G

CSIRO

Data Cleaning and Record Linkage Research in Asia

Xiangmin Emily Zhou, Daniel McMichael and John Taylor
Monday, 20 July 2009

The Department of Defence
Wing Commander Bill Compton

% Australian Government
Department of Defence

Australian Science, Australia's Future WWW.Ccsiro.au

Enquiries should be addressed to:

Dr. John Taylor,

Leader, Computational and Simulation Sciences, CSIRO
Tel. +61 2 6216 7077

Fax +61 2 6216 7111

Email: John.A.Taylor@csiro.au

Web: www.csiro.au

Distribution list

Bill Crompton (DOD) Three copies
John Taylor (CSIRO) One copy
Daniel McMichael (CSIRO) One copy
Tracey Papandreou (CSIRO) One copy
Xiangmin Zhou (CSIRO) One copy

Copyright and Disclaimer

© 2009 CSIRO To the extent permitted by law, al rights are reserved and no part of this
publication covered by copyright may be reproduced or copied in any form or by any means
except with the written permission of CSIRO.

Important Disclaimer

CSIRO advises that the information contained in this publication comprises general statements
based on scientific research. The reader is advised and needs to be aware that such information
may be incomplete or unable to be used in any specific situation. No reliance or actions must
therefore be made on that information without seeking prior expert professional, scientific and
technical advice. To the extent permitted by law, CSIRO (including its employees and
consultants) excludes al liability to any person for any consequences, including but not limited
to all losses, damages, costs, expenses and any other compensation, arising directly or
indirectly from using this publication (in part or in whole) and any information or material
contained in it.

mailto:Taylor@csiro.au
www.csiro.au

Contents

1. The Aims and Approach of this Reportcccoiiiiiiii e 3
2. 1L o To [V To3 4 o o T 3
2.1 The significance of data quality in the modern economycccccevvvvvveveeveeeeeenvnnnnnnns 3

2.2 The cost of low data qUAIILY..........occueiiiiiiiiiei e 4

2.3 HOW dOes data gt dirty?......couii et 6

3. Column SEgMENTALION ...oooeiiieee e 9
4, Record matching and lINKAgEooviiiiiiiii e e 9
o R D 1= To (B o] [T i o] o FU TP 10

4.2 SIMIlArity MEASUIESccei it e e e e e ee e e e e s e s e e e e e e s e s e e e e e e e s snntarneeeaaeeeas 10

421 Edit DaSed MEASUIES.....cco et e e e e e e 10

422 Token based SIMIIAIILYc.uiii i e e 11

4.2.3 FMS SIMUTAITEY ...ttt e e ee e 12

4.3 Efficient algorithms for approXimate JOINooocuiiiiiiiieiiiieee e 14

431 Traditional join MEthOAScoiiiiiiiiei e e e 15

43.2 Extended join MEthOOSc.eviiiiiie e 17

4.3.3 COMMETCIAI SYSIEIMS ...eiiiiiiie ittt et e ste e et e e snbaee s 23

5. HAIOWEAIE ISSUEBS ...uiiiiiiiiiiiiiiiiiiiiiiiiiiaeseessssssssssssss s e e e e e e e e e e e aaaaaaaaaaaaeaaaans 24
5.1 Solid State diSK ArVESeeiiiiiiiiiiiiiii et e e e e e e aees 24

5.2 Field programmable gate @rraysccccceeeeeiiiiiiiieiiieee e e ceciie e e e e e e e e e e e 24

5.3 Graphical Processing UNItS.........coocuiiiiiiiiiiiiiieiiie e 25

B4 IBM SYSEIM Sttt e et e et ae e e nees 25

5.5 Parallel 1/O SYSIEIMS ...couiiiiiiiiiiiee ettt st 25

5.6 CloUd COMPULING .eieiiiiiiiiiiiie ettt e e e e e et e e e e e e s e annsbeeeeaaeeeaaannnns 25

6. ContributioNs frOM ASIA ... oo ii e 26
7. Open problems and future researchccccccooeiiiiii e, 26
8. Opportunities and barriers to adopPtion........ccceeviiieiiiiiiiiiiiie e 27
=] =T =] o = 28

REFERENCES

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

A template for using Fuzzy Match

An example of cluster method

An example of BigMatch approach

Computing thresholded edit distance join on string attributes using SQL expression
set join based on similarity predicate

sort lists in decreasing order of record sizes

an example of processing skewed lists in increasing size order (step 1)

an example of processing skewed lists in increasing size order (step 2)

an example of processing skewed lists in increasing size order (step 3)

13

16

17

20

21

21

22

22

REFERENCES

1. THE AIMS AND APPROACH OF THIS REPORT

The Department of Defence requested a survey of publicly available research on new enabling
topics in data mining within the Asiaregion. The initial pathfinder surveys in four promising
areas showed that a very small number of Asian researchers are making significant
contributions. The vast bulk of published Asian research in this area is derivative. It was
decided to proceed to detailed surveys in two areas: data quality and ontol ogy-based methods.
This report concerns the first of these.

To provide reports of reasonable coherence, in each of the two areas, we have surveyed the key
contributions that have been made from researchers across the world. The Asian contributions
have been described in relation to this larger international context. We have also added
sections on significant developments in hardware and some prognostications on barriers to
progress and likely future devel opments.

2. INTRODUCTION

2.1 The significance of data quality in the modern economy

In the area of computer science and systems technology the term data quality (DQ) means the
degree to which the data stored on computer systems accurately reflect the events they are
intended to describe. Discrepancies between our data and the real world arise from many
sources including (i) spelling errors, (ii) missing fields, (iii) obsolescence (e.g. after name or
address changes), (iv) systematic erroneous substitutions, (iv) data entry errors, (v) migration
errors arising from moving the data from one system to another, (vi) malicious errors and (vii)
multiple records referring to the same underlying entity which should never have been
separated. In this report, we focus on the latter issue because it is one of the most important
and technically difficult.

Data quality is becoming a more and more serious issue because of the following trends: (i) the
steady increase in the rate at which data is gathered via the internet and from sophisticated
sensors, (i) increasing requirements to aggregate data sets from multiple sources, (iii)
increasing amounts of malicious and deceptive data (iv) increasing use of centralised data
processing systems and (V) increasing analysis of data to extract greater value from it. The
combined effect of these trends is to generate more lower quality data from which more
information is expected. In health care for example, studies and reports spanning the last ten to
fifteen years indicate that while the quantity data reported by provider organizations and the
number of databases/data holdings created to manage this data have progressively increased
over time, the quality of the data reported, collected and held in these databases, and therefore
the usefulness of the data and information for effective evidence-based decision-making
continues to be of significant concern [1].

We would expect from good quality data that it is accurate, consistent and there exits a
transaction audit trail back through any transformations that have been made to it to the time,

REFERENCES

place and detail of its capture. The availability of good quality data facilitates efficient supply
chains, financial transactions, management of organisations, operation of government and other
productivity improvements of all kinds.

2.2 The cost of low data quality

Real-world data is often dirty, and containing inconsistencies, conflicts and errors. A recent
survey [2] reveals that enterprises typically expect data error rates of approximately 1%-5%.
The consequences of dirty data may be severe. According to the recent report from the
information management magazine [3], two 20-year-old “"calculation errors' for pension
withholding left Los Angeles County with $1.2 billion in unforeseen liabilities and will force
the county to spend an additional $25 million ayear to make up for insufficient contributions to
the fund. Wrong price data in retail databases costs American consumers $2.5 billion in annual
overcharges. Quality datais vital in any data-driven enterprise. If information is the currency of
the new economy, then data is a critical raw material needed for success. Just as a refinery
takes crude oil and transforms it into numerous petroleum products, companies use data to
generate a multiplicity of information assets. These assets form the basis of the strategic plans
and actions that determine a firm's success. Consequently, poor quality data can have a negative
impact on the health of a company. If not identified and corrected early on, defective data can
contaminate all downstream systems and information assets.

The problem with data is that its quality quickly degenerates over time. Experts say 2% of
records in a customer file become obsolete in a month because customers die, divorce, marry
and move [4]. In addition, data-entry errors, systems migrations and changes to source systems,
among other things, generate bucket loads of errors [4]. Aswell, as organizations fragment into
different divisions and units, interpretations of data elements mutate to meet local business
needs. A data element that one individual finds valuable may be nonsense to an individual in a
different group.

Poor quality customer data have caused serious effect on economy in many companies. The
Data Warehousing Institute (TDWI) estimates that poor quality customer data costs U.S.
businesses a staggering $611 bhillion a year in postage, printing and staff overhead [5].
Frighteningly, the real cost of poor quality data is much higher. Organizations can frustrate and
alienate loya customers by incorrectly addressing letters or failing to recognize them when
they call, or visit a store or Web site [5]. Once a company loses its loyal customers, it losesits
base of sales and referrals, aswell as future revenue potential.

Given the business impact of poor quality data, it is bewildering to see the casual way in which
most companies manage this critical resource. Most companies do not fund programs designed
to build quality into their data in a proactive, systematic and sustained manner. According to
TDW!I's Data Quality Survey [6], dmost half of all firms have no plan for managing data
quality.

