Influência de Diferentes Níveis de Ácido Fumárico sobre o Desempenho de Coelhos em Crescimento

Claudio Scapinello¹, Antonio Claudio Furlan¹, Haroldo Garcia de Faria²

RESUMO - Este experimento foi realizado para avaliar o efeito da adição de diferentes níveis de ácido fumárico às rações (0,0; 0,5; 1,0; 1,5; e 2,0%) sobre o desempenho de coelhos em crescimento. Cinquenta coelhos da raça Nova Zelândia Branco, 25 machos e 25 fêmeas, de 40 a 80 dias de idade foram distribuídos em delineamento experimental em blocos casualizados, com cinco tratamentos e 10 repetições com um animal por unidade experimental. A adição do ácido fumárico às rações não influiu no desempenho dos coelhos em nenhum dos níveis estudados, até 70 dias de idade. Considerando o período total do experimento, de 40 a 80 dias de idade, a inclusão de 2,0% de ácido fumárico melhorou a conversão alimentar. As demais características de desempenho e rendimento de carcaça não foram influenciadas pela adição de ácido fumárico. Adição de 2,0% de ácido fumárico à ração de coelhos melhorou a conversão alimentar de coelhos no período de 40 a 80 dias de idade.

Palavras-chave: ácido fumárico, coelhos, desempenho

Effect of Different Levels of Fumaric Acid on the Performance of Growing Rabbits

ABSTRACT - This experiment was conducted to evaluate the effect of the addition of different levels of fumaric acid to diet (.0, .5, 1.0, 1.5, and 2,0%) on the performance of growing rabbits. Fifty rabbits of White New Zealand breed, 25 males and 25 females, from 40 to 80 days of age were alloted to a randomized blocks experimental design with five treatments and ten replicates with one animal per experimental unit. The addition of fumaric acid to the diets did not affect the rabbits performance in anyone of the studied levels up to 70 days of age. Considering the total experimental period from 40 to 80 days of age, the addition of 2.0% fumaric acid improved the feed:gain ratio. The other performance characteristics and carcass yield were not affected by the addition of fumaric acid. The addition of 2.0% of fumaric acid to the rabbit diets improved the feed:gain ratio of the rabbits in the period from 40 to 80 days age.

Key Words: fumaric acid, rabbits, performance

Introdução

A administração de agentes acidificantes às rações, como ácidos orgânicos, apresentam efeitos benéficos, especialmente na saúde do trato digestivo dos animais. Probióticos, cultura de leveduras e ácidos orgânicos têm demonstrado ótimos resultados em numerosas espécies animais, principalmente em animais jovens e adultos em estado de estresse (HOLLISTER et al., 1989).

Os ácidos orgânicos são utilizados em rações de animais recém-desmamados, em função destes apresentarem um sistema digestivo relativamente imaturo e não digerirem os carboidratos e proteínas contidas nos grãos de cereais e de sementes oleaginosas tão eficientemente quanto os carboidratos do leite (lactose) e as proteínas do leite (caseína, lactoalbumina). Isto se deve, em parte, à insuficiente quantidade de secreção

de enzimas digestivas e à inadequada produção de ácido clorídrico pelo estômago (CROMWELL, 1989).

Diminuição do pH no intestino e incremento na atividade da pepsina no estômago podem ser atribuídos aos ácidos orgânicos. Com a redução do pH intestinal, não há proliferação de E. *coli* e outros microorganismos patógenos no estômago e intestino delgado, os quais competem com o animal, pelos nutrientes, além de causarem inúmeros distúrbios no trato gastro intestinal.

Segundo PATTEN e WALDROUP (1988), a adição de ácidos orgânicos na dieta animal melhora a eficiência alimentar e a velocidade de crescimento.

Alguns estudos com coelhos foram realizados no sentido de se demonstrar a eficácia de ácidos orgânicos, seja na melhora de desempenho ou no controle de microorganismos patógenos no trato digestivo (GRAZIOLI et al., 1986; CASTROVILLI, 1991; e GEDEK et al., 1992).

