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Abstract - This study presents a FDI strategy for nonlinear dynamic systems. It shows a methodology of 
tackling the fault detection and isolation issue by combining a technique based on the residuals signal and a 
technique using the multiple Kalman filters. The usefulness of this combination is the on-line implementation 
of the set of models, which represents the normal mode and all dynamics of faults, if the statistical decision 
threshold on the residuals exceeds a fixed value. In other cases, one Extended Kalman Filter (EKF) is enough 
to estimate the process state. After describing the system architecture and the proposed FDI methodology, we 
present a realistic application in order to show the technique's potential. An algorithm is described and applied 
to a chemical process like a perfectly stirred chemical reactor functioning in a semi-batch mode. The chemical 
reaction used is an oxido reduction one, the oxidation of sodium thiosulfate by hydrogen peroxide.  
Keywords: Safety; Reliability; Risk assessment; FDI method; Model-based approach; Extended Kalman Filter 
(EKF). 

 
 
 

INTRODUCTION 
 

A chemical process can only be implemented for 
industrial application if a complete study has been 
carried out to guarantee its safety and the quality of 
its products. Before this industrial stage, phenomena 
occurring during the chemical process are 
characterized to make sure that this process is the 
most adapted. However, plants in the chemical and 
biochemical industries are becoming larger and more 
complex. The growing safety and environmental 
demands are forcing industry to look for more 
powerful and new techniques for the detection of 
process faults. A fault is defined as an unexpected 
change of the system functionality which may be 
related to a failure in a physical component or in a 
system sensor or actuator. The early detection and 

isolation of faults in engineering and industrial 
systems is a critical factor for avoiding product 
deterioration, major damage to machinery, loss of 
production, performance degradation, poor plant 
economy, environmental pollution and damage to 
human health or even loss of life. 

FDI is an active area of research due to growing 
demand for safety and reliability and increasing 
complexity of process plants. Many FDI techniques 
have been proposed in the literature. These techniques 
can in general be classified as model-based 
approaches, data-driven approaches, logic-based or 
information flow graphs, hardware redundancy, 
knowledge-based systems and analytical redundancy 
techniques. We are interested in the concept of so-
called model-based FDI with reference to observer 
and filter-based techniques (Chetouani, 2006a, 
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Chetouani, 2006b). Model-based techniques all use 
mathematical models of the plant being monitored. A 
wide variety of these approaches have been proposed 
to tackle the isolation problem (Patton et al., 2000; 
Chen et al., 1999; Isermann et al., 1997). However, 
the conceptual realization of these models can vary 
according to the following approaches; the fault 
detection filter (Liberatore et al., 2006; Henry et al., 
2005), the parity space (Isadi et al., 2005), parameter 
identification (Fantuzzi et al., 2002; Zogg et al., 
2006), state estimation (Biagiola et al., 2006) and 
nonlinear techniques (Edelmayer et al., 2004; Korbicz 
et al., 2004). The model-based approach based on a 
Kalman filter has been used in different type of 
applications, like the on-line failure detection in 
nuclear power plants (Tylee, 1983); the on-line fault 
in a chemical reactor (Chetouani, 2004), in DC motors 
to predict failures by placing an exponential attenuator 
at the output end of the motor model to simulate aging 
failures, resulting in small prediction errors (Yang, 
2002), or in the detection of faults in turnouts in the 
infrastructure elements of railway systems (García et 
al., 2003; Pedregal et al., 2004). Simani et al. (2006) 
used the EKF for the dynamic system identification 
and model-based fault diagnosis of an industrial gas 
turbine prototype. A model-based procedure 
exploiting analytical redundancy for the detection and 
isolation of faults in a gas turbine process was 
presented. The main point of their work consists of 
exploiting system identification schemes in 
connection with observer and filter design procedures 
for diagnostic purpose. Zhan et al. (2006) presented a 
model-based technique for the detection and diagnosis 
of gear faults under varying load conditions using the 
gear motion residual signal. A noise-adaptive Kalman 
filter-based Auto-Regressive (AR) model was fitted to 
the gear motion residual signals in the healthy state of 
the gear of interest. It consists of fitting an AR model 
to gear motion residual signals and takes advantage of 
the NAKF to decorrelate the signal to produce a white 
Gaussian sequence. Pedregal et al. (2006) developed a 
complex prediction model based on the algorithm 
Kalman filter for vibration data within the state space 
class applied to real data in the petrochemical 
industry. The core of the system is a model to forecast 
the state of the machine using data provided by the 
condition monitoring system at each moment in time. 
Feil et al. (2006) presented a monitoring system based 
on Kalman filtering for process transitions. They used 
a model-based state-estimation algorithm to detect the 
changes in the correlation among the state-variables. 
Brännbacka et al. (2004) developed an advanced 
model to track iron and slag levels in the blast furnace 
hearth. The liquid level estimation problem is tackled 

