
 
 
 
 
 
 
 

   
 

                                                                                 ISSN 0104-6632                         
Printed in Brazil 

www.abeq.org.br/bjche 
 
            
    Vol. 26,  No. 01,  pp. 99 - 111,  January - March,  2009 

 
*To whom correspondence should be addressed 
 
 
 
 

Brazilian Journal 
of Chemical 
Engineering 

 
 

INTELLIGENT TECHNIQUES FOR SYSTEM 
IDENTIFICATION AND CONTROLLER  

TUNING IN pH PROCESS 
 

K. Valarmathi1*, D. Devaraj1 and T. K. Radhakrishnan2 

 
1Department of Electrical and Electronics Engineering, Arulmigu Kalasalingam  

College of Engineering, Tamilnadu, India.  
E-mail: krvalarmathi@yahoo.co.in, E-mail: deva230@yahoo.com 

2 Department of Chemical Engineering, National Institute of Technology,  
Trichy, Tamilnadu, India. E-mail: radha@nitt.edu 

 
(Submitted: February 1, 2007 ; Revised: March 4, 2008 ; Accepted: April 21, 2008) 

 
Abstract - This paper presents an application of Artificial Neural Network (ANN) and Genetic Algorithm 
(GA) for system identification for controller tuning in a pH process. In this paper, the ANN based approach is 
applied to estimate the system parameters. Once the variations in parameters are identified frequently, GA 
optimally tunes the controller. The simulation results show that the proposed intelligent technique is effective 
in identifying the parameters and has resulted in a minimum value of the Integral Square Error, peak 
overshoot and minimum settling time as compared to conventional methods. The experimental results show 
that their performance is superior and it matches favorably with the simulation results. 
Keywords: System Identification; PID controller; Genetic Algorithm; Artificial Neural Network; pH process. 

 
 
 

INTRODUCTION 
 

The pH control finds wide applications in process 
industries. The pH process is a non-linear dynamic 
system and an extremely complex and challenging 
control problem in process industries (Kulkarni and 
Deshpande, 1991). The extensive applications of the 
pH process in industry merit the study of the control 
of these processes. The Proportional Integral 
Derivative (PID) controller has been widely used in 
the pH process for many years. Tuning of PID 
controller parameters is necessary for the satisfactory 
operation of the process. Traditionally, the PID 
controller parameters are evaluated using Ziegler-
Nichols (ZN) (Astrom and Hagglund, 2001) and 
Cohen Coon (CC) (Schei, 1994; Shinskey, 1996) 
methods. In both these methods, the parameters of 
the controller are obtained for an operating point 
where the model can be considered linear. The 
dynamic characteristics of most of the industrial 

processes exhibit nonlinear behavior and vary with 
time. This implies that there is sub-optimal tuning 
when a process operates outside the validity zone of 
the model. Internal Model Control (IMC) (Morari 
and Zufiriou, 1987) overcomes the above said 
problem, but its design calculations could be 
complicated for a higher order process.  

In general, plant parameters change due to ageing 
of the plant or changes in the load. Also, the process 
non-linearities and time dependent characteristics 
cause a significant change in the dynamic parameters 
of the process, which necessitates identification of 
the process model under different operating 
conditions so that controller design can be effected 
(Dionisio and Pinto, 2005). Here, the plant model is 
identified periodically and the changes in its 
dynamic characteristics are observed. This offers a 
great advantage over the conventional controller 
tuning methods, which use the plant model at the 
nominal operating conditions. In conventional 
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identification methods, a model structure is selected 
and the parameters of the model are calculated by 
optimizing an objective function using an 
optimization technique. A variety of model 
structures are available to assist in modeling a 
system. The various models are categorized into 
linear and nonlinear models. The generally used 
linear models are Auto Regressive with eXogenous 
inputs (ARX), Auto Regressive with Moving 
Average with eXogenous inputs (ARMAX) and 
Output Error (OE) models. The nonlinear models 
include Hammerstein, Weiner model and Nonlinear 
Auto Regressive with Moving Average with 
eXogenous inputs (NARMAX). The conventional 
parameter identification methods namely least 
squares (Rad and Lo, 1997) and maximum likelihood 
method (Ljung, 1999) often fail in the search for a 
global optimum in the search space. Further, they 
require a large set of input/output data from the 
system. 

