schedule. Instead we must usually resort to heuristics to produce an acceptable,
though suboptimal, schedule.

2.2 The KBA Scheduling Algorithm for Orthogonal Hexahedral Meshes

Numerous scheduling algorithms have been developed for special types of graphs.
One such algorithm, the KBA algorithm, has been designed to schedule sweeps on
orthogonal hexahedral meshes. Although it does not necessarily produce an optimal
schedule, it does produce a schedule that yields nearly ideal parallel eÆciencies (Koch,
1992, Baker, 1995, Baker, 1997, Baker, 1998).

4

x

y

z

Figure 2: Orthogonal hexahedral mesh with KBA decomposition.

A typical orthogonal hexahedral mesh is depicted in Figure 2; element bound-
aries are indicated with thin lines. The mesh has I, J , and K elements along the x-,
y-, and z-axis, respectively. We assume that I, J , and K are all O(N). The KBA
algorithm uses a spatial domain decomposition consisting of Px � Py � 1 domains,
as indicated by bold lines in the �gure; Px and Py are O(N). Each domain has at
most IC � JC � K elements, where IC = [I=Px], JC = [J=Py], and [�] is the ceiling
function. To simplify the rest of our discussion we will assume that [I=Px] = I=Px

and [J=Py] = J=Py. Note that KBA does not decompose in angle; the sweep work
for any mesh cell for every direction in the quadrature set is assigned to the same
processor.

For a given direction KBA orders the work as depicted in Figure 3. First
the processor that has been assigned work at the top of the directed graph for that
direction (in this case at the top front right corner) solves an IC � JC �KC block of
elements, where KC is O(1) and ICJCKC is the block or \chunk" size. The order-
ing within the block is irrelevant, as long as it satis�es the dependency constraints.
The solution of this block is indicated by its removal from the mesh in Figure 3(a).
The processor then communicates newly computed partition boundary
uxes to the
processors that have been assigned the partitions to the left and to the back of its
partition. Note that it does not need to communicate data downward since all of these
cells are in its own partition. In the next step, as indicated in Figure 3(b), both the

5

Ω

(a) Step 1 of sweep.

Ω

(b) Step 2 of sweep.

Ω

(c) Step 3 of sweep.

Figure 3: KBA sweep ordering.

6

original processor and the two to which it communicated solve another set of blocks
and then communicate to the left and back. This continues as shown in the �gure
until most or all processors are performing computations at each step. Eventually
one or more processors, starting with the original one, complete their work for that
direction, and when all processors have �nished we repeat the process for every other
direction in the quadrature set in succession.

In order to describe the quality of the KBA schedules let us �rst de�ne a few
terms. The parallel eÆciency (�) of a parallel algorithm is de�ned as the ratio of the
serial CPU time and the total CPU time:

� =
Ts
PTp

; (2)

where Ts is the serial execution time, Tp is the parallel execution time, and P is the
number of processors. The parallel computational eÆciency (PCE) of an algorithm
is the parallel eÆciency in the absence of communication costs. The PCE is an
upper bound on the parallel eÆciency when communication costs are not negligible;
a high PCE is a necessary, albeit insuÆcient, condition for high actual eÆciencies.
Finally, the scalability of an algorithm describes the trends in the eÆciency as both
the problem size and the number of processors increase; if the eÆciency can be kept
asymptotically �xed the parallel algorithm is said to scale (Kumar, 1994).

The exact eÆciency of the KBA algorithm depends on the communication
costs. If communication costs are zero, then the eÆciency is given by (Koch, 1992,
Baker, 1995, Baker, 1997, Baker, 1998)

PCE =
K

K +KC(I=IC + J=JC � 2)
: (3)

Note that since I, J , and K are O(N) and the other quantities in Eq. (3) are O(1),
the PCE is O(1); the KBA scheduling algorithm scales with N . In the case of an
asymptotically large cubic mesh with IC = JC = KC the PCE is 33%.

