Pesquisa Operacional (2014) 34(1): 125-142
© 2014 Brazilian Operations Research Society

' ‘ SOBRAPO Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope

A HYBRID METHOD FOR A PROJECT SCHEDULING PROBLEM

André Renato Villela da Silva

Received February 20,2013 / Accepted October 22, 2013

ABSTRACT. This work deals with a project scheduling problem where the tasks consume resources to be
activated, but start to produce them after that. This problem is known as Dynamic Resource-Constrained
Project Scheduling Problem (DRCPSP). Three methods were proposed to divide the problem into smaller
parts and solve them separately. Each partial solution is obtained by CPLEX optimizer and is used to
generate more complete partial solutions. The obtained results show that this hybrid method works very
well.

Keywords: Project Scheduling Problem, Combinatorial Optimization, Hybrid Methods.

1 INTRODUCTION

In Project Scheduling Problems (PSP), two elements are essential: the tasks that represent each
step of the project to be executed, and the resources that are necessary inputs for a task to be
performed. The tasks are linked together via precedence relationships that determine the order
in which tasks may or may not be performed. Typically, these relations are called finish-to-start,
i.e., a task must be completely executed before a successor task begins. It is also very common
that a task may have more than one predecessor. In this case, all predecessors must have been
performed before starting the task at hand. The most common goal is to make all project tasks to
be executed as soon as possible, respecting the precedence constraints and resource availability.

The resources that are necessary to perform the tasks are the other element to be treated in PSPs.
A fairly traditional classification divides them into two groups: renewable and non-renewable
resources. Renewable resources are those which, after being used in the execution of a task,
are again available to be used by another task not yet executed. Some examples of this class
are machines (excavators, tractors, computers) and professionals (engineers, programmers, as-
sistants). These resources can be reused at the end of a project stage. Resources are classified as
non-renewable if they are available only once during the whole planning horizon in which the
problem should be treated. Once they are used (consumed) we can no longer count on them until
the end of the problem. Common examples are money and fuel, among others.

Universidade Federal Fluminense, Instituto de Ciéncia e Tecnologia (PURO), Departamento de Computagdo, R. Recife
s/n., 28895-532 Rio das Ostras, RJ, Brazil. E-mails: avillela@ic.uff.br; andre.renato@gmail.com

126 AHYBRID METHOD FOR A PROJECT SCHEDULING PROBLEM

Traditionally, PSPs do not suppose generation of resources but only consumption of them. They
are input data and have initial values defined a priori since either they are non-renewable ones or
they have a renewal rate very well defined by the problem, as seen in [17, 25]. These scenarios,
however, are unable to model certain situations where, from the end of the task execution, it starts
to generate additional resources.

In order to illustrate these situations, suppose that the project in question is the commercial
expansion of a company. After the construction of a new branch, it is reasonable to assume that
the branch can financially contribute to the matrix through the branch profit that is expected.
The most important resource in this case is undoubtedly the financial return. The amount once
invested in building branches does not become available again at the end of this step, like a
machine or a worker. What happens is that, after completion of this investment, the branch starts
to produce its own financial resources that can be applied in the execution of other steps: opening
of new branches, hiring staff, purchasing equipment, among others.

An example of this situation can be seen at the timeline of the Brazilian company Net [16].
Nowadays, Net provides several communication services such as cable TV, internet and tele-
phony over many Brazilian cities. However, in 1991, Net started providing only TV services for
100 customers in Campo Grande/MS city. Two years later, the company bought other small TV
companies reaching almost 5000 clients and spreading its business to neighbor estates. In 1997,
Net’s budget was enough to acquire some more companies and expand its cable network over
several important cities, with a valuable client base. After many other acquisitions, in 2007 Net
had more than 2 million clients and an annual growing rate of 16%. In the same year, the annual
growing rate of telephony services was 212%. The company continues to invest on its base client
expansion in country cities or in far capital cities. It is important to say that the strategy used
by Net was to expand first over cities with higher expected profits in order to accumulate more
resources and grow faster.

Obviously, the business world is far more complicated than the model studied in this paper,
but some concepts explained later are present in real-life situations as cited above. Precedence
constraints are not always easy to model. For infra-structure companies is not hard to imagine
that the expansion can not be randomly done due to physical aspects and high costs related. For
store-based retailing companies such precedence constraints are much less rigid. This paper deals
with a theoretical model that can be used in a general way, so precedence constraints are present
in this model. The problem studied in this paper finds potential applications in commercial or
industrial expansions projects.

