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Abstract

For rotation-invariant Hamiltonian systems, canonica
angular momentum isconserved. Inbeam optics, thisstate-
ment is known as Busch’s theorem. This theorem can be
generalized to symplectic mappings; two generalizations
are presented in this paper. The first one states that a group
of rotation-invariant mappingsisidentical to agroup of the
angular-momentum preserving mappings, assuming both of
them symplectic and linear. The second generaization of
Busch'’s theorem claims that for any laminar beam which
rotation symmetry happened to be preserved, an absolute
value of the angular momentum of any particle from this
beam is preserved as well; the linear symplectic mapping
does not have to be rotation-invariant here.

1 INTRODUCTION

When a beam optics consists of non-dissipative axial-
invariant elements, such as drifts, solenoids, round € ectro-
static lenses or axisymmetric RF fields, the canonical angu-
lar momentum (CAM) of any particle M = xp, — yp, IS
preserved; here (z, p,) and (y, p,) are horizontal and ver-
tical canonically conjugated pairs. This statement follows
from the Hamilton equati ons applied to the canonical angu-
lar variables M , 6 and is known as Busch’s theorem (seg,
e. g. [1], p. 34). Thistheorem is extremely useful for
such beam optics, referred to aslocal-invariant [2]. Local-
invariant optics continuoudly preservesthe CAM and beam
axia symmetry.

However, the beam symmetry might also be preserved
after a mapping which does not correspond to any se-
guence of the axiad-invariant elements. If the mapping is
rotation-invariant, or commute with rotations, it preserves
the beam axia symmetry. This kind of mapping, though,
can be constructed on a basis of non-invariant elements as
dipoles, quadrupoles, non-symmetric RF fields, etc. The
Busch’stheorem says nothing about the CAM preservation
by this global-invariant mapping. Thus, the question ap-
pears, whether the CAM is preserved by rotation-invariant
symplectic mappings? (Here, only symplectic mappings
are considered. A mapping issymplecticif particlemotion
is Hamiltonian, see e. g. Ref. [3] p. 51; dso in the next
section.) For linear transformations, thisquestionistreated
in the next section, and the positive answer isfound. It is
proved there that the group of rotation-invariant mappings
isidentica to the group of the CAM-preserving mappings,
assuming both of these groups linear and sympl ectic.

However, the beam round symmetry might be restored
even by non-invariant mapping. Thefirst exampleisamir-
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ror reflection. This kind of symplectic mappings does not
commute with rotations, but preserves axia symmetry of
any rotation-invariantinitia beam distribution. Reflections
do not preserve the CAM: they reverse its sign, but they
still do preserve its absolute value. The second example
shows that a mapping can preserve axia symmetry for a
particular beam, but do not preserve for an arbitrary round
beam. Indeed, imagine asymplectic x — y-uncoupled map-
ping, which acts vertically as the identity, and horizontally
as adrift. Generaly, thistransformation does not preserve
the beam symmetry: initialy round beam is not round &f-
ter that mapping. However, a round beam with zero mo-
mentap, = p, = 0 istransformed into round beam again
by this mapping. Thus, the beam rotation symmetry can be
preserved even by a non-invariant mapping, either for any
initial beam distribution (reflections) or for some distribu-
tionsspecial for that mapping. Let it to beassumed now that
aparticular initially round beam distributionis mapped onto
around beam again. It isclear from thefirst example with
reflections, that the sign of the CAM can be reversed with-
out any damage to the beam axial symmetry. However, it
can be suspected that if the beam symmetry is restored by
a symplectic mapping, the absolute value of the CAM for
every particle of thisbeam is restored aswell. For laminar
beams mooving in eectro- and magneto-static fields, this
statement isprovenin Ref. [4]. For laminar beams and any
kind of linear symplectic mappings, this statement isfound
to be truein the section 3.