A variant of the simple KBA scheme presented above obtains much higher
eÆciencies by pipelining the work for several directions. In the ordering that we
described previously a processor that had completed its work for a direction would
wait for all processors to �nish that direction before repeating the process for a new
direction. In the alternative scheme when a processor completes all of the work for
some direction, it can immediately begin work on the next direction in the same
quadrant without waiting. With pipelining we are able to eliminate most of the
processor idle time, and the eÆciency becomes (Koch, 1992, Baker, 1995, Baker,
1997, Baker, 1998)

PCE =
2MK

2MK +KC(I=IC + J=JC � 2)
; (4)

where M is the number of directions in an octant. For an S8 level-symmetric quadra-
ture on a large cubic mesh with IC = JC = KC the PCE is 91%.

7

We have noted that KBA obtains scalable eÆciencies, which can be nearly ideal
in the pipelined variant. There are two main factors that contribute to KBA's success:
the nature of its decomposition and its particular ordering strategy. Our analyses of
structured meshes have shown that it is impossible to obtain a scalable schedule
with O(N2) processors and a Px � Py � Pz block decomposition unless one of the
processor dimensions (say, Pz) is O(1) and the other two are both O(N); KBA satis�es
this condition. Furthermore, the KBA ordering exploits the decomposition and the
dependency graph in such a way that asymptotically most processors are occupied
with useful work most of the time; the result is a scalable scheduling algorithm.

In summary, the parallelization of sweeps is a special case of a scheduling
problem. Although optimal schedules are extremely diÆcult to obtain for general
scheduling problems, many suboptimal scheduling algorithms have been developed for
a variety of scheduling problems that often yield acceptable solutions. One specialized
scheduling algorithm, the KBA algorithm, constructs sweep orderings on orthogonal
hexahedral meshes that yield high parallel eÆciencies; it relies on a particular spatial
decomposition and a special ordering to obtain scalable schedules.

3 DEVELOPMENT OF A PARALLEL UNSTRUCTURED MESH

SWEEP ALGORITHM

In this section we develop an algorithm suitable for scheduling parallel sweeps on
unstructured meshes. We �rst show that existing scheduling algorithms are not suit-
able for this problem. We therefore construct a new list scheduling algorithm that
is suitable for modest levels of parallelism. We also introduce several prioritization
heuristics for use with the list scheduling algorithm.

3.1 Requirements for a Sweep Scheduling Algorithm

We have identi�ed several properties that we believe a sweep scheduling algorithm
should have. First, the algorithm should have low complexity, since we expect the
sweep graphs to be quite large; typical problems may contain millions of individual
tasks. Second, the algorithm should schedule on a set of processors that is very small
in comparison to the number of tasks in the sweep graph. Finally, we would prefer
an algorithm that distributes work in the spatial dimension only, since then we will
not need to communicate during the calculation of the scattering source.

The above considerations e�ectively eliminate existing general scheduling al-
gorithms from consideration as sweep schedulers. Such algorithms generally have
time-complexity that is too high for sweep problems, they often assume an unreason-
ably large set of processors in comparison to the graph sizes that we expect, and it
is diÆcult or impossible to impose the constraint of a purely spatial decomposition.
We note, however, that the KBA algorithm satis�es the above constraints, although
it can only be used with certain meshes. Given its success at achieving high eÆcien-

8

cies in these special cases, however, we would like to determine whether it could be
generalized to unstructured meshes. Our goal in the rest of this section is to develop
such a generalized sweep algorithm.

3.2 Overview of the New Algorithm

KBA scheduling may be viewed as two separate phases: a partitioning phase and an
ordering phase. We will adopt this strategy since it simpli�es the problem somewhat.
Nevertheless, both subproblems are still challenging for unstructured meshes.