In the model that will be the subject of study, money is a renewable resource, but not like in
traditional models, where there is a maximum amount available to each unit of time. In the
proposed model, a resource is renewable because it is possible to have a reduction and increase
of its available quantity over time. The production of resources (money in this case) remains
from the completion of a task until the end of the planning horizon in question.

This paper will address the PSP where tasks consume resources when activated and, thereafter,
begin to generate resources until the end of the planning horizon whose size is given by an

Pesquisa Operacional, Vol. 34(1), 2014

ANDRE RENATO VILLELADASILVA 127

input parameter. The model also assumes an initial amount of resources that can be spent in the
first activations. The objective of this model is reaching the end of the planning horizon with the
greatest possible amount of resources. The resource discussed in this case may not have a defined
maximum, since the objective would lose its meaning. This resource that is consumed and then
produced varies in quantity over the planning horizon. Therefore, this type of resource is called
Dynamic Resource, and the scheduling problem called Dynamic Resource-Constrained Project
Scheduling Problem - DRCPSP.

The remainder of this paper is organized as follows: Section 2 presents a brief literature review of
the problem. Section 3 will bring the formal definition of the problem. Hybrid methods — that mix
characteristics of exact algorithms and heuristics — will be the subject of Section 4. In Section 5,
the computational results are presented. Finally, the conclusions are presented in Section 6.

2 LITERATURE REVIEW

Resource-constrained Project Scheduling Problems (RCPSP) are generalizations of Task Sched-
uling Problem, where we have a set of tasks which must be assigned to processing units such
that the last task finishes as soon as possible. The time when it occurs is called makespam. RCPSP
is a NP-hard problem, being on of the most studied problems of this class [26]. In resource-
constrained versions [11], minimizing the makespam is still the primary objective. However, a
new component called resource is added to the problem definition.

Resources can be understood as anything needed to a task in order to be scheduled. We can
mention raw materials, worker or equipments as resources examples. Each task has an amount of
required resources that must be available when the task is activated. Some models accept many
kind of different resources and many ways of activating the same tasks according to the amount
of resources [5].

Resources can be classified as non-renewable when, once it is used, it cannot be recovered or
re-utilized after the task execution. Renewable resources become available again after their uti-
lization by the tasks. Usually, the problem specifies the total amount of each kind of resource that
is available at the problem beginning. There is another kind of resource called partially renew-
able resources [2], which works as renewable resources at some time units and as non-renewable
resources at the other time units.

Many approaches have been used to tackle RCPSP. First techniques used only constructive
heuristics [3, 12, 15] or mathematical formulations [6, 14]. However, over the last years, many
metaheuristics approaches have obtained significant results in several areas [1, 8, 17, 19, 20, 24,
25], including validation and comparison with third-party software like [10]. They are partic-
ularly applied to the multi-mode version of RCPSP, where a task can be executed in different
ways, using different amount of resources [4, 5]. For the standard version of RCPSP, one of the
most effective metaheuristic can be seen in [9].

An early work on the DRCPSP was introduced by [21]. The work objective was to propose a
solution to the main weakness of many Evolutionary Algorithms (EAs): premature convergence.

Pesquisa Operacional, Vol. 34(1), 2014

128 AHYBRID METHOD FOR A PROJECT SCHEDULING PROBLEM

After a few generations, previously proposed EAs had difficulty to keep improving the quality
of individuals through the crossover operator. The article applied a GRASP version [7] capable
of a complete discarding of those solutions with poor quality or that could not be improved in
efficient way.

In GRASP, at each iteration, a new solution is generated by a constructive method and then
improved by a local search. A new local search proposed in that article was tested, besides new
tasks choosing criteria and a new local search called LS3. It starts from a full schedule already
built and uses a criterion less greedy than that used by the constructive method.

In order to provide a good result, the LS3 needed that the fixed partial solution was neither short,
because few information could be taken from the provided solution nor too large, because in
that way there would be no room for significant modifications. The computational results shown
in that article indicate that the search LS3 is capable of improving a solution much better than
the previously proposed local searches. The two GRASP versions tested by that work performed
better than the previously proposed EAs.

Local search LS3 was reemployed in [22] as part of a new evolutionary algorithm. This time,
in addition to the basic evolutionary operators, other mechanisms have been proposed trying
to avoid the premature convergence. The mechanisms of intensification and diversification start
acting when the population passes a few generations without improving the best solution found.
In the first place, the best solution so far will serve as a seed for the generation of quite similar
individuals. Using the search LS3, this best individual leads an entire population of new others.
This phase acts as an intensification around this good solution, which might make better solutions
to be more easily found.

