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An Unsplit, Two-Dimensional Advection Algorithm (U)

S.J. Mosso and B. K. Swartz
L os Alamos National L aboratory

This paper describes a method of representing the distribution of advected quantities over zones
with a conservative, multi-dimensional, monotonically limited, quadratic interpolant. The
method is applicable to two-and three-dimensional, regular and irregular grids. The intent of this
method is to reduce dissipation associated with advection. (U)

Keywords. hydrodynamics, advection, remap, link

Introduction

The firgt author’ s motivation for thiswork is contained in this introduction.

Advection packages in Eulerian codes can be broken into two mgor pieces. The fird piece is the
geometric caculation of the flux volumes. These volumes describe the physical extent of the materid that
will be transported from the donor zone to neighboring acceptor zones. It is the first author’s opinion
thet for two spatia dimensions, the flux volume caculaion has been effectively and efficiently solved in
the two papers ‘Recongtructing Volume Tracking' (Rider and Kothe, 1998) and ‘Incrementd
Remapping as a Transport/Advection Algorithm’ (Dukowicz and Baumgardner, 2000).

The remaining component of an advection package is the caculation of the conserved quantities that
each of the flux volumes carries from its donor to acceptor zones. To this end we propose, for each cell
of an irregular grid, a way to use nearby cdl mean vaues to define and then limit a quadratic
gpproximant. The result is a conservative but discontinuous piecewise quadratic approximation.

Mogt Eulerian and Arbitrary Lagrangian Eulerian (ALE) codes perform materid advection through a
series of one-dimensond advection seps. As an example, flux split advection for a zone that is
uniformly expanding in dl directions does not move materid through al of its faces in a single sep. By
sepping the advection calculation through the facid pairs, flow that is diagond to the facid normds will
firgt be transported out of one face and then through a neighboring face in the acceptor zone. Alternating
the order for the direction of advection reduces directiond asymmetries.

The volume of materid trangported across the zone faces in traditional Eulerian codes is calculated
using asingle-dimensond smplification. The depth of the flux volumeis smply the vector dot product of
the velocity digtribution over the face with the facid normd times the time step. The flux volume is then
the facid areatimes the fluxing depth. No variaion of the fluxing depth over the face is consdered.

The vaue of the conserved quantities that the fluxed materid carries from the donor zone to the
acceptor zone is caculated by using one of two, nearly equivalent, methods: van Leer’s (van Lesr,
1977) third-order scheme or Boris and Book’s Flux Corrected Transport (FCT) (Boris and Book,
1973). In both of these methods, a one-dimensiona, monotonic, quadratic distribution is used to
represent the spatial variation of each conserved quantity over the donor zone. By monaotonic, we mean
that the interpolated vaue at the zone face lies between the mean values of the conserved quantity in the
donor zone and those of the corresponding neighbor zone (MUSCL —type monotonicity). As with the
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cdculaion of the flux volume, the spatid variation of the conserved quantity in the directions normd to
the facid norma is not accounted for in the quadretic distribution.

Another contributor to grid imprinting is the variation in advection disspation. In generd, the third
and higher spatid derivetives of conserved quantities are nonzero. This means that the quadratic
digtribution will not accurately represent sharply varying quantities. The quadretic digtribution will exhibit
a disspated or viscous digtribution and will not vary as rapidly as the physical variaion. When the
quadratic digtribution is used to determine how much of the conserved quantity the fluxed materia
carries from the donor to the acceptor zone, the computation vaue will be less than the true vadue. For
the case of materid moving diagondly to the zone faces, materid will be transported between the
origind donor zone and the ultimate acceptor zone in two steps in two dimensions and in three Sepsin
three dimensons. Each of these advection steps will contribute its own disspation. Contrast this
diagond materid motion in one part of the mesh with zone-aligned mation in ancther portion of the
mesh. In the grid-digned flow, the materid will move in a sngle advection step from the donor to the
acceptor zone and will thus experience less dissipation.

