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Probing Spatial Correlations in the Inhomogeneous Glassy State of the Cuprates by
Cu NMR

N. J. Curro
Condensed Matter and Thermal Physics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

We discuss the crossover of the form of the Cu NMR spin echo decay at the onset of Cu wipeout
in lanthanum cuprates. Experimentally, the echo decay undergoes a crossover from Gaussian to
exponential form below the temperature where the Cu NMR intensity drops. The wipeout and
the change in behavior both arise because the nuclei experience spatially inhomogeneous spin fluc-
tuations at low temperatures. We argue that regions where the spin fluctuations remain fast are
localized on length scales of order 1-2 lattice spacings. The inhomogeneity is characterized by the
local activation energy Ea(r); we estimate the functional form of Ea(r) for points where Ea(r) ∼ 0.

The lanthanum cuprate high temperature supercon-
ductors have received a considerable amount of attention
in recent years because elastic neutron scattering experi-
ments in rare-earth co-doped La1.8−xEu0.2SrxCuO4 and
La1.6−xNd0.4SrxCuO4 have revealed ordering of doped
holes into charged stripes that constitute anti-phase do-
main walls producing incommensurate antiferromagnetic
(AF) order in the intervening undoped domains [1]. Since
the initial discovery, several studies have revealed that
the order is more complex than initially thought; instead
of exhibiting a well-defined thermodynamic transition
temperature the spin system appears to exhibit glassy
behavior. [2,3] Nuclear Magnetic Resonance (NMR) and
Nuclear Quadrupolar Resonance (NQR) studies have
shown that this glassy behavior is accompanied by in-
homogeneous slowing of the local spin fluctuations, and
provide a direct measure of the distribution of activation
energies giving rise to the inhomogeneous distribution.
[4] This distribution can be characterized by measuring
the temperature dependence of the La T1; surprisingly
this distribution is remarkably independent of doping (at
least up to optimally doped), local structure, and doping
location in the unit cell. Recent theoretical work suggests
that the ubiquity of this glassy behavior may be intrin-
sic to doped hole systems. [5] The wipeout phenomenon
of the Cu NMR spin echo intensity also arises from the
development of these inhomogeneous spin fluctuations,
with a broad distribution of fluctuation times. In fact,
the temperature dependence of the Cu wipeout can be
entirely explained by the distribution of activation ener-
gies measured by the La T1.

However, measurements of the La and Cu T1 or the
Cu wipeout reveal information only about the local spin
fluctuations at the nucleus under observation. This al-
lows one to determine the distribution P(Ea) of activa-
tion energies Ea characterizing the glassy behavior. The
echo decay of the Cu, on the other hand, reveals infor-
mation about not only the particular Cu nucleus under
observation, but its surrounding neighbors as well. This
serendipitous fact allows one to make conclusions about
Ea(r), the activation energy at position r. In fact, the
form of the echo decay of the Cu provides two important
pieces of information: (i) the sites ri in the crystal such

Ea(ri) ∼ 0 are separated by a distance of at least several
unit cell lengths, a, and (ii) the effective radius of the
minima around ri is approximately 1-2a.

In general the decay of the spin echo intensity (the
echo decay) of a nucleus is a complex, many body
problem involving couplings between many neighbors.
In the cuprates the echo decay of a nucleus located
at the origin is determined by the Hamiltonian H =∑

r ax(r)Ix(0)Ix(r) + ay(r)Iy(0)Iy(r) + az(r)Iz(0)Iz(r),
where the sum is over all nuclear sites. The couplings
aα(r) are given by dipolar couplings, indirect couplings
involving an RKKY type mechanism, or both. [6] For ar-
bitrary aα(r) this problem has not been solved, although
significant theoretical advances have been made recently.
[7] Fortunately, it turns out that the nuclear couplings
in the planes of the cuprates are dominated by the indi-
rect channel, wherein lies the utility of Cu NMR to de-
termine spatial properties such as the antiferromagnetic
correlation length, ξ. [8] For example, studies invoking
the strong O-Cu coupling in the plane have lead to im-
portant conclusions about the effects of impurities, as
well as put constraints on theories of the dynamical sus-
ceptibility, χ′(q). [9,10] For the Cu-Cu couplings az(r) À
ax(r), ay(r). In this limiting case Iz(0) and H commute,
allowing an exact determination of the echo decay of
the nucleus at r = 0: M(t) = M0 exp[−t2