by an extended Kalman filter, by which the variance 
of the measurements and parameters can be optimally 
considered. Nyberg et al. (2004) used an extended 
Kalman filter for the air-path of a turbo-charged diesel 
engine. The engine is equipped with exhaust gas 
recycling (EGR) and a variable nozzle turbine (VNT). 
The faults considered were air mass-flow sensor fault, 
intake-manifold pressure sensor fault, air-leakage, and 
the EGR-valve stuck in closed position. They showed 
that the diagnosis system was successfully evaluated 
in a real car driving on the road. Alessandri (2003) 
presented a model-based method to detect faults in 
nonlinear systems by means of a bank of estimators, 
which provide estimates of parameters that describe 
actuator, plant, and sensor faults. These estimators 
perform according to a receding-horizon strategy and 
are designed using models of the failures. The 
performances obtained in the estimation of the fault 
parameters by the proposed neural estimators and by 
the extended Kalman filters are compared by means 
of simulations with an application to underwater 
robotics. Shi et al. (2003) presented a filter framework 
to estimate two-dimensional left ventricular 
deformation from spline-regularized MRI (magnetic 
resonance imaging) phase contrast velocity fields that 
are constrained by segmented endocardial and 
epicardial contours. After the conversion to state 
space representation, the extended Kalman filtering 
procedures were adopted to linearize the equations 
and to provide the joint estimates in an approximate 
optimal sense. They concluded experimentally that it 
is possible to adopt this biomechanical model-based 
multiframe estimation approach to achieve converged 
estimates because of the periodic nature of the cardiac 
dynamics. Bhagwat et al. (2003) proposed a model-
based fault detection scheme that involves 
decomposition of nonlinear transient systems into 
multiple linear modeling regimes. Kalman filters and 
open-loop observers were used for state estimation 
and residual generation based on the resulting linear 
models. Li et al. (2003) presented an on-line 
estimation of stirred-tank microalgal photobioreactor 
cultures based on dissolved oxygen measurement. An 
extended Kalman filter (EKF) was applied to provide 
optimal estimates of photobioreactor states, based on a 
dynamic process model in conjunction with on-line 
dissolved oxygen measurement. Jang et al. (2000) 
proposed a model-based tracking algorithm that can 
extract trajectory information of a target object by 
detecting and tracking a moving object from a 
sequence of images. They applied the Kalman filter to 
predict motion information, which was used 
efficiently to reduce the search space in the matching 
process. 
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In this paper, the basic idea of the adopted 
approach is to reconstruct the outputs of the system 
from the measurement using observers and using 
the residuals for fault detection (Mehra et al., 1971; 
Franck, 1990; Chetouani, 2004). This study also 
shows a methodology for tackling the isolation 
issue of fault causes by combining the last 
technique and the technique using the multiple 
Kalman filters for a nonlinear dynamic system. The 
usefulness of this combination is the on-line 
implementation of all the models of fault dynamics 
if the statistical decision threshold on the 
standardized innovation exceeds a fixed value. In 
other cases, one extended Kalman filter is enough 
to estimate the process state in order to avoid the 
high numerical integration of all models. After 
describing the system architecture and the proposed 
methodology of the FDI, we present a realistic 
application in order to show the technique's 
potential. The purpose is to develop and test the 
FDI method on real incident data, to detect the 
occurrence of change, to pinpoint the moment it 
occurred and to locate the fault cause. The 
experimental results demonstrate the robustness of 
the FDI method. 

