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Um método novo é proposto para resolver dados de cinética-espectrométrica de misturas do 
tipo multicomponentes e para a determinação de analito(s) na presença de matriz desconhecida. O 
método utiliza dados de matrizes de variação pelo deslocamento de alvo, denominado espaço de 
reação. A matriz de variação é obtida pela subtração do espectro do ponto-zero (isto é, primeiro 
espectro) de cada espectro a cada tempo. Este deslocamento espacial diminui os números de 
classificação para os números de reações. A resolução da curva de auto-modelagem é usada para 
resolver as matrizes dos dados de cinética-espectrométrica por matrizes de analitos. Além do 
mais, o método de adição padrão de segunda ordem é usado para remover o efeito(s) das matrizes 
para quando se analisa amostras desconhecidas. Isto significa que, a análise quantitativa pode 
ser realizada pela argumentação da matriz de variação das amostras desconhecidas e amostras 
adicionadas de padrão e, em seguida, traçar a curva de calibração de adição de padrão. A 
aplicabilidade do método proposto é avaliada usando dados modelo e real de misturas de analitos.

A new method is proposed to resolve the kinetic-spectrophotometric data of multicomponent 
mixtures and determination of analyte(s) in the presence of unknown matrix. The method uses 
variation matrix data by shifting to another target, namely the reaction space. The variation matrix 
is obtained by subtracting the zero-point spectrum (e.g., first spectrum) from each spectrum at each 
time. This space shifting decreases the rank numbers to the numbers of reactions. Self-modeling 
curve resolution is used to resolve the variation matrices of kinetic-spectrophotometric data for 
mixtures of analytes. In addition, second-order standard addition method is used to remove the 
matrix effect(s) when analyze unknown samples. This means that, quantitative analysis can be 
performed by augmentation of the variation matrix of the unknown samples and standard added 
samples and, then, plotting standard addition calibration curve. The applicability of the proposed 
method is evaluated using model and real data for mixtures of analytes. 
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Introduction

One of the goals of the chemometrics methods is the 
quantitative analysis of multicomponent systems with 
overlapping spectrum. Multivariate calibration methods are 
the branch of the chemometrics used for this purpose. These 
methods can be classified into first-order, second-order and 
higher order methods.1,2 First-order calibrations are used 
for first-order data. In first-order multivariate calibration 
(e.g. PCR and PLS), the nature and the chemical matrix 
of the standard samples have to be similar to those of the 
unknown samples.1,2 This means that the standards, which 

are subjected to construct a calibration model to analyze 
real sample(s), are real samples themselves, with nearly 
the same mixtures, that should be previously analyzed 
by an independent method.3 In second-order calibration 
methods, pure analyte standards are frequently used 
to quantify unknown samples, even in the presence of 
unknown and uncalibrated interferences.1,2 This is a clear 
advantage of the second-order calibration methods.4,5 The 
second-order data corresponding to kinetics data can be 
used for quantitative analysis.6,7 In contrast to first-order 
multivariate calibration, these methods simultaneously take 
into account the spectroscopic and the kinetic behaviors 
of the substances, giving as result higher selectivity and 
sensitivity. With the availability of rapid scanning and 
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diode-array spectrometers, the second-order data are 
readily available, forming the basis of many chemical 
investigations. Moreover, the second-order algorithms 
avoid the need of using a large number of calibration sample 
since a single calibration sample, that contains the analyte 
of interest, is sufficient.8

Suitable algorithms for analyzing second-order data 
are parallel factor analysis (PARAFAC),9 the generalized 
rank annihilation method (GRAM),10 rank annihilation 
factor analysis (RAFA),11,12 direct trilinear decomposition 
(DTLD),13 bilinear least squares (BLLS),14 alternating 
trilinear decomposition (ATLD)15 and its variants 
(self‑weighted alternating trilinear decomposition 
(SWATLD),16 alternating penalty trilinear decomposition 
(APTLD)17  and multivariate curve resolution-alternating 
least squares (MCR-ALS).18

It was shown that MCR-ALS is a powerful tool for the 
species resolution and the quantitative determination of 
many types of unresolved chemical mixtures especially in 
kinetic systems.19,20 Initial estimation of the concentration 
or spectral profiles is the first step in MCR-ALS. If the 
initial estimation is close to real values, the results are easily 
converged. On the other hand, selection and implementation 
of suitable constraints are another important factors that can 
be easily made not only to rapid convergency of the results 
but also to decrease the ambiguity of the solutions. Several 
constraints such as non-negativity, unimodality and closure 
are used for these purposes.