Van Leer Method

As mentioned above, most Eulerian codes caculate the transported vaue of the conserved
guantities usng the van Lear methodology. As a review, in one spatid dimenson van Leer
gpproximated a digtribution on a uniform grid using a quadratic function. One implementation writes the

quedratic function over the interval (xi : >g+1) , usng itscentroid X, as:
_r.meao X6 1o, G- Xgt 11U
0=t Dl 5 & oo " 12 W
where f isthe cdl mean, DF is the limited first spatia difference (Fig. 1), and D’ f is a second

difference of the quantity f . The caculation of the limited first difference involves consideration of three

different numerica differences, as illudrated in Fig. 1. All three dterndives are cdculated, and the
difference with the minimum magnitude is used. To ensure that no new maxima or minima are cregted, if

fl+l

Y |

Z(f_i B f_ll) (f_i+1 B f_i-l)/z 2(f_i+1 - f_|)
Left Sded difference Centrd difference Right sded difference

Figure 1. One-dimengond van Leer difference choicesfor spatid difference of f.
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the Sgn of the left and right differences is different, the resulting difference is zeroed. In asmilar way, the
second difference

D f :(Dfi+1- DCi-1) (2)
was cal culated and then adjusted so that the interpolated values at the zone edges do not fal outside the
range of vauesof f over the three zones. To perform this limiting, Eq. (1) was used to calculate an
interpolated vaue of f a the zone boundary. If the vaue of the interpolant fell outsde the bounding
range of the two f s, the value of the second derivative was reduced until the interpolant fell into the
prescribed range.

As an important consideration, the representation (1) of the interpolant guarantees that its integra
over the zone will equa f . Thiswill occur independent of the value used for the firgt or second
differences.

Current Method: Vertex Gradientsand Zonal Gradients

The current method was developed with the intention of extending the features of the van Leer
method to multiple dimensions, and ensuring that the accuracy of the method would be the primary
objective. By accuracy, we mean that the method best preserves the features of the problem for
trandationa advection problems. Another way of defining accuracy would be the method that exhibits
the least disspation. The method should be accurate on structured and unstructured, orthogona and
nonorthogonal, and two- and three-dimensiona meshes.

A smple, two-dimensiond, nonorthogond, ungructured mesh isillugtrated in Fig. 2. The
central zone is labeled c. The centroid of each neighboring zone is indicated as an open circle and a
sample vertex of zone c isindicated by the shaded circle. The average gradient around the vertex v is
caculaed by means of aline integrd around it using the divergence theorem. This line integrd extends
adong line ssgments that join the centroids of its neighboring zones. Each zone contributes (via the

Figure 2. A two-dimensiona, nonorthogona, unstructured mesh.
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trgpezoidd rule) two terms to the vertex gradient: the zone averages at the segment ends times the
segment’ s exterior normd times the segment length:

f= o o iy = — o f )l @ & ety 2 3)
Y Vol Vol Vol 58 2 ‘g

z edge

el

John Dukowicz (Dukowicz, 1984) was possibly the first to describe a gradient in this way. Miller
and Burton (1990) then implemented Dukowicz's method using a robust and accurate agorithm to
compute the gradient. Since we use the trgpezoidd rule over a linear segment, if we place a linearly
varying quantity over a set of neighboring zones and then caculate the gradient using this method, we
reproduce the given gradient to machine roundoff. If we distribute a quadratic function over a mesh, we
should do a good job (i.e., convergent) of approximating its average gradient near each vertex. This
cdculation will be exact for quadratic functions on a tensor product of two uniform one-dimensiond
meshes and will be convergent for irregular grids.

Recdll that van Leer caculated two one-sded differences and a central difference. He examined
these to choose the smdlest magnitude difference for his limited zond gradient. In asmilar way, we will
caculate a gradient a each vertex of the mesh. One extenson of van Leer’s method to multiple
dimensons and convex zones would use the minimum-magnitude vertex gradient for the initidly
unlimited zond gradient. Our experience has shown that this choice leads to larger discontinuities in the
approximant at the zone edge than occurs with the more flexible limitations we propose below.

In addition to the one-sided gradients, van Leer utilized a centra difference. We cdl our analog of
this difference the zond gradient Nf,. To caculate this gradient, first we define a vertex-dua mesh in
which segments joining successive neighboring zon€'s centroids enclose the vertex's dud zone. A
vertex’'s dud zone is the same region that we used for its vertex gradient (Figure 2). Moving around the
boundary of an ordinary zone, each vertex zone contributes its vertex gradient and associated vertex
volume to the zond gradient asfollows.