The structure of the paper is as follows. First, the 
description of the FI strategy by using the multiple 
Kalman filters is presented. Then the FD strategy by 
using the standardized innovations is presented 
followed by the  description of the proposed FDI 
method. Then a comprehensive experimental 
validation of the proposed method is presented. 
Finally, conclusions are drawn in the last section. 

 

FAULT ISOLATION STRATEGY BY USING 
THE MULTIPLE KALMAN FILTERS 

 
A FDI system should perform two tasks, namely 

fault detection and fault isolation. The purpose of the 
fault detection module is to determine that a fault has 
occurred in the system. The second task is devoted to 
locate the fault cause. To achieve this aim, all the 
available information from the process should be 
collected and processed to detect any change from 
nominal behavior of the process. Model-based fault 
isolation relies on mathematical models of the plant 
to identify a discrepancy between the nominal plant 
and the plant when a fault occurs (Isermann, 2005). 
The detection of faults is usually accomplished by 
evaluating the residuals that are sensitive to the 
fault’s occurrence in the process dynamics. In the 
case of a normal behavior, the residuals have 
properties that are known a priori. Hence, any 
sudden or abrupt change in the value of any control 
parameter of the process implies some deviation of 
those properties from the normal mode profile. Fig. 1 
shows the fault isolation method based on the 
analysis of the residuals’ evolution between the real 
output and the output estimated by the extended 
Kalman filter. This filter is an effective tool for 
stochastic estimation of the state from noisy 
measurements. Because of its relative simplicity and 
robust nature, the Kalman filter has been widely used 
to obtain estimates of the state variables in practice. 
The filter’s number is defined from the exhaustive 
list of all the models of faults and the model of the 
normal behavior of the process. 

 
 

Figure 1: Scheme of the FDI strategy 
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The multiple filters method allows establishing a 
link between the detected anomalies during the 
process and a given situation of the process. It 
consists of having the observations processed by a 
set of EK filters (King et al., 1990). Each EKF 
corresponds to an assumption of a particular fault. 
{y1(t)…yn(t)} represent the models of faults. During 
normal functioning, the EK filters generate 
innovations which must be low. They depend only 
on the intrinsic errors and the random variations of 
the measurement equipment. In other cases where 
the process dynamics are not respected, these same 
signals evolve differently according to the magnitude 
of the effect of the fault on the general state of the 
plant. Consequently, the aim of this method consists 
of determining the nearest filter which generates the 
lowest innovation.  

By supposing that the behavior of a nonlinear 
process is described by a finished set of models 
indexed i 1,...., N=  ; and by the input )(ku  and the 
output z(k)  for k 1,2,...= , the dynamics of a 
nonlinear process can be expressed by the following: 
 

i i i i ix (t) f (x (t), u (t), t) w (t)= +                            (1) 
 

i i i k iz (k) h (x (t )) v (k) k 1, 2, ...= + =  
 
where nx ℜ∈  is the state vector, with an initial value 
of 0x , z  is the measurement vector, w(t)  is the 
system noise representing modeling error and 
unknown disturbances, and v(k) is the measurement 
noise. Both system and measurement noises are 
assumed to be independent random white noises with 
zero mean and covariance matrices, respectively Q 
and R. The functions f and h denote, respectively, a 
nonlinear function of the state and the output. The 
extended Kalman filter is essentially a set of 
mathematical equations that aims at minimizing the 
estimated error covariance in the state estimator 
(Hovland et al., 2005). This estimation by EKF is 
given by the following equations: 
 
The Kalman gain is: 
 

T T 1
k k k k k k k k kˆ ˆ ˆK P H (x )(H (x )P H (x ) R)− − − − − −= +      (2) 

 
 The a posteriori state estimate is: 

 

k k k k k kˆ ˆ ˆx x K (y h (x ))+ − −= + −           (3) 
 

where k k k kˆ(y h (x ))−γ = −  is the innovation between 
the measured output and the estimated one. 
 
