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Globally optimized Fourier finite-difference migration method
Lian-Jie Huang* and Michael C. Fehler, Los Alamos Seismic Research Center, Los Alamos National Laboratory

The one-way wave equation in the frequency-space domain is

Expansion of Square-Root Operator

where W is the circular frequency, v is the velocity, and R is the
square-root operator given by

increase the accuracy of the second-order FFD method while
using only one term in the finite-defference operator, Ristow
and Riihl (1994) proposed a locally optimized Fourier finite­
difference (LOFFD) scheme in which they optimized a coef­
ficient that varies with lateral velocity contrast. The LOFFD
method requires a large table of coefficients for different lat­
eral velocity contrasts that could be huge for a highly accurate
optimized FFD.

We propose an FFD method based on a rational approximation
of the square-root operator. The form of our FFD scheme is
same as that of the PFFD method. However, the two coeffi­
cients in the rational approximation used in our FFD method
are determined using an optimization scheme that maximizes
the maximum dip angle for a given model, rather than using
those of the one-term Pade approximation. We give the opti­
mizationalgorithm, perform the error analysis of our optimized
scheme, and present migration images of an impulse response
using different methods. Our optimized FFD method does not
require a table of the optimized coefficients because these co­
efficients are fixed for a given model. Therefore, we call it the
globally optimized Fourier finite-difference (GOFFD) method.
The computational cost of the GOFFD method is the same as
the FFD and PFFD method. The GOFFD method is accurate
for dips with angles of approximately 15°-20° larger than the
FFD method, while the LOFFD scheme can handle approxi­
mately 16° larger dip angles than their unoptimized scheme.
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We expand the square-root operator R in the form .

where P is the pressure and the operator Q is defined by

with

Migration methods that use finite-difference of the one-way
wave equation can handle arbitrary large velocity contrasts but
are only accurate up to a fixed dip angle even in a homogeneous
region (Claerbout, 1985). The phase-shift migration (Gazdag,
1978) is accurate up to 90° but it requires a laterally homoge­
neous velocity model. A hybrid approach, termed the Fourier
finite-difference (FFD) method proposed by Ristow and Riihl
(1994), has the advantage of both finite-difference and phase­
shift methods. The FFD method uses a Taylor expansion of the
square-root operator in the one-way wave equation and the ex­
pansion is recombined into a rational approximation. Its imple­
mentation uses the split-step Fourier (SSF) propagator (Stoffa
et al., 1990; Huang and Fehler, 1998) followed by a finite­
difference scheme to accurately image structures with large lat­
eral velocity contrasts. Some other Fourier transform based
methods, such as the extended local Born Fourier (Huang et al.,
I999b), the extended local Rytov Fourier (Huang et al., 1999a),
and the quasi-Born Fourier (Huang and Fehler, 2000) methods,
are more accurate than the SSF method, but they are less ac­
curate than the FFD method for large lateral velocity contrasts.
Another version of FFD (Xie and Wu, 1998) is based on the
approximation of the square-root operator using the first order
Pade approximation which is the same as Claerbout's 45° or
Muir's R2 apaproximations (Claerbout, 1985). It is less accu­
rate than Ristow-Riihl's FFD method. We refer the Pade-based
method to as the PFFD method hereafter.

To increase the accuracy ofthe FFD methods, one can in princi­
pal add additional terms to the finite-difference operator. How­
ever, the computational cost of the finite-difference operator
increases proportionally to the number of terms added. To

Introduction

Summary

To image complex structures with strong lateral velocity vari­
ations and steep dips, we use a rational approximation of the
square-root operator in the one-way wave equation to develop
a globally optimized Fourier finite-difference method. The two
coefficients in the rational approximation are obtained by an
optimization scheme that maximizes the maximum dip angle of
the Fourier finite-difference method for a given model. Our op­
timized method uses the same coefficients throughout a model
in contrast to Ristow-Riihl's locally optimized Fourier finite­
difference scheme which uses coefficients varying with lateral
velocity contrast. The table of coefficients could be huge for
a highly accurate optimized scheme. The computational cost
of our optimized method is the same as other Fourier finite­
difference methods. Our optimized method is accurate for
dips with angles of approximately 15°_20° larger than that of
Ristow-Riihl's unoptimized Fourier finite-difference method,
while Ristow-Rtihl's optimized scheme can handle approxi­
mately 16° larger dip angles than their unoptimized scheme.
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Table 1: Values of a and b for different range of m = vivo, 1 :::;
m :::; mmax. e in the table is the minimum value of the maximum dip
angles for a given range of m.

mmax th ()z a b e
1.5 18.86 78.76 0.4907073 0.4299809 68.4

2.0 21.89 78.42 0.4875533 0.4319840 66.9

2.5 26.08 77.94 0.4824503 0.4357718 66.4

3.0 28.78 77.39 0.4788818 0.4374196 65.5

3.5 31.41 76.95 0.4750325 0.4401460 64.8

4.0 33.28 76.50 0.4722433 0.4415782 64.0

forall (h, 0° < fh :::; 90°
forall fh, fh < ()z :::; 90°

• calculate a and b (eqs.17 and 18)
forall m, 1:::; m:::; mmax

forall (), 0°:::; e :::; 90°
• calculate € (eq.13)
• find maximum () when €:::; 1

(denoted as 8 m (m))
end forall (J

• find minimum value of 8 m (m)
(denoted as 801,02 «(Jl, ()z»)

end forall m
• find optimized (Jl and (Jz that give

the maximum value of 801002 «(Jl, (}z),
denoted as 8 (see Table 1)

end forall ()z
end forall ()1

• calculate optimized a and busing
optimized ()1 and 8z .