¹ Professor do Departamento de Zootecnia - Universidade Estadual de Maringá.

² Zootecnista do Biotério Central - Universidade Estadual de Maringá.

O objetivo do presente experimento foi estudar a influência de diferentes níveis de ácido fumárico sobre o desempenho de coelhos em crescimento.

Material e Métodos

O experimento foi conduzido no setor de Cunicultura da Fazenda Experimental de Iguatemi, no período de abril a junho de 1996. Foram utilizados 50 coelhos da Raça Nova Zelândia Branco, 25 machos e 25 fêmeas, com 40 dias de idade, alojados em gaiolas de arame galvanizado, providas de bebedouro automático e comedouro semi-automático de chapa galvanizada, localizados em galpão de alvenaria, com cobertura de telha francesa, pé direito de 3,0 metros, piso de alvenaria, paredes laterais de 50 cm em alvenaria e o restante em tela e cortina de plástico para controle de ventos. A temperatura média registrada no período experimental foi de 21°C, sendo que a máxima registrada foi de 22°C e a mínima, 19°C.

Os animais foram distribuídos em delineamento experimental em blocos casualizados com cinco tratamentos e dez repetições por tratamento, com um animal por unidade experimental.

A ração utilizada no experimento foi formulada com base nas exigências do AEC (1987) para coelhos em crescimento, sendo considerada a análise dos ingredientes. Foi formulada uma ração testemunha e quatro rações contendo níveis de ácido fumárico (0,5; 1,0; 1,5; e 2,0%).

O fornecimento das rações e da água foi à vontade. A composição centesimal e química das rações experimentais encontra-se na Tabela 1.

Os coelhos foram pesados no início do experimento com 40 dias de idade, aos 70 dias de idade, e no final do experimento com 80 dias.

O modelo estatístico utilizado foi:

$$Y_{ijk} = \mu + b_1 (A_i - A) + b_2 (A_i - A)^2 + B_j + e_{ijk}$$

em que

Y_{ijk} = valor observado da variável estudada, relativo a cada indivíduo k do bloco j, recebendo o nível i de ácido fumárico na ração;

 μ = constante geral;

b₁ = coeficiente de regressão linear da variável
 y, em função dos níveis i de ácido fumárico às rações,
 para todo i diferente de 1;

 b₂ = coeficiente de regressão quadrático da variável y, em função dos níveis i de ácido fumárico às rações, para todo i diferente de 1;

A_i = nível de adição de ácido fumárico i, sendo

i = 0; 0,5; 1,0; 1,5; e 2,0%;

A = nível médio de adição de ácido fumárico às rações;

 B_i = efeito do bloco j; e

e_{iik} = erro aleatório associado a cada observação.

Com a ração testemunha incluída na análise de variância, utilizou-se o teste Dunnett (P<0,05) para comparação das suas médias com as médias das características estudadas, obtidas com as rações com os diferentes níveis de ácido fumárico.

Resultados e Discussão

O peso vivo dos coelhos aos 70 dias de idade, o consumo de ração diário, o ganho de peso diário e a conversão alimentar de 40 a 70 dias de idade, de acordo com os diferentes níveis de adição de ácido fumárico nas rações, encontram-se na Tabela 2.

Utilizando-se o teste Dunnett, verificou-se que as características estudadas, nos animais que receberam rações contendo níveis de ácido fumárico, não apresentaram diferença em relação às dos animais que receberam a ração testemunha.

A análise de regressão demonstrou não haver efeito da adição de ácido fumárico sobre o peso vivo aos 70 dias de idade, consumo de ração, ganho de peso diário e a conversão alimentar no período de 40 a 70 dias de idade.