- a°V0|VNfV @
a Vol,

Due to the cancdllation of interior line integrds, this zone-average gradient is the same as the gradient

that would be caculated through the line integra formulation (as in Dukowicz and Kodis, 1987) around

the cdl’ s surrounding zone centroids. Its magnitude may need to be limited.

In one-dimension van Leer limited the linear pproximation to restrict zond boundary vauesto liein
the range encompassed by loca zones median values. Dukowicz and Baumgardner (2000) have
extended this limiting to multiple dimensions. See dso Dukowicz and Kodis (1987) and Swartz (1999)
and sections that follow herein.

Nf

Hessan Computation

Van Leer gpproximated the curvature of the interpolation by differencing the two one-sided
gradients. In asmilar way, we will estimate a zone-centered second derivative by spatidly differencing
(using the divergence theorem) the vertex gradients around the perimeter of the polygond zone:
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@ﬁ%[(fygﬁ& ys)+(X+fX .- %)
1111;2:@;; @Wa F,(n, )@maw Y (% - %)

Here f, and fy are the mean values over the segment of the components of Nf , and fx and fy arethe

vaues of the components of N, (3) at its endpoints. The subscripts s and t refer to the starting and

terminating vertices of the edge. There are two methods for computing the cross-derivative term, both
of which produce aimost the same result. Our method (5) averages the two dternatives to produce the
Cross derivative.

This approach provides exact estimates of second derivatives for multivariate quadratic functions on
uniform grids. On more irregular grids, however, convergence or even boundedness of the estimates is
not to be expected. Thisisin spite of the fact that the resulting difference formulae yield convergent and
second-order-accurate gpproximations to solutions of ordinary differential equations on irregular grids
asthe mesh size gets small. For proof of this see Manteuffel and White [1986, esp. Section 5].

The following andysis demongrates these problems in one space dimension. Let four mesh vertices
bound three adjacent mesh cdlls that have centroids X, X,, X, and mesh widths h, , h,, h, respectively.

Apply our approach to the three successive cell means f,, f,, .. Our esimates for the two successive

vertex-centered gradients are (f_i+1 - f_,)/ h,, where h, ., = (h + hﬂ) / 2. Integrating Taylor
expansons about the X, shows these numbers ae within O(h*) of f((xiﬂ,z), where

Xivrp = (X+l + Z) / 2. Thus, they are convergent but not second-order accurate approximations of
the value of thefirst derivative f ¢ at other locations (in particular, at the cdll vertices x.,,,, ). Turning to
f @, the distance between the two middle vertices being h,, our proposed estimate of the second
derivative is the number

[(f_s B f_z)/F'S/z - (f_z - f_l)/ﬁslz]/hz-
But: h, can be quite different from X, - X,, and, Since the use of the latter would be convergent, the

use of the wrong vaue, h,, can yidd a nonconvergent estimate, even an unbounded one if adjacent
mesh sizesvary wildly (eg., take h, = h, = h,h, = h?).

Limiting the Zonal Gradient

The quadratic digtribution should not produce new internd maxima or minima so that ingtabilities or
noise in the zona median vaues are not amplified. Van Leer st the gradient to zero if the sgns of the
one-sided differences were different, and we employ a smilar check. We computed a gradient at each
mesh vertex. For each zone we compute the dot product of each vertex’s gradient with al of the zone's
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other vertex gradients. If any of the productsis negative, the gradient around the zon€e' s perimeter would
have components in opposite directions. In this instance we set the zone' s gradient to zero.