Intelligent techniques overcome the difficulties 
and limitations encountered by the conventional 
approaches for system identification and controller 
tuning. These techniques explore the potential for 
creating intelligent systems by modeling the 
computational process of biological organisms. The 
constituents of this technique include Artificial 
Neural Network (Wasserman, 1989), Fuzzy Logic 
(Ross, 1995) and Genetic Algorithm (Goldberg, 
1989). Narendra and Parthasarathy (1990) proposed 
ANN to identify the complex, nonlinear, 
multidimensional model. Genetic algorithm (Passino, 
1996) is a general-purpose optimization algorithm 
based on the mechanics of natural selection and 
genetics. Kristinsson and Dumont (1992) proposed 
GA to identify plants with either minimum phase or 
non-minimum phase characteristic and un-modeled 
dynamics. Zibo and Naghdt (1995) applied genetic 
algorithms to identify the parameters of the Multi 
Input and Multi Output (MIMO) system that is 
assumed to have an Auto Regressive with Moving 
Average Exogenous (ARMAX) structure.  

Lu and Basar (1995) presented the standard GA-
based estimation scheme in a neural network 
framework, which ensure a good approximation for 
the system nonlinearity. Dangprasert and 
Avatchanakorn (1995) employed GA for on-line 
parameter identification and controller tuning in load 
frequency control of a power system. Vlachos et al. 
(1999) proposed a GA-based design strategy for 
offline PID controller tuning in linear systems. 
Mwembeshi and Kent (2004) proposed a GA-based 
Internal Model Control (IMC) strategy for a pH 
process. In this paper, an ANN-based approach has 

been applied to estimate the changes in the 
parameters of the system and a GA-based approach 
is used to identify the optimal PID controller 
parameters in a pH process. 
 
 

pH PROCESS 
 

The pH is the measurement of the acidity or 
alkalinity of a solution. The pH process consists of 
neutralization of two monoprotic reagents of a weak 
acid (acetic acid) and a strong base (sodium 
hydroxide). The method implements mass balances 
for components called reaction invariants of the 
Continuous Stirred Tank Reactor (CSTR) solution. 
As shown in Figure 1, the CSTR has two inlet 
streams: the influent process stream and the titrating 
stream, with one effluent stream at the output. The 
model of the pH neutralization process used in this 
work follows that proposed by McAvoy et al. (1972) 
and is given below.  
 

 
Figure 1: pH neutralization process 

 
Assumption of perfect mixing is general in the 

modeling of pH processes. Material balances in the 
reactor can be given by 
 

( )dxaV F C F F Xa a a b adt
= − +                   (1)   

 

( )dxbV F C F F Xb b a b bdt
= − +                   (2) 

 
where aF is the flow rate of the influent stream, bF is 
the flow rate of the titrating stream, aC is the 
concentration of the influent stream, bC is the 
concentration of the titrating stream, ax is the 
concentration of the acid solution, bx  is the 
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concentration of the basic solution and V is the 
volume of the mixture in the CSTR. The above 
mathematical equations describe how the 
concentration of the acidic and basic components, 

ax and bx  change dynamically with time subject to 
the input streams, aF and bF . The reaction between 
HAC and NaOH: 
 

2H O     H OH+ ++                          (3) 

 
HAC     H AC+ −+                              (4) 
 
NaOH     Na OH+ −+                      (5) 
 

Invoking the electroneutrality condition, the sum 
of the ionic charges in the solution must be zero.   
 
