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ABSTRACT - In recent years there has been much focus on the use of single nucleotide polymorphism (SNP) fine genome
mapping to identify causative mutations for traits of interest; however, many studies focus only on the marginal effects of
markers, ignoring potential gene interactions. Simulation studies have show that this approach may not be powerful enough
to detect important loci when gene interactions are present. While several studies have examined potential gene interaction,
they tend to focus on a small number of SNP markers. Given the prohibitive computation cost of modeling interactions in
studies involving a large number SNP, methods need to be develop that can account for potential gene interactions in a
computationally efficient manner. This study adopts a machine learning approach by adapting the ant colony optimization
algorithm (ACA), coupled with logistic regression on haplotypes and genotypes, for association studies involving large numbers
of SNP markers. The proposed method is compared to haplotype analysis, implemented using a sliding window (SW/H), and
single locus genotype association (RG). Each algorithm was evaluated using a binary trait simulated using an epistatic model
and HapMap ENCODE genotype data. Results show that the ACA outperformed SW/H and RG under all simulation scenarios,
yielding substantial increases in power to detect genomic regions associated with the simulated trait.
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Algoritmo colônia de formigas para análise de interação gênica em dados
de associação de alta dimensão

RESUMO - Nos últimos anos muita atenção tem sido dada ao uso de polimorfismos de nucleotídeos simples (SNP) para
mapeamento fino do genoma, visando identificar mutações efetivas em características de interesse; todavia, muitos estudos
focam apenas os efeitos marginais dos marcadores, ignorando as potenciais interações  entre genes. Estudos de simulação tem
mostrado que esta abordagem pode não ser poderosa o suficiente para detectar loci importantes quando interações entre genes
estão presentes. Vários estudos tem examinado potenciais interações gênicas, porém focando um pequeno número de
marcadores SNP.  Devido ao proibitivo custo computacional para modelar interações em estudos envolvendo um grande número
de SNP‘s,  precisam ser desenvolvidos métodos que considerem potenciais interações gênicas, de uma forma computacionalmente
eficiente. Este estudo adota a abordagem de um mecanismo de aprendizagem, adaptando o algoritmo de otimização colônia
de formigas (ACA), combinado com regressão logística em função dos haplótipos e genótipos, para estudos de associação
envolvendo grande número de marcadores SNP. O método proposto é comparado à análise de haplótipos, implementado usando
uma janela deslizante (SW/H), e a associação de genótipos de lócus único (RG). Cada algoritmo foi avaliado usando uma
característica binária simulada usando um modelo epistático e dados genotípicos do HapMap ENCODE. Os resultados mostram
que o ACA superou o SW/H e RG em todos os cenários de simulação, produzindo aumentos substanciais no poder de detectar
regiões genômicas associadas com características simuladas.
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Introduction

With the advent of high-throughput, cost effective
genotyping platforms, there has been much focus on the
use of high-density single nucleotide polymorphism (SNP)
genotyping to identify causative mutations for traits of
interest, and while putative mutations have been identified

for several traits, these studies tend to focus on SNP with
large marginal effects (Hugot et al., 2001; Woon et al., 2007).
However, several studies have found that gene interactions
may play important roles in many complex traits (Coutinho
et al., 2007; Barendse et al., 2007).  Unfortunately, due to the
high density of SNP maker maps, it is computationally
infeasible to examine all possible interactions. As a result
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studies examining gene interactions tend to focus on a small
number of SNP, previously identified as having strong
marginal associations.

While this approach has shown some success,
simulation studies conducted by Marchini et al. (2005) and
Pickrell et al. (2007) showed that, in the presence of several
types of gene interactions, there is reduced power to detect
causative loci with models estimating only marginal effects.
Using an exhaustive search of all two-way interactions,
Marchini et al. (2005) achieved greater power to detect
causative mutations when compared to models estimating
only marginal effects. However, due to the high
computational cost of this approach a two-stage model was
proposed, in which SNP were selected in the first stage
based on marginal effects an then tested for interactions in
the subsequent stage [Marchini et al., 2005]. Such an
approach represents a compromise that could result in the
failure to detect important regions of the genome in the first
stage of the model. As such, there is a need for methodologies
capable of identifying important genomic regions in the
presence of potential gene interactions when large numbers
of markers are genotyped.