Quadratic Expression
The quadratic expression we use to describe the digtribution over azoneis

f(xy) = F+ 1, )+ f,(y- 9 +31,[(x- 97 - Avdl(x- 9)7]]
+h,(x- D0y - D) +31,[(v- ) - Ay 9)7]
Here {X, y} isthe zon€'s centroid and Avg[g()] is the mean vdue of the function g() over the

zone. These terms guarantee that when this expression is integrated over a polyhedra cdl, its vaue will
be f, the mean zone vaue times the volume of the polyhedron. This makes the distribution

(6)

conservative i.e, .V, is Of dV for each zonez

Gradient and Hessian Limiting

Van Leer employed his one-dimensond, quadratic function to limit the interpolated vaue of the
function at the two zone boundaries. In a Smilar way, we limit the value of the interpolant on the line
between the home zon€'s centroid and each neighboring zone's centroid. For each neighbor we will

require the associated boundary vaue of the interpolant to lie between the mean value f for the home
zoneand f for the neighboring zone.

Let the zone's centroid C be at {X, y} = {CX , Cy} . The five noncongtant functions

Xx- Cx, y- Cy, %{(x- Cx)? - Avg[(x- Cx)z]},

(7)

(x- Oy~ O, 5{(v- o9 - Av(y - &)

in (6) may be viewed as the basis for afive-dimensiona vector space Vs. All members of Vs have mean
vaue zero over the zone. Given anumber f , the set of functionsin Vs that dl havethevdue 2- f ata
given fixed point x=a and y = b condtitute a four-dimensiond hyperplane P(a,b,2- f) in V,. So
given aso the congtant function 1 the functions of the form (6) that have mean value f and aso have
vaue 2 a {a,b} are exactly the functionsin f ~ 1+ P(a,b,2 - f). P(a,b,c) divides V, into two
five-dimensiond haf-spaces namdy, the functions that exceed ¢ a the point{ a,b} and the functions that
arelessthan c at {a,b}. Such linear inequdity condraints on eements in V;, correspond to five-
dimensiond half-gpaces of V;, and the functions that satisfy a number of such congtraints consst exactly

of the functions in the intersection of the corresponding half-spaces. Intersections of haf-spaces
congtitute convex polyhedrain V;.

Having suitably normalized each eement in the above basis for V;, we may take as coordinates for
V; the five derivative vaues f, (C), f, (C), T, (C), f,,(C), f,, (C) . Having defined some coordinates,
we can minimize the distance (as measured by summed squared coordinate differences) that we are
from agiven point of V, and till lie in agiven polyhedron. Thisis the essence of what we propose to do
—and what O’ Rourke and Sahota (1998) did for vertex values of gradients.

6
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Constraint Enclosure Construction
For each zone, we wish to congtruct a monotonic interpolant of a zone's mean vaue fh. To do so
we redtrict variation towards each neighboring zon€e' s centroid using that neighboring zone' s mean vaue
fn asfollows. Let the point Pn lie a the intersection of the home cdl’s boundary with the line segment
that joins the home cdll’ s centroid Ch to a given neighboring zone' s centroid Cn. With each function g in
Vs is an associated value g(Pn), and the function fh+g has vadue fh+g(Pn) there. We want to redtrict
ourselves to those quadratics whose values a Pn lie between the numbers fh and fn. Thus, we want to
restrict oursalves to those dements of Vs whose vaues a Pn lie between zero and fn-fh (this is related
to the so-cdled “MUSCL” congtraint.) Towards thisend, let N be the five-vector of vaues a Pn of the
five bass vectors (7). That isto say, if
Bn=Pn- Cn
N = i Bnx, Bny, %[ Bnx? - Avg((x - Chx)z)], Bnx Bny, %[ Bny? - Avg((y - Chy)2 )]g
Then the hyperplane of vectors D in Vs stisfying the equdlity congraint
N-D=0
are those five-vectors of derivatives a Ch of the functions of the form (6) that have vaue fh a the
boundary point Pn between the two centroids. Likewise, the vectors D satisfying the condraint
N-D=fn- fh
are the derivatives of the functions (6) having the vdue fn a Pn. Each vector in the dab S lying
between these two pardld hyperplanesin Vs corresponds to a function of the form (6) having avaue at
Pn lying between fh and fn.
Each neighboring zone of the given home zone has its own zone mean, its own intermediate point
Pn, and its own associated dab Sh that congtrains potentid vectors D of dlowable derivative vaues at
the home zon€e's centroid. We ask that the condraints for dl neighbors take effect smultaneoudy (this
amounts to a directiona weakening of the “MUSCL” condraint used by Dukowicz and Kodisand isan
analog of O'Rourke and Sahota in our more generd context). Geometricdly this intersection of the
dabs S corresponding to al the neighboring zones yidds our polyhedrd congtraint enclosure E. Since
the dabs are convex sts, E isaclosed convex subset of Vs.
We shdl use E to limit some given esimate
F={f . f, fefy, f,}
of numbers for the derivatives a the home zone' s centroid as follows: if F does not lie in the condraint
enclosure E, we use the nearest vector in E instead. For ‘nearest’ here, we follow O’ Rourke and
Sahota and use the Euclidean distance between the coordinates.