If however these solutions are not found and a few more generations follow without improve-
ments on the best solution, the entire population will be discarded and a new one is created from
the constructive algorithm ADDR, as was done in the initial population of the evolutionary algo-
rithm. This phase aims to diversify the focus of the EA to solutions other than that it is currently
working on.

Also, in this paper, a hybrid method able to combine a partial scheduling generated by an exact
method with the proposed evolutionary method was proposed. This partial scheduling is achieved
by CPLEX software, according to the mathematical formulation proposed in [21] and constrain-
ing the activation of tasks until a given time unit. The goal is to generate the populations from
both partial scheduling and local search LS3. With the first part of the schedule given to the
exact method, it is expected to delivery to the local search a partial solution of superior quality
compared to those generated in a heuristic way. The hybrid method has proved to be particularly
effective in instances that had a relatively short planning horizon (up to approximately 25 units
of time), even if there was a large number of tasks. With longer planning horizons, the compu-
tational time spent by the first part of the schedule was not compatible with the quality of the
solution generated, which indicated that this method was not good for that kind of instances.

Pesquisa Operacional, Vol. 34(1), 2014

ANDRE RENATO VILLELADASILVA 129

Further studies such as [13, 18] show that methods that make good use of features from more than
one type of heuristics or that mix heuristics and exact components can provide very interesting
results which could hardly be achieved by traditional heuristic methods.

3 PROBLEM DEFINITION

Before presenting the definition of the problem, it is important to clarify some concepts used
in the model. Some of them come from the classic Project Scheduling Problems, others were
defined specifically for this model. Concepts marked with * represent an instance input data.

e Task*: is each stage of a project that should be performed. Its most important data is the
time unit when it should be executed.

e Solution: is a vector of n non-negative integers, where n is the number of project tasks.
Each element v; of the vector indicates the time when the task i must be executed.

e Resource: any input (material, equipment, professional or any other item) required to per-
form each of the project tasks. Although possible in several other models, the DRCPSP
admits only a single type of resource that can accumulate non-limited quantity of units
throughout the planning horizon.

e Available Resources: are the resources that can be applied for executing tasks in a given
time ¢. It is denoted by Q.

e Cost* of a task: is the amount of resources (positive value) needed for the execution of a
task. The cost of a task i is denoted by c;.

e Profir* of a task: the non-negative quantity of resources that will be produced by the task
at each time unit, starting from the moment of time following its activation until the end of
the planning horizon. It will be denoted by p; for each task i of the problem.

e Accumulated Profit: is the sum of the activated tasks profit at a time unit ¢. The notation is
made by P; and Py is usually equal to zero.

e Activation time: is an indication of a time unit ¢ at which the task should be executed. At
this point in time, available resources must be equal to or greater than the cost of the task
in question. It is also necessary that all predecessor tasks are already activated until the
previous time unit (f — 1).

e Task duration™: is the time required for a task to be fully processed, i.e. have completed
their execution. In DRCPSP, by the end of the time unit of its activation the task is consid-
ered completed and then starts to produce resources until the end of the planning horizon.

e Planning horizon*: is the time interval at which tasks can be executed. In DRCPSP it is
discretized in time units from 1 up to H, which is a problem input.

The DRCPSP is composed of a directed acyclic graph G = (V, A), where V is a set of vertices
and A is the set of arcs connecting the vertices. Each task i € V, is associated with a cost

¢; and a profit p;, non-negative integers. Initially, there is an amount of available resources

Pesquisa Operacional, Vol. 34(1), 2014

130 AHYBRID METHOD FOR A PROJECT SCHEDULING PROBLEM

Qo > 0 and an accumulated profit Py = 0. The scheduling should be conducted over a planning
horizon consisting of H time units. The problem objective is to maximize the amount of resources
(available resources and accumulated profit) at the end of the planning horizon.

Figure 1 and Table 1 show an example of this scheduling model solved by an arbitrary algorithm.
In the example, the planning horizon is composed of four units (H = 4) and the initial amount
of available resources Q¢ = 4. For the sake of simplification, the amount of available resources
Q; and accumulated profit P, will be denoted by Q and P, respectively. The already activated
task are in white, available task are in gray and tasks that can not yet be activated are shown in

black.

Table 1 — Costs and profits used by scheduling example.