[Na ] [H ] [AC ] [OH ]+ + − −+ = +                        (6) 
 

The [X] denotes the concentration of the X ion. 
The equilibrium relations also hold for water and 
acetic acid 
 

[ ]a
[AC ][H ]

K
HAC

− +
=                  (7) 

 
where aX [HAC] [AC ]−= + and bX [Na ]+= . Use of 
Equations (6) and (7) gives: 
 

3 2
a b

a b a w w a

[H ] [H ] {K X }

[H ]{K (X X ) K } K K 0

+ +

+

+ + +

− − − =
      (8) 

 
Let 10pH log [H ]+= −  and a 10 apK log K= − . The 

titration curve is given by   
 

14pH pH a
b pKa pH

XX 10 10 0
1 10

−− −
−+ − − =

+
              (9)         

 
where aK and wK is the dissociation constant of 

acetic acid at 5οC ( a
5K 1.778x10−=  and 

14K 10w
−= ). Eq.(9) is the strictly static nonlinear 

relation between the states aX , bX and the output pH 
variable, which manifests itself as the familiar 
titration curve of the neutralization process.  
 
 

STRATEGY FOR SYSTEM IDENTIFICATION 
AND CONTROLLER TUNING  

 
System identification is the type of experimental 

modeling performed for the controller design, when 
sufficient theoretical modeling is not available. The 
proposed strategy for designing the self-tuning 
schemes is to estimate the process parameters and to 
adjust the controller settings based on current 
parameter estimates. The block diagram 
representation of parameter estimation and controller 
tuning is shown in Figure 2.  

 

 
Figure 2: ANN based Parameter Estimation and GA 

based Controller Tuning 
 

Generally the parameter estimation is done using 
the Least Square (LS) technique. This LS estimator 
looks for the optimum by using the gradient 
technique. System identification is the prerequisite 
for analyzing the nonlinear process. In this paper, 
ANN is used for system identification. First, a 
suitable model of the system is selected and ANN is 
applied to identify the parameters of the selected 
model. As the plant model is identified periodically, 
the changes in its dynamic characteristics can be 
observed. Generally, for the parameter estimation, 
the system (G) is excited with a step function as an 
input, which is shown in Figure 3. 

In this figure, G is an unknown system and H is 
an assumed model. The system parameters can be 
obtained by minimizing the error function e(k), 
where ŷ(k)  is the predicted value of output based on 
unknown parameters and y(k) is the actual output. 
 

 
Figure 3: Structure of parameter estimation 
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The next step after system identification is the 
tuning of the PI controller, whose transfer function is 
given by 
 

i
c p

KG (s) K
s

= +                                      (10) 

 
where pK  is proportional gain and iK  is integral 
gain. The performance of the closed loop system is 
defined by the performance criteria of Integral 
Square Error for controller (ISE(cont)), Over Shoot 
(OS) and Settling Time (ST) of the transient 
response.  

The Integral Square Error squares the magnitude 
of error with respect to time.  The overshoot is the 
difference between the maximum value of the output 
response and the steady state value and the settling 
time is the time for the response to stay within the 
specified percentage of its final value. In this work, 
the problem of controller tuning is formulated as an 
optimization problem. The objective function of the 
controller is to minimize the integral square error, 
peak overshoot, rise time and settling time of the 
transient response. Mathematically, this is written as  
 

1 ISE(cont) 2 OS 3 STF w F w F w F= + +                   (11) 
 
where 1w , 2w  and 3w are the weight factors for the 
integral square error, overshoot and settling time 
respectively. The weight factors are varied between 0 
and 1 to get the optimal system response. Gradient-
based conventional methods are not good enough to 
solve this problem and a global optimization 
technique like genetic algorithm is well suited for 
this kind of problems. 
 
 

DEVELOPMENT OF ANN FOR SYSTEM 
IDENTIFICATION 

 
System Identification allows building mathematical 
models of a dynamic system based on measured 
data. It is done by adjusting parameters within a 
given model until its output coincides as much as 
possible with the measured output. The assessment 
of model quality is typically based on how the 
models perform when they attempt to reproduce the 
measured data.  
 In the identification framework, the pH process 
can be represented in discrete input-output form by 
the identification structure: 

a

k b k

ˆŷ[k] g[y(k 1),..., y(k n ),

u(k n ),...u(k n n 1)]