∑
r a2

z(r)/16],
where the sum is over like neighbors. [8] A like nucleus
is one that resonates at the same frequency as the one
under observation; an unlike nucleus resonates at a dif-
ferent frequency. Typically, the echo decay is written in
terms of a Gaussian time decay constant:

T−2
2G =

1
8

∑
r

a2
z(r). (1)

T2G gives information about the RKKY interactions giv-
ing rise to the indirect Cu-Cu coupling. [8] In fact, Pen-
nington, and later Thelen showed that az(r) can be writ-
ten in terms of the real part of the dynamic susceptibility,
χ′(q); using the MMP form for χ′(q) one finds T2G∼ 1/ξ,
where ξ is the antiferromagnetic correlation length. [8,11]

Studies of T2G in the cuprates usually invoke the as-
sumption that the couplings are time independent over
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FIG. 1. NMR measurements in La1.65Eu0.2Sr0.15CuO4

showing the wipeout of Cu signal. The solid symbols rep-
resent Cu data: (squares) 77 MHz, H0⊥ c; (circles) 86 MHz,
H0 ⊥ c; (triangles) 95 MHz, H0||c. The open diamonds rep-
resent La data for H0||c at 35.9 MHz. The solid line is a plot
of the calculated intensity as described in the text. INSET:
H0||c 63Cu echo size versus the pulse spacing τ is plotted for
a series of temperatures.

the time scale of the echo decay, or equivalently, T1 À
T2G. In most cases this static assumption is valid. How-
ever, in cases where T1 exhibits inhomogeneous glassy
behavior (i.e., below the onset of Cu wipeout) this as-
sumption is not necessarily valid; in fact, for wipeout to
occur, T1 ≤ T2G locally. Therefore it is necessary to un-
derstand how the echo decay is modified when the static
assumption is relaxed. This problem was studied succes-
sively by Walstedt and Cheong, [12], Recchia and Pen-
nington, [13], and Curro and Slichter. [14] It turns out
that one can write the Gaussian part of the echo decay
of the nucleus at R as

MG(R, t) = exp

[
−t2

16

∑
r

a2
z(r−R)f

(
t

T1(r−R)

)]
,

(2)

where f(x) = φL(x)+c1φU (c2x). Here the constant c1 =
(65P65γ2)(63P63γ2) = 0.516, accounts for the isotopic
distribution of Cu which gives rise to both like and unlike
nuclear couplings, c2 = (65γ/63γ)2,

φU (x) = x−2(x + 4e−x/2 − e−x − 3) (3)

for unlike nuclei and

φL(x) = 8x−2(5x/2 + 9e−x/2 − 2e−x − 7) (4)

for like nuclei. If T1 is spatially uniform then
f(t/T1(r−R)) can be taken out of the summation,
and Eq. (2) can be written trivially as MG(t) =
exp[−t2f(t/T1)/2T 2

2G]. In homogeneous systems such as

YBa2Cu4O8, the temperature dependence of T1 typically
leads to minor corrections to the Gaussian form of the Cu
echo decay. [15]

In cuprate systems that exhibit inhomogeneous spin
fluctuations the Cu echo decay can be modified signifi-
cantly. Most notably, the echo decay exhibits a dramatic,
sharp drop on times scales shorter than what can typi-
cally be measured by an NMR spectrometer, an effect
known as wipeout, in which the number of observable
nuclei effectively is reduced. The full expression for the
echo decay is given by:

M(t) =
∑

R

MG(R, t) exp
( −t

T2R(R)

)
(5)

where MG(R, t) is given by Eq. (1), T−1
2R (r) = (β +

R)T−1
1 (r) is the Redfield term and β and R are constants.