Our analysis of structured meshes shows that a specialized decomposition is
necessary to obtain scalable sweep schedules; we assume that a similar specialized
partition is needed for unstructured meshes. Unfortunately, the KBA decomposition
(and any generalization to unstructured meshes) di�ers from the partitions produced
by established or \traditional" partitioning approaches, which yield decompositions
that are three-dimensional in character rather than columnar. Given the diÆculty of
constructing a specialized partitioning algorithm, we opt to strive for a more modest
goal in this study. We will make use of established partitioning algorithms and de-
velop special ordering algorithms that yield relatively high eÆciencies on a small or
intermediate (� 100) number of processors. It is our hope that the relatively small
number of processors combined with a pipelining approach will yield relatively high
eÆciencies for most problems, even though we expect that the lack of a specialized
partition will prevent scaling to thousands of processors.

Our approach for the ordering phase is to use a list scheduling heuristic that
is a generalization in some sense of the KBA ordering. An outline of this algorithm
is given in Figure 4. We �rst assign priorities to every cell-angle pair according to
one of several heuristics we will describe later. We then initialize a priority queue for
each processor with tasks that are at the top of the sweep graphs and that have been
implicitly assigned to the processor by the partitioning phase. Next we enter an outer
loop that repeats until all tasks have been completed. Within this loop we enter an
inner loop in which each processor performs up to maxCellsPerStep highest-priority
tasks (if any are ready to be computed); output data from each of these tasks may
enable other tasks on the same processor. Finally all processors send and receive
data (partition boundary
uxes) needed or generated by other processors and then
the outer loop repeats.

The inner loop of the above algorithm is analogous to the solution of a block in
KBA, with maxCellsPerStep being the chunk size. Like KBA, we do not explicitly
account for communication costs; instead by increasing the value of maxCellsPerStep
we may reduce communication costs by reducing the number of messages. By doing
this, however, we also risk increasing the idle times of processors that are waiting for
data.

We note that in Yang and Gerasoulis (1994) it is shown that the complexity of
list scheduling with static priorities is O(v log(v)), where v is the number of vertices

9

Assign priorities to every cell-angle pair

Place all initially ready tasks in priority queue

While (uncompleted tasks)

For i=1,maxCellsPerStep

Perform task at top of priority queue

Place new on-processor tasks in queue

Send new partition boundary data

Receive new partition boundary data

Place new tasks in queue

Figure 4: Pseudocode for list scheduling of sweeps.

in the graph. This will be the complexity of our overall algorithm if the prioritization
heuristics are no more expensive. We believe such complexity is acceptably low,
since the cost of each transport sweep is at least O(v) and we generally will perform
numerous identical sweeps during a transport calculation.

3.3 Prioritization Heuristics

The determining factor in the performance of the list scheduling algorithm is the
assignment of priorities to tasks. The priorities represent the relative importance of
completing one available task before some other available task. If the prioritization
phase is done poorly we will obtain a low PCE, but if it is done well we may obtain
a PCE that is near-optimal for the given decomposition and the selected value of
maxCellsPerStep.

Although KBA does not make use of list scheduling, we can de�ne a number
of list scheduling prioritization heuristics for unstructured meshes that yield the KBA
ordering (or a reasonable approximation to it) on structured meshes. Details about
the heuristics that we have developed are available in Pautz (2000). In general,
these heuristics attempt to generate partition boundary data as rapidly as possible
in order to minimize processor idle time. We note that all of our heuristics can be
implemented with algorithms with complexity equal to or less than O(v+ e), where e
is the number of edges (cell faces) in the graph, so we have satis�ed our requirement
for low-complexity heuristics.

In summary, our sweep scheduling algorithm will initially use a traditional
approach for generating a spatial domain decomposition. Although this limits our
scalability, we hope to obtain high eÆciencies on a modest number of processors. We
will order the sweep tasks by means of a list scheduling algorithm. This algorithm
will use one of several prioritization schemes we have developed to order the tasks;
these prioritization heuristics are low-complexity.