Estes resultados diferem dos obtidos por CASTROVILLI (1991), que, trabalhando com coelhos mestiços de peso entre 900 e 1100 g, com misturas de ácidos orgânicos e inorgânicos (ácido fosfórico, ácido acético, ácidoláctico, ácido tártarico e ácido málico), concluiu que a adição de 0,3% destes ácidos à ração provocou melhoras no ganho de peso, na conversão alimentar e nos processos digestivos.

FALKOWSKI e AHERNE (1984), também trabalhando com suínos desmamados, observaram que a adição de 1 ou 2% de ácido fumárico ou cítrico, durante a semana pós desmama, provocou melhoras na conversão alimentar e no ganho médio de peso diário.

A falta de resposta à acidificação das rações pode estar associada a alguns fatores, como o tempo pós-desmama e o tipo e a dosagem do acidificante. O tempo pós-desmama é fator importante, pois a resposta à acidificação ocorre por um período pequeno pós-desmama. GIESTING et al. (1991) afirmam que a resposta à acidificação é mais evidente logo após o declínio do desmame com a idade.

Tabela 1 - Composição percentual das rações experimentais

Table 1 - Percentage composition of the experimental diets

Table 1 - Percentage composition of th	e experiment	al diets			Média	
Ingrediente	Nível de ácido fumárico					
Ingredient	Level fumaric acid				Mean	
	0,5	1,0	1,5	2,0		
Milho	25,37	25,37	25,37	25,37	25,37	
Corn						
Farelo de soja	14,00	14,00	14,00	14,00	14,00	
Soybean meal						
Farelo de trigo	24,00	24,00	24,00	24,00	24,00	
Wheat meal						
Feno de alfafa	28,00	28,00	28,00	28,00	28,00	
Alfafa hay						
Feno de aveia	3,17	3,17	3,17	3,17	3,17	
Oat hay						
Sal	0,40	0,40	0,40	0,40	0,40	
Salt						
P bicácico	0,80	0,80	0,80	0,80	0,80	
Dicalcium P						
Calcário	1,00	1,00	1,00	1,00	1,00	
Limestone	ŕ	•	ŕ	ŕ	ŕ	
Bacitracina de zinco	0,05	0,05	0,05	0,05	0,05	
Zinc bacitracine						
Coccidiostatico	0,08	0,08	0,08	0,08	0,08	
Coccidiostat	Ź	,	Ź	,	,	
DL-Metionina	0,13	0,13	0,13	0,13	0,13	
DL-Metionine	,	,	,	,	,	
Inerte	2,00	1,50	1,00	0,50	-	
Inert	Ź	,	Ź	,		
Mist. Vit+Min ¹	1,00	1,00	1,00	1,00	1,00	
Vit. and min. suplement ¹	Ź	,	Ź	,	,	
Ácido fumárico	-	0,5	1,00	1,50	2,00	
Fumaric acid		,	Ź	,	,	
Valores determinados ²						
Determined values						
Proteína bruta (%)	16,24	17,48	17,21	16,52	17,30	
Crude protein						
ED kcal/kg ³	2600	2600	2600	2600	2600	
DE						
Fibra bruta (%)	13,00	11,00	11,00	11,00	11,23	
Crude fiber						
FDN(%)	18,71	18,81	18,44	18,69	18,45	
NDF						
FDA (%)	17,30	16,04	16,66	16,68	16,46	
ADF	ŕ	ŕ	ŕ	ŕ	ŕ	
P total (%)	0,70	0,70	0,75	0,69	0,74	
Total P	Ź	,	Ź	,	,	
Ca(%)	0,75	0,77	0,84	0,81	0,75	
Lisina (%) ³	0,80	0,80	0,80	0,80	0,80	
Lysine		,	,	ĺ	,	
Met. + Cist. $(\%)^3$	0,60	0,60	0,60	0,60	0,60	