 The a posteriori state covariance is: 

 

k k k k kˆP (I K H (x ))P+ − −= −            (4) 
 
where ˆH(x(t), t)  is the Jacobian matrix of the 
partial derivative of h  according to the state 
vector: 
 

i
ij

j ˆx(t) x(t)

h (x(t), t)ˆH (x(t), t)
x (t)

=

∂
=

∂
            (5) 

 
Under normal operating conditions, the 

innovation k k k kˆ(y h (x ))−γ = −  is a white noise 
sequence with a zero mean and a variance: 
 

T
k k k k k kˆ ˆ(H (x )P H (x ) R)− − −η = +                  (6) 

 
By noting that the model i is the model which 

represents the dynamics of the real system, its 
probability can be defined on-line according to a 
hypothesis test. Unlike the standard Kalman filter, 
this method has for input the set 

( )i i i i iI (k) u (0),...,u (k 1), z (1),..., z (k)= −  and for 
output the probability of each model. By applying 
Bayes’ law, the probability of each model is: 
 

( )

( )
i i i i i

i N

j j j j j
j 1

p z (k 1/ H ), I (k),u (k) p (k)
p (k 1)

p z (k 1/ H ), I (k),u (k) p (k)
=

+
+ =

+∑
 (7) 

 
where the density of the conditional probability 

i i i ip(z (k 1/ H ), I (k),u (k))+  is calculated according 
to the nature of the noise. Its distribution follows a 
normal law: 
 
( )

( )
i

i i i i

T 1
i i

1/ 2m / 2
i

p z (k 1/ H ), I (k),u (k)

1exp (k 1) (k 1) (k 1)
2

(2 ) det( (k 1)

−

+ =

 − γ + η + γ + 
 

π η +

      (8) 

 
m represents the dimension of the measurements 
vector.  
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FAULT DETECTION STRATEGY BY USING 
THE STANDARDIZED INNOVATIONS 

 
Analysis of the generated innovation is required for 

fault detection. In the absence of faults, the innovation 
value is near zero. A fault causes the process to behave 
differently from normal model prediction, and the filter, 
which compares the model and the process, generates 
large innovation. Faults are detected by deviation of the 
innovation from this normal value. In practice statistical 
analysis of innovation such as mean moving average 
mean, whiteness ratio can also be used as the fault 
detection signal. But in the case study (Chetouani, 
2004), it was observed that the innovations are 
themselves a good indication of the process state 
(normal or faulty). In this case, the statistical threshold 
based on innovations allows delimiting two distinct 
regions; the first region is called the safe region where 
the innovation variation is considered to be acceptable. 
The second region is not acceptable (fault region) and 
is where the innovation variation exceeds the statistical 
threshold. Considering a fault region π  in the sample 
space nℜ , an acceptable region Cπ  is defined as the 
complement of π  in nℜ . Let M  be a point of size n  
representing the sample. The sampling corresponds to a 
real representation of the process. Notice that it is 
convenient to use the standardized innovation sequence 
for the standardized hypothesis of statistical tests 
(Chetouani, 2006a). This sequence is expressed as 
follows: 
 

T 1/ 2
k k k k k k

1/ 2
k k k k k

ˆ ˆs (H (x )P H (x ) R)

ˆ(y h (x )) ( )

− − − −

− −

η = +

− = η γ
       (9) 

 
with 
 

T
j k jkE( s s ) Iη η = δ            (10) 

 
δ  and I  represent, respectively, the Kronecker 
symbol and the identity matrix. ksη  has a zero mean 
and an unit variance. Any deviation from the normal 
behavior causes a substantial change of these 
statistical properties. A test on the mean of the 
normal law N(0,I)  is carried out to verify whether 
the standardized innovation sequence (Chetouani, 
2006a) has a zero mean. The latter is estimated by: 
 