The rank deficiency is one of the main problems in 
analyzing of complex chemical systems using MCR‑ALS. 
A data matrix is rank-deficient when the number of 
significant contributions to the data variance, that are 
estimated using singular value decomposition or other 
related factor analysis techniques, is lower than the real 
number of chemical components present in the system.21 
Such situation occurs quite frequently when, for instance, 
at the beginning of a chemical reaction or process, more 
than one component already exists or parallel reactions take 
place.21,8 This problem will also occur when the reaction of 
one of the component immediately takes place and produces 
a constant signal during the time range of the experiments.21

Variation matrix is one of the concepts proposed for 
handling the rank deficiency problem in parallel reaction 
systems.22,23 In this approach, variation matrix (difference 
spectra) is used instead of the original data matrix, which 
is obtained by subtracting the zero-point spectrum from 
each spectrum at each measurement point.24-26 Variation 
matrix can be decomposed to reaction extent vectors and 
reaction spectra. Reaction extent vector designates the 
net variation in concentration between the ith point and a 
specified zero-point.22,23

One of the aims of the present study was to develop 
a theoretical formula for estimation and description of 
the rank of a system with parallel reactions based on the 
reaction rank instead of the chemical rank. The rank of a 
matrix based on a number of independent reactions is called 
the reaction rank. For example, extent profiles and related 
reaction spectra can be extracted instead of concentration 
profiles and pure spectra.22,23,26 Representation of a system 
based on its reaction rank is very useful because it is 
possible to convert a chemical rank-deficient system to 
full-rank reaction system by simple pretreatment.

In our previous work, the coupling of the variation 
matrix and MCR-ALS was successfully applied to resolve 
pH-spectrophotometric data to determine some food 
colorants with acid-base behaviors.26 In this study, it was 
shown that the reaction extent vector linearly depended on 
the initial concentration of the reactant. Thus, in the kinetic 
system containing different reactions, the variation matrix 
can be decomposed by the self-modeling curve resolution 
method such as MCR-ALS.

On the other hand, the possible change in the sensitivity 
of the analyte response as a result of the matrix effect 
cannot be modeled with second-order calibration models 
since pure standards do not provide information about the 
chemical matrix of the sample. Therefore, if the sensitivity 
of the calibration depends on the chemical composition of 
the matrix, predictions may be poorer when calibration 
curves are obtained from pure standards.27 Many studies 
have been based on the second-order techniques but few 
of them have considered the matrix effects in complex 
samples or provided solutions for solving them.28 Coupling 
of standard addition method and MCR-ALS have been used 
to solve the matrix effect problem in second-order data.27-30

In this work, standard addition data corresponding to 
variation matrix were analyzed by MCR-ALS in order to 
combine their advantages. Simultaneous analysis of four 
variation matrices using MCR-ALS was performed on 
an augmented matrix that is related to variation matrix of 
unknown sample and those of standard addition matrices. 
This was arranged by setting unknown variation matrix 
on top of the other in order to keep the common spectra in 
the same column.

In this work, several data are simulated and the 
corresponding variation matrices are analyzed by MCR‑ALS.  
Finally, a complexation reaction of Ni(II) and Co(II) with 
chromogenic reagent 1-(2-pyridylazo) 2-naphthol (PAN) 
as a real experimental study is presented. In addition, a 
multicomponent determination of these ions in various 
alloy samples was studied by the proposed method. A case 
interferent Cu(II), that immediately reacts with PAN and 
produces a constant signal during the experimental time, 
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is added to synthetic samples in order to study the effect of 
unknown interferent(s) and/or presence of a constant signal.

To the best of our knowledge this is the first study 
for analyzing of kinetic-spectrophotometric data (e.g. 
complexometric data recording versus time) by combination 
of variation matrix and multivariate curve resolution.