10

Table 1: Meshes used in sweep studies.

Mesh # elements Description
adjalum 4097 Simple two-region box for regression testing.
nneut 43012 Neutron well-logging tool and surrounding media.
silc 51963 Computer chip and packaging for radiation shielding.
reac 165530 Reactor pressure vessel and surrounding structures.

contest2 768 Cube divided into approximately equal-sized elements.
contest3 6140 Cube divided into approximately equal-sized elements.
contest4 32546 Cube divided into approximately equal-sized elements.
contest5 168356 Cube divided into approximately equal-sized elements.

4 ANALYSIS OF THE SWEEP SCHEDULING ALGORITHM

In this section we present theoretical performance estimates for our sweep schedul-
ing algorithm. We will construct sweep schedules for several di�erent meshes using
the various prioritization heuristics that we have developed. We will evaluate these
heuristics based on the PCEs they produce.

We will use tetrahedral meshes in our studies. The meshes we will use are
described in Table 1. These meshes vary in size from several hundred elements to
over 160,000 elements. They also vary in their structure. We will partition these
meshes with Metis c
, a \traditional" mesh partitioner that attempts to minimize
the edge cut (the number of partition boundary faces) while preserving load balance
(Karypis, 1998).

We present the PCEs resulting from list scheduling with di�erent prioritiza-
tion heuristics as a function of the number of processors in Figures 5 and 6 for the
nneut and reac meshes, respectively. For these tests we use the S8 level-symmetric
quadrature and a value of 50 for maxCellsPerStep. There are several characteristics
common to these and other studies we have conducted. The random heuristic (which
uses random numbers for the priorities) results in noticeably worse schedules than the
other heuristics, demonstrating the need for (and our ability to develop) intelligent
prioritization schemes. The b-level heuristic (a simple heuristic used in some exist-
ing scheduling algorithms) also results in PCEs somewhat lower than the others we
have developed, although it is still better than the random heuristic. The remaining
heuristics (BFDS, DFDS, and DFHDS) yield very similar performance, with DFDS
producing slightly better schedules than the other two. In general, for a small number
of processors we can obtain schedules yielding nearly 100% eÆciency; this eÆciency
gradually degrades to 80-90% as we increase the number of processors to over 100.
Since we are not using specialized decompositions we expect continued degradation
of the eÆciency as we increase the number of processors further.

11

1 2 4 8 16 32 64 128
processors

0

0.2

0.4

0.6

0.8

1

1.2

P
C

E

random
blevel
BFDS
DFDS
DFHDS

Figure 5: PCE vs. processors for nneut mesh (S8 quadrature, maxCellsPerStep =
50).

1 2 4 8 16 32 64 128
processors

0

0.2

0.4

0.6

0.8

1

1.2

P
C

E

random
blevel
BFDS
DFDS
DFHDS

Figure 6: PCE vs. processors for reac mesh (S8 quadrature, maxCellsPerStep = 50).

12

Other tests that we do not report here demonstrate that our algorithm is
e�ective at pipelining work; increasing the quadrature order increases the PCE. We
also �nd that we can use rather large values of maxCellsPerStep without signi�cantly
degrading the theoretical performance of the sweeps.

In summary, our theoretical analyses reveal that our new heuristics (BFDS,
DFDS, and DFHDS) should perform quite well, yielding fairly high PCEs on a variety
of meshes and with about 100 processors or less. The DFDS scheme consistently
performs slightly better than the other schemes. Our algorithm is able to obtain
some pipelining e�ect as quadrature orders are increased. Finally, we may use a wide
range of values of maxCellsPerStep without signi�cantly impacting the theoretical
performance.

5 COMPUTATIONAL RESULTS

In this section we report actual run-time results for a parallel transport code that uses
our sweep scheduling algorithm. We describe the major trends and compare them
to the theoretical predictions from the previous section. Where the predictions di�er
from the computational results we o�er possible explanations.

