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ABSTRACT 

We present an entirely new method for measuring residual stress that is extremely simple to 
apply yet more powerful than existing techniques. In this method, a part is carefully cut in two. 
The contour of the resulting new surface is measured to determine the displacements normal to 
the surface caused by the release of the residual stresses. Analytically, the opposite of these 
measured displacements are applied as boundary conditions to the surface in a finite element 
model. By Bueckner’s superposition principle, this gives the original residual stresses normal to 
the plane of the cut. Unlike other relaxation methods for measuring residual stress, the measured 
data can be used to solve directly for the stresses without a tedious inversion technique. At the 
same time, an arbitrary two-dimensional variation in stresses can be determined. We demonstrate 
the method on a steel specimen with a known residual stress profile.  

INTRODUCTION 

The state-of-the-art residual stress measurement methods are significantly limited in their ability 
to measure spatial stress variations. In relaxation methods, the original stresses are determined 
from deformations measured after material removal. Only by removing material incrementally 
and making simplifying assumptions can one determine the spatial stress variation. Analytical 
complexity generally limits such techniques to measurement of one-dimensional (1-D) stress 
variations, e.g., incremental hole drilling (1) and crack compliance (2). Fundamentally, the 
analytical complexity occurs because the deformations are measured remote from the location of 
stress relief, e.g. on a pre-existing free surface. 

  The new relaxation technique presented in this work (3) can determine 2-D variations in 
residual stress without simplifying assumptions about the nature of the spatial variation. At the 
same time, the analysis to solve for the stresses from the measurements is exceedingly simple. 
These advances are possible because deformation is measured on the surface created by a cut, the 
location of stress relief, rather than on a pre-existing free surface. 

  The only common methods that can measure similar 2-D stress maps have significant 
limitations (4). The neutron diffraction method is nondestructive but sensitive to microstructural 
changes (5), time consuming, and limited in maximum specimen size, about 50 mm, and 
minimum spatial resolution, about 1 mm. Sectioning methods (e.g., 6) are experimentally 
cumbersome, analytically complex, error prone, and have limited spatial resolution, about 1 cm. 



  

THEORY 

The contour method for measuring residual stresses is based on a variation of Bueckner’s 
superposition principle (7). Figure 1 presents an illustration in 2-D for simplicity, although the 
principle applies equally in 3-D. In A, one starts with our part containing the residual stresses to 
be determined. In B, the part has been cut in two, and the part has deformed because of the 
relieved residual stresses. In C, the free surface created by the cut is forced back to its original 
configuration from a stress-free starting point. Superimposing the stress states in B and C gives 
the original stress state. This superposition principle assumes that the material behavior is 
linearly elastic and that the material removal process does not introduce significant stresses. 
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Figure 1. Superposition principle used to calculate original residual stress from measurement of 
surface contour after cutting a part in two. 

  Proper application of this superposition principle allows one to experimentally determine the 
residual stresses along the plane of the cut. Experimentally, the contour of the free surface is 
measured after the cut. Analytically, the surface of a stress-free model is forced back to its 
original configuration as in step C. Because the stresses in B are unknown, one cannot obtain the 
original stresses throughout the body. However, the stresses normal to the free surfaces in B 
must be zero. Therefore, step C by itself will give the correct stresses along the plane of the cut. 

  Experimentally, there is an arbitrary displacement in the contour measurement, i.e., the zero is 
arbitrary. There is also an arbitrary rotation in 2-D and two arbitrary rotations  in 3-D. However, 
the arbitrary motions can be determined analytically by the need for the residual stresses to 
satisfy force and moment equilibrium. In fact, an FEM model used to solve for the stresses 
automatically accounts for the arbitrary motions, as will be demonstrated. 

  Measurement of the surface contour provides information about the displacements in the 
normal (x) direction only, not about those in the transverse (y) direction. Therefore, the analytical 
approximation of step C will force the surface back to its original configuration in the x-direction 
only, leaving the y-displacements unconstrained. If the residual shear stresses were zero along 
the plane of the cut, the approximation is exact: Poisson contractions will return the surface to its 
original y-position. In the general case, one assumes that the shear stresses on the cut plane are 
small. Similar assumptions are made by other proven measurement techniques, including hole 
drilling and sectioning methods (4). Qualitatively, this assumption is reasonable because the 
shear stress magnitude is limited by the free surface condition, the 2-D local equilibrium 
condition, ,0=∂∂+∂∂ yx xyx τσ and the need to satisfy net cross-section equilibrium. If σx is 

uniform in the x-direction, which is a reasonable assumption for many situations, the shear 
stresses must be zero. The errors caused by non-zero shear stresses will be assessed by numerical 
simulation in the next section of this paper.  



