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ABSTRACT 
 
A pulsed-cap microcolumn was used for bromelain extraction from pineapple juice by reversed micelles. The 
cationic micellar solution used BDBAC as the surfactant, isooctane as the solvent and hexanol as the co-solvent. In 
order to capture the dynamic behavior and the nonlinearities of the column, the operating conditions were modified 
in accordance with the central composite design for the experiment, using the ratio between the light phase flow 
rate and the total flow rate, and the time interval between pulses. The effects on the purification factor and on total 
protein yield were modeled via neural networks. The best topology was defined as 16-9-2, and the input layer was a 
moving window of the independent variables. The neural model successfully predicted both the purification factor 
and the total protein yield from historical data. At the optimal operating point, a purification factor of 4.96 and a 
productivity of 1.29 mL/min were obtained.  
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INTRODUCTION 
 
In many biotechnological industries, including the 
food and pharmaceutical sectors, the selective 
separation of proteins from the fermentation broths 
or vegetable sources is of prime interest for 
downstream processing operations. However, it 
can be difficult as well as expensive to recover a 
targeted protein from a broth due to low 
concentration of the protein and similarity between 
its physical properties and those of other proteins 
present in the same solution.  
Liquid-liquid extraction involves the transferring a 
substance from one liquid mixture to another 
(either immiscible or partially miscible) by placing 
them in contact.  This process is widely used in the 
chemical and pharmaceutical industries, such as in 

the recovery of antibiotics or organic acids from 
fermentation broths. Nevertheless, its application 
is still limited for protein purification due to the 
risk of denaturation when proteins come into 
contact with organic solvents, thus yielding useless 
products (Aires-Barros et al., 1994). 
In order to avoid the protein denaturation, liquid-
liquid extraction by reversed micelles was used in 
the present study. Reversed micelles are 
aggregates of surfactant molecules containing an 
inner core of water molecules dispersed in a 
continuous organic solvent. They are capable of 
selectively solubilizing polar compounds in apolar 
solvents and are useful for recovering specific 
biomolecules from aqueous solutions, such as 
fermentation broths or cell culture media. Kilikian 
et al. (2000) suggested reversed micelle extraction 
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a versatile and useful process for purifying 
proteins.  
Bromelain is the name of a group of powerful 
protein-digesting, or proteolytic, enzymes found in 
the pineapple plant (Ananas comosus). Discovered 
in 1957, and widely studied since then, bromelain 
is particularly useful for reducing the muscle and 
tissue inflammation, as well as for aiding the 
digestion. It is employed not only for its 
pharmacological effects, but also in food industry 
activities such as brewing and meat processing.  
Although liquid-liquid extraction is usually 
modeled according to first principles, this is not 
trivial in the case of reversed micelles. On the one 
hand, calculating equilibria, hydrodynamics, mass 
transfers and material balances requires excessive 
amounts of time for computer simulations.  On the 
other, artificial neural networks have the ability to 
“learn” the non-linear behavior and interactions of 
the complex system studied in the present 
research. Moreover, since prior knowledge of the 
process is not prerequisite to finding a suitable 
model, neural modeling was the empirical 
approach chosen for the purpose of this study.  
Within the field of chemical processes, there is 
increasingly more literature describing the use of 
artificial neural networks for a diverse range of 
engineering applications, such as fault detection 
and signal processing, in addition to process 
modeling and control (Himmelblau, 2000). In a 
study by Pinto et al. (2005) on the partial enzyme 
hydrolysis of cheese whey proteins, an off-line 
smoothing algorithm, based on penalized least 
squares, was implemented in the monitoring 
system. For filtering on-line signals, various 
algorithms were compared: artificial neural 
networks, a moving average and a smoothing 
algorithm. In the on-line pH control system, the 
filters based on neural networks had smoother 
control action and no effect on the inference 
system. 
The aim of the current study was to use an 
extremely simple approach to accurately represent 
a continuous bromelain extraction process. The 
operating conditions were modified according to 
the central composite design. Given a 
representative set of experimental observations 
concerning the inputs and their corresponding 
outputs, the neural network integrated these data 
into its structure. By means of a single neural 
model, two variables could easily be predicted: 
total protein yield and the purification factor. The

model developed should enable a human operator 
to adjust the operating variables – such as pulse 
frequency and the ratio between the light flow rate 
and the total flow rate – during experimental runs 
in order to achieve target outputs. 
 