We have implemented our sweep scheduling algorithm in a new parallel Sn
code, Tycho, which is under development at Los Alamos National Laboratory (LANL).
Tycho currently uses linear discontinuous �nite element di�erencing of the �rst-order
form of the transport equation on tetrahedral elements. Our timing studies were con-
ducted on Blue Mountain, a large cluster of SGI Origin2000 (O2K) computational
servers at LANL. Each O2K, or \box", consists of 128 250 MHz R10000 processors
organized as a non-uniform shared memory machine (Ra�ei, 1998). We have elected
for this study to share data among processors by means of explicit MPI calls rather
than by exploiting the shared memory capability of the machine.

We present the measured parallel eÆciencies for calculations on the nneut and
reac meshes in Figures 7 and 8, respectively. These calculations use S8 quadrature and
maxCellsPerStep = 50; they correspond to the problems examined in Figures 5 and
6. There are general similarities between the PCEs we calculated and the measured
eÆciencies. The random heuristic yields noticeably lower eÆciencies both in theory
and in practice. We also observe relatively high eÆciencies for a small number of
processors and a reduction in eÆciencies when much larger numbers of processors are
used. There are also some noticeable di�erences between our theoretical predictions
and these computational results. For a small number of processors we observe super-
linear scaling e�ects, especially for large problems. This we attribute to the amount
of memory required and the architecture of the O2K; memory allocated by a proces-
sor probably has greater locality as the number of processors is increased, since each
processor is assigned a smaller part of the problem. For large numbers of processors
the measured eÆciency curves drop o� more rapidly than the predicted eÆciencies,
probably because communication costs become increasingly severe as we increase the

13

number of processors. Also, we observe that the b-level heuristic appears to yield
eÆciencies as good as or sometimes even better than our specialized heuristics, de-
spite our predictions that it would produce slightly less optimal schedules. We do not
yet understand this behavior, but we note that the variance in the run-time results
seems to be larger than the di�erence between our predictions for these heuristics.
Overall, though, it appears that our PCE calculations provide a reasonable guide to
the performance characteristics of our parallel sweep scheduling heuristics.

Other timing studies that we do not report here demonstrate the pipelining
e�ect that we predicted in the previous section. Our studies also show that increasing
maxCellsPerStep can yield marked improvements in the run-time eÆciencies, due
presumably to reduced communication costs. Only when there is a substantial drop
in the PCE as we increase maxCellsPerStep do we observe a drop in the run-time
eÆciency.

The �nal results we will show are scaling studies in the form of log-log timing
results. In Figures 9 and 10 we show the CPU time per source iteration for calculations
on \contest" and \irregular" meshes, respectively. We also show the CPU times that
we would obtain with perfectly linear speedups. For these calculations we use S8
quadrature, maxCellsPerStep = 50, and DFDS prioritizations. In these plots we
observe almost linear speedups on up to 126 processors, but the changing slopes of
the curves suggest that we will lose this scaling on even larger numbers of processors.
Thus we see that our approach to partitioning and scheduling is suÆcient for low or
modest parallelism.

In summary, our performance predictions for our various sweep scheduling
heuristics roughly correspond to actual run-time results. With our heuristics we can
obtain high eÆciencies for a small or modest number of processors, but with a larger
number of processors the eÆciencies drop o�. Some of this loss of eÆciency is due
to the intrinsic nature of the sweep problem, but much of it in the cases we have
examined is caused by the non-ideal aspects of our code and computer system. By
increasing the value of maxCellsPerStep we can improve the run-time eÆciencies, but
excessive increases in this parameter eventually decrease the eÆciencies. In general,
our sweep scheduling algorithms may be used to obtain high speedups on about 100
or fewer processors.