  

  A few researchers have applied a similar superposition principle before (8,9,10). However, they 
measured 1-D approximations of the contour on pre-existing free surfaces. A 3-D FEM 
simulation (11) showed that large errors resulted from such simplifications.  

NUMERICAL VERIFICATION 

An FEM simulation demonstrated the validity of the contour method and quantified the errors 
caused by the possible presence of shear stresses. A 2 × 1 beam was modeled using the 
ABAQUS commercial finite element code and a 40 × 20 mesh of 8-noded, quadratic shape 
function, plane stress elements (CPS8). The material behavior was isotropic linear elastic with an 
elastic modulus of 1000 and Poisson’s ratio of 0.3. Residual stresses were initialized using a user 
subroutine, and one analysis step was performed to ensure initial equilibrium. A second analysis 
step removed the elements on the right half of the beam to simulate separating the part.  

  The first simulation considered the beam having no shear stresses along the plane of the cut. 
The axial residual on the plane of the cut, where the beam thickness goes from y = 0 to 1, were 
given by a simple parabolic distribution that satisfied equilibrium: 

( ) 166 2 +−= yyyxσ   . (1) 

  Figure 2 shows that applying the contour method to the beam simulation gave the correct 
results. To apply the superposition principle, a model of the undeformed and unstressed half of 
the beam was taken from the full mesh. The displacements of the cut surface from the initial 
FEM model were applied with opposite sign as constraints to the nodes along the cut surface. 
Applying only the x-displacements, as would be the case with experimental implementation of 
the contour method, gave the correct stresses along the cut plane. Applying both x- and y-
displacements gave identical results because the y-constraints gave zero constraint forces and the 
Poisson contraction automatically resulted in the correct transverse displacements. 
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Figure 2. Simulation results, no shear stress. Figure 3. Simulation results, with shear stress. 

  The second simulation considered a beam with shear stresses along the plane of the cut. The 



  

axial stresses along the plane of the cut were still given by Eq. (1) but were varied in the x-
direction to give ( ) xx xyx σσ −=∂∂ , . Combined with the equilibrium condition and free surface 
conditions, this ( ) xyxx ∂∂ ,σ  results in a shear stress distribution on the cut plane of 

( ) ( )yyyyxy +−= 23 32τ . (2) 

  Figure 3 shows the small errors that resulted from applying the contour method when shear 
stresses were present on the cut plane. Applying both the x- and y-displacements to the surface 
gave the correct results for both normal and shear stresses. However, experimentally we would 
only be able to determine the normal (x) displacements. Applying just the x-displacements gave a 
root-mean-square error in the σx distribution of 0.059, or 5.9% of the peak value. As expected, 
application of only x-displacements gave zero shear stresses. 

  The shear stress simulation is a pessimistic case, and yet the errors were quite small. Because of 
the free surface conditions and equilibrium condition, the magnitude of ( ) xyxx ∂∂ ,σ  determines 
the maximum value of shear stress. For our simulated beam, σx decays from its peak value to 
zero in about one beam thickness. By St. Venant’s principle, one expects such changes near the 
ends of a body. However, the stresses can reasonably be expected to be much more constant in 
the central region of many bodies, resulting in lower shear stresses.  

EXPERIMENTAL VALIDATION 

Known Residual Stress Specimen. A plastically bent beam was carefully prepared in order 
to provide a specimen with a known residual stress profile. 43 mm square stock of forged 
21Cr-6Ni-9Mn austenitic stainless steel was annealed at 1080°C for one hour and argon 
quenched. Next, the beam was machined to final shape with a 30 mm × 10 mm minimum cross 
section. Then the beam was thoroughly stress relieved by heating in a vacuum to 1080°C for 15 
minutes and slow cooling at 100°C per hour. The beam was then plastically bent and unloaded in 
a carefully designed four-point bend fixture (12) to a maximum outer fiber strain of about 
5670 µε. Strain and load measurements during bending were used to calculate independent 
stress-strain curves for loading and unloading in both tension and compression (12). Finally, 
superposition of these curves gave the residual stress profile. The elastic modulus determined 
during these tests was 194 GPa. 

Experiment. For the contour method, the ideal machining process for separating the part 
would make a precisely straight cut and not introduce any plastic deformation. Wire electric 
discharge machining (wire EDM) is probably the choice closest to the ideal (13). In wire EDM, a 
wire is electrically charged with respect to the workpiece, and spark erosion causes material 
removal. The cutting is noncontact, whereas conventional machining causes localized plastic 
deformation from the large contact forces. The wire-control mechanisms can achieve positional 
precision of a fraction of a micrometer, especially for a straight cut. For this test, the beam was 
cut with a Mitsubishi SX-10 machine and a 100 µm diameter zinc-coated wire. “Skim cut” 
settings, which are normally used for better precision and a finer surface finish, were used 
because they also minimize any recast layer and cutting-induced stresses (13,14). Including the 
kerf, the slot was about 140 µm wide.  