Part of the problem is that most organizations overestimate the quality of their data and
underestimate the impact errors and inconsistencies can have on their bottom line. On one
hand, amost half of the companies who responded to our survey believe the quality of their
data is "excellent" or "good." Yet more than one-third of the respondent companies think the
quality of their data is "worse than the organization thinks." Although some firms understand
the importance of high-quality data, most are oblivious to the true business impact of defective
or substandard data. Thanks to araft of new information-intensive strategic business initiatives,

REFERENCES

executives are beginning to wake up to the real cost of poor quality data. Many have bankrolled
high-profile IT projects in recent years -- data warehousing, CRM and e-business projects --
that have failed or been delayed due to unanticipated data-quality problems. For example, in
1996, FleetBoston Financial Corp. (then Fleet Bank) in New England undertook a much
publicized $38 million CRM project to pull together customer information from 66 source
systems. Within three years, the project was drastically downsized and the lead sponsors and
technical staff were let go. A major reason the project came unravelled was the team's failure to
anticipate how difficult and time consuming it would be to understand, reconcile and integrate
data from 66 different systems. According to TDWI's Industry Study 2000 survey [7], the top
two technical challenges firms face when implementing CRM solutions are "managing data
guality and consistency" (46%) and "reconciling customer records' (40%). Considering that
41% of CRM projects were "experiencing difficulties' or "a potential flop," according to the
same study, it is clear that the impact of poor data quality in CRM is far reaching.

Data warehousing, CRM and e-business projects often expose poor quality data because they
require companies to extract and integrate data from multiple operational systems. Data that is
sufficient to run payroll, shipping or accounts receivable is often peppered with errors, missing
values and integrity problems that do not show up until someone tries to summarize or
aggregate the data. Also, since operating groups often use different rules to define and calculate
identical elements, reconciling data from diverse systems can be a huge, and sometimes
insurmountable, obstacle. Sometimes the direct intervention of the CEO is the only way to
resolve conflicting business practices, or political and cultural differences.

Every firm can uncover a host of costs and missed opportunities caused by inaccurate or
incompl ete data. Consider the following US experiences [5]:

e A telecommunications firm lost $8 million a month because data-entry errors
incorrectly coded accounts, preventing bills from being sent out.

e Aninsurance company lost hundreds of thousands of dollars annually in mailing costs
due to duplicate customer records.

e Aninformation services firm lost $500,000 annually and alienated customers because it
repeatedly recalled reports sent to subscribers due to inaccurate data.

e A large bank discovered that 62% of its home-equity loans were being calculated
incorrectly, with the principal getting larger each month.

e A hedlth insurance company in the Midwest delayed a decision support system for two
years because the quality of its data was "suspect.”

e A globa chemical company discovered it was losing millions of dollars in volume
discounts in procuring supplies because it could not correctly identify and reconcile
suppliers on aglobal basis.

e A regional bank was unable to calculate customer and product profitability due to
missing and inaccurate cost data.

o Two 20-year-old "calculation errors' for pension withholding left Los Angeles County
with $1.2 billion in unforeseen liabilities and will force the county to spend an
additional $25 million ayear to make up for insufficient contributions to the fund (Los
Angeles Times, April 8, 1998).

REFERENCES

e Wrong price data in retail databases costs American consumers $2.5 billion in annual
overcharges (Information Week, September 14, 1992).

e A $2hillion company discovered it was not invoicing four percent of its orders, leaving
$80 million in uncollected revenue.

e In August 1997, Hudson Foods lost its largest customer, Burger King, due to E. coli
bacteria contamination that caused several illnesses. The plant had two problematic
practices. poor record-keeping and the mixing of one day's leftover hamburger into the
next day's production. The information quality problem of not knowing which batches
were mixed caused the largest meat recall in U.S. history: 25 million pounds. Without
its largest customer, Hudson Foods was not able to be profitable, having to sell the
plant. The rest of Hudson Foods was subsequently acquired by Tyson Foods (The
Tennessean, August 24, 1997).

The information resource has two distinctions that demand understanding and attention at all
levelsin the organization:

1. Information is intangible and non-consumable. As such it has not been taken as a
serious object for management. With every other resource, managers are held
accountable. Few organizations have information quality accountability written into a
manager's job description.

2. Information is the resource required to manage every other enterprise resource. Datais
the electronic representation of objects and events the enterprise must know about and
manage. Financial management is not managing currency; it is managing the
information about the enterprise's financial assets.

2.3 How does data get dirty?

The published literature on data quality can be divided into problems dealing with centralized
systems (storing data in one logical database but operated in a multi user environment), and
problems where the data is distributed at multiple sites either generated locally or imported
(inserted) from multiple independent sources to the integrated structure, such as a data
warehouse, a BPM engine or a scientific grid. In centralized systems, the predominant data
quality problems are: duplicate removal<identification[50], errors due to concurrent data
access, missing/incomplete data for attributes with mandatory occurrence constraints,
inaccurate data entry (errors in spelling), violations of integrity constraints [9, 10], and
infringement of other conceptual constraints such as frequency occurrence, subset constraints
and subtype constraints. For systems operating on integrated data, al problems with
maintenance of data quality listed above are present, but in addition errors arise due to varying
standards, schemas and naming conventions and varying interpretation of them, together with
increased opportunity for creation of duplicates.

There are numerous sources of poor quality data. The most frequent data quality problems are
caused by poor data-entry processes and user interfaces and human error in data entry. As
indicated by survey respondents, the most common source of data entry errors include
misspellings, transposition of numerals, incorrect or missing codes, data placed in the wrong
fields and unrecognizable names, nicknames, abbreviations or acronyms etc. Customer entered
data is especialy error-prone and, with the rise of e-business, this source is becoming very

REFERENCES

significant. Eckerson provides a collection of scenarios that cause poor data quality problems
are presented [8]. We summarize them as follows:

Lack of validation routines. Many data-entry errors can be prevented through the use
of validation routines that check data as it is entered into Web, client/server or
terminal-host systems. Respondents to the TDWI survey mentioned a "lack of adequate
validation" as a source of data defects, noting this grievance in the "Other" category.

Valid, but not correct. But even validation routines cannot catch typos where the data
represents a valid value. Although a person may mistype a telephone number, the
number recorded is still valid -- it is just not the right one. The same holds true for
social security numbers, vehicle identification numbers, part numbers and last names.
Database integrity rules can catch some of these errors, but firms need to create
complex business rules to catch the rest.

Mismatched syntax, formats and structures. Data-entry errors are compounded
when organizations try to integrate data from multiple systems. For example,
corresponding fields in each system may use different syntax (first-middle-last name
vs. last-first-middle name), data formats (6 byte date field vs. 4 byte date field), or code
structures (male-female vs. m-f vs. 1-2). In these cases, either a data cleansing or ETL
tool needs to map these differences to a standard format before serious data cleanup
can begin.

Unexpected changes in source systems. Perhaps a more pernicious problem is
structural changes that occur in source systems. Sometimes these changes are
deliberate, such as when an administrator adds a new field or code value and then
neglects to notify the managers of connecting systems about the changes. In other
cases, front-line people reuse existing fields to capture new types of information that
were not anticipated by the application designers.

Spiderweb of interfaces. Because of the complexity of systems architectures today,
changes to source systems are easily and quickly replicated to many other systems, both
internal and external. Most systems are connected through a spiderweb of interfaces to
other systems. Updating these interfaces is time-consuming and expensive, and many
changes dlip through the cracks and "infect" other systems. Thus, changes in source
systems can wreak havoc on downstream systems if adequate change management
processes are not in place.

Lack of referential integrity checks. It is also true that target systems do not
adequately check the integrity of the data they load. For example, data warehouse
administrators often turn off referential integrity when loading the data warehouse for
performance reasons. If source administrators change or update tables, this can create
integrity problemsthat are not detected.

Poor system design. Source or target systems that are poorly designed can create data
errors. As companies rush to deploy new systems, developers often skirt fundamental
design and modelling principles, which leads to data integrity problems down the road.

Data conversion errors. In the same vein, data migration or conversion projects can
generate defects, as well as ETL tools that pull data from one system and load it into
another. Although systems integrators may convert databases, they often fail to migrate
business processes that govern the use of data. In addition, programmers may not take
the time to understand source or target data models, and may therefore write code that

REFERENCES

introduces errors. One change in a data migration program or system interface can
generate errorsin tens of thousands of records.

e The fragmentation of definitions and rules. A much bigger problem comes from
the fragmentation of organizations into a multitude of departments, divisions and
operating groups, each with its own business processes supported by distinct data
management systems. Slowly and inexorably, each group begins to use dlightly
different definitions for common data entities -- such as "customer" or "supplier" -- and
apply different rules for calculating values, such as "net sales' and "gross profits." Add
mergers, acquisitions and global expansion into countries with different languages and
customs, and you have arecipe for adata-quality nightmare.

The problems that occur in this scenario have less to do with accuracy, completeness,
validity or consistency, than with interpretation and protecting one's "turf." That is,
people or groups often have vested interests in preserving data in a certain way even
though it is inconsistent with the way the rest of the company defines data. For
example, many global companies sgquabble over a standard for currency conversions.
Each division in a different part of the world wants the best conversion rate possible.
And even when a standard is established, many groups will skirt the spirit of the
standard by converting their currencies at the most opportune times, such as when a
sale was posted vs. when the money was received. This type of maneuvering wreaks
havoc on a data warehouse that tries to accurately measure values over time.

e Slowly changing dimensions. Similarly, slowly changing dimensions can result in
data-quality issues depending on the expectations of the user viewing the data. For
example, an analyst at a chemical company wants to calculate the total value of goods
purchased from Dow Chemical for the past year. But Dow recently merged with Union
Carbide, which the chemical company also purchases materials from. In this situation,
the data warehousing manager needs to decide whether to roll up purchases made to
Dow and Union Carbide separately, combine the purchases from both firms throughout
the entire database, or combine them only after the date the two companies merged.
Whatever an approach the manager takes, it will work for some business analysts and
alienate others.