6 CONCLUSIONS

We have developed a new algorithm for performing parallel sweeps on unstructured
meshes. This algorithm uses a low-complexity list scheduling scheme with one of
several prioritization heuristics we have developed to determine the parallel sweep
ordering on a spatially decomposed unstructured mesh. With this new scheme in
conjunction with traditional mesh decompositions we have obtained nearly linear
speedups on up to 126 processors. This is an important step in the development of
parallel �rst-order Sn codes.

14

1 2 4 8 16 32 64 128
processors

0

0.2

0.4

0.6

0.8

1

1.2

P
ar

al
le

l e
ffi

ci
en

cy

random
blevel
BFDS
DFDS
DFHDS

Figure 7: Parallel eÆciency vs. processors for nneut mesh (S8 quadrature,
maxCellsPerStep = 50).

1 2 4 8 16 32 64 128
processors

0

0.2

0.4

0.6

0.8

1

1.2

P
ar

al
le

l e
ffi

ci
en

cy

random
blevel
BFDS
DFDS
DFHDS

Figure 8: Parallel eÆciency vs. processors for reac mesh (S8 quadrature,
maxCellsPerStep = 50).

15

1 2 4 8 16 32 64 128
processors

0.01

0.1

1

1e+01

1e+02

1e+03

C
P

U
 ti

m
e

pe
r

ite
ra

tio
n

(s
)

contest2
contest3
contest4
contest5
linear speedups

Figure 9: CPU time per iteration vs. processors for contest meshes (S8 quadrature,
maxCellsPerStep = 50, DFDS heuristic).

1 2 4 8 16 32 64 128
processors

0.01

0.1

1

1e+01

1e+02

1e+03

C
P

U
 ti

m
e

pe
r

ite
ra

tio
n

(s
)

adjalum
nneut
silc
reac
linear speedups

Figure 10: CPU time per iteration vs. processors for irregular meshes (S8 quadrature,
maxCellsPerStep = 50, DFDS heuristic).

16

Our ability to obtain high parallel eÆciencies with traditional mesh partition-
ings is an important result. We have shown that it is impossible to obtain scalable
schedules on structured meshes unless the decomposition has a two-dimensional na-
ture; the KBA algorithm has this property. We believe that a similar constraint
applies to unstructured meshes. Nevertheless, for typical quadrature orders and for
modest levels of parallelism (� 100 processors) we can obtain fairly high eÆciencies;
more processors are apparently needed to observe any severe asymptotic degradation
in eÆciency.

There are two factors that are key to our algorithm's ability to obtain high
theoretical eÆciencies for unstructured mesh sweeps. First, we have developed spe-
cialized prioritization heuristics that yield much better orderings than a random one;
these heuristics attempt to generate and propagate data needed by other processors as
rapidly as possible. Second, when the number of quadrature directions is comparable
to or greater than the number of partitions we bene�t from a pipelining e�ect. Both
of these factors are generalizations of the approach that the KBA algorithm uses to
determine the sweep ordering. A third factor, the use of a parameter that delays com-
munications until a \suÆcient" amount of computation has been performed, helps to
produce run-time eÆciencies that are close to the theoretical eÆciencies. This too is
a generalization of the KBA approach.

There are two main research areas in which we would like to see continuing
work. First, we need to develop algorithms that can produce better spatial decompo-
sitions. Analysis of structured meshes leads us to believe that decompositions with a
two-dimensional or columnar nature will be necessary in order to scale to thousands
of processors or more. Second, continued development of prioritization heuristics may
produce low-complexity ones that are even better than the ones we have developed.
Work with other meshes and better decompositions may yield insights that assist in
this process.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by
the University of California Los Alamos National Laboratory under contract No. W-
7405-Eng-36.

References

[1] Baker, R.S., Alcou�e, R.E., 1997. Parallel 3-D SN Performance for
DANTSYS/MPI on the Cray T3D. Proc. Joint Int. Conf. Mathematical Meth-

ods and Supercomputing for Nuclear Applications, Saratoga Springs, New York,
October 5-9, 1997, Vol. 1, p. 377.