a)
90.,--,..-----,-----;-----,

b)
90.,--,..-----,-----;----,----,------,

Algorithm 1: Procedure to find optimized a and b.
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Fig. 1: Comparison of maximum dip angles versus the lateral velocity
contrast m for the SSF, PFFD, FFD, LOFFD, and GOFFD method. (a)
is for mmax = 3 and (b) is for mmax = 4.

equations (2)-(4), (7), and (9), and making use of the transfor­
mation: _f)2 j8xZ

-¢:::::::} k;" we obtain the approximate opera­
tor Q in the frequency-wavenumber domain given by
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where xg is given by

Z V5 f)z X Z

X o =---=-
wZ f)xz m Z

where the lateral velocity contrast m(x, z) = v(x, z)jvo(z)
is the reciprocal of the refraction index. Making use of equa­
tion (5), combining the two fractions into one, and keeping only
the first-order term in the numerator and denominator of the re­
sulting fraction, equation (6) becomes

where two free coefficients a and b are determined using an
optimization approach described in the next section. The dif­
ference between the operator Q given by equation (2) and that
in a background media with a velocity of Vo (z) is

Optimization

The first two terms of this equation are accomplished using the
split-step Fourier method and the third term is carried out using
an implicit finite-difference scheme.

The two coefficients a and b in equation (9) are obtained by
minimizing the error of the approximate Q given by that equa­
tion. We consider a given velocity v in the following. From

Therefore, equation (2) can be approximated by

wZ
f)z w (1 )-+-+- --1v5 f)x z Vo m

w a(m-l)X6
- Vo 1 - b(1 + m Z) xg'
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with
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where the superscript "app" in equations (10) and (II) repre­
sents the approximation, and XZ is defined by

Z V
Z

Z . Z
X == 2kx = sm (), (12)

w

where () is the dip angle. The percentage relative error of Qapp

is

€(x) = \Qa
pp

- QI x 100 = jRapp - RI x 100. (13)
Q R
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Fig. 2: Comparison of percentage relative errors versus the dip angle () for the SSF, PFFD, FFD, and GOFFD method when m =v / Vo varies from
1.2 to 3.0 with an interval of 0.36.

(14)

From equation (5), we obtain the square-root operator in the
frequency-wavenumber domain given by

ax2

R ~ 1- 1- bX2 '

Using Algorithm 1, we obtain optimized values of a and b for
mmax = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 and tabulate them in
Table 1.

Error Analysis

(17)

(18)

which is exact when X = 0, that is, () = 0° for propagation
along z-axis. We choose equation (14) to be exact at two other
angles (}l and (}2. Therefore, we have

axi
Rl - 1 + 1 _ bxi = 0, (15)

ax~
R2 - 1 + 1 _ bX§ = 0, (16)

where Rl = .J1 - xi, R2 = J1 - x§, Xl = sin(}l, X2 =
sin(}2. Solving equations (15) and (16) for a and b yields

(1 - Rd(l - R2)(X§ - xi)
a - -'-------=;£-'-,,,....,...,::--:::..!..-:::"'':---'-''''-'-

- XiX§(Rl - R2) ,

b = Xi(l - R2) - x§(l - Rl)
XiX§(Rl - R2)

For a given model, the lateral velocity contrast m is bounded
within [1, mmax], where mmax is the maximum lateral veloc­
ity contrast. The values of a and b are obtained by a search
algorithm (Algorithm I) that maximizes the maximum dip an­
gle at which the error given by equation (13) is 1% when
1 ::; m ::; mmax. To search for optimized values more quickly,
a larger angle interval for (}l and (}2 is first used to obtain the ap­
proximate optimized values for (}l and 82. Then a smaller angle
interval is used to find the optimized value of (}l and (}2 within
smaller ranges around their approximate optimized values. Us­
ing the optimized values of a and b in equation (9) leads to a
globally optimized Fourier finite-difference (GOFFD) scheme.

Figure I is the comparison of the dependence of maximum
dip angle on the velocity contrast m for the SSF, PFFD, FFD,
LOFFD, and GOFFD method. For most of geophysical appli­
cation, the maximum value of lateral velocity contrast mmax is
approximately less than 4. For example, mmax = 2.988 in the
SEGIEAGE 3D salt model, mmax = 2.544 in the Marmousi
model. Therefore, we select mmax = 3 and mmax = 4 for the
comparison (see Figure la and Figure Ib). The SSF method
can handle very small dip angles for large lateral velocity con­
trasts. The maximum dip angle for the GOFFD method is ap­
proximately 26° larger than the PFFD method, 15°-20° larger
than the FFD method. For large lateral velocity contrasts, the
maximum dip angle for the GOFFD method is gradually larger
than that of the LOFFD method.

In Figure 2, we compare relative errors versus the dip angle ()
for the SSF, PFFD, FFD, and GOFFD method. For a given level
of the error, the maximum dip angle progressively increases
among methods in the following order: SSF, PFFD, FFD, and
GOFFD.

Impulse Response Migration

A homogeneous medium with v = 4500m/s is used to mi­
grate an impulse response at the upper center of the model.
A reference velocity of Vo = 1500m/s was used during mi­
grations so the lateral velocity contrast in the whole model is
3.0. Figure 3 shows the migration images obtained using the
SSF, PFFD, FFD, and GOFFD method. For this large velocity
contrast, the GOFFD method can handle the largest dip angle