2 MAPPING INVARIANCE AND
ANGULAR MOMENTUM
PRESERVATION

Group of rotationsin thetransverse plane through angles
6 can be presented by matrices

ro)= (% %) ®

—sl

withc = cosf, s = sinf and | asthe 2 x 2 identity ma
trix. Rotation invariance of atransformation 7 means that
it commutes with the rotations:

R-T-T R=0. )

This condition is equivalent to its particular case of an in-
finitesimal rotation by an angle d6 when

0 |

R=T+G db; Q=(_| 0); G=-I (3

whereZ and | are 4 x 4 and 2 x 2 identity matrices cor-
respondingly. Then, the invariance condition reduces to a



commutation of the mapping 7" with theinfinitesimal oper-
ator G

G-T-T-G=0. 4
The mapping 7 is assumed to be symplectic:
TTST =8, (5)

where

J o 0 1
3:(0 J>;J=(_1 O>;82=—I (6)

isthe symplectic unit matrix, Z isthe 4 x 4 identity matrix
and the superscript 7 stands for the transposing.

It can be shown now that symplectic invariant transfor-
mations 7 preserve the CAM

1
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where

0o J 0 1
ﬁ:(_J 0>;J=(_1 O>;£2=I. (8)

Note that the CAM matrix £ isrotation-invariant:

G- L-L-G=0. 9)

In terms of its matrix £, CAM preservation at the map-
ping 7 can be expressed as

TTLT = L. (10)

To prove that thisis true when conditions (5, 4) are pro-
vided, it is convenient to use the relation between the in-
finitesimal operator G, thesymplectic unit matrix S, and the
CAM matrix L:

S L=L-S=-G. (11)

which is straightforward to prove. It means that the matri-
ces S, £ and G form an algebra: any their product returns
one of them. From (9, 11) the symplecticity matrix can be
presented as

S=-L-G. (12)

Being substituted in the symplecticity condition (5), after
thecommutation (4), it leadsto the CAM preservation (10).
Thus, theinvariant transformations preserve the CAM.

The reverse statement can be proven as well: if a sym-
plectic mapping preserves the CAM of any initia state, it
is rotationaly invariant. Indeed, with the matrix 77 ex-
pressed from thesympl ecticity condition (5) and substituted
inthe CAM preservation (10), it leads to what can be seen
as theinvariance property (4) when Eq. (11) isused. Thus,
mapping invariance gives rise to CAM preservation and
vice versa, so these properties are absolutely equivalent.

A genera form of the CAM-preserving matrices was
found by E. Pozdeev [5] and E. Perevedentsev [6] (see de-
tailsin[7]):

T-cosf T-sin6 T O
7= ( —T-sinf T-cosf ) = R(6) ( 0 T. )

(13)

Merged with the reflections, it leads to awider group:

T:R(e)(g i(')l'. )

Asitisshowninthenext section, thisgroupincludesall the
mappings that preserve the axial symmetry for any initial
round beam distribution.

(14)

3 BEAM SYMMETRY AND ANGULAR
MOMENTUM PRESERVATION

Asitwasdiscussed in the section 1, the round symmetry
of a particular beam might be preserved by anon-invariant
mapping aswell. The questionis, whether the CAM ispre-
served together with the beam symmetry even in this case?

For hydrodynamic, or laminar beams, a positive answer
to thisquestion followsfrom the generalized Busch’'stheo-
rem [4]. Thetheorem statesthat when such abeamistrans-
ported by means of arbitrary static electric and magnetic
fields, the contour integral

fﬁczz:fm_e@/c
N N

isconserved. Here the contour T bounds an arbitrary tube
of trgectoriesin the 3D coordinate space x, y, z and @ is
the magnetic flux through the contour. If theinitia and fi-
nal beam states are rotationally invariant, the contour " isa
circumferenceinthetransverse plane, and the CAM preser-
vation follows. Note that the field linearity is not required
here.

Below, this theorem is extended from the electro- and
magneto-static fields to arbitrary Hamiltonian systems.
This extension, however, requires to assume the linearity
of the transformation. Thus, the statement to be proved
claims following: if a particular laminar round beam is
transformed by a symplectic linear mapping into a round
state again, the CAM of every particleisrestored.