N

j
j 1

1ˆ s s
N

=

η = η∑                 (11) 

 
where N  is the sample size, which depends on the 
system dynamics. The size of the representative 
observation sample depends on the system response; 

if the latter is slow, the size will be large. Otherwise, 
when the dynamics evolves rapidly, samples will be 
taken quickly in order to enable the decision to be made 
as early as possible. sη  refers to the true mean of the 
sample. Under the hypothesis ( oH ), ˆ sη  has a gaussian 
distribution with a zero mean and a covariance 

Tˆ ˆE( s s ) I / Nη η = . However, beyond a given level of 
acceptance, such as above α  (‘non-normal’ hypothesis 

1H ), the ‘normal’ hypothesis ( oH ) is rejected: 
 
ˆ sη > α                                                             (12) 

 
The threshold α  depends on the probability of 

false alarms. Threshold limits can be defined for 
innovations for a normal behavior. Threshold limit 
selection, in most cases, is dependent on the process 
at hand (Himmelblau, 1978). The threshold 
hypothesis accounts for innovation changes due to 
noise and some process-model mismatch. In other 
words, threshold limits can be defined and based on 
minimum process deviations that are not acceptable.  
 

THE PROPOSED FDI APPROACH 
 

The standard multiple filters method is based on all 
the models (normal and faulty) of the mathematical 
library of faults (or bank of filters). The on-line 
implementation of all the models is carried out upon 
starting the process. Another inconvenience of the EKF 
compared to the linear filter is the high time required 
for processing; the Kalman gain is related to the 
Jacobian matrices of the model based on the estimated 
state. In fact, the extended Kalman filter is based on a 
linearization, enabling the state estimation of the 
nonlinear system. Consequently, it cannot be 
guaranteed that the estimation will converge. If the 
filter converges, the precision of the estimation depends 
on the system’s trajectory. In order to avoid this 
numerical issue, this study proposes an algorithm 
which scrutinizes the state of the standardized 
innovation i.e. the use of only one extended Kalman 
filter. During a normal functioning, this filter allows 
estimation of the measurable and non-measurable states 
of the process (moles number, concentrations, or 
others) and could be even used for the development of 
the control laws based on the process predictions. In 
other cases when the statistical threshold for the 
standardized innovation exceeds a fixed level of 
significance (15 %), including the measurement 
noises and the modelling errors, the fault isolation 
module is engaged. The usefulness of this 
combination is to avoid the matrix inversions and 
numerical integrations when the process is 
functioning near to the normal mode. This 
combination is described by the diagram in Fig. 2.  
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Figure 2: The proposed FDI approach  

 
APPLICATION OF THE PROPOSED FDI 

APPROACH 
 
Experimental Device: Chemical Reactor 
 

The chemical reactor represented in Fig. 3 works 
under atmospheric pressure. It is a glass-jacketed 
reactor with a tangential input for heat transfer fluid. 
The capacity of the reactor is two liters. It is 
equipped with an electrical calibration heating, a 
stirring system (anchor) and an input system (two 
dosing pumps and two scales, with temperature 
measurement at input). It is also equipped with Pt100 
temperature probes. Five probes are inserted through 
the chemical reactor in the reaction mass, in the 
cooling, in the condenser and in the flow rate 
introduction. The heating-cooling system, which 
uses a single heat transfer fluid, works within a 
temperature range from -15 to +200 °C. Supervision 
software allows the fitting of the parameters and 
their instruction value. The parameters introduced in 
the supervision system are the control modes of the 
reaction mass temperature (isothermal or slope of the 
temperature) and of the jacket fluid (constant or 
slope of the temperature). The distillation mode (the 
difference between the reaction mass temperature 
and the fluid jacket temperature is maintained

constant) can also be introduced. Supervision 
software also allows the regulation of the flow rate 
introduction and the stirring rate of the reactor. It 
displays and stores data during the experiment for 
further exploitation.  
 