= − −

− − − +
                (12) 

 
where ŷ[k] is the one-step ahead prediction of the 
output, ĝ  is the neural network model, u(·) are 
delayed inputs to the system and na, nb, nk are system 
order and delay, respectively. This is essentially a 
one-step ahead prediction structure in past inputs and 
outputs to predict the current output. The regressor 
structure for this network is given by: 
 

a

k b k

ˆ ˆ(k) [y(k 1),..., y(k n ),

u(k n ),...,u(k n n 1)]

ϕ = − −

− − − −
                     (13) 

 
Depending on the choice of the regression vector, 

different model structures emerge. At every instant, 
the predicted output is parameterized in terms of 
network weights Θ by: 
 
y(k, ) g( (k), )Θ = ϕ Θ                                    (14) 
 

Artificial Neural Network (ANN) is used in this 
work for system identification. The data required to 
develop the ANN model for system identification are 
collected by conducting experiments in the 
laboratory grade pH process and through MATLAB 
simulation. The collected data is divided into training 
and test data. The sampling instant k is equivalent to 
t and the neural network structure used here is shown 
in Figure 4. 

 
Figure 4: Architecture of the neural network 

 
Network training is first carried out offline in 

batch form using the Levenberg-Marquadt 
optimization. The algorithm essentially seeks to 
minimize the prediction error over the training data 
set. The input and output data sets used for training 
are obtained by adding a random generator with step 
input and then applying this to the trained to 
minimize the cost function 
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N
T

k 1

1 ˆ ˆJ [y(k) y(k)] [y(k) y(k)]
2N =

= − −∑                   (15) 

 
where  
 
e(k) =  ˆ[y(k) y(k)]−                                             (16) 
 

Similarly, testing data are generated through the 
experimental setup and MATLAB simulation to 
minimize the cost function.  
 
 

GA IMPLEMENTATION 
 

GA has become increasingly popular in recent 
years in science and engineering disciplines. There 
are three important issues to be addressed while 
applying GA to solve an optimization problem: 
a) Problem Representation  
b) Formation of the fitness function and 
c) Genetic operators 
 
a) Problem Representation 
 

While solving an optimization problem using GA, 
each individual in the population represents a 
candidate solution. For tuning a PID controller, the 
elements of the solution consist of proportional gain 
( pK ) and integral gain ( iK ). In this work, binary 
strings are used to encode the variables. A typical 
chromosome in the GA population for PID tuning is 
given below: 
 

p iK K
00001100 00001101  

 
b) Formation of Fitness Function 
 

The next important consideration is the formation 
of the fitness function. The performance of each 
individual in the population is evaluated according to 
its ‘fitness’, which is defined as the non-negative 
figure of merit to be maximized. It is associated 
directly with the objective function value. The values 
of the Integral Square Error (ISE), settling time (st) 
and peak overshoot (po) in Eq. (11) are calculated 
from the step response of the simulated system. 
These values are used to calculate the fitness 
function of the individuals. 

During the GA-run, it searches for a solution with 
maximum fitness function value. Hence, the

minimization objective function given by (11) is 
transformed to a fitness function (f) to be maximized 
as, 
 
f = K / F                                       (17) 
 
where K is a large constant. This is used to amplify 
(1/ F), the value of which is usually small, so that the 
fitness value of the chromosome will be in a wider 
range. 
 
c) Genetic Operators    
 

Genetic algorithm is governed by the three 
operators selection, crossover and mutation. The 
selection of individuals to produce successive 
generations plays an important role in GA. 
Reproduction comprises forming a new population, 
usually with the same population size, by selecting 
from members of the current population following a 
particular scheme. The higher the fitness, the more 
likely it is that the chromosomes will be selected for 
next generation. There are several strategies for 
selecting the individuals, e.g., roulette-wheel 
selection, ranking methods and tournament selection. 
In this paper, tournament selection is used to 
generate the new population. In the tournament 
selection the individuals are selected at random from 
the population and the best individual is inserted into 
the new population for further genetic processing. 
This procedure is repeated until the mating pool is 
filled. Tournaments are often held between pairs of 
individuals, although larger tournaments can be held. 
Once the selection process is completed, the 
crossover is applied. The crossover operator is 
mainly responsible for the global search property of 
the GA. Crossover basically combines substructures 
of two parent chromosomes to produce new features, 
with the specified probability. In this paper two-point 
crossover is applied during identification and 
controller tuning. In the two-point crossover, two 
crossover sites are chosen and offspring are created 
by swapping the bits between the chosen crossover 
sites. Figure 5 illustrates the two point cross over 
clearly. The final operator in Genetic Algorithm is 
mutation. The mutation operator is used to inject 
new genetic material into the population. Mutation 
randomly alters a variable with a small probability. 
For binary encoding bitwise mutation is preferred, 
which switches a few randomly chosen bits from 1 to 
0 or 0 to 1 with the mutation probability. The general 
values of crossover and mutation probabilities are in 
the range of 0.6-0.9 and 0.001-0.1 respectively. 
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Figure 5: Two-point crossover 