An Example Congraining Linear Functions

Dukowicz and Baumgardner (2000) presented an interesting problem: a circular ditribution of
height 1 is imposed upon a background of 0.1, and this distribution is then trangported around the
mesh’'s center point. This problem is a chalenge because of the discontinuity in the digtribution aswell as
the spatid curvature of the step. This problem was used extensvely in the development of the current
work. To illugrate this method, let us look a a portion of the mesh near the discontinuity in Fig. (3) and
congder limiting a linear (not quadratic) function f. The space of derivative vdues is now two-
dimensond.
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The centrd zone h is shown with its eight neighbors nl through n8. The average zone vdue is
indicated next to its letter identifier. The condraints associated with neighbor nl are shown in Fig. (4)
and neighbor n3 in Fg. (5). In Fg. (6), the congraints are collected into one plot. The monotonicity
condraint dabs that the neighboring zones impose are bounded by heavy lines. The average, unlimited
zond gradient for the home zone is indicated as the red-filled circle (near ‘'n1’). The limited gradient (the
blue-filled circle near the origin) is‘interior’ to the congtraint enclosure.

c N \2
-1

Figure 4. n1 condraints

n? 0.1 ng 069 (n1 1.0

ng 0.1 h 0.12 n2 0.53

nbh 0.1 nd 0.1 n3d 0.1

-0.5

Figure 3. Portion of mesh from Dukowicz

and Baumgardner’s circular step problem. Figure 5. n3 condraints
f
'\ ° /
I n6 nl /
< A2

n8
\ Irﬂ A 4 >
fx

Figure 6. Limits on gradient of linear functions.
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In this example, the congtraint enclosure E is unusud in that it has zero area because of the n3 and
n7 condraints. In other problems, where the area in the congraint enclosure is more extensve, the
question of how to determine the limited vaues of the gradient and Hessian a the centroid is less
graightforward. To summarize, the criteria that this work uses to determine the limited quadratic are
that:

- the derivatives (coordinates) must be interior to al congraints,

- the Eudlidean distance of the coordinates from those of the origind input derivative esimatesis to

be aminimum.

There are a number of other objective functions that could be used to sdect among the congtrained
quadratic functions.

Limiting Procedure

We seek the unique vector L that is closest to F (in the Euclidean digtance) while il satisfying all
the inequality condraints; i.e., the vector L lies in the convex condraint polyhedron E. The process of
limiting the gradient and Hessian vaues could be broken into two successive steps. We might firgt limit
the gradient and then, using these vaues for the gradient, limit the Hessian. It was found that bresking
the monotonicity limiting into two successve deps resulted in a less dynamic representetion (the
components of the Hessan were reduced or diminated). The gradient limiting “used up” the range of
vaues dlowed by the monotonicity. When the gradient and Hessan were limited smultaneoudy, the
components of the Hessian that resulted produced a more curved interpolant.