Neural Networks 
Artificial neural networks (ANNs) are 
mathematical models composed of various 
neurons arranged in interconnected layers (input, 
hidden and output). According to Equation (1), the 
neuron in one layer is responsible for the sum of 
the signals from the neurons in the previous layers, 
yj (amplified or weakened by weighted values, wk,j) 
and a value called bias, bk. A transfer function, f – 
such as a hyperbolic tangent, sigmoid or linear 
function – is used to activate the neuron output, yk. 
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A multi-layered feedforward network, the most 
suitable topology for empirical modeling and 
engineering applications, was used in this study. 
The training procedure requires a set of the 
process inputs and outputs. During the procedure, 
the weights and biases are iteratively adjusted to 
minimize an objective function. The conventional 
training algorithm – backpropagation - moves the 
network parameters in the direction of the negative 
gradient (Demuth and Beale, 2002). Levenberg-
Marquardt optimization is also a valuable training 
method. However, both methods can lead to data 
overfit if carelessly implemented. 
One of the best methods for improving 
generalization and avoiding overfit is called 
regularization. The method involves modifying the 
objective function, which generally computes only 
the sum of the squared errors (SSE) of the training 
set. When the regularization method is used, a 
term consisting of the mean of the sum of the 
squared weights (SSW) is added to the SSE 
calculation in the objective function (Equation 
[2]). 
 

F = β. SSE + α. SSW                  (2) 
 
in which β and α are fitted parameters (Demuth 
and Beale, 2002). 
According to Hagan and Foresse (1997), when this 
objective function is coupled with a Levenberg-
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Marquardt algorithm, the network will have 
smaller weights, which, in turn, will cause the 
network response to be smoother and less subject 
to overfit. Another important feature of this 
algorithm is that it provides a measure as to how 
many parameters (weights and biases) are 
effectively used by the network. This effective 
number of parameters is termed γ and differs from 
the total number of parameters in the network, N. 
When the effective number of parameters remains 
the same, the ideal number of neurons for the 
hidden layer has been attained.  
 
 
MATERIALS AND METHODS 
 
Bromelain sample preparation  
Fruit bromelain (EC 3.4.22.5) was obtained from 
the fruit extract of the Perola pineapple species. 
The pineapple pulp was triturated. Distilled water 
was used at a dilution rate of 1:1. Solids were 
filtered from the mixture by means of paper filters. 
The filtrate, called pineapple juice, contained the 
bromelain enzyme. The samples were frozen at -
5oC (Cesar et al., 1999) and stored (for a 
maximum of three months) until used in the 
experiments. 
 
Micellar solution 
The cationic micellar solution contained BDBAC 
as the surfactant, isooctane as the solvent and 
hexanol as the co-solvent (Kilikian et al., 2000). 
 
Backward extraction solution  
The bromelain-rich (raffinated) phase was treated 

with a buffered phosphate solution (citric 
acid/sodium phosphate) and sodium chloride. 
 
Previously determined conditions 
In a previous study (Fileti et. al, 2008), it was 
found that the best concentrations of the surfactant 
agent, co-solvent, salt and  pH for back and 
forward batch extraction were 100 mM, 10% v/v, 
1 M, 3.5 and 8, respectively. These same 
conditions were maintained for continuous 
extraction. On comparing the purification factor 
obtained under these conditions – 3.29 – to that 
obtained via two-phase aqueous extraction with 
PEO-PPO-PEO block copolymers (Rabelo et al., 
2004) – 1.25 – it became evident that the reversed 
micelle process was well worth studying.  
 