 
 

RESULTS AND DISCUSSION 
 

This section presents the details of the 
development of a neural network based model for 
system identification and GA-based PI controller 
tuning for the pH process. System identification and 
controller tuning algorithm were evaluated on a 
simulated pH process. Next, the same algorithms 
were applied to a laboratory grade pH process. The 
ANN and GA code were written in MATLAB and 
executed on a PC with Pentium IV processor. The 
design details and the performance of the controller 
are given below. 
 
Simulation Results 
 

The pH process was simulated based on the 
Equations (1) and (2) using MATLAB Simulink. The 
parameters of the pH process are pH model 
simulated using MATLAB Simulink is shown in 
Figure 6. Step signal is used as the input to the 
system. Uniformly distributed noise is added to the 
step input through a uniform random generator. This 
is done to cause nonlinear distortion due to the dead 
zone nonlinearity in the pH process.  

Initially, 5000 samples were generated from 
MATLAB simulation. 2000 samples are taken as 
training data set and 2800 samples are considered as 

testing data set. Figure 7 and Figure 8 show the training 
and testing data generated using MATLAB Simulink.  

Next, the different linear model structures are 
generated with minimization of Mean Square Error.  
Figure 9 shows the ARX structure of [na nb nk] = [2 2 
1], where na is equal to the number of poles and nb is 
the number of zeros, while nk is the pure time-delay 
in the system. Similarly, Figure 10 and Figure 11 
show the ARMAX structure of [na nb nc nk] = [6 6 6 
1] and OE structure of [nb nc nf] = [2 2 1], which 
show the minimum of MSE. The conventional 
identification techniques cannot identify the full 
dynamics of the non-linear pH process. To avoid this 
problem, neural network based system identification 
is applied and the results are obtained. Figures 12-14 
shows the performance of the NARX model, 
structure of [na nb nk] = [3 3 1]. Figure 12 illustrates 
the response of prediction error and Figure 13 
illustrates the auto-correlation and cross-correlation 
response of NARX structure. Figure 14 represents 
the fitness function of MSE, which is 3.6 x 10-5. 

Different structure models were checked for 
Mean Square Error and the results are shown in 
Table.2. From the Table, it is found that the NARX 
model structure of [3 3 1] gives the minimum MSE 
compared to other structures. Similarly, NARX 
structure of [6 6 1] of experimental data gives the 
minimum MSE compared to other structures. 

 
 

 
Figure 6: Simulation of pH model 
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Table 1: Model parameters for the pH process 
 

 Symbols  Description  Value 
V   Volume of the Continuous Stirred Tank Reactor  7.4 L 

aF   Flow rate of the influent stream  0.24 L/min 
bF   Flow rate of the titrating stream 0-  0-0.8 L/min 
aC   Concentration of the influent stream  0.2 mol/L 
bC    Concentration of the titrating stream  0.1 mol/L 

 

 
    Figure 7: Training data from MATLAB Simulink 

 
Figure 8: Testing data from MATLAB Simulink 

 

 
Figure 9: Validation of the ARX  
structure for simulated pH process 

 
Figure 10: Validation of the ARMAX  

structure for simulated pH process 
 

 
Figure 11: Validation of  the  OE  
structure for simulated pH process 

 

 
Figure 12: Performance of Prediction error of 
Simulated pH process using NARX structure 
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Figure 13: Auto-correlation and cross-correlation 
function for simulated data using NARX structure 