To prove this, a property of the symplectic transforma-
tionsto conserve skew-scalar products can be used (see e.
0. [8]). The skew-scalar product of two vectors in the
4D transverse phase space x1 = (%1, Pz1, Y1, Py1) and
X2 = (T2, P22, Y2, Dy2) 1S 8N antisymmetric bilinear form
[x1,x2]. Expressed interms of the usual scalar product, it
can bewrittenas [x1, x2] = (x1, Sx2) With S asarotation
by 90° in each of the phase planes, or

(15)

[X1,X2] = —Z1Dz2 — Y1Py2 + T2Pe1 + Y2Py1-

Let x1; and xo; be two arbitrary vectors of theinitial state
finally transformed into x;¢ and xo¢. Due to the symplec-
ticity,

(16)

for any choice of x; and x5. It can be seen that for lami-
nar beams, the angles between their 2D = — y components
are conserved by the transformation. This property is an
obvious consequence of the rotation invariance of the both

[Xli; Xzi] = [X1f, Xzf]



states: without it, there would be an angular asymmetry of
the final beam density distribution. However, the sign of
thisangle can be changed that would not contradict the an-
gular symmetry of thefinal state. Thetwoinitia vectorscan
be taken as 2D-orthogona:

X1i = ‘(-'7‘1',, ZﬁT) O) p?f) (17)
x2i = Xi1i = (0, —pit, 74, Pir)
having the angular momentum M; = r;p;; where r; is

theinitial beam radius. Because of the angle conservation,
these two vectors are 2D-orthogonal again after the trans-
formation. Without alack of generdity, the z-axis can be
assumed to go aong the vector #; both for the initial and
thefinal states; thisfollowsfrom symplecticity of the rota-
tions. So thefina states can be presented as

(Tfapra Oapff)
i)‘Elf = :I:(O; —Pft, lrfapr)

X1f =
ap — (18)
with My = +r¢py, asthefinal angular momentum.

In fact, the symplecticity condition (16) for a given vec-
tor x; and arbitrary x5 isequivaent tothe particular choice
(17, 18). Indeed, for a given x5, any x2 can be expanded
over the two orthogonal vectors: x; and its orthogonal
counterpart x; . Then, the part of x5 parald to x; gives
anidentical zero for the both sides of the symplecticity con-
dition (16), while the component along %, gives the same
result as (17).

Conservation of the skew-scalar product

[Xli; Xzi] = [X1f, Xzf]
for the orthogonal pare x1, x2 immediately yields

M; = +M; (19)

as was to be shown.

Thus, no transformation can change an absolute value
of the canonical angular momentum of a particle with-
out breaking the rotational symmetry of the laminar beam,
which this particle belongs to.

Actudly, the statement just been proven means that the
property of the canonical momentum conservation goes be-
yond the mapping (or Hamiltonian) invariance. For the
invariant mappings, any initially symmetric state of beam
transforms into a symmetric state again. It was shown
above that the mapping invariance does not follow from
the fact that one particular symmetric state was eventually
transformed into other, also symmetric, state, which prop-
erty can be referred to as the projective invariance. It was
proved in fact that the mapping invariance is a somewhat
surplus requirement for the momentum conservation; the
projective invariance for a laminar beam is sufficient to
claim that every particle of this beam restores the absolute
value of its CAM.

It followsfrom abovethat if amapping preservesrotation
symmetry of any initial beam, than, it preservesthe absolute
value of the CAM by itself; thus such amapping hasaform
of Eqg. (14).

4 SUMMARY

Two statements are proved above, showing a deep re-
lation between rotation symmetry and angular momentum
preservation. Firgt, it is proved that a group of rotation-
invariant mappings is identical to a group of the angular-
momentum preserving mappings. Second, it is shown that
if alaminar round beam is symplectically mapped onto a
round beam again, an absol ute value of the canonical angu-
lar momentum for any particle of this beam is preserved -
even if the mapping is not rotation-invariant.

The author is thankful to V. Danilov, A. Shemyakin and
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