In these cases, data quality is a subjective issue. Users perception of data quality is
often coloured by the range of available data resources they can access. Where there is
“competition” -- another data warehouse or data mart that covers the same subject area
“knowledge workers tend to be pickier about data quality”, said Michael Masciandaro,
director of decision support at Rohm & Haas.

Data quality problems are expensive and pervasive. They cost hundreds of billion dollars each
year. Resolving them is often the biggest effort in a data mining study. It typically requires a
very large investment of time and energy often 80% to 90% of a data analysis project is
spent in making the data reliable enough that the results can be trusted.

To repair unclean data the aim to find a repair that is close to the original and satisfies the
required constraints. This is the data cleaning approach that US national statistical agencies,
among others, have been practicing for decades [11, 12]. Manual editing is unrealistic when the
database is large. Indeed, manually cleaning a set of census data can take dozens of clerks many
months [12].

REFERENCES

3. COLUMN SEGMENTATION

Frequently, legacy data is stored in large text files. To reinsert such data into databases its
structure needs to be reconstructed. Usually these files contain the data relating to a single
table. The dataisastring (sequence) of characters. Record and column boundaries are marked
using short sequences of characters, typically <CR><LF> between records and a comma or tab
between fields. The structural reconstruction problem is one of identifying the rows and
separating out the columns, Of course there are many ways that this simple scheme can go
awry. For example, record and field separating characters can occur as part of field values,
some fields may not have been serialised properly for storage in text files resulting in spurious
separator characters within binary dumps of field values. Empty records may be marked in the
text file as spaces, rather than as nulls.

Current techniques for automatically segmenting input strings into structured records either
apply manually programmed rules or employ supervised learning techniques. Rule-based
approaches require a domain expert to design a number of rules and maintain them over time.
This approach does not scale as each new application may require designing, crafting,
deploying, and maintaining a new set of rules. Supervised approaches alleviate this problem by
automatically learning segmentation models from training data consisting of input strings and
the associated correctly segmented tuples[25, 70]. However, it is usually hard to obtain training
data, that is comprehensive enough to illustrate al features of the data to be segmented.

4. RECORD MATCHING AND LINKAGE

The goal of record matching is to identify records in the same or different databases that refer
to the same real-world entity, even if the records are not identical. Reviews of this topic have
been provided in [13, 14, 15]. Existing approaches for this task mainly focus on the use of
similarity metrics (functions) on string pairs to measure how likely strings are to represent the
same underlying entity. The arguments of similarity metrics are a pair of strings and they take
values between 0 and 1.The higher the value the greater the similarity, with the 1 corresponding
to equality. Commonly used similarity metrics include edit distance, cosine similarity, Jaccard
similarity and the generalized edit distance [16]. Having code for evaluating the metrics given
two input strings is less useful that one might first imagine. Normally the problem is one of
retrieval where one seeks to retrieve al the records that have one or more fields that are similar
to each other. This idea can be formalized in the form of a search criterion (query): find all
record pairs such that the weighted sum of similarity metrics of their fields is greater than a
threshold. Referring back to the database world, the results of such queries are termed
approximate joins. Classically, ajoin isan operation on a database whereby one or more tables
are linked, so that one or more records in a table are linked to others in the same or other tables
because they satisfy some exact match criterion. In approximate joint, the joining criterion
does not require an exact match.

The term approximate join has a similar meaning to the terms:
e Deduplication uses approximate joins to the same table to eliminate near duplicated
records corresponding to the same underlying entity (Section 4.1);
e Record linkage uses approximate joins between tables;

REFERENCES

e Coreference resolution is concerned with clustering references within and between
documents; and

e Entity resolution, a generalized term for the task of clustering records that refer to the
same underlying entity together.

Many approximate join methods have been proposed to improve the efficiency of record
matching, such asthe BigMatch [17], SSjoin [18], FastSS[70] and NGPP [71].

4.1 Deduplication

When information from multiple sources of data is integrated, it invariably leads to erroneous
duplication of data when these sources store overlapping information. For example, both ACM
and DBLP store information about publications, authors and conferences. Owing to data entry
errors, varying conventions and a variety of other reasons, the same data may be represented in
multiple ways an author’s name may appear as “Jeffrey Ullman” or “J. D. Ullman”. A similar
phenomenon occurs in enterprise data warehouses that integrate data from different
departments such as sales and hilling that sometimes store overlapping information about
customers. Hence, a significant amount of resources are spent today on the task of detecting
and eliminating duplicates. This problem of detecting and eliminating multiple distinct tuples
representing the same real world entity is traditionally called the deduplication problem. The
problem is chalenging since the same tuple may be represented in different ways thus
rendering duplicate elimination by using “select distinct” queries inadequate.

The task of deduplication is to trandate this pair-wise information into a partition of the input
relation. While duplication in the real world is an equivalence relationship, the relationship
induced by the similarity function is not necessarily an equivalence relation. The input to the
deduplication problem is arelation (or view) R(T, Ny, . . . ,Ny) with atext field T and numeric
fields N;. The output is a partition of the records in R which we capture through a GrouplD
column that is added as a result of deduplication. We refer to each equivalence class in the
partition as a group of tuples.

Many approaches have been proposed for deduplication [19, 20, 21, 22, 23, 50]. One of the
most common sources of mismatches in database entries is the typographical variations of
string data. Therefore, duplicate detection typically relies on string comparison techniques to
deal with typographical variations. Therefore, techniques that have been applied for matching
fields with string data can be also used in the duplicate record detection context.

4.2 Similarity measures

421 Edit based measures

Edit distance is a commonly used string matching that counts the minimal number of updates
(including insertion, deletion and substitution operations) to transform one string into another
[29]. Given two strings, s, t, edit(s, t) is the Minimum cost sequence of operations to transform
s tot. For example: edit(Error, Eror) = 1, edit(great, grate) = 2. Generally, the edit distance
between two strings is computed using Folklore dynamic programming algorithm. Edit distance
based measure provides a distance measure for two strings that reflects the number of errors

REFERENCES

that may have been made by an operator intending to enter one string but actually entering the
other. However, evaluating the edit distance is in the worst case quadratic in the length of the
strings.

Edit distance is widely used in approximate string matching to handle the data inconsistency
existing in matching [30, 34, 47, 48]. In [47], the similarity between two strings is measured
with the constraint of edit distance for the approximate queries. To improve the performance of
approximate queries on string collections, the frequencies of variable-length grams in the
strings is first analysed, and a set of grams is selected to form a gram dictionary D. Based on
the string gram dictionary, each string is first transformed into a set of variable-length grams
based on the preselected grams. When using a gram dictionary D to generate a set of variable-
length grams for a string s, we still use a window to slide over s, but the window size varies,
depending on the string s and the grams in D. Then the relationship between the similarity of
the gram sets of two strings and their edit distance is studied, and used to prune the unqualified
strings from the string collection. In [48], authors studied the relationship between the gram
dictionary and the performance of queries. A tighter lower bound is developed using a dynamic
programming algorithm. To tackle the problem of dynamic updating, the issue of how adding a
new gram to an existing gram dictionary affects the index structure of the string collection is
analysed. A new algorithm is developed to find a high-quality gram dictionary for the string
collection. Comparing with the dictionary generation approach in [47] which requires several
manually-tuned parameters, the new algorithm does not require some of the parameters and is
cost-based.

4.2.2 Token based similarity

The main idea behind token-based similarity is to view the strings to be compared as sets of
tokens and evaluate the similarity of the operand sets. If the similarity is high enough, the string
pair is flagged as being of interest (e.g., potential duplicate). Tokens can be words, such as
“CMIS/ICT Center” - “CMIS/ICT”, “Center”, or g-gramg[35, 36], for instance “CMI”,
“MIS”, “IS/”, “S/I”, “NC”, “ICT”, “T_C”, “_Ce”, “Cen”, “ent”, “nte”, “ter”. The similarity
between strings can be assessed by manipulating sets of tokens. Given two sets of tokens S, T,
we can decide the similarity between them using Jaccard similarity which is computed by
Jaccard(S, T) = |SNT|/|SUT]| [30]. This expression says that the Jaccard distance between
strings Sand T is the number of tokens that occur in both the string expansion of S (denoted S)
and the string expansion of T (denoted T) divided by the number of tokens that occur in either
SorT.

Set similarity operators can also be used to evaluate similarity of set-valued attributes in
genera (e.g., in an Object Relational DBMS). Tokens that appear very frequently in the
database (like ‘Main’ or ‘St.”) carry small information content, whereas rare tokens (like
‘Maine’) are more important semantically. Hence, the more important a token is, the larger the
role it should play in overall similarity. For that reason, weighted similarity measures (for
example TF/IDF) use the Inverse Document Frequency (IDF) as token weights. The IDF of a
token is the inverse of the total number of times that this token appears in the data collection. In
addition, weighted measures also use a Term Frequency (TF) component, i.e., each token is
also weighted with respect to the total number of times it appears in the multi-set.