Chemical Reaction Choice  
 

In order to illustrate the proposed FDI approach, 
a chemical synthesis in a laboratory-size reactor 
was carried-out. The reaction chosen is a very 
exothermic oxido-reduction one (Aime, 1991), the 
oxidation of sodium thiosulfate by hydrogen 
peroxide. This reaction can be expressed by the 
following equation: 
 

2 2 3 2 2 2 3 6

2 4 2

N a S O 2 H O 0.5 N a S O

0.5 N a S O 2 H O

+ → +

+
 (13) 

 
This equation is written as: 

2A B 0.5C 0.5D 2E+ → + + , where the following 
notations are adapted: A : hydrogen peroxide 

2 2H O ; B: sodium thiosulfate 2 2 3Na S O ; C : 
sodium persulfate 2 3 6Na S O ; D : sodium sulfate 

2 4Na SO ; E : water 2H O . 
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Figure 3: Diagram of the chemical reactor 

 
Chemical Reactor Modeling 
 

In order to guarantee that faults can be detected 
and isolated, mathematical models of the process 
under investigation are required, either in state space 
or input-output form. State space descriptions 
generally provide mathematically rigorous tools for 
system modelling and residual generation that may 
be used in fault detection of industrial systems, both 
for noise-free measurements and noisy data 
environment. The dynamic behavior of the chemical 
reactor is modeled by a system of differential 
equations translating molar and heat balances in the 
reactor. The model used is based on the following 
hypotheses (Chetouani, 2004): 
 The reactor is perfectly stirred: reaction mass 

temperature and concentrations are homogeneous 
through the mass volume; 
 No phase change in the reaction mass; 
 The density, the specific heat of the cooling and 

the reaction mass heat are independent of the 
temperature. 
 By taking into account the thermal inertia of the 

wall, three energy balances (14, 15 and 16) were 
established, respectively, in the reaction mass, in the 
jacket fluid and in the reactor wall. 

( )

)( )(

( )

1

Fj

R

R
R R R R R w r R

E
RT

0 o o

T

j j a R
T

dT (t)m Cp h A T (t) T (r , t)
dt

k e n (M )/V n (Z ) V H

F Cp dT Kc T T (t)

=

−
βα

= − − −

−χ −χ ∆

+ + −∫

(14) 

 

( )

( )1

f
f f f f fe f

f f w fr R e

d T (t)m Cp m Cp T (t) T (t)
d t

h A T T (t)

•

= +

= − +

−
    (15) 

 
2

w w
2

2
w w

2
w

T (r, t) T (r, t)1
r rr

T (r, t) T (r, t)1
a tz

∂ ∂
+ +

∂∂

∂ ∂
=

∂∂

        (16) 

 
With boundary conditions in (O, r, z 0)ℜ = : 
 

1 1w R r R et 0; T (r, 0) ( ln(r ) ) ≤ ≤ += = µ + τ   (17) 
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where  
 

( )1 1w wr R r R e

1

1

T (r, t) T (r, t)

R eln
R

= = +−
µ =

 +
 
 

      (18) 

 

( )1 1w 1 w 1r R r R e

1

1

T (r, t) ln(R e) T (r,t) ln(R )

R eln
R

= = ++ −
τ=

 +
 
 

   (19) 

 
t 0>  
 

( )1
1

w
R R R w w Rr R

r R

T (r,t)
h A T (t) T (r,t) A

t=
=

∂
− =−λ

∂
   (20) 

 

( )1
1

w
f f w f w fr R e

r R e

T (r,t)h A T (r,t) T (t) A
t= +

= +

∂
− =−λ

∂
  (21) 

 
Using the normalized reaction extent 

(Villermaux, 1993), the mass balance in the reaction 
mass can be written according to an Arrhenius law: 
 

)( )(0
0 R

nd k exp( E / RT ) M Z
dt V

βαχ
= − − χ − χ    (22) 