 
 
 
 
 

 
Figure 14: Fitness curve for NARX structure 

 

 
Table 2: Comparison of the Models 

 
Model na nb nc Nf nk MSE for 

Simulated data 
MSE for Real 

data 
1 1 - - 1 0.0167 0.0432 
2 2 - - 1 0.0165 0.043 
3 3 - - 1 0.0165 0.0432 
4 4 - - 1 0.0166 0.042 

ARX 

6 6 - - 1 0.0166 0.039 
1 1 1 - 1 0.017 0.043 
2 2 2 - 1 0.017 0.039 
3 3 3 - 1 0.0174 0.04 
4 4 4 - 1 0.0174 0.039 

ARMAX 

6 6 6 - 1 0.016 0.04 
- 1 1 1 - 0.061 0.169 
- 2 2 1 - 0.055 0.17 
- 3 3 1 - 0.059 0.18 
- 4 4 1 - 0.06 0.182 

OE 

- 6 6 1 - 0.055 0.183 
1 1 - - 1 2.2*10-4 1.74*10-2 
2 2 - - 1 5.77*10-5 9.42*10-3 
3 3 - - 1 3.63*10-5 9.39*10-3 
4 4 - - 1 2.30*10-4 9.35*10-3 

NNARX 

6 6 - - 1 5.12*10-4 9.02*10-3 
1 1 1 - 1 3.92*10-4 1.8*10-2 
2 2 2 - 1 1.19*10-3 1.51*10-2 
3 3 3 - 1 3.05*10-3 1.29*10-2 
4 4 4 - 1 1.18*10-3 1.17*10-2 

NNARMAX 

6 6 6 - 1 2.19*10-3 1.04*10-2 
From the analysis of system identification, NARX structure is [3 3 1] and the transfer  
 

function is
2

2
0.2411Z 0.0325Z 0.08908

1 0.7814Z 0.2266Z 0.3397
+ +

− + −
.  

 
Next, the GA-based algorithm is applied to find 

the optimal parameters of the controller. The 
objective function in this case is minimization of 
error, peak overshoot, rise time and settle time. The 
optimization variables are represented as binary 

numbers in the GA population. The initial population 
is randomly generated between the variable’s lower 
and upper limits. Tournament selection is applied to 
select the members of the new population. The 
performance of GA for various values of crossover 
and mutation probabilities in the range of 0.6-1.0 and 
0.001-0.1 respectively was evaluated. The best 
results of the GA are obtained with the following 
control parameters. 
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Number of generations = 20 
Population size = 10 
Crossover probability = 0.8 
Mutation probability = 0.08 
The GA took 12s to complete the 20 generations. 

After 20 generations it is found that all the 
individuals have reached almost the same fitness 
value. This shows that GA has reached the optimal 
solution. Figure 15 and Figure 16 represent the feed 
flow rate of acid and pH response for the set point 7. 
Figure 17 shows the convergence of the proposed 
GA algorithm. The variation of the fitness during the 
GA run is for the best case and shows the generation 
of optimal variables. It can be seen that the fitness 
value increases rapidly in the first 2 generations of 
the GA. During this stage, the GA concentrates 
mainly on finding feasible solutions to the problem. 
Then the value increases slowly and settles down 
near the optimum value with most of the individuals 
in the population reaching that point. The 

performance of the various control variables in the 
pH process obtained through the proposed GA, 
compared with the performance results obtained by 
proposed GA and GA tuning methods for multi-
stages, is shown in Figure 18.  

It is clear that the proposed GA tuning produces 
better controller performance for the pH process, 
because it occupies less computation time to reach 
the optimal solution. For comparison, the parameters 
of the controller tuned using Ziegler-Nichols and 
Internal Model Control (IMC) methods are shown. 
The feed flow rate and performance of the controller 
using ZN and IMC for the set point of 7 are shown in 
Figure 19 and 20. It shows that the control 
performance using ZN and KT has oscillatory 
response and more peak overshoot and rise time is 
high at the set point 9. Overall the performance of 
the controller is found to be good when it is tuned 
with the proposed GA. 