Experimental

Apparatus

A PerkinElmer Lambda 45 fast-scan UV-Visible 
spectrometer was used for recording of UV-Visible 
absorbance spectra using 10 mm quartz cells. A Metrohm 
model 713 pH-meter with a combined glass electrode 
was used for pH measurements. All calculations in 
the computing process were performed in Matlab and 
Microsoft Excel for Windows.

Reagents

All chemicals were of analytical reagent grade and 
triple distilled water was used throughout the experiments. 
Stock Co(II), Cu(II) and Ni(II) solutions (1000 mg L−1) 
were prepared by dissolving appropriate amounts of 
Co(NO3)6·6H2O, CuSO4·6H2O and NiSO4·6H2O in water. A 
5.0 × 10−3 mol L−1 PAN solution was prepared by dissolving 
128 mg of PAN in 100 mL hot ethanol. Citrate buffer solution 
(1 mol L−1) of pH 5.8 was prepared from sodium citrate 
salt and sulfuric acid. Triton X-100 stock solution (14%, v/v) 
was prepared by dissolving 14 mL of concentrate solution 
(Merck, Darmstadt, Germany) in hot distilled water.

Procedure

All the solutions were equilibrated at 25 ± 0.1 oC before the 
beginning of the reactions. An aliquot of the solution containing 
1-20 µg of Co(II), Cu(II) and Ni(II) cations was transferred 
into 10 mL volumetric flask containing 1 mL of pH 5.8 
citrate buffer solution. Then, 1 mL of 14% Triton X‑100 and  
2 mL of 5.0 × 10−3 mol L−1 PAN solutions were added. After 
diluting the solution to the mark with triply distilled water, 
a portion of it was immediately transferred into a quartz 
cell and 20 absorbance spectra (0-10 min) were recorded at 
76 wavelength channels in the range of 550-700 nm.

Theory and algorithm

Theory
Consider a closed system in which kinetic complexation 

reactions for a mixture of three metal ions (M, N and P) 

are taking place. The involved independent reactions are 
as follows:

	 (1)

The extent of the reaction describes the progress of a 
chemical reaction, that is equal to the number of chemical 
transformations, defined as equation 2:22-24

	 (2)

where Dcj is the concentration variation vector whose 
elements represent the variation of component j between a 
given moment and a specified zero-point. e is the extent of 
the reaction vector whose elements designate the reaction 
extent at these points. The reaction extent, a basic physical 
concept, describes the progress of a chemical reaction. 
Then:

	 (3)

where 1 is a vector with all elements being 1 and l is the 
stoichiometry coefficient for component j (l is –1 for the 
reactant and +1 for the product in this example). c j

0  is the 
concentration of component j at the zero-point and cj is the 
concentration vector for component j.

In the above mentioned example, concentrations of ML 
and M can be calculated using the following extent vector:

	  (4)

Concentration vectors of other components (cNL, cN, 
cPL and cN) can be calculated as described for ML and M. 
The concentration of ligand (L), which associates in all the 
three reactions, can be stated as equation 5:

	  (5)

According to the Beer-Lambert law, the contributed 
absorbance by reaction system can be expressed as 
equation 6:

	  (6)

where sML, sNL and sPL represent the spectra of the complexed 
forms of M, N and P, respectively (i.e., ML, NL and PL). 
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Because the concentrations of modeled and/or experimental 
metallic cations are very low, it was assumed that these 
cations themselves are inactive in the working wavelength 
range. It should be also stated that this methodology is 
always carried out using an excess amount of ligand with 
respect to the total concentration of metals to ensure the 
complete formation of the related complexes, as well, 
otherwise, the methodology would not have quantitative 
value.

The substitution of equations 4 and 5 in equation 6 
gives equation 7:

	 (7)

where (sML – sL), (sNL – sL) and (sPL – sL) are three reaction 
spectra and s0 is zero-point spectrum (first row of data 
matrix). All of them are linear combinations of the pure 
spectra of the components. The zero-point spectrum is 
the linear combination of the pure component spectra 
weighted by the initial concentration of the components 
and the reaction spectrum is the linear combination of the 
pure component spectra but weighted by stoichiometric 
coefficients, with signs of “-“ and “+” for reactants and 
products, respectively. Thus, the absorbance matrix D can 
be expressed in matrix form as equation 8:

,	  (8)

where E and Sr are the reaction extent matrix and reaction 
spectra matrix, respectively. The columns of E and Sr 
are reaction extents and reaction spectra, so their rank is 
equal or less than the number of independent reactions in 
data matrix. V is the variation matrix that is the product 
of E and SrT.