Different term weighting systems, such as vector length normalization, TF and TF/IDF, have
been introduced in [40]. In the TF/IDF similarity measure, the Inverse Document Frequency
(IDF) is used as token weights. The IDF of a token is the logarithm to the base 2 of the
normalised inverse of the total number of times that this token appears in the database.

11

REFERENCES

Consider a database D of strings {s} where a string can be interpreted as a document, a
sentence, a field value, sequence of genes etc.. From each string s, a set of tokens is derived
T(s) ={t}. Theset of al distinct tokens over the whole databaseis T = U;T(s). If the number
of documents in which the token t; occursis N(t;), the IDF is

IDF(t) =log,(1+ N/ N(t))

Denote the term frequency of token t;in string s by TF(t;, S). The normalized length of set sis
computed as

len(s)= > TF(t,s)%IDF(t)’

ties

The length normalized TH/IDF similarity of setsq and sis:

TF (t,,5).TF (t;,9)-IDF (t,)?
(@.9)= T len(s)! |
@9= 2 T e@len()

Length normalization restricts similarity in the interval [0, 1]. If g = s, the IDF scoreis equal to
1. Other normalisations are sometimes used [73].

Cosine similarity is an important similarity measure used in document retrieval [37, 38, 39]. In
cosine similarity, a string s is represented as a (potentially sparse) weighted vector W of high
dimensionality. W(s) has an element for each possible token in a string in D; i.e. W = [T|.
Each element of W(s) takes a vaue reflecting the frequency of the token to which it
corresponds. The values of W(s) could be TFIDFs, TFs, etc. The cosine metricis

W(&) W(b)

W@ W)

The cosine metric is so-called because it is the cosine of the angle in high-dimensional space
between the vectors W(a) and W(b). If g-gram tokens are used, the cosine similarity can
capture small typing mistakes, such as “jaccard” vs “jacard” - {jac, acc, cca, car, ard} vs {jac,
aca, car, ard}. The common tokens “jac”, “car”, “ard” would be enough to result in high value
of Cosine (“jaccard”, “jacard”). The similarity between them is aways between zero and one,
since every document vector has unit length. Two documents are similar if they share many
“important” terms. The cosine similarity metric has been applied in many literatures using
TFIDF values [37, 38, 39]. The TFIDF approach assigns higher weights to terms that occur
infrequently in the collection, and which may therefore be more significant.

Cosnda,b) =

4.2.3 FMS similarity

String edit distance is used to measure the similarity between tuples. However, the edit distance
has severe limitation when handling the fuzzy matching operations. Suppose that we have the
relations shown in the following tables 1 and 2. The edit distance function would consider the
input tuple 13 in Table 2 to be closest to R2 in Table 1. But in fact, the intended target is R1.
edit distance fails to find the real match because it considers transforming ‘corporation’ to
‘company’ more expensive than transforming ‘boeing’ to ‘bon’. Consider another example, the
edit distance considers 14 closer to R3 than to itstarget R1.

REFERENCES

ID Org. Name City State Zipcode
R1 Boeing Company | Sedttle WA 98004
R2 Bon Corporation Segttle WA 98014
R3 Companions Segttle WA 98024

Table 1: Organization Reference Relation

ID Org. Name City State Zipcode
11 Boeing Company Seattle WA 98004
12 Beoing Co. Seattle WA 98004
13 Boeing Corporation | Seattle WA 98004
14 Company Beoing Sedttle NULL 98014

Table 2: Input Organization Tuples

The edit distance is not effective because of the following points. First, it does not make used
of informative tokens. Within a field, edit distance can not distinguish between more and less
informative tokens. Intuitively, we know Boeing is more informative than Corporation. Hence,
matching on Boeing should mean high similarity. It means it should be expensive to transform
input token into Boeing than into Corporation. Then it does not take into account the token
transposition error. As shown in the tables 1 and 2, we know |4 should be matched with R1.
FMS similarity is proposed to attach weights to transformation costs for each token, and
transform input tuple into reference tuple [16]. In FMS similarity matching, clean tuples are
stored in reference table. Fuzzy matching is done to find the best matching clean tuples. With
FMS similarity, the reference table can be very large, and the volume of input tuples can be
very large. A template for using Fuzzy match is shown as Figure 1.

Further
Reference Table] Cleaning

Input Tuple

l

Exact Match

Similarity
>0.8

Fuzzy Match

Load

v

Figure 1: A template for using Fuzzy Match

To develop a domain-independent method, a fuzzy match similarity (FMS) function views a
string as a sequence of tokens and recognizes varying “importance” of tokens by explicitly
associating weights quantifying their importance. Tuples matching on high weight tokens are
more similar than those matching on low weight tokens. Meanwhile, the token weights are
considered effectively in combination with data entry errors. The IDF weight function is

13

REFERENCES

adapted to the relation domain by treating each tuple as a document of tokens. Given a token t
and the schema of arelation R, let the frequency of token t in column |, denoted freq(t,i), e the
number of tuples v in R such that tok(v[i]) contains t, then when freq(t,i)>0, the IDF value of
the i™ column in the schema is computed by

w(t,i) = IDF(t,1) =IOQ%

Informally, the similarity between an input tuple and a reference tuple is the cost of
transforming the former into the latter; the lower the cost the higher the similarity. Given an
input tuple u, a reference tuple v with the schema R[A;, ... Ay, three transformation
operations, token replacement, token insertion and token deletion, are considered. The cost of
token replacement is ed(t,t)*w(ty, i), wherei is the column number, t; istoken in uf[i] and t, is
that in v[i]. The cost of inserting a token t into u[i] is Cins*W(t, i), where ¢ is token insertion
factor, between 0 and 1. The cost of deleting atoken t from u[i] isw(t, i).

The costs associated with inserting and deleting the same token may be different. This
asymmetry is useful for the scenarios where it is more likely for tokens to be left out during
data entry that for spurious tokens to be inserted. For two tuples u and v, transforming u into v
requires each column u[i] to be transformed into v[i] through a sequence of transformation
operations, whose cost is the sum of costs of all operations in the sequence. The transformation
cost te(u[i],v[i]) is the cost of the minimum cost transformation sequence for transforming u[i]
to v[i], which is computed by.

tc(u,v) :Ztc(u[i],v[i])

For example, given an input tuple u = [Beoing Corporation, Seattle, WA, 98004], and a
reference tuple v = [Boeing Company, Seattle, WA, 98004], the transformation cost is
tc(u[1],v[1]) = 0.33 (beoing to boeing) + 0.64 (corporation to company) = 0.97. The FUZZY
SIMILARITY MATCH - similarity between u and v is defined as:

s (u,v) = 1- min(%,1.0)

where w(u) is sum of weights of all tokensin token set tok(u). Eg: w(u) = 5.0 (considering unit
weight on each token) , and fms(u,v) = 1 - 0.97/5.0 = 0.806

4.3 Efficient algorithms for approximate join

A fundamental operation in record matching is similarity join, which identifies all pairs of
similar strings (records). Given two tables R and S, a similarity join between them returns all
pairs of records, one each from R and S, such that the similarity function when applied to them
is greater than a threshold. In this part, we will review some typical similarity join approaches.
The methods are divided into two groups: traditional join methods and the extended join
methods. The traditional approaches focus on the approximation join of sets containing records

REFERENCES

that can be stored in conventional databases, while extended join methods process the
approximation join of string sets that can not be supported by relational databases.

4.3.1 Traditional join methods

Traditional join methods identify all similar record pairs from two databases. Given two tables,
each comprising a set of records A = {A,, ..., A)} and B ={By, ..., B}, an approximate join
of them is a subset of their Cartesian Product’. The records in both tables are assumed to have a
set of k common fields numbered 1...k. An approximate join is used to jointly match these k
fields such that the joint similarity of these fields is above a specified threshold.

Naively, we could compute the similarity of each possible pair of records, and return those
meeting the requirement of the similarity threshold. However, the naive method is 1/0 and
CPU intensive. It requires nxm matching calculations, each of which isinvolved, and so is not
scalable to millions of records. To perform efficient approximation join over large databases, it
is necessary to reduce the computational complexity of it from O(n?) to O(n*w), wherew << n,
or less. The way to do this is to avoid ever attempting matching calculations between very
different records.

A number of computationally efficient approaches have been proposed. In [41], the task of
merging data from multiple sources in as efficient matter as possible is studied, while the
accuracy of the result is maximized. The sorted neighbourhood method is used to solve the
problem of merge/purge. The matching records are brought close together by sorting the
records over the most important discriminating key attribute of the data (the blocking key).
Then, the comparison of records is restricted to a small neighbourhood within the sorted list.
The sorted neighbourhood method for solving the problem of merge/purge is performed in the
following three phases. First, a discriminating key is computed for each record in the list by
extracting relevant fields or portions of fields. Then the records in the data list are sorted using
the produced keys. Finaly, a fixed size window is moved through the sequential records
[imiting the comparisons for matching records to those records in the window. If the size of the
window is w records, then every new record entering the window is compared with the
previous w-1 records to find “matching” records. The first record in the window slides out of
the window.