  

  The beam had to be fixed firmly enough to prevent unwanted movement during cutting, which 
required that the beam be clamped on both sides of the cut. Usually with wire EDM only one 
side is clamped. To assure that no thermal stresses would arise, the beam and all the clamps were 
allowed to come to thermal equilibrium in the water before they were secured. 

  The contour of the cut surface was measured using a Brown & Sharpe XCEL 765 coordinate 
measuring machine (CMM), which resides in a temperature and humidity controlled inspection 
laboratory. A CMM uses a touch trigger probe to register mechanical contact. An optoelectric 
system using glass scales gives the probe location, which is combined with machine coordinates 
to locate the surface. Because the CMM uses a probe tip with a finite radius, surface roughness 
and porosity are at least partially filtered out from the measured contour. A 4 mm diameter ruby 
tip was selected after trial measurements using tips with diameters from 1 mm to 8 mm revealed 
no significant measurement differences.  

  Figure 4 shows 1-D contours measured on the cut surfaces from both halves of the beam. The 
zeros are arbitrary, so the offset between the two curves is irrelevant. The measurements were 
taken in the center of the surface, and y = 0 represents the beginning of the cut. Additional traces 
taken off from the center showed very similar data. For both surfaces, positive x is taken in the 
outward normal direction; therefore, values that are more positive represent higher regions of the 
surface. 2-D measurements were also taken over the entire surface using the CMM and a 50 by 
300 grid. 
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Figure 4. Surface contour measured on both 

halves of the beam. 
Figure 5. Results from applying 1-D contour to 

2-D finite element model. 

Calculations. For simplicity, the initial calculations were performed on only a 2-D model 
using the measurements shown in Fig. 4. The half-beam was modeled using a 30 × 78 mesh of 8-
noded, quadratic shape function, plane stress elements (CPS8). The material behavior was 
isotropic linearly elastic with an elastic modulus of 194 GPa and Poisson’s ratio of 0.28. After 
careful smoothing of the data, the opposite of the measured contour was applied as displacement 
boundary conditions to the nodes on the surface representing the cut.  



  

  Figure 5 shows the 1-D residual stress profiles measured by the contour method compared with 
the prediction from the bend test. The results were obtained by post-processing the FEM results 
to extrapolate σx to the nodes along the surface representing the cut. Because the measured 
displacement contours from Fig. 4 had to be extrapolated slightly to cover the full range, the 
results are truncated near the ends. The agreement with the prediction is striking, especially 
considering the low magnitude of residual stresses. Such low residual stresses in a stiff material 
like steel result in a lower magnitude of the contour and, therefore, increased errors.   
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Figure 6. Applying 2-D measured surface 
contour to 3-D beam model. 

Figure 7. Measured stress map compared to 
prediction. 

  To illustrate the ability of the contour method to measure a full 2-D stress map, the contour 
measured on the entire cut surface was applied to a 3-D model. The half-beam was modeled in 
ABAQUS using 16,200 20-noded, quadratic shape function brick elements (C3D20). This mesh 
gave a 10 × 30 mesh of elements on the 10 mm × 30 mm cut surface. The measured surface 
contour data was fit to a bivariate Fourier series, averaged between sides one and two, and then 
applied as displacement boundary conditions in the FEM model. Figure 6 shows the deformed 
finite element model and the three displacement constraints used to prevent rigid body motions. 
As discussed previously, the FEM solution easily handled the arbitrary displacement and rotation 
in the measured contour. The movement of the free end of the beam illustrates the rotation 
necessary to satisfy moment equilibrium and the slight contraction to satisfy force equilibrium.  



  

  Figure 7 shows the measured 2-D map of residual stresses compared to the bend test prediction. 
Because the surface contour measured on the CMM had to be extrapolated slightly to the edges 
of the surface, the contour lines are not plotted all the way to the edges. The agreement between 
measurement, Fig. 7b, and prediction, Fig. 7a, is good. However, the z-direction curvature in the 
measured contour, see Fig. 6, resulted in a small shift in the calculated stresses towards more 
compressive values along the center of the surface (z = 5). As will be discussed, that curvature 
results from using sub-optimal settings during the wire EDM cutting. Therefore, it was corrected 
for in a simple manner by fitting the curvature at y = 15 and then subtracting this curvature from 
the entire surface. Figure 7c shows the corrected results. The agreement with prediction is now 
very good, similar to the results in Fig. 5. 

DISCUSSION 

First we briefly mention that analytical smoothing of the measured contour is crucial because 
calculating stress from the displacements amplifies any noise in the data.  