Task Cost Profit

1 2 1
2 3 2
3 4 4
4 1 2
5 2 3
6 4 5
time = 1 (starting) timet =1 (fin shlng) time t = 2 (starting) time t = 2 (finishing)
Q=4 P=0 Q=1 P=2 P=2 Q=0 P=5

(@) (b) (© (d

tlme t = 3 (startlng) tlme t = 3 (flnlshlng) tlme t = 4 (startlng) tlme t = 4 (fmlshlng)

(e) ® (€3] (h)
Figure 1 — Steps of scheduling example.
At time unit r = 1 (Figure 1), tasks 1 and 2 are available for activation. Suppose the scheduling
algorithm chooses task 2 to be activated. It is necessary to consume 3 units of resource, since
¢ = 3. The accumulated profit which initially was zero now contains 2 units (p = 2). It is not

possible to activate task 1 with the remaining resources, so, time unit# = 1 must be finished like
in Figure 1. When the scheduling algorithm moves to the next time unit (¢ = 2, Figure 1(c)), the

Pesquisa Operacional, Vol. 34(1), 2014

ANDRE RENATO VILLELA DASILVA 131

accumulated profit turns into available resource, since the profit represents the resources that are
being produced by the task already activated. With the activation of task 2 performed, task 4 is
able to be activated.

The amount of available resources now allows that both task 1 and 4 may be activated. This
decision subtracts 3 units of resources (c; + ¢4 = 3) and adds 3 units (p; + p4 = 3) to the accu-
mulated profit, like in Figure 1(d). As there are no more available task right now, it is necessary
to advance to the next time unit. The accumulated profit is added to the available resources and
tasks state is updated.

In the beginning of time r = 3 (Figure 1(e)), task 3 can be activated because there are enough
available resources. After updating available resources, accumulated profit and tasks state, the
algorithm reaches the last time unit (+ = 4, Figure 1(g)) when tasks 5 and 6 will be activated. At
the end of this time unit (Figure 1(h)), there are 4 available resources and the accumulated profit
is 17. The result of this scheduling process is equal to 21 units of resources.

3.1 Mathematical formulation

In [23] an improved mathematical formulation was proposed for DRCPSP. In that formulation,
called F2, variables y;; indicate whether a task i was activated at time ¢ or before that. A zero
value means that a task i was still not activated and an one value means that a task i was already
activated at that time #. So, when a task is activated at time z, all variables related to that task,
from time ¢ to time H, have to be fixed at value one. Since the problem allows only one activation
at most, it is possible to know if a task was activated earlier looking at only one variable. The
formulation is presented and described next.

(F2)Max (Qn + Pr)

Subject to

Vit <view1 Yi=1,...,n Ve=1,...,H—1 (1)
Yie <yji—1 Yi=1,...,n Vt=2,...,H Vje Pred(i))

n
Qi=0Qr1+P1—) cilyu—yu1) V=1, H 3)

) i=1
Pr=> piyi Vt=0.....H 4)
yi0:lOIVi:1,...,n 5
yie€{0,1} Vi=1,....n Vt=1,...,H (6)
O, PeN Vt=0,....,H (7

Constraints (2) ensure that a task i, after its activation time ¢, remains activated until the end of
the planning horizon. Constraints (3) model precedence between a task i and each predecessor
task j. Constraints (4) define how available resources Q; are computed over time. The amount

Pesquisa Operacional, Vol. 34(1), 2014

132 AHYBRID METHOD FOR A PROJECT SCHEDULING PROBLEM

of available resources Q; is equal to the remaining resources from previous time Q,_; plus all
profits produced at that time P;_;. Constraints (5) indicate the accumulated profit P; at a time ¢
being the profit sum of all activated tasks. Constraints (6) show that no tasks are activated at the
beginning of the planning horizon and constraints (7) and (8) define y;; as binary variables, Q;
and P, as non-negative integer variables.

4 PROPOSED METHODS

The hybrid algorithm CPLEX + EA3 proposed in [22] introduced a very interesting idea: to di-
vide the planning horizon into two halves and perform the scheduling of these parts in sequence,
using CPLEX and the evolutionary algorithm EA3, respectively. The algorithm presented good
results for instances with a short planning horizon or a relatively small number of tasks (up to
300 tasks).

For larger instances, especially those whose planning horizon was extensive, the algorithm spent
too much time to produce the first half of the partial scheduling (under the responsibility of
CPLEX) and, consequently, could not terminate in an acceptable time.

The proposal now is to use the best formulation known for the DRCPSP, originally discussed
in [23], and divide the planning horizon into smaller parts so that a partial result is produced
faster. This solution is then used as starting point for another partial solution (covering more
units of time) to be produced until the entire planning horizon is covered. Additional mathemat-
ical constraints that prevent activation after the desired time unit are incorporated to the model.
Whenever a partial solution is produced, the already activated tasks have their variables fixed
into the formulation according to the activation time of the task. This must be done so that the
problem does not become increasingly difficult with the possibility of scheduling in increasing
intervals.