Then, equation 8 can be simplified to:

,	  (9)

According to equation 9, the variation matrix can be 
constructed if the zero-point spectrum is subtracted from 
the spectrum of each measurement point.

The rank of a matrix based on a number of independent 
reactions is called the reaction rank. Thus, a variation matrix 
will be a full-rank matrix in terms of the number of analytes 
if each analyte is involved in a one-step reaction, as it is 
the case for kinetic complexation reaction.

Curve resolution methods can be applied to resolve the 
variation matrix V. It can be also used to obtain the reaction 
extent matrix E and the reaction spectra matrix Sr.22-24,31

From equation 7, it can be concluded that, for a closed 
system containing K independent reactions or processes 
(e.g., complexation reaction of a mixture of K metal 
cations with a ligand) and given that the ligand and all 
complexes involved are spectrophotometrically active, the 
pseudo-rank of the measurement matrix D will be ≤ K + 1,  
S where S is the number of absorbing species participating 
in the reactions.21 Whereas the pseudo-rank of variation 
matrix V is ≤ min (K, S).21-23 If inert compound (e.g. when 
the reaction of one of the components immediately takes 
place and produces a constant signal during the experiment) 
exists in kinetic data, the pseudo-rank of data matrix will 
be less than the chemical rank. In other words, the data 
matrix will be rank deficient. It is possible to convert this 
rank deficient system to a new full reaction rank system 
by simple pretreatment, calculation of variation matrix. 
The contribution of inert unknown compounds will be 
removed in the step of the calculation of the variation 
matrix. Therefore, the presence of such compounds does not 
perturb the data resolution, which is one of the advantages 
of the proposed algorithm.

It should be noted that the elements of the reaction 
extent vector are non-negative and monotonically increase 
with time. Moreover, the reaction extent at the specified 
zero time is zero. These properties play critical roles in the 
evaluation of the resolution results and implementation of 
physically plausible constraints in resolution procedures.22

The obtained data are second-order. This property 
allows to accurate quantization of multiple analytes 
using a calibration sample containing multiple chemical 
components without knowledge of the interfering 
chemical components that may be present in the sample 
being analyzed (second-order advantage). Among 
different second-order algorithms, MCR-ALS was used 
in this work.

Algorithm of the proposed method
The algorithm of the proposed method for quantitative 

analysis is as follows.
(i) Calculation and column wise augmentation of 

the variation matrices of unknown and standard added 
samples.

Column wise augmented matrices are built by putting 
the variation of unknown sample, Vu, on top and those of 
standard added samples, Vu+s, on below. It should be noted 
that the variational matrices of unknown and standard added 
samples have equivalents zero-point vectors, relative to the 
beginning of the reaction.



A Second-Order Standard Addition Method based on the Data Treatment J. Braz. Chem. Soc.2210

(ii) Rank estimation
Singular value decomposition can be used to estimate 

the rank of augmented variation matrices, Vaug,. As 
mentioned, the rank of Vaug is equal to the number of active 
reactions.

(iii) ALS optimization
The iterative ALS procedure starts with initial 

estimation of the reaction spectra (Sr). A suitable initial 
estimation method such as SIMPLISMA can be applied to 
estimate the reaction spectra prior to MCR-ALS:

	  (10)

where R is the matrix of residuals that is not explained by 
the chemical reactions in E and SrT and should be close 
to the experimental error. Depending on the nature and 
structure of the data, different constraints can be applied 
during ALS optimization. Non-negativity and unimodality 
of the reaction extent vectors could be used as suitable 
constraints in the proposed method.

(iv) Quantification step
The quantification is performed by plotting standard 

addition curve. In this step, the areas below the reaction 
extent curve of the analyte in each sample are plotted versus 
the standard added concentrations.