 
Resolution of the Chemical System 
 

The constituent order values for the reactants are 
σ = 1.5 and β = 0.6 when the concentration ratio 
between hydrogen peroxide and sodium thiosulfate is 
maintained greater than 1.96 during the reaction 
(Cohen et al., 1962). Under the same operating 
conditions as those of Cohen et al. (Cohen et al., 
1962) and by assuming that the rate coefficient is 
governed by the Arrhenius law, Aime (Aime, 1991) 
has estimated the kinetic parameters (frequency 
coefficient ok  = (7.25±0.5) × 1011 L/mol.s  and 
activation energy E  = 79002±1254 J/mol), as well 
as the thermodynamic reaction enthalpy ( H∆  = -
563±10 kJ/mol). The wall equation (16-21) is used in 
order to improve the model. In practice, the model of 
a system provides only an approximation of the real 
behavior. Because the observer is built from this 
model, the provided state and the output are sensitive 
to the errors coming from the difference between the 
system and its model. This point is particularly

significant if one is interested in fault detection and 
isolation. Indeed, the tests are established by 
analyzing the reconstruction error, which is sensitive 
to the detected faults and also to the modeling errors. 

Before solving equations (14, 15 and 22) by the 
Runge-Kutta-Fehlberg method (Forsythe et al., 
1977), the equation system for the heat balance in the 
reactor wall (16, 20 and 21) is transformed into an 
algebraic equation system. By employing the finite 
difference method under its explicit formulation, 
equations (16, 20 and 21) become, according to the 
numerical scheme in Fig. 4: 
 
 Temperature of the reaction mass for an interior 

nodal point ( 1 1R r R e< < + ): 
 

n 1 nw
i w i2

n nw
w i 1 w i 12 2

a ttT 1 2a T
r rr

a tt ta T a T
r rr r

+

+ −

 ∆∆
= − − +  ∆∆ 

   ∆∆ ∆
+ +      ∆∆ ∆   

       (23) 

 
 where the subscript refers to the interior nodal 

point and the exponent refers to the time step. The 
boundary temperature of the reactor wall at 1Rr =  is 
given as follows: 
 

n 1 n n n
i R R i 1 R i

1T 2Fo Bi T T Bi 1 T
2Fo

+
−

  = + + − −  
  

  (24) 

 
 The boundary temperature of the reactor wall at 

1r R e= +  is given as follows: 
 

n 1 n n n
i f f i 1 f i

1T 2Fo Bi T T Bi 1 T
2Fo

+
−

  = + + − −  
  

      (25) 

 
where R R wBi h e/= λ  and f f wBi h e/= λ  represent the 
Biot numbers computed by using, respectively, the 
convective resistance of the reaction mass side 
( R wR1/h A ) and that of the cooling fluid side 

( f wf1/h A ). 2
wFo a t / r= ∆ ∆  is the Fourier number. 

The convergence of the equation system (14, 15, 22, 
23, 24 and 25) depends on the stability and on the 
consistency of the equation sub-system (23, 24 and 
25). Consequently, r∆  and t∆  are taken in such a 
way that the stability and convergence conditions are 
respected. 

 



 
 
 
 

Design of a Multi-Model Observer-Based Estimator for Fault Detection and Isolation (FDI) Strategy                                          785 
 

 
Brazilian Journal of Chemical Engineering Vol. 25,  No. 04,  pp. 777 - 788,  October - December,  2008 

 
 
 
 

 R1+e 

R1 

Reaction mass Cooling Wall 

r = 0 r = R1 r = R1+e 

Middle 1 Middle 2 Middle 3

 
Figure 4: Scheme of the numerical resolution 

 
FDI Results  
 

In order to illustrate the pertinence of the 
proposed FDI approach, it is applied to detect and 
locate a fault due to a sudden change, which occurs 
at 500 s, of the flow cooling during the phase of 
preheating of a reaction mass. The normal conditions 
are chosen corresponding to the flow nQv = 0.40.10-3 
m3.s-1 and as non-normal conditions those which 
correspond to the flow faultQv = 1.10.10-3 m3.s-1. 
Theoretically, this last flow, which provides the 
measurement dynamics sy , is unknown by the 
operator. The aim of the FDI method is to identify it 
by comparing its dynamics with those given in real-
time by the mathematical library of different models. 
For this purpose, different dynamics corresponding 
to different flows of the cooling are built. This flow 
change does not modify the structure of the model 
equations, only the partial transfer coefficient fh  is 
modified. The selected flows of the cooling are as 
follows (Table 1). 

The results of different simulations are given as 
follows (Fig. 5). 