The division of the planning horizon can be done in several ways. Three proposals have been
done using two different criteria that will be explained below. As both criteria do not treat the
entire planning horizon at once, proposed methods are considered heuristics and may not provide
the optimal solution to the problem. Each partition generated, however, will be solved by an exact
method, allowing to classify the proposed strategies as hybrid methods.

e Fixed-length intervals: in this way of division, the planning horizon will be sectioned into
intervals of K time units. For example, if H = 7 and K = 3, there will be 2 intervals
whose length will be 2 and the last interval will have length of 1 time unit.

e Variable-length intervals: another way to accomplish the division is to define the amount
of intervals but allow them to have different lengths. Although the ideal is that the lengths
are similar, the major impact on the problem hardness is caused by the amount of tasks
(and consequently of binary variables) to be treated in each interval. Thus, intervals whose
lengths have a small difference are perfectly acceptable.

However, preliminary tests showed that taking into account only the amount of binary vari-
ables did not generate so good results because the first time units had few binary variables

Pesquisa Operacional, Vol. 34(1), 2014

133

,1j—1, 1 un-

ANDRE RENATO VILLELA DA SILVA

= t, this quantity will be denoted by w(#). The value of n (the total num-
;, to be the closest to m as possible. If the sum can not reach the exact value

J

due to precedence constraints. This leads to early intervals that need to incorporate more
units of time, taking longer to run. In fact, the factor that will determine the length of each
interval should be based on the amount of tasks that have the earliest activation time within
order to ease the visualization of the figures. The tasks are represented by gray circles.

of the algorithm. Figures 2 and 3 show how to divide a graph into four or six intervals,
respectively, in which tasks may be started until the time ¢+ = 8. No arcs were shown in

A preprocessing algorithm computes at each time 7, the number of tasks i that have
ber of tasks) will be divided by the desired number of intervals v to know the intervals
of m, the amount left over or missing will be taken into account for the next interval. It
is important to mention that the amount of intervals v is a input data given by the user

average length m. The intervals aggregate consecutive time units #;, tj41, . . .

the interval in question.
. t
til > w(t),

earliest (i)

e N N

o QRN

//
N
////,////////,//4,,,/

X — -
M D

:?///////ﬁ//////////i.,

=

=

STPHSETS

ANl

N
= }//z%/‘l//ﬂ/ﬁ?//////&?///

=

N
NY——-

Figure 2 — Example of a planning horizon divided into 4 partitions.

Figure 3 — Example of a planning horizon divided into 6 partitions.

Pesquisa Operacional, Vol. 34(1), 2014

134 A HYBRID METHOD FOR A PROJECT SCHEDULING PROBLEM

As the graph contains 30 tasks, the division into four intervals in Figure 2 gives us an
average of 7.5 tasks per interval. The first time unit has only 3 tasks, which is too far from
our goal (7.5). Including the second time, we get 6 tasks. If we include time 3, we would
have 10 tasks — farther from 7.5 than the previous value of 6. So our first interval ends
at + = 2, missing a task and a half to the goal. The second interval will take this into
consideration and look for a group that comes close to 7.5 4+ 1.5 = 9 tasks. The best
choice is to group time units 3 and 4 into another interval, now with a task to spare. The
algorithm continues until it reaches ¢ = 8 in this case.

For division into six intervals we have an average value of five tasks for each partition. In
Figure 3 it is possible to see how these partitions would be employing the same algorithm.

e Multiple intervals of variable length: the idea is quite similar to the previous one. An
original configuration of interval lengths is computed using the same criteria. After this, a
new configuration is obtained by shortening the first interval with one time unit given to
the next interval. Consequently, the next interval is enlarged by one time unit. All other
intervals remain fixed. Another configuration is given by enlarging the first interval from
the original configuration retrieving this time unit from the second one. The same process
of shortening and enlarging a interval based on the original configuration is done for each
interval. The scheduling algorithm used by previous partition method is executed for each
produced configuration. The best result from all of these configurations is the solution
provided by this third partition method. Figure 4 shows an example with 5 intervals (v = 5)
and H = 24. Each time unit is represented by a small square and the intervals by a vertical
dashed line. Squares that present the same background style are in the same interval.

These three ways of partitioning can make the optimal solution unreachable, because the optimal
solution of a partial schedule may not be part of the optimal solution from the whole schedule.
Thus, these hybrid versions can not be considered exact algorithms for the DRCPSP.