Given that the examination of all possible SNP
interactions is computationally infeasible with dense SNP
marker maps covering large regions of a genome, an
alternative approach must be considered. One such
approach would be to view the identification of groups of
interacting SNP as an optimization problem, for which
several algorithms have been developed. These algorithms
are designed to search large sample spaces for globally
optimal solutions and have been applied to wide range of
problems (Shymygelska & Hoos et al., 2005; Kreiger et al.,
2000; Ding et al, 2005).  Through the evaluation of groups
of loci, efficiently selected from different regions of the
genome, optimization algorithms should be able to account
for potential interactions. Kooperberg et al. (2006) utilized
an optimization algorithm, referred to as simulated annealing
(SA), to examine interaction effects; however, only 32 SNP
were considered in the model selection process. For studies
involving hundreds or even thousands of SNP, efficient
algorithms are needed to search the sample space for
optimal solutions.

One such algorithm, the ant colony algorithm (ACA),
has been shown to be efficient in high-dimension data sets
(Robbins et al. 2007). The ACA, developed by Dorigio &
Gambardella (1997), is based on the mechanism by which ant
colonies find the shortest route to a food source. Ants
communicate through a chemical pheromone trail, deposited
as they transverse a given path. Ants that choose a shorter
path will transverse the distance at a faster rate, thus

depositing more pheromone in the process. As the pheromone
builds, ants will begin to preferentially choose the shorter
path leading to a positive feed back system. Dorigio &
Gambardella (1997) showed that the communication between
ants had a synergistic effect, allowing the ACA to reach
optimal solutions in fewer iterations than require by other
optimization algorithms. In the case of SNP association
studies, the ‘path’ is represented by a selected subset of SNP
markers, and performance is evaluated based on the fit of a
logistic regression for binary traits.

For this study a modified ACA, enabling the use of
permutation testing for global significance, was combined
with logistic regression and implemented on a simulated
binary trait under the influence of interacting genes. The
performance of the ACA was evaluated and compared to
models accounting for only marginal effects.

Material and Methods

Logistic regression

Groups of SNP markers were evaluated based on
haplotype and genotype effects estimated as log odds
ratios (lor) using logistic regression (LR). The log odds
ratio lori is modeled as:
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where Pi = probability (yi = 1) and X is a matrix containing
indicator variables for the haplotypes/genotypes formed
from the selected SNP. Groups of SNP markers with less
than two corresponding observations were discarded, and
analysis was conducting on all remaining marker groups.

The link function of the log odds ratio with the binary
response yi gives the following equations:

 

β)exp(X1
1

0)(yp
i

ii +
==  and 

 

β)exp(X1
β)exp(X

1)(yp
i

i
ii +

==  (2)

Marginal effects model

The genotype and haploype association methods were
implemented using R functions developed by Gonzalez et
al. (2007) and Sinnwell & Schaid (2005), respectively. The
haplotype analysis was implemented using a sliding
window approach which utilizes a window of k SNP in
width sliding across the genome h SNP at a time. Individual
SNP scores were determined as the average of all
haplotypes containing a given SNP.

Ant colony algorithm

The ACA employs artificial ants that communicate
through a probability density function (PDF) that is updated
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each iteration with weights or “pheromone levels”, which
are analogous to the chemical pheromones used by real
ants. In the case of SNP association studies, the weights
can be determined by the strength of the association between
selected haplotypes or genotypes and the trait of interest.
Using the notation of Dorigio & Gambardella (1997) and
Ressom et al. (2006), the probability of sampling SNP m
at time t is defined as:
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where )(tmτ  is the amount of pheromone for SNP m at
time t; mη is some form of prior information on the
expected performance of SNP m; α  and β are parameters
determining the weight given to pheromone deposited by
ants and a priori information on the features, respectively.