Extractor description 
A diagram of the pulsed-cap extraction 
microcolumn used in the present stray is shown in 
Figure 1.  The glass column had a height of 19 cm 
and an internal diameter of 2.54 cm. Three 
perforated caps were mounted on a central 
stainless steel stem at 4-cm distances. The caps 
were made of MESH-24 sieves, with a 38% free-
flow area. A pulse frequency controller drove the 
2.8-cm vertical movements of the stem. Thus, part 
of the light phase was pulverized and uniform 
dispersion was attained. Another portion of the 
light phase was retained beneath the cap, 
increasing the contact between the phases. The 
inlet flow rates of the dispersed and continuous 
phases were maintained constant by previously 
calibrated peristaltic pumps.  

 

 
 
 

Figure 1 - Extraction microcolumn with pulsed caps: (1) Pineapple juice inlet (continuous phase); 
(2) Micellar solution inlet (dispersed); (3) Heavy phase outlet (extracted); (4) Light 
phase outlet (raffinated). 
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Experimental procedures  
Forward extraction 
The column was filled with pineapple juice. The 
feeding pumps were activated with the total flow 
rate (pineapple juice plus micellar solution 
streams) set at 8mL/min (constant) and the ratio 
between the light phase flow rate and the total 
flow rate set at 0.5. The pulse frequency (i.e., the 
time interval between the pulses) was then 
adjusted to 4 seconds. 
In order to capture the dynamic behavior and the 
nonlinearities of the column, samples were 

collected from the raffinated phase (micellar phase 
outlet) every three minutes. Once the steady state 
was reached (approximately 21 minutes), the 
operating conditions were modified according to 
the central composite design for the experiment 
(Tables 1 and 2). The independent variables were: 
the ratio between the light phase flow rate and the 
total flow rate; and the time interval between the 
pulses. The effects on the purification factor (PF) 
and on total protein (Pi) were measured and then 
modeled via neural networks.  

 
Table 1 - Levels and values of the central composite design. 

  Level  
Independent variable (-1) (0) (+1) 
Light phase flow rate/ Total flow rate 0.3 0.5 0.7 
Time interval between pulses (s) 6 4 2 

 
 
Backward Extraction 
The protein-rich (micellar) phase obtained from 
the extraction was mixed with an equal volume of 
the backward extraction solution.  The contents of 
the tube were stirred in a vortex for three minutes. 

In order to split the phases, the mixture was 
centrifuged at 8000 rpm for 5 min. The light phase 
(micellar) was rejected. Assays of enzyme activity 
and total protein were conducted on samples from 
the heavy aqueous phase.  

 
 
Table 2 - Matrix of the central composite design. 

Run no. Light/total flow rate Time interval 
1 -1 -1 
2 -1 +1 
3 +1 -1 
4 +1 +1 
5 -1.41421 0 
6 +1.41421 0 
7 0 -1.41421 
8 0 +1.41421 

9 (C) 0 0 
10 (C) 0 0 
11 (C) 0 0 
12 (C) 0 0 

 
 
Enzyme activity assay 
Enzyme activity was determined by enzymatic 
hydrolysis of 2% casein (w/v) at pH 7.5 and 37oC 
for 10 min. Tricloroacetic acid (TCA) was used in 
the precipitation of the non-hydrolyzed product. 
The amount of soluble peptides in the TCA was 
determined by measuring the absorbance at 280 
nm. The method defines a unit of enzyme activity 
as the amount of enzyme required to modify the 
absorbance at 280 nm by 1.0. 
 

Total protein assay 
Total protein was determined using the Lowry 
method (1951) and a BSA standard. 
 