5 COMPUTATIONAL RESULTS

First, it is necessary to address the instances used in the computational experiments. All tests
were made with an Intel Quad-core Q9550 with 8 GB of RAM, running Linux (Ubuntu 8.10)
an CPLEX 11.2 (parallel version up to 4 threads). Instances have been retrieved from LABIC
project (http://www.ic.uff.br/~labic) and all have non-trivial solutions.

Graphs are composed of 10% of tasks without precedence, other tasks have up to 5 randomly
chosen predecessors. Costs and profits are randomly chosen in the range [1;50] and [1;10],
respectively, in order to produce interesting instances. Higher costs would make only few tasks
to be activated; lower values would provide very easy instances where all tasks could be acti-
vated. Planning horizon size was defined as square root of n (number of tasks) and the initial
amount of resources Qo is enough to activate at least one task without precedence. Py is always
equal to zero. These instances have been used by all papers about DRCPSP. Instances from other
project scheduling problems are not suitable for the DRCPSP because they do not have profit

Pesquisa Operacional, Vol. 34(1), 2014

ANDRE RENATO VILLELADASILVA 135

| |
Original Configuration & YNGR | 11111

First Interval Shortened P E

R B

| |
Q@%WWW?ZVAVVAIIIIIII

First Interval Enlarged

|
Second Interval Shortened : \\Q\\\Qmmmm/ AVAV,/.......

Second Interval Enlarged NEE

s \

&

I
\\MW/,%V//%WIIIIIII

|
Third Interval Shortened NN yvemzzzwzzElR111R

Third Interval Enlarged WENENEEE &WMWHM&V/,

|
Fourth Interval Shortened [\\\@§§mmm UL

|
Fourth Interval Enlarged [NN BRMmMzZ %%
Figure 4 — Multiple intervals scheme.

values. Introducing artificial values in those instances and using them to compare the proposed
formulation are not the objective of this paper.

5.1 Computational experiments

The experiments with the hybrid methods consist in executing the algorithm until all time units
are covered. Although the division of the planning horizon abbreviates the time required to
complete the optimization in each interval, it is not possible to predict a maximum time for
this to occur. Thus, a limit of 3 hours (10800 seconds) will be given for the optimization of each
partition. If the limit is reached, the incumbent solution is considered as the result of this interval.

The first scheme performs the division at intervals of size K. Table 2 shows the final results for
several values of K (2 to 10). The last column shows the results average. The instances are the
same as those analyzed by [21].

Two subdivisions with similar values of K generated close results. It was expected that a larger
value of K produced better results by covering a larger portion of the planning horizon. This was
not confirmed because the view of only part of the scheduling may influence the algorithm on
how much important a task is for the whole scheduling. Example: A task can be considered not
profitable if we analyze it alone and do not consider the activating of its successors. However,
if there is enough time for the successors activation, the same task may be considered very
important because its successors could produce much resources.

Pesquisa Operacional, Vol. 34(1), 2014

136 AHYBRID METHOD FOR A PROJECT SCHEDULING PROBLEM

Table 2 — Results for planning horizon partitioning with fixed-length intervals.

Interval Length (K)
Instance Average
2 3 4 5 6 7 8 9 10
100a 303 304 303 304 304 304 304 304 304 303.8
200a 632 628 632 636 632 635 632 635 636 632.5
300a 1898 1927 1965 1946 2020 2041 2043 2025 1950 1959.2
400a 5618 6143 6641 6169 6741 6732 6656 6460 6158 | 63209
500a 12689 13239 13006 13433 13397 13408 13941 13846 13510 | 13272.0
600a 8890 9554 9424 9321 9809 9526 9417 9864 10096 | 9407.9
700a 25454 28769 28398 28599 28772 29882 30587 29919 28824 | 28209.5
800a 32889 35127 35614 34118 35683 35300 37007 37363 37145 | 35263.0
900a 31981 33635 35070 33594 36046 34442 34619 36730 37529 | 343729
1000a 64744 65840 65207 67699 67885 66024 67867 69338 69717 | 66473.3

Obviously a very big difference between two values of K tends to produce different results.
Note that the time spent by each partition scheme does not have an increasing behavior. In fact,
each value of K corresponds to a new set of partial schedules, whose practical difficulty is too
complicated to be predicted. Table 3 shows the total time spent (in seconds) for each value of K.

Table 3 — Computational time (secs) for the planning horizon partitioning in fixed-length intervals.