The evolution of the probability is conditioned by 

the evolution of the innovation (Fig. 6). The latter is 
processed by the EKF to detect an actual fault 
condition, rejecting any false alarms caused by noise 
or spurious signals. The convergence of the 
innovation depends on the R / Q  ratio. In fact, the 
knowledge of these two variances constitutes a 
means to adjust the EKF. It represents an indication 
of the filter’s degree of dependence on the 
measurements; if R  is small and Q  is large, then 
information coming from the measurements is 
preponderant in the estimation, and if R  is large and 
Q  small, the filter gives preference to the model 
rather than to measurements (Chetouani, 2006a). 

By analyzing the probability results (Fig. 7), it is 
observed that the fault isolation phase starts at 820 s, 
i.e., 320 s after the start of the fault detection phase, 
in order to avoid numerical calculations and false 
alarms. In addition, it is noted that the fault dynamics 

s faulty f (Qv )=  is close to that corresponding to the 
flow s 1y f (Qv )=  because of the probability 1p(Qv ) , 
which is most important. The probability of the other 
models decreases considerably according to their 
respective variation compared to the output 

s faulty f (Qv )= , as shown in Fig. 7.  
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Figure 5: Temperatures generated by the different dynamics 
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Table 1: Selected flows of the cooling 
 

Volumic flow ( m3.s-1 ) 1.33.10-3 0.80.10-3 0.60.10-3 0.20.10-3 
Dynamics 1Qv  2Qv  3Qv  4Qv  
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Figure 6: Evolution of the generated innovations by the EK Filter 
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Figure 7: Evolution of the different probabilities 

 
 

CONCLUSION 
 

In this paper, a model-based fault detection and 
isolation method for nonlinear systems has been 
considered, based on the idea of generating residuals. 
The proposed method requires physical knowledge 
of the process under observation. First an accurate 
model of the process dynamics has been constructed 
according to all the available information for the 
studied system. An extended Kalman filter is used 
for state estimation and residual generation. Faults 
are detected by a statistical threshold and isolated by 
using a combination of two decision methods. This 
evaluation is accomplished by means of a bank of 

Kalman estimators and the standardized innovations 
method. The proposed method allows detection of 
the changes in the process behavior compared to the 
normal one. The method also allows identification of 
the new regime describing most accurately as 
possible the evolution of the system. The analysis of 
the probabilities shows that the FDI method adopted 
in this study allows considerable reduction in the 
computing time. In fact, this method requests the 
library mathematics of faults 320 seconds after the 
fault occurrence. This method can be applied to 
many industrial processes (heat exchanger, 
distillation column…) if a modeling of the process is 
carried out. The FDI adopted approach is a model-
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based approach. However, in practical applications, 
especially when considering large plants and 
complex systems, the straightforward application of 
such FDI techniques may be difficult. Thus, these 
models are often very nonlinear and very complex, 
and they can exploit hybrid structures to describe 
accurately the behavior of the real-target system. A 
viable and easy procedure for practical application of 
this technique is really necessary in complex 
applications. 
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NOMENCLATURE 
 
A  Exchange area   m2

ko   frequency coefficient   m3.mol-1.s-1

E  Energy activation  J.mol-1

Cp  Specific heat  J.kg-1.K-1

e Wall thickness  m
F  Flow feeding  mol.s-1

H  Heat transfer coefficient  W.m-2.K-1

Kc   Conductance  W.K-1

N Mole number  mol
M Molar mass  kg.kmol-1

m  Mass kg

m
•

  Flow rate  kg.s-1

R  Ideal gas constant  J.mol-1.K-1

R1 Reactor radius  m
R  Reaction rate  mol.m-3.s-1

T  Temperature  K
T  Time  s
V Volume  m3

 
Subscript 
 
f Fluid jacket  
R  Reactor  
W  Wall  
A  ambient  
Fe  fluid inlet  
 
Greek Letters 
 
ρ Density kg.m-3

χ  Normalized reaction extent  (-)
H∆  Reaction enthalpy  kJ.mol-1

∆  variation (-)
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