Results and Discussion

Simulation

The performance of the proposed method was evaluated 
using several sets of simulated data. The data set (D1) 
in Figure 1 was simulated from artificially constructed 
UV-Vis spectra and kinetic profiles. It was formed by 
91 spectra (1-10 min with increment of 0.1 min) of 251 
absorbance values (350-600 nm with increment of 1 nm). 
The simulated kinetic models are three simple parallel 
pseudo-first order complexation reactions in which one 
of the reactions instantaneously takes place and two other 
reaction with reaction rate constants k1 = 0.10 min−1 and 
k2 = 0.40 min−1, respectively. As shown in Figure 1, it was 
assumed that the reaction of one of the components (P) 
immediately takes place and produces a constant signal 
during the time range of the experiments. This component 
was assumed as an interferent with constant signal that 
could be present in unknown sample analysis. The standard 
added data sets were simulated at the same way as D1, but 
with adding different concentration of M, as an analyte, 
to above mentioned data set, D1. The variation of sample 
data (simulated ternary mixtures in this case) and those of 
standard added samples were obtained by subtracting each 

row of the data matrix by the first row of that matrix and 
then, column wise augmented.

Figure 2 represents the direct (D1) and its variation (V) 
for a case simulated two-way data of ternary mixture. The 
contribution of inert unknown compounds is removed in 

Figure 1. Simulated kinetic profiles (a) and spectra (b) for parallel 
complexation reaction of M, N and P with L.

Figure 2. Simulated spectra for parallel complexation reaction of M,  
N and P with L (a) and the variation of data (b).
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the first step of the algorithm (calculation of the variation 
matrix), so, the presence of such compounds does not 
perturb the data resolution. The proposed algorithm 
was used to the determination of M in the presence of 
two interferents (N and P). Quantification of M can be 
performed by plotting standard addition calibration curve, 
forth step of the proposed algorithm.

To check the ability of the proposed method, different 
simulated unknown mixtures were resolved by the proposed 
method and the results are shown in Table 1. The method 
succeeded in predicting the concentration of analyte in the 
presence of interferent.

Experimental data set

The experimental data sets are a series of kinetic-
spectrophotometric two-way data of complexation 
reactions of Co(II), Cu(II) and Ni(II) with PAN in micellar 
media at pH 5.8. A number of synthetic ternary mixtures 
(Table 2) and several real samples were analyzed using the 
proposed method. These reactions follow a kinetic model, 
which is postulated in equation 11:

 

	  (11)

Figure 3a shows the spectra of PAN and the complexes 
overlaping and therefore, each compound interferes 

Table 1. Composition and results of analysis of modeled data of M and N mixtures in the presence different amount of P by proposed method

Sample number
Composition / (µg mL-1) Predicted concentration / (µg mL-1) Recovery / %

M N P M N M N

1 0.77 0.27 0.46 0.76 0.28 98.70 104.44

2 0.21 1.08 0.54 0.22 1.11 104.76 102.77

3 0.88 1.04 0.31 0.855 1.02 97.15 98.07

4 0.87 0.44 0.74 0.88 0.43 101.14 97.72

5 0.3 0.85 0.46 0.31 0.87 103.33 102.35

6 0.67 0.43 0.8 0.64 0.46 102.98 106.97

7 0.34 0.36 0.4 0.35 0.35 105.88 97.22

8 0.39 0.14 0.19 0.38 0.15 97.43 107.14

9 1 0.8 0.38 0.98 0.82 98.0 103.0

10 0.64 0.66 0.38 0.65 0.65 101.56 98,48

11 0.53 0.61 0.35 0.51 0.6 96.79 98.36

12 1.06 0.23 0.16 1.1 0.22 103.77 99.13

13 0.24 0.42 0.32 0.25 0.43 104.16 102.38

14 1 0.59 0.74 0.97 0.56 97.5 96.44

15 1.09 0.36 0.85 1.12 0.34 102.75 96.38

Mean recovery 102.40 100.72

RSEsingle / % 2.67 2.81

RSEtotal / % 2.74

in the spectrophotometric determination of the others. 
Figure 3 shows that the spectra and kinetic profiles of the 
complexation reactions of Cu(II), Co(II) and Ni(II) are 
different and could be used as a two-way data for their 
multicomponent analysis at unknown samples. In this case, 
Cu(II) was assumed as an interferent with constant signal 
that presents in real data. This assumption completely covers 
the presence of other constant interferents. In the proposed 
method, Beer’s law was obeyed in the concentration range 
of 0.1-2.0 µg mL−1 for Co(II) and Ni(II).