Composição por quilo (*Composition per kg*): Vit A., 300.00 UI; Vit D₃, 50.000 UI; Vit E, 4.000 mg; Vit K₃, 100mg; Vit B₁, 200 mg; Vit B₂, 300 mg; Vit B₆, 100 mg; Vit B₁₂, 1.000 mg; Ácido nicotínico (*Nicotinic ac.*), 1.500 mg; Ácido pantotenico (*Panthotenic ac.*), 1.000 mg; Colina (*Choline*), 35.000 mg; Fe, 4.000 mg; Cu, 600 mg; Co, 100 mg; Mn, 4.300 mg; Zn, 6.000 mg; I, 32 mg; Se, 8 mg; Met, (*Meth*) 60.000 mg; Promotor de crescimento (*Growth promoter*), 1.500 mg: Coccidiostatico (*Coccidiostat*), 12.500 mg: Antioxidante (*Antioxidant*) 10.000 mg.

^{1.500} mg; Coccidiostatico (*Coccidiostat*), 12.500 mg; Antioxidante (*Antioxidant*) 10.000 mg.

Análise realizada no Laboratório de Nutrição Animal do Departamento de Zootecnia da Universidade Estadual de Maringá

³De acordo com a composição dos alimentos e das tabelas.

² Analysis carried out in Animal Nutrition Lab of Animal Science Departament of State University of Maringá.

³According to the tables and feed composition.

Tabela 2 - Média de PV aos 70 dias, ganho de peso diário, consumo de ração diário e conversão alimentar de coelhos de 40 a 70 dias de idade, de acordo com diferentes níveis de adição de ácido fumárico nas rações

Table 2 - Mean of LW, daily weigt gain, daily diet intake and feed:gain ratio of rabbits from 40 to 70 days age according to different levels of fumaric acid addition to the diets

Sexo	Test. Nível de ácido fumárico						
Sex	Control		Level fumaric acid				
		0,5	1,0	1,5	2,0		
		P	V aos 70 dias (g)			
			LW at 70 days				
Macho	2115	2234	2167	2132	2374	2204	
Male	2101	2172	2006	1050	2124	2100	
Fêmea	2181	2172	2086	1979	2124	2108	
Female	2148	2203	2110	2056	2240	2156	
Média <i>Mean</i>	2148	2203	2118	2056	2249	2156	
Meun		Gan	ho de peso diári	io (g)			
			Daily weight gai				
Macho	36	40	38	37	45	39	
Male							
Fêmea	39	38	35	32	37	36	
Female							
Média	38	39	37	35	41	38	
Mean			1 ~ 1:				
			mo de ração di				
Macho	126	127	Daily feed intake 134	120	129	127	
Male	120	127	134	120	129	127	
Fêmea	125	126	124	128	128	126	
Female	120	120	12.	120	120	120	
Média	126	126	129	124	129	127	
Mean							
		Co	onversão alimen	ıtar			
			Feed:gain ratio				
Macho	3,62	3,17	3,61	3,37	2,93	3,34	
Male	2.22	2.27	2.52	5.27	106	2.02	
Fêmea	3,22	3,27	3,52	5,37	4,26	3,92	
Female Mádia	2.42	2 22	256	427	2.50	2.62	
Média <i>Mean</i>	3,42	3,22	3,56	4,37	3,59	3,63	
weun							

A capacidade acidificante é identificada pela constante de dissociação do ácido; assim, a constante de dissociação esta relacionada com o tipo e a dosagem do ácido. GARDENER (1972) afirma que a constante de dissociação e a solubilidade em água dos diferentes ácidos podem ser fatores que influem nas resposta à acidificação.

O peso vivo dos coelhos aos 80 dias, o ganho de diário, o consumo de ração diário e a conversão alimentar de coelhos de 40 a 80 dias de idade, de acordo com diferentes níveis de inclusão de ácido fumárico às rações, encontram-se na Tabela 3.

O teste Dunnett demonstrou que apenas a conversão alimentar dos animais que receberam ração contendo 2% de ácido fumárico foi melhor (P<0,05) em relação à dos animais que receberam a ração testemunha.

A análise de regressão demonstrou efeito

quadrático (P<0,05) sobre a conversão alimentar no período de 40 a 80 dias de idade.