[6] The Redfield term accounts for on-site spin lattice
relaxation over the time scale of the echo decay. T1(r) is
given by the local activation energy:

T−1
1 (r) = γ2h2

hfτ∞ exp (Ea(r)/kBT ) , (6)

where γ is the gyromagnetic ratio, hhf is the hyperfine
field at the nucleus, τ∞ is the spin fluctuation time at
high temperatures, and T is the temperature. The spin
echo signal that is left over, then, arises from Cu nuclei
that remain in regions of longer T1, or equivalently small
Ea. The activation energies Ea are distributed with dis-
tribution function P(Ea), as in Ref. [4]. The Redfield
term leads to wipeout since at low temperatures a sig-
nificant fraction of nuclei experience T1’s that are too
fast to detect with the spectrometer. One might inquire
what interactions these remaining nuclei experience: are
they coupled to nuclei that experience similar T1’s, or are
they coupled to nuclei with much faster T1’s? We argue
that the latter case predominates, and is the reason for
the change in the character of the echo decay. Experi-
mentally it is found that the echo decay crosses over from
Gaussian to exponential character. [4,16,17] (see Fig. (1))
We have argued previously that this crossover reflects re-
gions of small spatial extent with fast spin fluctuations;
here we present a more quantitative description of the
phenomenon.

Consider a hypothetical spatial dependence of activa-
tion energies Ea(r) such as that shown in Fig. (2). Note
that at the observable nuclei are those near the minimum
in the figure. It is useful to consider how the spatial de-
pendence of T1(r) affects the echo decay of the remaining
observable nuclei when the system becomes inhomoge-
neous. To address this question we analyze Eq. (5) with
a specific model for the dynamic susceptibility. In order
to calculate the indirect couplings, we adopt the expres-
sion used by Haase, Morr and Slichter et al, for the real
space χMMP : [18,19]

χ′(r > 0) =
α

4π
cos

(πx

a

)
cos

(πy

a

)
K0

(
r

ξ

)
, (7)

2



χ′(r = 0) =
α

4π
ln(1 + 4πξ2), (8)

where α is a temperature independent constant, ξ is the
antiferromagnetic correlation length, and K0(x) is the
zeroth order modified Bessel function of the second kind.
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FIG. 2. (a) A hypothetical spatial distribution Ea(r) ver-
sus r in the vicinity of a minimum in Ea. (b) The distribution
P(Ea), with parameters typical for La1.65Eu0.2Sr0.15CuO4.
(c) The resulting spatial distribution of T1’s at a series of
temperatures. Note that T1’s get more spatially inhomoge-
neous as the temperature is lowered.

Note that this expression assumes translation invariance;
however this assumption is not necessarily valid in the
case of inhomogeneous spin fluctuations. Nevertheless
this expression has been successful in describing the dy-
namical susceptibility in homogeneous cuprates as mea-
sured by neutron scattering and NMR. [20] Given a spe-
cific form for χ′(r) the indirect couplings az(r) are given
by: [18]

(gµB)2az(r) = A2
zχ
′(r) + 2AzB

4∑
m=1

χ′(r− bm) (9)

+B2
4∑

m,n=1

χ′(r− bn − bm),

where bm are the four nearest neighbor Cu sites, Az =
1.528µeV is the on-site hyperfine coupling and B = −A/4
is the transferred hyperfine coupling to the nearest neigh-
bor Cu sites.

In order to estimate an appropriate form for the spatial
dependence of T1 in the vicinity of a minimum, we first
consider the distribution function P(Ea) for Ea close to
zero. In fact, given Ea(r), P(Ea) is given by:

P(Ea) = 1/|∇Ea(r)| =
∣∣∣∣∣r

(
dEa

dr

)−1
∣∣∣∣∣ , (10)

so for r ∼ ri we have Ea(r) = (r − ri)2/2P0λ
2, where

P0 = P(Ea = 0), and λ is a length scale that character-
izes the size of the regions in space where Ea is close to

zero. If P0 = 0, we have Ea(r) =
(

dP0
dEa

)−1/2

((r−ri)/λ),
where dP0/dEa = dP(Ea = 0)/dEa. Thus we use
two test cases for the spatial dependence of T1, defining
W (r) = 1/T1(r):

We(r) = W0 exp((r − ri)/l) caseI (11)
WG(r) = W0 exp((r − ri)2/2l2) caseII, (12)

where l = kBT
√

dP0/dEaλ for case I, l =
√P0kBTλ for

case II, and W0 = γ2h2
hfτ∞. We then calculate M(t) (Eq.