This approach is a generalization of band joins based on the duplicate elimination algorithm
described in [22]. The duplicate elimination algorithms take advantage of the fact that matching
records will come together in the moving window during the final phase of sorted
neighbourhood method. To improve the efficiency of the method, an alternative method based
on multiple blocking keys. Copies are made of the set of all the records are made, one for each
blocking key. Each set is sorted in order of its corresponding blocking key, and the records are
divided into blocks, one for each value of the blocking key. The sorted-neighbourhood method
is then applied to each block independently. Figure 2 shows an example of merging databases
using multiple compound blocking key method.

! The set of all possible pairs of records, one taken from each of the two tables.

15

REFERENCES

ity |
| [
| rl , yes
|2
L= E N
1= K
ID Name Ss DOB ZIP ZIP[1.3] il4 b
1 no
ri | Smith, John 123-45 | 1960/08/24 07932 il 5 :
r2 | Smyth, Jon 123-45 | 1961/08/24 07932 s
r3 | Smith, John 312-54 | 1995/07/25 98301 r———
I 1
r4 | Smith, J. 723-45 | 1960/08/24 98346 N BE I
DOB[1..3 il ra
r5 | Smith, J. 456-78 | 1975/12/11 98346 1!
r2
5
r3

Figure 2: An example of cluster method

As shown in the figure, when we sort by the first three letters of the ZIP field ZIP[1..3], the
records will be sorted asrl, r2, r3, r4 and r5. Meanwhile, if the DOBJ[1..3] of each record is
used as its key, the sorted records will be rl, r4, r2, r5 and r3. The comparison of records to
determine their equivalence is a complex inferential process that considers much more
information in the compared records than the keys used for sorting. For example, in figure 2,
weinfer rl and r2 are the same person, while r4 and r5 are not.

Variations to this method have been proposed in [41]. For example, OPS5 rule program
consisting of 26 rules was used to compare the equivalence of records during the merge phase.
The multi-pass strategy is proposed to increase the number of similar records merged. This
strategy executes several independent runs of the sorted neighbourhood method, each time
using a different key and a relatively small window. The multi-pass approach can drastically
improve the accuracy of the results of only one run of the sorted neighbourhood method with
varying large windows. The multiple “cheap” passes faster than an “expensive” one.

In [17], authors presented the BigMatch program, a new record linkage tool for use in matching
records in table A with very large number of records against a table B of moderate size. The
BigMatch program allows the user to specify several blocking criteria and the matching field
parameters. For each of several blocking criteria, the program can extract likely matching
record candidates from the large file without requiring sorting of either file. Record pairs from
two files are brought together to be compared based on multiple keys when they agree on a
specified blocking criterion. In BigMatch, a smaller table is stored in main memory. For each
set of blocking criteria, a table of the keys is created by reading the moderate file B. The
program allows one to run several different blocking criteria for a very large file and a
moderate size file requiring the large file to be read just once and without requiring sorting
either file. The algorithm is made to run efficiently by the construction of a set of indexes, one
for each blocking key. Each index stores all the records that have each value of blocking key
observed in the small table (B). With the indexes are contstructed, the algorithm proceeds down
the large table, processing records one at atime. For each record it retrieves from each index
the set of records in the small table that lie in the same block. The union of these are candidate
for merger with the current record in the large table. An example of the BigMatch approach is
shown as Figure 3. In the figure, given a record from outer (large) table, the first blocking

REFERENCES

criterion (SY[1..2]) provides two possible matches (r1 and r2), while the second (ZIP[1..4])
provides two more (r4 and r5). When we check each of these, only rl and r4 are acceptable
matches.

inner table
ID Name SS DOB ZIP
S9[1..2]
yes
»| r1 | Smith, John 123-45 | 1960/08/24 | 07932
record from
outer teble 0 o] r2 | smyth, Jon 123-45 | 1961/08/24 | 07932
Smith, 123- | 1960/0 | 983 r3 | Smith, John 312-54 | 1995/07/25 | 98301
John 45 8/24 46
| r4 | Smith,J 723-45 | 1960/08/24 | 98346
yes
»| 5 | Smith, J. 456-78 | 1975/12/11 | 98346
ZIP[1..4] no

Figure 3: An example of BigMatch approach

4.3.2 Extended join methods

Since commercial databases do not support approximate string similarity joins directly, it is a
big challenge to efficiently implement this functionality with user-defined functions (UDFs).
Approaches have been proposed for efficient approximate string similarity join with various
distance function constraints. The typica examples include the g-gram set join[30], Probe-
Cluster[42], SSjoin[18], ppjoin [50] and Ed-Join [49] etc. In this part, we will review severa
typical approaches.

In [30], atechnique was devel oped for building approximation string join capabilities on top of
commercial databases by exploiting facilities already available in them. The functionality of
string join is efficiently implemented by computing the thresholded edit distance on string
attributes. Given two tables R, and R, with string attributes (fields) R;.A; and R;.A;, and an
integer k, approximate string joins retrieve all pairs of records (t, t’)eR;xR, such that the edit
distance ED(R1.Ai(t), Rz.A; (t'))<k. The proposed technique relies on matching short substrings
of length q, called g-grams. Given a string s, a set of all overlapping g-grams are first extracted
from s. To devise effective algorithms for approximate string join using the concept of g-grams,
both the positions of individual matches and the total number of matched g-grams are taken
into consideration. Thus a set of candidate string pairs with a few false positives is identified.
Meanwhile, no false dismissals under edit distance metric as well asits variants are guaranteed.
This approach applies to both approximate full string matching and approximate substring
matching, with a variety of possible edit distance functions. The approximate string match
predicate, with a suitable edit distance threshold, can be mapped into a vanilla relational
expression and optimized by conventional relational optimizers.

The techniques for approximate string processing in databases share a principle common in
multimedia and spatial algorithms. A set of candidate answers is first obtained using a cheap,
approximate algorithm that guarantees no false dismissals. All false positives are then
eliminated by checking the edit distance between each candidate string pair using an expensive,

17

REFERENCES

in-memory algorithm. This filtering process is performed by ajoin on the g-grams. The g-gram
properties are utilized to develop filtering techniques for efficiently identifying candidate
answers. Three cheap filters (length, count, position) are used to prune non-matches. When
applying edit distance metric in approximate string joins, the following inequality holds:

ED(s,,s,) <d —>[Q(s) NQ(s,)|= max(s,),|s,)) - (d -1 * q-1

Table 3 shows an example of filtering based on this property. Suppose we have 3 strings whose
ids arery, r, and r3 respectively. The Name attribute of each can be transformed into a set of 3-
grams as shown in the table. We can easily compute the edit distance between rl1 and r2
ED(r1,r2)=1, that between r1 and r3 ED(r1,r3)=2. Meanwhile, based on the 3-grams of them,
we know |Q(rl) n Q(r2)| = 10 and |Q(r1) n Q(r3)| = 7. Clearly, we can easly verify (1)
ED(s1.s2) < d — [Q(s) N Q)| 2 max([sul.lsl) - (d-1)*a-1 and (2) ED(s1,ss) < d — [Q(sp) N
Q(ss)| = max([s),[ss) - (d-1)*q-1.

ID Name 3-grams

ri Srivastava #Hs, #sr, i, riv, iva, vas, ast, sta, tav, ava, va$, a$$

r2 Shrivastava ##s, #sh, shr, hri, riv, iva, vas, ast, sta, tav, ava, va$, a$$
r3 Shrivastav ##s, #sh, shr, hri, riv, iva, vas, ast, sta, tav, av$, v$$

Table 3: Positioning g-grams of records

The most interesting thing about these filtersis that they can be naturally expressed as an SQL
expression on the augmented database. The approximate string join is based on the cost of
substring matching, which reduce approximate join problem to aggregated set intersection.
Take therecordsin Table 3 as an example. When we match r; and r3, the process can be
expressed as using SQL expression as follows.

Q:
SELECT Q..ID, Q..ID
FROM QASQ;, QASQ;
WHERE QuQg=Q.Qg
GROUP BY Q..ID, Q..ID
HAVING COUNT(*)>T

Figure 4 shows this process of using this SQL expression over rl and r3.

REFERENCES

Q | ID | Qg Q | ID | Qg

rl | ##s r3 | ##s
SELECT Q..ID, Q..ID ri | #sr r3 | #sh
ID | Name
FROM Q AS Ql,_Q ASQ, 1 | o P
rl | Srivastava WHERE Q1.Qg = Q2.Qg
GROUPBY Q..ID, Q..ID r1 | riv 13 | hri
r2 Shrivastava HAVING COUNT(*Y>T : \
rl | iva r3 | riv
r3 Shrivastav \ -
rl1 | vas r3 | iva
rl ast \ r3 vas
ri | sta \ r3 | ast
ri | tav \ 3 | sta
rl | ava \ r3 | tav
rl | va$ r3 | av$
ri | a$$ r3 | v$$

Figure 4: Computing thresholded edit distance join on string attributes using SQL expression

In [42], an efficient algorithm called Probe-Cluster was proposed to compute similarity joins
over set/text attributes. This work aims at presenting a generic algorithm for set join based on
similarity predicates involving various similarity measures like intersect size, Jaccard-
coefficient, cosine similarity, and edit-distance. The Probe-Count agorithm is derived from the
way keyword queries are answered during Information Retrieval using an inverted index. The
index maps words to the list of record identifiers that contain that word. Such an index can be
constructed in memory in one sequential scan of the data by inserting each scanned record into
the record list associated with all words the record contains. In Probe-Count, a string is first
mapped to a set of tokens (words, g-grams, etc.). An index is then constructed for each token
type (word, g-gram etc.).