Using the PDF as defined in equation (4), each of
j artificial ants selects a subset kS  of n SNP from the
sample space S  containing all SNP. Given the relationship
between adjacent SNP, ants randomly change SNP
selections following a multinomial distribution, with changes
being limited to the three adjacent SNP on either side of the
originally selected SNP marker. The pheromone level of
each feature m in kS  is then updated according to the
performance of kS as:

)(tΔτ(t)τ*ρ)(11)(tτ mmm +−=+  (4)
where ρ  is a constant between 0 and 1 representing the rate
at which  the pheromone trail evaporates; )(tmτ∆  is the
change in pheromone level for feature m based on the sum
of accuracy of all kS  containing SNP m, and is set to zero if
SNP m was not selected by any of the artificial ants.

While the algorithm, in the aforementioned form, can
be used to subjectively identify markers, it is not well
suited for the calculation of permutation p-values. When
updating the pheromone function, as previously described
in equation (4), the final pheromone levels are relative not
only to prediction accuracy, but the number of times a SNP
marker is selected. As a result, the amount of pheromone
deposited on a feature depends greatly the amount of
pheromone deposited on all other SNP markers and can
vary wildly from permutation to permutation. One obvious
solution to this problem would be to use the average
accuracy of all  containing genotypes for SNP m; however,
this approach substantially reduces the ACA’s ability to
efficiently burn in on good solutions, an attribute needed
to detect unknown gene interactions in high-dimension
data sets.

To overcome these limitations, a two-layer pheromone
function was developed:
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where  )(tm is the first pheromone layer updated using the

sum of accuracies for all Sk containing SNP m;  )(2 tmτ  is the
second pheromone layer updated using the average
accuracy of all  containing genotypes for SNP m; and  mη ,
α , β are as previously described.  For the current study
α  and α2were set to 1, β was set to .3 and the prior
information ( mη ) was the prediction the accuracy of SNP
marker m ,  obtained using logistic regression on
genotypes.
The pheromone for  )(tmτ was updated using equation (4)
and   )(2 tmτ  was updated using the following equation:
 )/()](2)(2*[)1(2 nsttttt mmm +∆+=+ τττ  (6)

where t is the iteration number; )(2 tmτ∆  is the change in
pheromone level for feature m based on the sum of accuracy
of all  containing genotypes for SNP m, which is set to zero
if feature m was not selected by any of the artificial ants;
and ns is the number of times SNP m was selected at
iteration t. Permutation p-values were calculated using

)(2 tmτ only.

Data simulations

Genotype data on 90 unrelated individuals from the
Japanese and Han Chinese populations were downloaded
from the HapMap ECODE project website. Each simulation
scenario was replicated five times using two 500 Kbp
regions on chromosome 2, comprising 2047 polymorphic
SNP. All SNP haplotypes were assumed to be known
without error. The binary disease trait was simulated
under a two locus epistatic model as seen in Table 1. The
loci of the causative mutations were selected at random;
with the frequencies of the causative mutations being .58
and .6. Although these frequencies might be considered
high, it was necessary to restrict selection to SNP with
mutant allele frequencies greater than .5. This was done to
insure a reasonable simulated disease incidence of 15%.

Table 1 - Relative risk for simulated traita

Scenario 1 Scenario 2

AB aB Ab ab AB aB Ab ab

AB 1 1 1 1 1 1 1 1
aB 1 1 1 1 1 1 1 1
Ab 1 1 1 1 1 1 1 1
Ab 1 1 1 15 1 1 1 10
a Risks are relative to the aa/bb genotype.
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A plot illustrating the LD of all SNP with the two causative
mutations is shown in Figure 1. The plot shows a large
peak of high LD with rs2049736 (SNP 409), while the peak
of high LD with rs28953468 (SNP 2041) is substantially
narrower, and is preceded by a plateau of SNP in moderate
LD with rs28953468.