(5)) numerically on an N ×N lattice with N = 11. The
results are shown in Figs. (3) and (4). Note that T2G

is defined as in Eq. (1). Here we use ξ = 2a and α =
1.0. Although it is not possible to determine the absolute
value of ξ, it is not unreasonable to expect ξ ∼ 2− 3a, at
least in regions of fast spin fluctuations (slow T1).
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FIG. 3. Case I: The calculated M(t) versus t for ξ = 2a,
with W (r) = We(r) and W0 = 0.25/T2G.

In both cases, as the degree of inhomogeneity grows
(as l shortens, or as T decreases), there are two impor-
tant changes in the form of the echo decay. First, the
echo decays drastically at short times due to the fast on-
site relaxation from the Redfield term exp(−t/T2R(R)).
This is the Cu wipeout. Secondly, the echo decay from
the remaining sites gradually becomes more exponential,
as seen experimentally (see Fig. (1)). This crossover oc-
curs when l ≤ ξ. In other words, when the neighbors
that have a significant coupling (those within a radius ξ)
begin to undergo fast spin lattice fluctuations, they be-
have as unlike nuclei; essentially they behave as strongly
coupled independent fluctuating moments. As the fluc-
tuation rate of these neighbors gets faster, the echo decay
rate becomes exponential, and eventually the fast fluctu-
ations of the neighbors decouples from the nuclei under

3



observation. In the extreme limit, the nucleus at r = 0
is the only one with T1 sufficiently slow to be observable,
and all of the neighbors are fluctuating so fast they do
not contribute to the echo decay; thus the single nucleus
at the origin decays solely due to the local Redfield term.

Note that for case II the spin lattice relaxation rate
changes less drastically between the origin and the near-
est neighbor sites. As a result, the echo decay, which is
dominated by the coupling to the nearest neighbor sites,
is not as strongly affected by the onset of the inhomo-
geneity (T1(r) is locally more homogeneous). As seen in
Figs. (3) and (4), WG(r) results in an echo decay that
has a slightly more positive curvature at short times than
We(r). Although one cannot distinguish between the two
cases experimentally, qualitatively the echo decay curves
in Fig. (1) seem to match more those in case I. In other
words, for T =25K, the echo decay in Fig. (1) looks like
the echo decay in Fig. (3) for l ≈ 1− 2a.
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FIG. 4. Case II: The calculated M(t) versus t for ξ = 2a,
with W (r) = WG(r) and W0 = 0.25/T2G.

We can now estimate λ, the effective radius of the
regions in space with low activation energy. To do so,
we take advantage of the fact that the wipeout fraction,
I0(T ) is given by:

I0(T ) =
∫ κkBT

0

P(Ea)dEa, (13)

where κ ≈ 1.5 is defined as in [4]. Therefore, we have:

P0 =
1

κkB

(
dI0

dT

)

T=0

(14)

dP0

dEa
=

1
(κkB)2

(
d2I0

dT 2

)

T=0

, (15)

where I0(T ) is measured experimentally, and is shown if
Fig. (1). From the data P0 ≈ 7× 10−3K−1, dP0/dEa ≈

4 × 10−4K−2, and l ≈ a at 25K. For case I, we have
λ ≈ 2.0a, and for case II, we have λ ≈ 2.3a. Note how-
ever, that measurements of I0(T ) at low temperature are
difficult, and the error bars on P0 and dP0/dEa are sig-
nificant. Therefore, the values given here are to be taken
only as estimates of the order of magnitude.

Clearly, the echo decay is not consistent with slow spa-
tial variations of the activation energy, but rather with
disperse, localized point or line minima. A possible in-
terpretation of the small spatial regions of small Ea is
that these regions constitute domain walls between large
regions of coupled spins. In the large domains, the collec-
tive fluctuation rate (τ−1) would be small, and T1 very
fast. Calculations of the echo decay for a linear trough
of minima in T1, rather than the point minima in cases
I and II, are not consistent with the data. The reason is
that the nuclei along the trough remain like nuclei, and
the echo decay does not become exponential. Such a case
is idealized; however one cannot rule out a situation in
which the line minima fluctuates and neighbors along the
trough decouple. Further experiments to probe P(Ea)
and the echo decay with greater precision are likely to
shed more light on the spatial dependence of the local
activation energies, and their relationship to the stripe
lattice. Also, a careful analysis of the temperature de-
pendance of l may allow one to distinguish between case
I and II.

This work was performed at Los Alamos under the
auspices of the US Department of Energy, and at the
Aspen Center of Physics.
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