Figure 5 shows an example of a set join based on similarity predicates. Given three strings rl,
r2 and r3, a set of 3-grams are derived from each string. The 3-grams record the information of
the set of strings, as shown at the left of the figure. The corresponding index is shown on the
right.

19

REFERENCES

SE | IDs
ndex s |1 r2, 13

#sr | r1

ID 3-grams #eh | 12,13

rl | {##s, #sr, i, riv, iva, vas, ast, sta, tav, ava, va$, a$$} si |rl

r2 | {##s, #sh, shr, hri, riv, iva, vas, ast, sta, tav, ava, va$, ab$} shr | 12,13

r3 | {##s, #sh, shr, hri, riv, iva, vas, ast, sta, tav, av$, v$$} hri | r2,r3
riv r1, r2, r3
tav r1, r2, r3
ava | r1,r2
v$$ | r3

Figure 5: set join based on similarity predicate

The aimisto find likely duplicates. After constructing the index, the data in the record table
(left) is scanned again. For each active record r, the rows in the index table (right)
corresponding to each 3-gram are retrieved. The value of each row is the set of records
possessing the corresponding 3-gram. The tokens may then be weighted by their corresponding
IDF weight and the weights summed. The records with sums of weights greater than the
threshold are merged with the active record r. Several optimization strategies have been used
to improve the efficiency of this calculation, two of which are presented below.

In order to produce a sorted list derived by merging a set of lists (e.g. as above, wherethereisa
list for each token value) the component lists are presorted by weight. The records in each list
the value of which are greater than the threshold are accepted for merge and need not be
considered further. This can be done efficiently with a doubling binary search or, better still
incorporated within the sorting process. A record that satisfies the threshold condition must
appear in at least one of the remaining lists. Records are popped from the remaining lists in
descending order of the maximum value over al lists and checked. After each check the
remaining lists are checked to see if the sum of their maximum values is above the threshold. If
not, the search is stopped.

The merge time can be reduced even further by pre-sorting the records in decreasing order of
the number of tokens in the record. This ensures that records with alarge number of words get
processed faster. Since the running time has alog t factor, it helps to process long records (with
large t) when the size of each ID-list in the index is smaller. IR query optimizations are very
useful for approximate joins. Figure 6 shows an example of the optimization approach by pre-
sorting. The index structure is derived from that in Figure 5, but sorts the lists in decreasing
order. As shown in the figure, for each 3-gram, the strings containing it, any one or more of r1,

REFERENCES

r2 and r3, are sorted by their length. Here, for example, r2 has most tokens, and will be put to
the first position of the corresponding record in the index once it contains a certain 3-gram.

Figures 7-9 show an example of optimization on how to process the skewed lists. In the first
step, as shown in Figure 7, the shortest lists, the lists to #sr, sri and v$$, are processed. Then
the lists that are to the 3-grams appearing in two strings, #sh, shr, hri and ava, are processed.
This is shown in Figure 8. Finaly, shown in Figure 9, the longest lists that are correspond to
the 3-grams, ##s, riv and tav, are processed.

Index SE IDs
s r2.rl, r3
Hsr rl
ID [3-grams #sh | r2,r3
. i rl
rl |{##s, #sr, i, riv, iva, vas, ast, sta, tav, ava, va$, b}
shr r2.r3
r2 |{##s, #sh, shr, hri, riv, iva, vas, ast, sta, tav, ava, va$, a$$} hri r2.r3
r3 [{##s, #sh, shr, hri, riv, iva, vas, ast, sta, tav, av$, ve$} v r2.rl.r3
tav r2,rl, r3
ava r2.rl
vs$ | r3

Figure 6: sort lists in decreasing order of record sizes

SE IDs
D |3-grams t#ts | r2.rl. r3
—¥ #Hsr ri
rl |[{##s, #sr, i, riv, iva, vas, ast, sta, tav, ava, va$, a$$} #sh | r2.r3
—¥ i rl
r2 | {##s, #sh, shr, hri, riv, iva, vas, ast, sta, tav, ava, va$, as$} ar |23
r3 |{##s, #sh, shr, hri, riv, iva, vas, ast, sta, tav, av$, v$$} hri | r2.r3
riv r2.rl.r3
tav r2.rl. r3
ava | r2.r1
™ vs | r3

Figure 7: an example of processing skewed lists in increasing size order (step 1)

21

REFERENCES

Index

3-grams

IDs

r2,rl, r3

ri

ri

{#is, #sr, sri, riv, iva, vas, adt, sta, tav, ava, vabh, as$}

r2

r2, r3

Sri

rl

{##s, #sh, shr, hri, riv, iva, vas, ast, sta, tav, ava, va$, as$}

r2, r3

r3

{##s, #sh, shr, hri, riv, iva, vas, ast, sta, tav, av$, vE$}

hri

r2, r3

riv

r2,rl, r3

tav

r2,rl, r3

r2, rl

v$$

r3

Figure 8: an example of processing skewed lists in increasing size order (step 2)

Index

3-grams

rl

{##s, #sr, i, riv, iva, vas, ast, sta, tav, ava, vab, ab$}

r2

{##s, #sh, shr, hri, riv, iva, vas, ast, sta, tav, ava, va$, ab$}

r3

{##s, #sh, shr, hri, riv, iva, vas, adt, sta, tav, av$, ve$}

IDs

r2,rl, r3

ri

r2, r3

Sri

ri

r2,r3

hri

r2, r3

— riv

r2,rl, r3

—» tav

r2,rl, r3

ava

r2,rl

VAN

r3

Figure 9: an example of processing skewed lists in increasing size order (step 3)

REFERENCES

In [18], the authors aim at developing generic algorithm for set join based on a similarity
predicate. They propose the SSJoin operator as a foundational primitive and show that it can
be used for supporting similarity joins based on several string similarity functions—e.g., edit
similarity, jaccard similarity, generalized edit similarity, hamming distance, soundex, etc.—as
well as similarity based on cooccurrences. In defining the SSJoin operator, the observation that
set overlap can be used effectively to support a variety of similarity functions is exploited. The
SSJoin operator compares values based on “sets” associated with (or explicitly constructed for)
each one of them. The design and implementation of this logical operator leverages the
existing set of relational operators, and helps define a rich space of aternatives for optimizing
gueries involving similarity joins.

More recent work focuses on the devel oping more efficient filtering strategies. For example, in
[50], a positiona filtering principle was proposed by exploiting the ordering of tokens in a
record, which leads to upper bound estimates of similarity scores. The proposed positional
filtering techniques are integrated into the existing filtering methods, the candidate sizes is
dramatically reduced, thus the efficiency of similarity join isimproved. In [49], the mismatch-
based filtering methods are exploited for efficient similarity join with edit distance constraints.
With the help of new edit distance lower bounds based on the locations and contents of
mismatching g-grams, a substantial reduction of the candidate sizes is achieved, and thus the
computation time is reduced.

4.3.3 Commercial systems

Commercial |Record Linkage Distance Metrics|Domain-Specific |Additional Data
System [Methodol ogy Supported [Matchi ng Quality Support
SQL Server Fuzzy Lookup; Fuzzy [customized, unknown unknown
|Integration Grouping; uses Error |domain-
Services 2005 |Tolerant Index independent:

edit distance;

number, order,

freg. of tokens
OracleBl match-merge rules, Jaro-Winkler; [name & address data profiling;
\Warehouse deterministic and double parse; match; datarules; data
Builder 10gR2 |probabilistic matching |metaphone standardize: 3rd auditors
“Paris” party vendors
IBM’s Entity [probabilistic matching |wide variety of [name recognition; [data profiling;
Analytic (information content); [fuzzy matching [identity resolution; [standardization;
Sol utions, multi-pass blocking; [functions relationship trends and
QualityStage [rules-based merging resolution: EAS anomalies;

23

REFERENCES

5. HARDWARE ISSUES

Working with very large data sets (order Terabytes) poses challenges for existing computing
hardware and software. The time to transfer data from disk to system memory lags the ability of
CPU’s to perform computations on the data by order 10-100 times. In data intensive computing
where the number of computations on the datais small and the amount of data that must be read
is large the CPU will spend most of the time waiting for data to be loaded into memory. The
resulting code will be very inefficient on very large data sets (Gokhale et al., 2008).

A number of technologies that will produce improvements in performance in data intensive
computing are currently under active development. These technologies are likely to produce
dramatic improvements in a broad range of data mining, streaming data and data analysis
applications. In summary these devel opments are:-

Solid state disk drives
FPGA’s

GPU’s

IBM system S

Cloud computing

We provide a brief summary of these technologies and their relevance to data mining
following.

51 Solid state disk drives

Solid state disk drives using solid state (“flash”) memory deliver a significant improvement in
disk access times. SSD’s low latency will significantly speedup data mining applications as
reading from disk is a major bottleneck in getting data from disk to system memory. SSD’s are
now widely available however their higher cost, relatively small capacity and reliability, limit
their broad application to data mining at the moment.