Extraction performance indexes 
a) Total protein yield (TP): 
 

100.(%)
1

2

P

P
TP =              (3) 
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where P1 is the total protein concentration (g/L) of 
the pineapple juice and P2 is the total protein in the 
backward extraction solution. 
 
b) Enzyme activity yield (EA):  
 

100.(%)
1

2

A

A
EA =                   (4) 

 
where A1 is the enzyme activity measurement (in 
units per liter obtained from the pineapple juice) 
and A2 is the enzyme activity of the backward 
extraction solution. 
 
c) Purification factor (PF), which represents the 
increase in the purity of the bromelain enzyme: 
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A
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Neural modeling  
The modeling process employed a feedforward 
network and a Levenberg-Marquardt optimization 
algorithm in conjunction with Bayesian 
regularization. In the Neural Networks Toolbox of 
the MATLAB® Software, this algorithm is 
denoted “trainbr”. Because neural network training 
would be more efficient when preprocessing 
normalization was performed for the input and 
target output variables, the data set was 
normalized in the [0.1, 0.9] range. A sigmoid 
function was applied to the neurons in the hidden 

and output layers. The input layer was comprised 
of a moving window of the operating variables, i.e. 
the ratio between the light phase flow rate and the 
total flow rate; and the time interval between the 
pulses. Total protein yield and the purification 
factor were the target variables, i.e. the output 
layer neurons. For the purpose of determining the 
best number of backward steps for the moving 
window and number of neurons for the hidden 
layer, the mean square error (MSE) and the 
effective number of parameters (γ ) were 
monitored for test and training sets . 
In all the experimental runs, the purification factor 
(PF) and the total protein (TP) were measured at 
the micellar phase outlet every three minutes. An 
experimental data set of 272 input/output vectors 
was obtained, of which 204 vectors constituted the 
training set and 68 vectors the test set.  
 
 
RESULTS AND DISCUSSION 
 
Experimental design  
In accordance with the results obtained during the 
experiment, the range of each variable is 
summarized in Table 3. In order to determine the 
best operating point, the objective function 
“desirability” of the Statistica® software was used. 
This function assumes values in the 0 to 1 range, 
and maximization of the function yields the 
optimal global operating point, i.e. the highest 
productivity rate (total protein multiplied by 
raffinated phase flow rate) capable of guaranteeing 
an elevated purification factor.  

 
Table 3 - Operating ranges of the input and output variables in the neural model. 

Input Output  
Light phase/total flow rate Time between pulses (s) Purif. factor Total prot. yield (%) 

Upper bound 0.782 1 7.64 12.08 
Lower bound 0.217 7 0.89 4.79 

 
 
Figure 2 shows the desirability response surface as 
a function of the light phase/total flow rate versus 
the time interval between pulses. The optimal 
conditions obtained were: light phase/total flow 
rate equal to 0.67 and time interval between pulses 
equal to 1 second. At this point, productivity was 
1.29 mL/min and the purification factor was 4.96. 
As previously cited, the batch extraction by 
reversed micelles yielded a purification factor of 

3.29 (Fileti et al., 2008). In the present work, a 
purification factor of 4.96 and productivity of 1.29 
mL/min were obtained via continuous extraction. 
These results also confirmed that the extraction by 
reversed micelles was superior to two-phase 
aqueous extraction with PEO-PPO-PEO block 
copolymers, which yielded a purification factor of 
only 1.25 (Rabelo et al., 2004). 
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Neural modeling 
An increase in the number of backward steps of 
the moving window means changing the number 
of neurons in the network input layer (see Table 
4). To do so, five different neural models were 
tested. 
The mean square errors (MSE) of the target 
variables – the purification factor and total protein 
– were monitored for the test and training sets 
(Fig. 3 and 4). For this assessment, the number of 

neurons in the hidden layer was initially set at a 
very high level since any excess connections 
would be eliminated by the training method 
adopted (Levenberg-Marquardt algorithm with 
Bayesian regularization). The test set curves 
depicted in Figures 3 and 4 indicated that the mean 
error (MSE) did not decrease when more than 16 
input neurons were used. Hence, the backward 
time adopted was 21 minutes (16 neurons), as 
shown in Figure 5. 