Estes resultados estão de acordo com os encontrados por EDMONDS et al. (1985), que, trabalhando com suínos mestiços desmamados de 28 a 32 dias de idade, demostraram que a adição de 1,5% de ácido fumárico ou cítrico nas rações, durante a semana pós-desmama, melhorou a conversão alimentar.

FALKOWSKI et al. (1985) concluíram que a adição de 1 ou 2% de ácido fumárico na dieta de suínos da raça Large White desmamados com 42 dias de idade provocou melhora na conversão alimentar.

O peso e o rendimento de carcaça de coelhos abatidos aos 80 dias de idade, alimentados com ração contendo níveis de ácido fumárico, encontram-se na Tabela 4.

O teste Dunnett indica que o peso e o rendimento de carcaça de coelhos que receberam rações contendo ácido fumárico foram semelhantes ao Rev. bras. zootec. 789

Tabela 3 - Média de PV aos 80 dias, ganho de peso diário, consumo de ração diário e conversão alimentar de coelhos de 40 a 80 dias de idade, de acordo com diferentes níveis de adição de ácido fumárico nas rações

Table 3 - Mean of LW, daily weigt gain, daily feed intake and feed:gain ratio of rabbits from 40 to 80 days age according

to the different levels of fumaric acid addition to the diets

Sexo	Test.		Média			
Sex	Control		Nível de ácido fumárico Level fumaric acid			
		0,5	1,0	1,5	2,0	
		P	V aos 80 dias (ş	g)		
			LW at 80 days			
Macho	2380	2546	2525	2466	2675	2518
Male	2380	2340	2525	2400	2073	2318
Fêmea	2478	2478	2447	2528	2683	2524
Female	2470	2470	2447	2320	2003	2324
Média	2429	2512	2486	2497	2679	2521
Mean	>		2.00	,,	2079	
		Ganho	de peso diário	(g)		
			aily weight gain	(C)		
Macho	34	38	37	36	41	37
Male						
Fêmea	37	36	36	38	41	38
Female	2.5					
Média	36	37	37	37	41	37
Mean		Commun		mi a (a)		
			no de ração diá <i>ly feed intake</i>	110(g)		
Macho	131	137	iy jeea intake 144	139	138	138
Male	131	137	144	139	136	136
Fêmea	132	132	133	151	140	138
Female	132	132	133	131	110	150
Média	132	135	139	145	139	138
Mean						
		Conve	rsão alimentar			
			ed:gain ratio			
Macho	3,92	3,61	3,86	3,87	3,36	3,73
Male						
Fêmea	3,66	3,63	3,70	4,00	3,42	3,68
Female	2.70	2.60	2.70	2.02	2 204	2.70
Média ¹	3,79	3,60	3,78	3,93	3,39*	3,70
Mean						

¹ Efeito quadrático (P<0,05) (Quadratic effect) \hat{y} = 2,6958 + 0,0018263x - 0,00000069X² (R² = 0,84).

peso e ao rendimento de carcaça dos animais que receberam ração testemunha.

A análise de regressão não demonstrou efeito com a adição de ácido fumárico sobre o peso e o rendimento de carcaça de coelhos abatidos aos 80 dias de idade.

Estes resultados são semelhantes aos obtidos por SCAPINELLO et al. (1995), que obtiveram rendimento de carcaça aos 90 dias de idade de 55,56%.

Conclusões

Considerando o período inicial do experimento, 40 a 70 dias de idade, a adição de ácido fumárico não se mostrou eficiente.

No período total do experimento, a adição de 2% de ácido fumárico provocou melhora na conversão alimentar, porém mais estudos devem ser realizados no sentido de se verificar a viabilidade de uso em rações para coelhos.

¹ Quadratic effect (P< 05) \hat{Y} = 2,6958 + 0,0018263 \hat{x} - 0,00000069 \hat{X} ² (R² = 0,84).

^{*} Difere da testemunha pelo teste Dunnett (P<0,05).