5.2 Field programmable gate arrays

Field programmable gate arrays (FPGA’s) perform calculations directly in hardware rather than
software which results in substantial speedup in computations. FPGA’s have been located near
disk drives, with data streaming from disk to the FPGA. A database query can then be
processed directly on the FPGA’s. This avoids the transfer of data over a network, into memory
and back again eliminating much of the delay caused by data movement to and from the CPU.
An example of this technology is available from Netezza which claims 50-100x speedups are
possible on data intensive problems. Lawrence Livermore National Laboratory has obtained
such speedups.

http://www.netezza.com/data-warehouse-appliance-products/index.aspx

http://www.netezza.com/data-warehouse-appliance-products/index.aspx

REFERENCES

5.3 Graphical Processing Units

Graphics processing units (GPU’s) are now available from NVIDIA in a 1U format including 4
Tesla T10 series GPU’s (1 Tflop peak) which allow GPU based clusters to be deployed. CSIRO
has recently deployed a 200 Tflop cluster using this technology. Data mining applications that
require intensive computing such as video, image reconstruction & analysis and data fusion
could benefit from GPU technology which can currently deliver 1 Teraflop in single precision
(order 10-20x CPU) and can be installed in desktop computers.

http://www.nvidia.com/page/technol ogies.html

54 IBM System S

IBM System S is currently under active development by IBM. It has recently become available
from IBM. IBM System S is a scalable high performance computing platform which provides
the infrastructure that will underpin working with large amounts of streaming structured and
unstructured data in a broad range of formats from thousands of data streamsin real time. This
platform should alow the rapid development of complex data analysis and/or data fusion tools.

IBM claims that “InfoSphere Streams supports high volume, structured & unstructured
streaming data sources such as images, audio, voice, VolP, video, TV, financia news, radio,
police scanners, web traffic, email, chat, GPS data, financia transaction data, satellite data,
sensors, badge swipes, etc”

http://www-01.ibm.com/software/data/i nfosphere/streams/

5.5 Parallel I/O systems

Paralldl 1/0 systems on large clusters overcome the barrier of data transfer between disk and
memory by dividing the read operations into alarge number of smaller read or write operations.
Data intensive applications running on large clusters can realise significant speedups. As data
sets become ever larger parallel 1/0 systems will play an essential role in data mining. The
Neteeza data mining appliances exploit this approach in combination with FPGA technology.
Parallel 1/0 systems are now widely available.

http://www.inf.ed.ac.uk/undergraduate/projects/mathiasengvall/

5.6 Cloud Computing

Cloud computing has recently emerged as a major new platform for providing computing
services. Instead of building large computational infrastructures to serve computing needs of an
organisation these services can now be purchased as a service. Cloud computing offers the
potential of greater flexibility and enormous scalability that is only possible at the data centres
of major corporations such as Amazon, IBM, Google, and Microsoft. Haddoop

25

http://www.nvidia.com/page/technologies.html
http://www-01.ibm.com/software/data/infosphere/streams/
http://www.inf.ed.ac.uk/undergraduate/projects/mathiasengvall/

REFERENCES

(http://hadoop.apache.org/core/) an open source software implementation of Google
MapReduce allows thousands of processors to work together to perform analysis of large data
sets. Google has demonstrated how their MapReduce technology can be used to efficiently
search the entire content of the world wide web archived by Google.
(http://Iabs.google.com/papers/mapreduce.html)

6. CONTRIBUTIONS FROM ASIA

The research on data cleaning and record linkage area has been active in recent years. The
contributions mainly include the publications at the top level conferences and journals. For
example, Kot et al. proposed to adaptively detect attribute outliners in XML documents using
the correlation between attributes [43]. Cheng et al. proposed to clean uncertain data for
achieving better query or service quality under a limited budget. With the query information,
the set of data items to be cleaned is decided. A PWS-query metric was proposed to measure
the quality of query for the probabilistic database. At the same time, the range and max queries
are efficiently computed. In [44], Cheng et al. proposed several efficient approaches for
evaluating the imprecise queries.

The researches in Asia have made significant academic contributions. However, the work we
have reviewed on data cleaning from Asian sources is unlikely to motivate significant useful
operational capability because of the limitations, such as the scalability of techniques and the
dependence on other related techniques.

Casting the net more widely, there are significant numbers of researchers of Asian origin
producing first class work, for instance the authors of [72], who are based in Austraia. It
would be natural for such talented people to move between Asia and the west in the course of
their careers.

1. OPEN PROBLEMS AND FUTURE RESEARCH

The key challenges in this domain lie in the following areas. scalability, accuracy and
complexity of the model relating entities to records and references. The research topics we
have identified below are concerned with pursuit of these issues.

e Benchmarks. In recent years, many algorithms and similarity measures have been
proposed for the issues of data cleaning, however, evaluation the proposed approaches
is not completely solved. Only small test data sets are available and large test sets have
to be provided via simulation (e.g. the deliberate injection of automatically produced
near duplicates). This situation makes it difficult to convincingly demonstrate progress
on accuracy. The most cost effective approaches are likely to involve boot-strap
techniques, in which the results good automatic algorithms are corrected by human
intervention directed at cases most likely to have beenin error.

e Accuracy. Existing approaches are based on merge-only approaches to clustering and
linkage. In the statistical clustering literature significant improvements in accuracy are

http://hadoop.apache.org/core/
http://labs.google.com/papers/mapreduce.html

REFERENCES

provided via the inclusion of other approaches such as switching records between
clusters which facilitates optimisation.

e Indeed the entity resolution has not, so far, been cast as an optimisation problem. One
of the authors can report from his own researches that this can be done without
significantly increased computational burden. The infrastructure of optimisation can
then be brought to bear on the problem, leading to massive simplifications in the design
of much more complex approaches.

e Interestingly there appears to be significant disconnect between the three literatures
of cross-document reference resolution, database entity resolution and information
retrieval, which have all made valuable contributions to the area. As yet, the authors
see no sign within the public or commercial domains (from the information we have on
commercia systems) that such a synthesis had yet been made. The authors believe that
such an approach is likely to provide rich pickings.

e Record/Entity interrelationship models. The record interrelationship model
underlying entity resolution is particularly simple — we are interested in records that
refer to the same entity. However, that model is just the simplest beginning. Two
further extensions include the extraction of histories of entities, and of the relationships
entities have with each other. More interestingly we might seek to extract the histories
of entities’ interactions with each other. Thereisalimited amount of literature on each
of these topics, but so far as we are aware, there is no scalable operational system that
absorbs its information from free text sources which provides good performance in any
of these aress.

8. OPPORTUNITIES AND BARRIERS TO ADOPTION

The technology currently being created under the inconspicuous headings of data cleaning and
record linkage is of great significance. The creation of effective systemsin the areaislikely to
have a breakthrough effect on the ability of companies and other organisations to understand
their data in terms of relationships between underlying entities (people and organisations)
rather than snippets of partial information that currently litter their document repositories and
databases. It is not beyond the bounds of possibility that the people and organisations referred
to over the whole of the world wide web could be substantially disambiguated by a concerted
program over the next five years. The potential opportunities, commercia and otherwise, from
such technology are obvious. The consequences for organisations of not having such
technology when their competitors do are likely to be unpleasant and sharply felt. It is the
opinion of the authors that such a development would require further significant developments
in the underlying applied mathematics and in software designed to take advantage of it and the
new developments in hardware that we have described. The organisations best suited to carry
out such work are the search engine providers. Were they to collaborate with world wide
financia services organisations (such as Visa and Mastercard) the work would tend to be more
more accurate, more highly connected and of even greater value.

27

REFERENCES

REFERENCES

[1] Health Result Team for Information Management, 2005 Data Quality Report — The State of
Data Quality in Ontario Executive Summary, 2005.

[2] T. C. Redman, The impact of poor data quality on the typical enterprise. Communications
of ACM, 2:79-82, 1998.

[3] L. English. Plain English on data quality: Information quality management: The next
frontier. DM Review Magazine, April 2000.

[4] TDWTI’s data quality report 2009

[5] W. W. Eckerson, Excerpt from TDWI’s Research Report — Data Quality and the Bottom
Line, Business Intelligence Journal. 2009

[6] W. W. Eckerson, Data Warehousing Special Report: Data quality and the bottom line, 2002
[7] TDWI’s industry study report 2000

[8] W. W. Eckerson, Data Quality and The Bottom Line: Achieving Business Success through
a Commitment to High Quality Data, 2002

[9] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in inconsistent
databases. In PODS, 1999.

[10] E. Rahm and H. H. Do. Data cleaning: Problems and current approaches. |IEEE Data
Engineering Bulletin, 23(4), 2000.

[11] I. Fellegi and D. Holt. A systematic approach to automatic edit and imputation. J.
American Statistical Association, 71(353):17-35, 1976.

[12] W. E. Winkler. Methods for evaluating and creating data quality. Inf. Syst., 29(7):531-
550, 2004.

[13] A. K. Elmagarmid, P. G. Ipeirotis and V. S. Verykios. Duplicate Record Detection: A
Survey. In TKDE, Voal. 19, No. 1.pages 1-16, Jan. 2007.