 

 
 

Figure 2 - Desirability response surface. 
 

 
Table 4 - Input moving window and corresponding number of neurons in input layer. 

Neuron number input layer Backward time (min) 
10 12 
12 15 
14 18 
16 21 
18 24 
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Figure 3 - Mean square errors of the purification factor (PF), estimated via neural model, for test 

and training sets. 
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Figure 4 - Mean square errors of the total protein yield (TP), estimated via neural model, for test 
and training sets. 

 
 

Using the inputs and outputs presented in Figure 5, 
the number of neurons in the hidden layer changed 
as shown in Table 5. The mean square error 
(MSE) and the effective number of parameters (γ ) 
were used as indexes for evaluating the 
performance of the model. 
According to the Hagan and Foresse criterion 
described above and the data presented in Table 5, 
the best number of neurons for the hidden layer is 
9, given that the effective number of parameters 
did not change as the number increased. The 
analysis of the MSE for the test set (last two 

columns in Table 5) confirmed this choice. 
Therefore, the best network topology was defined 
as 16-9-2, in exact accordance with the scheme 
portrayed in Figure 5. 
A comparison of observed (T) and predicted (A) 
points for the test set is presented in Figure 6. The 
closer the points to the diagonal line (A=T), the 
more accurate the neural model. The dispersion 
plots showed that the neural model successfully 
and simultaneously predicted both the purification 
factor and the total protein yield from the 
historical data employed. 

 
 
 
 

 
 
 

Figure 5 - Neural model architecture of the pulsed-cap microcolumn. 
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Table 5 - Mean square errors (MSE) and effective number of parameters (γ ): indexes used to drive the search for 
the best number of neurons in the hidden layer. 

  MSE (training set) MSE (test set) 

Hidden layer 
neurons 

Effective number of 
parameters(γγγγ ) 

TP(10-6) PF TP (10-5) PF 

6 104 8.31 0.0973 1.55 0.176 
7 114 7.93 0.0868 1.55 0.161 
8 119 7.56 0.0873 1.44 0.157 
9 122 7.56 0.0861 1.43 0.155 
10 122 7.80 0.0859 1.49 0.152 

 

 

                                   
Figure 6 - Dispersion plots of: (a) total protein yield (%) and (b) purification factor. 

(a) 

(b) 
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CONCLUSIONS 
 
The developed neural model successfully and 
simultaneously predicted the purification factor 
and the total protein yield from the historical data 
used. This kind of model could be particularly 
important due to its capacity to help a human 
operator adjust variables during experimental runs 
in order to achieve target performance indexes. 
The findings indicated that aligning the central 
composite designs and neural models based on 
moving windows provided concise information for 
constructing the suitable empirical patterns for 
nonlinear and transient processes.  
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RESUMO 
 
Uma micro-coluna com campânulas pulsantes foi 
utilizada para a extração de bromelina a partir de 
suco de abacaxi, usando micelas reversas. A 
solução catiônica micelar foi composta do 
surfactante BDBAC, do solvente iso-octano e do 
co-solvente hexanol. Seguindo um planejamento 
experimental, perturbações foram impostas à 
coluna de extração com o objetivo de capturar seu 
comportamento dinâmico e suas não-linearidades, 
usando a razão entre a vazão da fase leve e vazão 
total, e o intervalo de tempo entre os pulsos. Os 
efeitos das variáveis independentes sobre o fator 
de purificação e sobre o rendimento em proteínas 
totais foram modelados via redes neurais 
artificiais. A melhor topologia de rede obtida foi 
definida como 16-9-2, usando um esquema de 
janela móvel no tempo das variáveis 
independentes. O modelo neural obtido do 
histórico do processo se mostrou adequado para 
predizer simultaneamente o fator de purificação e 
o rendimento do processo em proteínas totais. 
No ponto ótimo de operação, foi encontrado um 
fator de purificação de 4.96, com produtividade de 
1.29 mL/min.  
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