17

[2] Baker, R.S., Asano, C., Shirley, D.N., 1995. Implementation of the First-Order
Form of the Three-Dimensional Discrete Ordinates Equations on a T3D. Trans.
Am. Nucl. Soc., 73, 170.

[3] Baker, R.S., Koch, K.R., 1998. An Sn Algorithm for the Massively Parallel CM-
200 Computer. Nucl. Sci. Eng., 128, 312.

[4] Garey, M.R., Johnson, D.S., 1979. Computers and Intractibility: A Guide to the

Theory of NP-Completeness, Freeman, San Francisco, California.

[5] Gerasoulis, A., Yang, T., 1992. A Comparison of Clustering Heuristics for
Scheduling Directed Acyclic Graphs on Multiprocessors. J. Parallel and Dis-

tributed Computing, 16, 276.

[6] Karypis, G., Kumar, V. METIS 4.0: Unstructured Graph Partitioning and
Sparse Matrix Ordering System. Technical Report, Department of Computer
Science, University of Minnesota, 1998.

[7] Koch, K.R., Baker, R.S., Alcou�e, R.E. A Parallel Algorithm for 3D SN Trans-
port Sweeps, LA-CP-92-406, Los Alamos National Laboratory, 1992.

[8] Kwok, Y.K., Ahmad, I., 1999. Benchmarking and Comparison of the Task Graph
Scheduling Algorithms. J. Parallel and Distributed Computing, 59, 381.

[9] Kumar, V., Grama, A., Gupta, A., Karypis, G., 1994. Introduction to Parallel

Computing: Design and Analysis of Algorithms, Benjamin/Cummings, Redwood
City, California.

[10] Pautz, S.D. An Algorithm for Parallel Sn Sweeps on Unstructured Meshes, LA-
UR-00-4672, Los Alamos National Laboratory, 2000.

[11] Ra�ei, M. Origin2000 Application Development & Optimization, Technical Re-
port O2KAPPL-1.0-6.2/3/4-S-SD-W, Silicon Graphics, Inc., 1998.

[12] Wareing, T.A., McGhee, J.M., Morel, J.E., Pautz, S.D., 1999. Discontinuous
Finite Element SN Methods on 3-D Unstructured Grids. Proc. Int. Conf. Math-

ematics and Computations, Reactor Physics and Environmental Analysis in Nu-

clear Applications, Madrid, Spain, September 27-30, 1999, Vol. 2, p. 1185.

[13] Wareing, T.A., McGhee, J.M., Morel, J.E., Pautz, S.D., 2000. Discontinuous Fi-
nite Element SN Methods on 3-D Unstructured Grids, Nucl. Sci. Eng. (accepted
for publication).

[14] Yang, T., Gerasoulis, A., 1994. DSC: Scheduling Parallel Tasks on an Unbounded
Number of Processors. IEEE Trans. Parallel and Distributed Systems, 5, 951.

18

	AN ALGORITHM FOR PARALLEL S N SWEEPS ON UNSTRUCTURED MESHES
	ABSTRACT
	1 INTRODUCTION
	2 SWEEPS AND THE GENERAL SCHEDULING PROBLEM
	2.1 Sn Sweeps and Scheduling Theory
	2.2 The KBA Scheduling Algorithm for Orthogonal Hexahedral Meshes

	3 DEVELOPMENT OF A PARALLEL UNSTRUCTURED MESH SWEEP ALGORITHM
	3.1 Requirements for a Sweep Scheduling Algorithm
	3.2 Overview of the New Algorithm
	3.3 Prioritization Heuristics

	4 ANALYSIS OF THE SWEEP SCHEDULING ALGORITHM
	5 COMPUTATIONAL RESULTS
	6 CONCLUSIONS
	ACKNOWLEDGMENTS
	References