[14] http://en.wikiversity.org/wiki/Duplicate record detection

[15] H. Garcia-Molina. Entity Resolution: Overview and Challenges. In ER, page 1-2, 2004

[16] S. Chaudhuri, K. Ganjam, V. Ganti, R. Motwani: Robust and Efficient Fuzzy Match for
Online Data Cleaning. In SIGMOD, pages 313-324, 2003.

[17] W. E. Yancey: BigMatch: A program for extracting probable matches from alarge file for
record linkage. RRC 2007-01. Statistical Research Division, U.S. Bureau of the Census.

[18] S. Chaudhuri, V. Ganti, and R. Kaushik. A Primitive Operator for Similarity Joinsin Data
Cleaning. In ICDE, page 5, 2006.

http://en.wikiversity.org/wiki/Duplicate_record_detection

REFERENCES

[19] S. Chaudhuri, V. Ganti and R. Motwani: Robust Identification of Fuzzy Duplicates. In
ICDE, pages 865-876, 2005.

[20] S. Chaudhuri, A. D. Sarma, V. Ganti and R. Kaushik. Leveraging aggregate constraints for
deduplication, In SIGMOD, pages 437-448, 2007.

[21] R. Ananthakrishna, S. Chaudhuri and V. Ganti: Eliminating Fuzzy Duplicates in Data
Warehouses. In VLDB, page 586-597, 2002

[22] D. Bitton, D. J. DeWitt: Duplicate Record Elimination in Large Data Files. TODS, 8(2),
pages 255-265, 1983

[23] M. Bilenko, R. J. Mooney: Adaptive duplicate detection using learnable string similarity
measures. In KDD, pages: 39 - 48, 2003.

[24] C. Xiao, W. Wang, X. Lin, H. Shang, Top-k Set Similarity Joins, In ICDE, pages 916-927,
20009.

[25] E. Agichtein and V. Ganti, Mining reference tables for automatic text segmentation. In
KDD, pages 20-29, 2004.

[26] D.Sylwester and S.Seth, A trainable, single-pass algorithm for column segmentation, In
ICDAR, page 615, 1995.

[27] M.Ozaki. Column segmentation by white space pattern matching. In ICDAR, page 134,
1995.

[28] W. E. Winkler. The state of record linkage and current research problems. Technical
report, U.S. Bureau of the Census, 1999.

[29] E. Ukkonen. On approximate string matching. In FCT, 1983.

[30] L. Gravano, P. G. Ipeiratis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D.
Srivastava. Approximate string joins in a database (almost) for free. In VLDB, page 491-500,
2001.

[31] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning. In KDD,
2002.

[32] G. Salton. Automatic Text Processing. Addison Wesley, 1989.

[33] G. Kowalski. Information retrieval systems: theory and implementation. Kluwer Academic
Publishers, 1997.

[34] G. Navarro, R. Baeza-Y ates, E. Sutinen, and J. Tarhio. Indexing methods for approximate
string matching. |EEE Data Engineering Bulletin, 24(4):19--27, 2001.

[35] R. Baeza-Yates and G. Navarro. A practical index for text retrieval allowing errors, In
CLEI, pages 273--282, 1997.

29

REFERENCES

[36] G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text with approximate -
grams, In CPM, LNCS 1848, 2000.

[37] W. Cohen. Integration of heterogeneous databases without common domains using queries
based on textual similarity. In SSIGMOD, pages 201-212, 1998.

[38] W.Cohen. Data integration using similarity joins and a word-based information
representation language, TOIS, 18(3):288--321, 2000.

[39]E. Cohen and D. Lewis. Approximating matrix multiplication for pattern recognition tasks,
In SODA, pages. 682 — 691, 1997.

[40]G. Salton and C. Buckley. "Term-weighting approaches in automatic text retrieval".
Information Processing & Management 24 (5): 513-523, 1988

[41] M. A. Herndndez and S. J. Stolfo: The Merge/Purge Problem for Large Databases. In
SIGMOD, pages 127-138, 1995.

[42] S. Sarawagi and A. Kirpal: Efficient set joins on similarity predicates. In SIGMOD, pages
743-754, 2004.

[43] JL.Y.Koh, M.-L. Lee, W. Hsu, and W. T. Ang. Correlation-based attribute outlier
detection in xml, In ICDE, pages 1522-1524, 2008

[44]R. Cheng, J. Chen, and X. Xie. Cleaning uncertain data with quality guarantees. In VLDB,
pages 722-735, 2008.

[47] C. Li, B. Wang, and X. Yang. Vgram: Improving performance of approximate queries on
string collections using variable-length grams. In VLDB, pages 303-314, 2007.

[48] X.Yang, B.Wang, and C.Li. Cost-based variable-length-gram selection for string
collections to support approximate queries efficiently. In SIGMOD, pages 353-364, 2008.

[49] C. Xiao, W. Wang, X. LIN, Ed-Join: An Efficient Algorithm for Similarity Joins With Edit
Distance Constraints. In VLDB, pages 933-944. 2008.

[50] C.Xiao, W. Wang, X. LIN, J.X. Yu, Efficient Similarity Joins for Near Duplicate
Detection, In WWW, pages 131-140, 2008.

[51] I. Bhattacharya and L. Getoor: Iterative record linkage for cleaning and integration. In
DMKD: pages 11-18, 2004.

[52] P. Christen, T. Churches and X. Zhu: Probabilistic name and address cleaning and
standardization. Australasian Data Mining Workshop 2002

[53] S. Chaudhuri, K. Ganjam, V. Ganti, R. Kapoor and V. R. Narasayya, Theo Vassilakis:
Data cleaning in Microsoft SQL server 2005. In SIGMOD, pages 918-920, 2005.

[54] W. W. Cohen, P. Ravikumar and S. E. Fienberg: A Comparison of String Distance Metrics
for Name-Matching Tasks. 11Web 2003: 73-78

REFERENCES

[55] D. J. DeWwitt, J. F. Naughton and D. A. Schneider: An Evaluation of Non-Equijoin
Algorithms. In VLDB, pages 443-452, 1991.

[56] I. Fellegi, A. Sunter: A theory of record linkage. Journal of the American Statistical
Association, Vol 64. No 328, 1969

[57] D. Gusfield: Algorithms on strings, trees and sequences. Cambridge university press 1998

[58] H. Galhardas, D. Florescu, D. Shasha, E. Simon and C.-A. Saita. Declarative Data
Cleaning: Language, Model, and Algorithms. In VLDB, pages 371-380, 2001.

[59] L. Gravano, P. G. Ipeirotis, N. Koudas and D. Srivastava: Text joins in an RDBMS for
web dataintegration. In WWW, pages 90-101, 2003.

[60] S. Guha, N. Koudas, A. Marathe and D. Srivastava : Merging the results of approximate
match operations. In VLDB, pages 636 - 647, 2004.

[61] D. Gibson, J. M. Kleinberg and P. Raghavan: Clustering Categorical Data: An Approach
Based on Dynamical Systems. In VLDB, pages 311-322, 1998.

[62] L. Jin, C. Li and S. Mehrotra: Efficient Record Linkage in Large Data Sets. In DASFAA,
pages 137, 2003

[63] P. Jokinen and E. Ukkonen: Two Algorithms for Approximate String Matching in Static
Texts. In MFCS, pages 240-248, 1991.

[64] D. V. Kalashnikov, S. Mehrotra and Z. Chen: Exploiting Relationships for Domain-
Independent Data Cleaning. In SDM,2005.

[65] N. Koudas, A. Marathe and D. Srivastava: Flexible String Matching Against Large
Databasesin Practice. In VLDB, pages 1078-1086, 2004.

[66] N. Koudas, A. Marathe and D. Srivastava: SPIDER: flexible matching in databases. In
SIGMOD, pages 876-878, 2005.

[67] M.-L. Lee, T. W. Ling and W. L. Low: IntelliClean: a knowledge-based intelligent data
cleaner. In KDD, pages 290-294, 2000.

[68] A. E. Monge and C. Elkan: The Field Matching Problem: Algorithms and Applications. In
KDD, pages 267-270, 1996.

[69] Gokhale, M.; Cohen, J.; Yoo, A.; Miller, W.M.; Jacob, A.; Ulmer, C.; Pearce, R,;
Computer. Volume 41, Issue 4, April 2008 Page(s):60 — 68

[70] V. R. Borkar, K. Deshmukh, and S. Sarawagi. Automatic segmentation of text into
structured records. In Proceedings of the ACM SIGMOD Conference, 2001.

[71] B. S. T. Bocek, E. Hunt. Fast Similarity Search in Large Dictionaries. Technical Report
ifi-2007.02, Department of Informatics, University of Zurich, April 2007.

31

REFERENCES

[72] We Wang, Chuan Xiao, Xuemin Lin, Chenggi Zhang. “Efficient Approximate Entity
Extraction with Edit Distance Constraints”, SIGMOD 2009.

[73] Christopher D. Manning, Prabhakar Raghavan & Hinrich Schiitze, “Introduction to
Information Retrieval”, Cambridge University Press, 2008.

Contact Us

Phone: 1300 363 400
+61 3 9545 2176

Email: enquiries@csiro.au

Web: www.csiro.au

Your CSIRO

Australia is founding its future on science and

innovation. Its national science agency, CSIRO,

is a powerhouse of ideas, technologies and

skills for building prosperity, growth, health and

sustainability. [t serves governments, industries,

business and communities across the nation.