Preliminary studies of the experimental system 
(including the effect of pH and concentration of surfactant) 
was conducted by Afkhami and Bahram.32 For this work, a 
citrate buffer solution of pH 5.8, 1.4% (v/v) Triton X-100 and 
1 × 10−3 mol L−1 PAN was applied. As mentioned before (see 
Figure 3), spectra and kinetic profiles of the complexation 
reactions of Cu(II), Co(II) and Ni(II) are different and could 
be used as two-way data to their multicomponent analysis 
at unknown samples. As can be seen in Figure 3, Cu(II) 
instantaneously reacts with PAN and produces a constant 
signal during experimental time. It was assigned as a constant 
interferent in order to more rigorously test the method. Its 
contribution and the contribution of other inert components 
are removed in the first step of proposed algorithm, in which 
the variation matrix is calculated. In order to establish the 
accuracy and precision of the method, several synthetic 
mixtures with different concentration ratios of Cu(II), 
Co(II) and Ni(II) were analyzed using the proposed method.

As mentioned before, the rank of a matrix based on 
reaction space is called the reaction rank. The reaction 



A Second-Order Standard Addition Method based on the Data Treatment J. Braz. Chem. Soc.2212

rank of the augmented variation matrix of this system is 
two that is equal the number of active reactions in selected 
time range. But the raw data matrix is rank-deficient with 
the rank of three, because of the immediate complexation 
reaction of Cu(II) with PAN, producing a constant signal 
during monitoring time. So, very complex and rank- 
deficient raw data matrix is converted to simple and full 
rank variation matrix based on the reaction rank using very 
simple pretreatment.

The iterative ALS procedure starts with initial 
estimation of the reaction spectra (Sr). The reaction spectra 
of standard samples can be used as the first estimates. When 
all reaction spectra were estimated, it is then possible to 
obtain a first estimate of the extent reaction matrix E by 
least squares. The estimates of E and S are then refined by 
the ALS optimization. Non-negativity on extent reaction 
matrix was used as constraint in the ALS optimization. The 
proposed method can be easily extended to the systems 
with more components.

The prediction error of a single component in the 
mixtures was calculated as the relative standard error (RSE) 
of the prediction concentration using equation 12:32

	  (12)

where N is the number of samples, Cj is the concentration 
of the component in the jth mixture and C^

j  is the estimated 
concentration. The total prediction error of N samples is 
calculated as equation 13:

	  (13)

where Cij is the concentration of the ith component in the jth 
samples and C^

ij its estimate. Table 2 shows the single and 
total relative errors for such a system. Also the recovery 
and mean recovery are presented in there.

The study of the this example and also the simulation 
show how the strategy of application of variation matrix in 

Figure 3. Spectra of complexed form of Co(II), Cu(II) and Ni(II) with PAN (a).  
The kinetic profiles of complexation reactions of Co(II), Cu(II) and Ni(II) 
with PAN (b) at micellar media, pH 5.8 and 25 oC.

Table 2. A number of synthetic ternary mixtures of Cu(II), Co(II) and Ni(II) with PAN at micellar media and pH 5.8 and the results for Co(II) and Ni(II) 
obtained by the proposed method

Sample number
Composition / (µg mL-1) Predicted concentration / (µg mL-1) Recovery / %

Ni Co Cu Ni Co Ni Co

1 0.4 0.1 1.7 0.38 0.09 95.0 92.30

2 1.0 0.8 0.2 1.02 0.77 102.0 96.25

3 1.8 0.7 0.6 1.83 0.69 101.66 98.57

4 0.3 1.6 0.7 0.27 1.45 90.0 90.62

5 1.4 0.4 0.3 1.35 0.37 96.42 92.50

6 0.2 1.6 0.4 0.22 1.42 110.0 88.75

7 0.3 0.2 1.1 0.33 0.18 110.0 91.0

8 0.4 1.5 0.6 0.39 1.52 97.50 101.33

9 1.2 0.5 0.2 1.23 0.47 102.50 94.0

10 0.2 0.9 0.5 0.23 0.88 115.0 97.77

11 0.3 0.3 0.3 0.31 0.27 103.33 90

Mean recovery 102.12 93.91

RSEsingle / % 3.16 7.78

RSEtotal / % 6.11
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conjunction with MCR-ALS was used in the determination 
of an analyte of interested in unknown samples and how 
the rank-deficiency problem in kinetic-spectrophotometric 
data was circumvented.