This is aminimization problem involving a quadratic objective function subject to linear condraints.
We solve it following the “ Gradient Projection Method” in Fox (1973) that produces a finite sequence
of pointsLi, i=1,2,...tha liein E, with each dement closer to F than the last. The sequence terminates
a L. Frg, if F itsdf violates no condraints, then L=F. Otherwise, we begin with L; = 0 gnceit liesin
E. Then L, is taken to be that point on the part of the line L; + s(F-L;) lyingin E that is closest to F.
Since E is convex, L,, and its successors in the sequence, liesin E’s boundary, B. At L, we sdlect the |,
condraint(s) that is (are) exactly satisfied (equdity, not inequaity)—i.e, that are active a L,. Our next
motion will take place dong a line segment lying in some of the associated hyperplanes H.j, j=1,..,)2.
Roughly spesking, we want to move from L, in the descent direction L,-F (i.e., opposte to the
direction of the locd vaue of the objective function’s gradient) as best we can but ill remain in the
boundary B. We should be able to do this by removing from L,-F its component in the span of the
hyperplanes j, norma vectors. It is a tricky business as not al the condraints active a L, may be
usablein the desired direction from L,. We are not dlowed to exit the constraint enclosure, so the active
congraints with a pogtive inner product between its norma and the descent direction are collected.
There may be severd active condraints that are restricting motion. To determine a descent direction
adong B, we carefully use the projection matrix that Fox described. This projection step is complex and
requires careful attention; it either produces a direction that remains interior to the enclosure or produces
avector with zero length. The zero-length vector indicates that no further interior motion is possible; the
optimum vaue for L has been reached and it minimizes the objective function. If the projected direction
IS non-zero, motion interior to the enclosure is possble; however, the distance to the nearest inactive
condraint will limit the step length. The disance to al nonactive congraints dong the projected direction
is caculated. We place the next point L; in the sequence a the minimum of these distances, except
that—as the segment we're moving on lies in the boundary of the polyhedron E—the even more

9
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desirable point minimizing the distance from F to the segment may be reached first. The process is then
repeated to yield points La,Ls,... until no motion in E that has any component in F’s direction is

possible.

A Smooth Limiting Example
To illugrate the accuracy of the results, a smooth, high-order function is imposed on a uniform,

orthogona grid. This test function is a cosne wave radidly propagating from the origin with a circular
didribution:
f(x, y) = com Y0 8

(xy) = cosg— == (8)
The resulting, limited piecewise quadratic distribution is illustrated in Fig. (7), in which each of the 25
zonesis 1 by 1. The lower left corner of the graphic starts at the coordinate { -4,-4} and the upper right

corner isat {1,1}. To illudtrate the distribution’s curvature, each zone has a 4 by 4 mesh imposed upon
it. The firg circle upon which the input function takes its minimum vaue passes near {-3-3}. This

Figure 7. Limited, third-order distribution for cosine function.

behaviour aso occurs in the interpolant.

The interpolant follows the input function very accuratdy. Fg. (8) is a plot of the same function
locally approximated by smilarly limited linear functions. The limiting process used to compute the
interpolants in Fig. (8) included only the congtant and linear terms as in O’'Rourke and Sahota. The
continuity of the interpolant between neighboring zones is Sgnificantly decreased.

A useful error measure is the absolute vaue of the difference between the anaytic cosine function
(8) and the interpolant. The andytic expression for the mean abosolute error over azone is not available.

10
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Figure 8. Limited, second-order distribution for cosine function.

An approximation is computed by sampling the eror a a number of locations in each zone and
averaging the sum. Twenty-five, evenly spaced locations were chosen in each zone and the mean
absolute error was computed for the second-order and the third-order interpolant. Fig. (9) is a
histogram comparing these two errors. The red bars are the second-order interpolant mean absolute
error and the blue bar is the mean absolute error for the third-order interpolant. The range of errorsin
Fig. (9) is 0.064 in the lower left corner to 0.003 in the upper right corner. In aress of the problem
where the cosne function has smal changes between neighboring zones, both second- and third-order
interpolants do a good job of representing the function. In regions of significant curvature, the third-
order interpolant produces a more continuous representation of the function between adjoining zones as
well as a lower error. Since advection transports material from the edge of one zone to ancther, the
more continuous representation by the third-order interpolant will produce a less diffusve advection
step that may better preserve features of the problem.

Conclusons

A piecewise quadratic method of representing the didtribution of a conserved quantity has been
developed. The method more accurately represents the spatia distribution of these quantities and should
enable an unsplit advection agorithm to more accuratdly transport materid. The interpolant is monaotonic
with respect to its immediate neighboring zones in a MUSCL sense. A more extensve examination of
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the relationship between extrema of the gpproximant and monotonicity needs to be consdered in the
future.

Figure 9. Histogram of average second- and third-order errors.
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