^{*} Differ from control by Dunnett test (P<.05).

Tabela 4 - Peso da carcaça e rendimento de carcaça de coelhos abatidos aos 80 dias de idade, de acordo com os diferentes níveis de adição de ácido fumárico às rações

Table 4 - Carcass weight and carcass yield of rabbits slaughtered at 80 days of age according to the different levels of fumaric acid addition to the diets

Sexo	Test.		Nível de ácido fumárico			
Sex	Control	Level fumaric acid				Mean
		0,5	1,0	1,5	2,0	
		Pe	eso de carcaça ((g)		
			Carcass weight			
Macho	1284	1370	1352	1340	1431	1355
Male						
Fêmea	1226	1338	1300	1360	1434	1352
Female						
Média	1255	1354	1326	1350	1433	1353
Mean						
		Rendi	mento de carca	ça (%)		
			Carcass yield			
Macho	54	54	54	54	53	54
Male						
Fêmea	53	54	53	54	53	54
Female						
Média	54	54	53	54	53	54
Mean						

Referências Bibliográficas

- AEC. 1987. Recomendações para nutrição animal, 5. ed, RHÔNE-POULENC. 86p.
- CASTROVILLI, C. 1991. Acidificazione del mangine per conigli all'engrasso. *Rivista di Coniglicoltura*, 28(8):31-34.
- CROMWELL, G.L. 1989. Nuevos aditivos alimenticios. *Industria Porcina*, 9(6).
- EDMONDS, S.M., IZQUIERDO, A.O., BAKER, H.D. 1985. Feeds additives studies with newly weaned pigs: efficacy of supplemental copper, antibiotics and organic acids. *J Anim. Sci.*, 60(2):462-469.
- FALKOWSKI, F.J., AHERNE, X.F. 1984. Fumaric and citric acid as feed additives in starter pig nutrition. *J. Anim. Sci.*, 58(4):935-938.
- FALKOWSKI, F.J., MILEWSKA, W., FALKOLWSKA, A. et al. 1985. Results of rearing and some blood indices of piglets fed on feed concetrates containing fumaric acids or probiotic lacto sace. *Acta Academical Agriculture ac. Techinical Olstenensis Zootechinica*. 20(43):33-41.
- GARDNER, R. 1972. Acidulants in food processing. In: CRC Handbook of food additives. Ed Furia TE, Cleveland, OH.
- GEDEK, B., ROTH, F.X., KIRCHFESSNER, M. et al. 1992. Influence of fumaric acid, hidrochloric acid, sodium formate, tylosin and toyocerin on the microflora in different segments of gastrointestinal tract. J. Physil. Anim. Nut., 68(4):209-217.

- GIESTING, D.W., EASTER, R.A. 1985. Response of starter pigs to supplementation of corn-soybean meal diets with organic acids. *J. Anim. Sci.*, 60(5):1288-1294.
- GRAZIOLLI,O., FORNACIARI, S.D., FORNACIARI, I. et al. 1986. L'acidificazione dell'acqua de bevanda nella prevenzeone della patologia enterica del coniglio alle vomento intensivo. *Revista di Coniglicoltura*, 23(9):65-68.
- HOLLISTER, G.A., CHEEK, R.P., ROBINSON, L.K. et al. 1989. Effects of water administred probiotics and acidifers of growth, feed conversion and enterites mortality of wealing rabbits. *J. Applied Rabbit Res.*, 12(4):143-145.
- PATTEN, J.D., WALDROUP, P.W. 1988. Use of organic acids in broiler diets. *Poult. Sci.*, 67(6):1178-1182.
- SCAPINELLO, C., TAFURI, M.L., ROSTAGNO, H.S. et al. 1995. Níveis de proteína bruta e de energia digestível em dietas para coelhos da raça Nova Zelândia Branco em crescimento. *R. Soc. Bras. Zootec.*, 24(6):981-991.

Recebido em: 12/11/97 **Aceito em**: 22/01/99