Interval Length(K)
Instance Average
2 3 4 5 6 7 8 9 10
100a 00 00 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1
200a 00 02 02 0.3 0.3 0.3 04 0.7 0.9 0.3
300a 09 06 07 1.0 14 2.6 0.9 14 1.8 1.3
400a 14 09 0.9 24 1.8 2.0 38 14.1 43.1 7.3
500a 25 29 5.6 2.6 12.1 9.0 10.5 415 20437 2135
600a 38 29 34 113 12.7 7.5 514.3 870.5 50.0 148.3
700a 53 58 52 8.5 11.7 313 23.0 19.6 223 14.4
800a 75 74 160 9.2 203.7 164.1 1346.3 2081.9 555.1 440.6
900a 93 1.7 7.8 224 59.9 108059 108039 7788.6 1729.8 31252
1000a 13.0 93 123 9.7 11583 102.1 694.1 222 17426 378.7

5.2 Variable-length intervals

In this experiment, the partitioning of the planning horizon takes into account the number of
tasks that can start activation in each interval. Thus, it is possible to have some partitions with
fewer time units and other partitions with a little more. However, the amount of tasks should be
as similar as possible. Table 4 shows the final result for the planning horizon partition into 2 to
10 intervals (v = 2, ..., 10).

Pesquisa Operacional, Vol. 34(1), 2014

ANDRE RENATO VILLELADASILVA 137

The results of this second strategy does not have a well-defined behavior related to the amount of
intervals, similarly to the division into fixed-length intervals. In theory, the smaller the amount
of intervals, the larger they would be and better should be the solutions. However, to determine a
perfect mapping between Tables 2 and 4 is very complicated because even in an instance where
a value of K corresponds to v intervals, these intervals can group tasks completely different.
Suppose a instance with 400 tasks and a planning horizon with H = 20. The first division using
K = 10 take two steps: H; = 1...10 and Hy = 11...20. When the partitioning is done by
the second criterion with v = 2, we can have two steps H; = 1...10and H, = 11...20, or
Hy=1...9and H, = 10...20,0or Hy = 1...11 and H, = 12...20 or any other depending
on the amount tasks that are included in each interval. Therefore it is not possible to make a
comparison case-by-case, but if taken the results of both criteria together with the computational
times shown in Tables 3 and 5, it can be seen that the second criterion is slightly more efficient.

Table 4 — Computational results for the planning horizon partitioned with variable-length intervals.

Amount of intervals (v)

Instance Average
10 9 8 7 6 5 4 3 2
100a 304 304 304 304 304 304 303 304 303 303.8
200a 627 628 628 628 628 628 629 631 635 629.1
300a 1784 1833 1869 1839 1885 1841 2026 2030 2042 | 1905.4
400a 5374 5999 5570 5503 5503 5647 6641 6612 6460 | 5923.2
500a 12994 13113 13376 13288 13230 13501 13846 13938 14225 | 13501.2
600a 9183 9110 9230 9441 9414 9814 9830 10090 10035 | 9571.9

700a 25106 25237 25135 25291 27415 29311 27445 28563 31329 | 27203.6
800a 32686 33542 34555 35287 36362 35601 37508 37089 38511 | 35682.3
900a 32447 32004 31705 34266 34345 34431 36475 37295 38684 | 34628.0
1000a 63840 63796 64821 62294 64253 65332 65779 68297 70519 | 65436.8

Take for comparison the case where the second criterion is applied with v = 2. Theoretically,
this is the hardest partitioning because it has only two large intervals. Only the whole planning
horizon at once is more difficult than this scheme. All instances with over 400 tasks in these
experiments have more than 20 units of time. Using the first partition scheme and K = 10,
we have at least three partitions, the last one being usually smaller than the others. The total
computational time spent for these instances, by the first criterion was 29184.3 seconds. The
second criterion took only 25442.0 seconds. The results of the second criterion is 4.5% better
than those from the first criterion. Only in one instance (600a) the first criterion had better result.
If we consider also the instance 400a, which was divided into two partitions by the two criteria,
the second one would perform even slightly better. Thus, the second criterion with only two
(larger) intervals performed better than the first criterion with three or more (smaller) intervals.

The partitioning by variable-length intervals has, as major advantage, the fact that the first inter-
vals include a greater number of tasks than the partitioning by fixed-size intervals. At the first
levels of the graph few tasks are available to be activated. Thus, to achieve the average number
of tasks per interval, it is necessary to incorporate more time units. With more time units initially

Pesquisa Operacional, Vol. 34(1), 2014

138 AHYBRID METHOD FOR A PROJECT SCHEDULING PROBLEM

being considered the better will be the partial scheduling at those intervals. As further schedules
are based on results of previous schedules, the final result tends to be better.