Permutation testing was used to access global
significance for all models used in the study. Statuses were
random shuffled amongst subjects, with haplotype effects,
genotype effects and association p-values re-estimated for
each new configuration of the response variables. The
largest estimated haplotype/genotype effect or the smallest
haplotype/genotype association p-value from each
permutation was saved to form an empirical distribution
used for calculation of permutation p-values. One hundred
permutations were performed, yielding p-values accurate
to 1%. Power was calculated as the proportion of times a
given method identified at least one SNP marker in high LD
(r2 ≥ .80) with a causative mutation.

Results

Estimates of power for the three methods can be found
in Table 2. Methods employing the ACA showed
substantial increases in power when compared to the
methods accounting for only marginal effects. Due to the

fact that the trait was simulated under a dominance model,
analysis of genotypes tended yielded superior results
when compared to haplotype analysis. Despite the inherent
advantage of genotype analysis using a dominance model,
the ACA using haplotypes (ACA/H) still showed greater
power than RG/D in both scenarios. For scenario 2 all
models showed a reduction in power; however, the
superiority of the ACA methodologies remained constant,
with the ACA using LR on genotypes assuming a
dominance model (ACA/G/D) yielding 66.7% increase in
power for both scenarios when compared to the next best
method, RG/D.

 To determine the effectiveness of the permutation
on pheromone levels, the cumulative distribution, based
on LD with causative mutations, of SNP identified as
being significantly associated with the simulated trait by
ACA/G/D and RG/D were plotted. Despite similarities in
the average number of SNP identified by ACA/G/D (15.4)
and RG/D (22), the distributions of these SNP, differed
substantially. In contrast to RG/D, the ACA/G/D identified
a large number of SNP having LD between .35-.45. These
SNP corresponded to the broad plateau of SNP in LD with
SNP 2041. Unlike RG/D, the ACA/G/D also identified
several SNP (5.19%) having less than .10 LD with either
of the causative mutations, an unexpected result given
the strict family-wise significance thresholds (α = 0.05)
imposed on all models. Surprisingly, both methodologies
identified a large number of SNP having LD of
approximately .2. Upon closer examination it was found

Table 2 - Power calculationsa

Scenario 1 Scenario 2

1 locus 2 locus 3 locus 1 locus 2 locus 3 locus

ACA/G/D - 1.00 0.90 - 0.50 0.40
ACA/G/C - 0.70 0.80 - 0.40 0.40
ACA/HAP - 0.60 0.70 - 0.50 0.40
RG/D 0.60 - - 0.30 - -
RG/C 0.30 - - 0.30 - -
SW/HAP - 0.10 0.20 - 0.00 0.00
a Power was calculated as the proportion of times at least one SNP in high

linkage disequilibrium (>.8) with a causative mutations was detected by the
model at α=.05 for genome-wide significance.

Figure 1 - Plots of each marker’s linkage disequilibrium (LD)
with the two causative mutations. The light grey line
represents LD with the causative mutation located at
position 409. The black line represents LD with the
causative mutation located at position 2041.

that these SNP had LD of ~.2 with both causative
mutations, likely artifacts of the data resulting from the
relatively small sample size. The LD with both causative
mutations likely imparted a portion of the epistatic effect
on these SNP, resulting in significant associations with the
simulated traits.

Linkage disequilibrium

SNP

r2
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Conclusions

In the presence of simulated epistasis, the proposed
optimization methodology obtained substantial increases
in power over models accounting for only marginal effects,
demonstrating the effectiveness of machine learning
approaches for the analysis of marker association studies
in which gene interactions may be present. Although the
ACA methods identified more SNP markers that could be
construed as false positives, the use of a more stringent
threshold eliminated the problem without greatly reducing
the advantage of the ACA, in terms of power, when
compared to other methods. The results of this study
provide compelling evidence that methodologies capable
of efficiently modeling gene interactions, such as the
model proposed in this study, could yield superior
performance detecting important SNP markers for complex
traits controlled by interacting loci.
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