 

 
Figure 15: Feed flow rate of pH process using  

GA after identification of process for set point 7 

 
Figure 16: pH value of pH process using  
GA after identification of process for sp 7 

 
Figure 17: Convergence of GA after  

Identification of pH process 

 
Figure 18: Simulation of GA after identification  

and GA tuned PI for set point tracking 
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Figure 19: Feed flow rate of pH process using  

Kappa Tau and ZN tuning methods 

 
Figure 20: Performance of pH process using  

Kappa Tau and ZN tuning methods 
 
Experimental Results 

 
In the experimental setup, acetic acid is fed to the 

reactor with constant flow rate and sodium 
hydroxide is introduced to the reactor through the 
pump. Figure 21 shows the pH process experimental 
setup. In the real time implementation, the dSPACE 
processor can be easily interfaced with Simulink and 
automatically converts the Simulink model into a 
targeted C code and downloads it to the designated 
hardware (dSPACE DS1102) via RTI. To read or 
write the internal variables of the control system, 
dSPACE Control Desk provides a user-friendly 
Graphic User Interface (GUI) environment that 
enables the user to observe vital data in the system. 

From the laboratory scale pH process the feed 
flow rate and pH values were generated and checked 
with different model structures. Similar to simulated 
data 5000 data were generated. Figures 22 and 23 
show the response of training and testing data 
generated experimentally. Figures 24 and 25 show 

the ARX, ARMAX structures of the real data set, 
which matches favorably with the simulated work. 

Similarly, Figures 26 and 27 show the response of 
the NARX structure [6 6 1] using the real dataset.  
Figure 26 illustrates the response of prediction error 
and Figure 27 shows the histogram of prediction 
error and parameter values. Figure 28 illustrates the 
auto- correlation and cross-correlation response of 
the NARX structure and Figure 29 represents the 
fitness function of MSE, which is 9.02 x 10-3. 

In the real time implementation, the parameters of the 
PI controller are fed to the pH process via MATLAB 
Simulink Real-Time Workshop (RTW), Real-Time 
Interface (RTI) and dSPACE DS1102 floating-point 
processor. Figures 30 and 32 represent the behavior of 
the base feed flow rate and pH response using 
conventional PI controller and show that the control 
performance is oscillatory. Figures 31 and 33 show the 
base flow rate and pH value using the GA tuned 
controller. From the figures, the GA tuned PI controller 
after identification has the minimum MSE of 0.1817. 

 

 
 

Figure 21: Experimental setup 
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Figure 22: Training data from  

Experimental Work 

 
Figure 23: Testing data from  

Experimental Work 
 
 

 
Figure 24: Validation of the ARX  
structure for Experimental work 

 
Figure 25: Validation of the ARMAX  
structure for Experimental pH process  

 
 

 
Figure 26: Performance of Prediction error  

of experimental pH process using  
NARX structure 

 
Figure 27: Histogram of prediction errors and 
linearized network parameters of experimental  

data using NARX structure 
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Figure 28: Auto-correlation and cross-correlation 

function for experimental data using NARX structure 

 
Figure 29: Fitness curve for real data using  

NARX structure 
 

 
Figure 30: pH Response of conventional  

PI controller (MSE 17.01) 
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Figure 31: pH Response of PI controller  

using GA (MSE 0.1817) 
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Figure 32: Response of base flow rate  

using conventional PI controller 
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Figure 33: Response of base flow rate using  
GA tuned PI controller after identification 

 
 

CONCLUSION 
 

The pH control is quite difficult due to 
nonlinearity of the neutralization process. This 
process requires good control to overcome the load 
disturbances. This paper has demonstrated how a 

Genetic Algorithm based pH process can be used for 
optimum control by parameter estimation of ANN. 
The complete methodology is presented, focusing on 
each part of the adaptive system. The simulation 
results show the capability of the ANN system to 
identify and the GA system to adapt the controller to 
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dynamic plant characteristic changes in the pH 
process. Experimental results show that the proposed 
controller is able to tune the controller quickly and 
reduce the tracking error to zero, similar to 
simulation results. 
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