  The contour method is sufficiently sensitive to measure residual stress maps of interest. The 
beam specimen in this study could be considered a sensitivity test because the stresses were less 
than 150 MPa and resulted in a contour with only about a 10 µm peak-to-peak magnitude. 
Residual stresses are often several times greater, the parts are also often larger, and many 
materials of interest have lowed elastic moduli, any of which would give larger contours. Some 
preliminary measurements on a 38-mm thick butt-welded steel plate gave a contour of about 120 
µm peak-to-peak magnitude. Future work will, however, need to consider the effect of plasticity 
on the contour method for stresses near the yield strength. 

  Errors can be greatly reduced by correctly clamping the specimen during the cutting. The cut is 
assumed to occur along a flat plane in the original configuration. However, stress relief causes 
this plane to move slightly as the cut progresses. Such movement can be quantified using a 
simple FEM model. When the specimen is clamped on both sides of the cut, the resulting error in 
the stress distribution is less than 10%. More sophisticated clamping arrangements could prob-
ably reduce the errors further. Initial simulations suggest that errors can be minimized in general 
by measuring the contour on both halves of any specimen and using the average in calculations. 

  The z-direction curvature in the measured surface contour, see Fig. 6, appears to be caused by a 
common source of inaccuracy in wire EDM machining called “barreling” (13). The barreling can 
be minimized by optimizing cutting parameters, such as by cutting more slowly. In addition, the 
barreling will have a reduced influence on measurement of larger residual stresses because it will 
make up a lesser portion of the measured contour. 

CONCLUSIONS 

The contour method of measuring residual stress was experimentally validated using a bent beam 
specimen. In many ways, the contour method surpasses other measurement methods in both 
ability to measure stresses and ease of use: 

1. The contour method can measure a full 2-D map of the residual stress component 
normal to the cross section. 



  

2. The residual stress map can be obtained directly from the measured contour; no 
inverse procedure or assumptions about the stress variations are necessary. 

3. The technique is experimentally simple. No strain gages or other instrumentation is 
required during the testing. The necessary equipment is widely available in machine 
shops and inspection laboratories. 

  The contour method has the potential to measure residual stress maps that are extremely 
difficult to measure with other techniques. One particularly promising application is welding 
residual stresses. Microstructural changes in the weld material make neutron diffraction 
measurements difficult (5) but have relatively small effects on the elastic constants that would 
affect the contour method. Other exciting applications include parts with geometrically complex 
cross sections, like railroad rails, forgings, I-beams, extrusions, and castings.  

ACKNOWLEDGEMENTS 

This work was performed at Los Alamos National Laboratory, operated by the University of 
California for the U. S. Department of Energy under contact number W-7405-ENG-36.  

REFERENCES 
  

1.  Schajer GS, Journal of Engineering Materials and Technology 110 (1988) 338–349. 
2.  Cheng W, Finnie I, Journal of Engineering Materials and Technology 108 (1986) 87–92. 
3.  Prime MB, “2-D Mapping of Residual Stresses by Measuring the Surface Contour After a. 

Cut,” Journal of Engineering Materials and Technology (submitted). 
4.  Lu J, James M, Roy G, ‘Handbook of Measurement of Residual Stresses’, The Fairmont 

Press, Inc. (Lilburn, Georgia, USA) 1996. 
5.  Krawitz AD, Winholtz RA, Materials Science and Engineering A-Structural Materials 

Properties Microstructure and Processing 185, (1994) 123–130. 
6.  Rybicki EF, Shadley JR, Journal of Engineering Materials and Technology 108 (1986) 99–

106. 
7.  Bueckner HF, Transactions of the American Society of Mechanical Engineers 80 (1958) 

1225–1230. 
8.  Williams JF, Stouffer DC, Engineering Fracture Mechanics 11 (1979)  547–557. 
9.  Johnson MR, Robinson RR, Opinsky AJ, Joerms MW, Stone DH., paper 85-WA/RT-17, The 

American Society of Mechanical Engineers (1985).  
10. Dickson TL, Bass BR, McAfee WJ, PVP-373, Fatigue, Fracture, and Residual Stresses 

(1998) 387–395.  
11. Lin KY, Huang JS, Theoretical and Applied Fracture Mechanics (12) (1989) 73–86. 
12. Mayville RA, Finnie I, Experimental Mechanics 22 (1982) 197–201. 
13. Sommer C, Sommer S, ‘Wire EDM Handbook’, Advance Publishing, Inc., (Houston, Texas, 

USA) 1997. 
14. Cheng W, Finnie I, Gremaud M, Prime MB, Journal of Engineering Materials and 

Technology 116 (1994) 1–7. 


	THE CONTOUR METHOD: SIMPLE 2-D MAPPING OF RESIDUAL STRESSES
	ABSTRACT
	INTRODUCTION
	THEORY
	NUMERICAL VERIFICATION
	EXPERIMENTAL VALIDATION
	Known Residual Stress Specimen.
	Experiment.
	Calculations

	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