Real samples

The wider applicability of the proposed method was 
investigated. Two different synthetic alloy33-35 samples were 
analyzed for this purpose.

To remove the matrix effect in the determination of 
analytes, standards of them were added. Then, the reaction 
started by the addition of the reagent.

In complex multi species systems, it is hard to guess the 
involved number of reactions and species from inspection 
of the spectra. For this reason, the eigen analysis is used for 
estimating the number of reactions in the time range. Table 3 
presents the eigen values and the ratios of consecutive eigen 
values of variation matrix for the above mentioned two real 
sample. The ratio of consecutive eigen values of variation 

matrix reaches maximum at i = 2, therefore indicating that 
two reactions are taking place in considered systems.

Figure 4 shows the resolved reaction spectra and the 
reaction extent curves of real samples. Non-negativity on 
reaction extent was used as a constraint in ALS optimization. 
Concentration determination results of analytes in real 
sample are shown in Table 4. Spike method was used for 
checking the accuracy of results. Good recovery in Table 4 
shows that the results are accurate.

Table 3. First four eigenvalues and ratios of consecutive eigenvalues of 
the variation matrix of samples

Nillo alloy Coal alloy

gi gi+1 / gi gi gi+1 / gi

1 19.645 34.913 20.132 26.888

2 0.562 58.171 0.748 316.818

3 0.009 8.061 0.002 3.086

4 0.001 9.072 0.000 2.482

Figure 4. Resolved reaction extent curves for augmented variation matrix containing real and standard added sample for Ni (a) and its standard addition 
calibration curve (b), resolved reaction extent curves for augmented variation matrix containing real and standard added sample for Co (c) and its standard 
addition calibration curve (d).
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The results demonstrate that the proposed algorithm 
succeeded in the determination of analyte in the presence of 
interferent(s) reaction (second-order advantage). In addition, 
the reaction spectrum of the interferent reaction can be 
extracted. Simultaneous determination of binary mixtures 
can be also successfully done using a variation matrix in the 
curve resolution procedure, the components equal to reaction 
numbers which are less than chemical components. Thus, 
the ambiguity is decreased in resolution step.

The proposed method can be used to analyze rank 
deficient data, in which inert component exists. This 
problem will occur when the reaction of one of the 
component immediately takes place, producing a constant 
signal during the time range of the experiments. As 
mentioned in previous work,25 rank annihilation factor 
analysis (RAFA) of such cases may be difficult and fails to 
give correct concentration of the analyte of interest. So, it 
is necessary to circumvent this problem. Also for applying 
multivariate curve resolution, the rank deficiency problem 
should be solved prior to analyzing. Several methods have 
been reported for this purpose and the applied method 
(variation matrix) is one of them. Our group has applied 
this preprocessing strategy prior to multivariate curve 
resolution to analyze rank-deficient complexometric data. 
In comparison with previous work,25 it should be noted that, 
RAFA was used to analyze gray systems but multivariate 
curve resolution (the proposed method) can be used to 
analyze the black systems, in which there is no information 
about interferent(s).

Conclusions

This work combines the advantages of variation 
matrix  and standard addition method with those of 
MCR-ALS. A mathematical development was proposed 
for handling kinetic-spectrophotometric data in order to 
perform multicomponent analysis using variation matrix 
calculation. Using a variation matrix instead of original data 
matrix, the ambiguity is decreased in the resolution step 
because the components equal to reaction numbers which 
are less than chemical components. It was shown that the 

possible rank‑deficiency problem was circumvented using 
variation matrix concept. All the theoretical development and 
strategies of analysis were shown to be particularly useful 
to understand the analysis and the obtained results on real 
problems involving different alloy samples.
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