All of these aspects that make sense in theory proved to be good on the practice too. The smaller
time consumption can be explained similarly: initial schedulings do not usually take long. If they
were well made, it tends to offer better primal bounds for the following schedulings, finishing
faster.

Table 5 — Computational times for the planning horizon partitioned with variable-length intervals.

Amount of intervals (v)
Instance Average
10 9 8 7 6 5 4 3 2
100a 00 00 00 00 00 00 00 0.0 0.2 0.0
200a 00 00 00 00 01 04 02 0.2 0.5 0.2
300a 1.0 10 08 038 06 0.6 1.0 1.5 5.7 1.4
400a 12 10 12 1.1 1.0 038 0.9 1.3 16.9 2.8
500a 32 28 25 38 22 32 33 11.0 342.5 41.6
600a 35 32 52 35 39 88 203 1724 99108 1125.7
700a 44 42 37 33 33 32 3.4 7.1 164.7 21.9
800a 60 56 55 53 182 56 296 874 66160 753.2
900a 86 64 63 59 70 54 281 81.5 40724 469.1
1000a 85 83 77 69 7.1 6.9 7.8 31.8 488.1 63.7

5.3 Multiple intervals

This third partitioning criterion can be seen as an extension of the previous one, since successive
executions are done addressing the “neighborhood” of the original configuration. In fact, the
number of executions is equal to 2v— 1, where v is the desired number of intervals. It is important
to remark that the last interval must always finish with + = H. Table 6 shows the results for
several values of v.

As expected, the results of this partitioning strategy are a little better than before — around 2.8%.
However, the computational time is much higher, not only because many iterations are per-
formed, but also because when the length of the intervals is changed, they become more difficult
to solve. Table 7 shows the execution times. According to the presented results, it can be said that
this method has a cost-benefit ratio worse than the previous one, since it takes much longer even
when there are large numbers of intervals. Therefore among the three partitioning strategies, the
second one — with intervals of variable length — presented the best results in a time not too long.

Finally, Table 8 brings an interesting comparison between the best result obtained by partitioning
against the primal bound obtained by CPLEX, assuming a maximum of 50000.0 seconds as ex-
plained in [23]. As already mentioned, the partitioning of the planning horizon does not treat the
whole problem at once. This implies in not necessarily to achieve the global optimum. Although
the partitioning algorithm can be considered a hybrid method, its final outcome shows a stronger

Pesquisa Operacional, Vol. 34(1), 2014

ANDRE RENATO VILLELADASILVA 139

Table 6 — Results for multiple intervals with variable length.

Amount of intervals (v)

Instance Average
10 9 8 7 6 5 4 3 2
100a 304 304 304 304 304 304 304 304 304 304.0
200a 636 632 632 632 632 632 635 636 635 633.6
300a 1830 1890 1901 1929 2003 1993 2026 2053 2061 1965.1
400a 6311 6349 6156 6349 6349 6510 6716 6741 6656 | 6459.7
500a 13441 13273 13490 13501 13369 13792 14014 14127 14239 | 13694.0
600a 9429 9429 9342 9616 9702 9969 9921 10123 10167 | 97442

700a 27321 28272 27297 28844 28830 29310 28409 29810 31567 | 28851.1
800a 35877 35432 35878 36140 37456 35663 37692 38096 38579 | 36757.0
900a 33144 33678 35034 34982 35953 36404 37537 38287 38793 | 35979.1
1000a 64284 65532 65295 66010 66933 67589 67551 68301 71419 | 66990.4

Table 7 — Computational times (seconds) for multiple intervals with variable length.

Amount of intervals (v)
Instance Average
10 9 8 7 6 5 4 3 2
100a 2.0 1.6 14 0.3 0.0 0.0 0.0 0.1 0.1 0.6
200a 8.4 7.0 6.5 0.7 14 1.6 1.5 1.0 1.1 32
300a 21.0 17.7 13.5 10.8 7.3 53 7.6 8.9 12.2 11.6
400a 323 272 220 13.7 9.1 12.2 8.9 8.4 98.5 25.8
500a 763 533 462 364 240 339 276 358.0 13406 221.8
600a 732 594 685 585 51.1 110.0 2059 4953 210435 | 2462.8
700a 845 753 591 510 440 409 2647 71.7 1069.3 195.6
800a 151.8 1176 972 887 1950 88.0 1745 55487 10840.0 19224
900a 1339 111.6 1089 962 1049 845 278.6 14856 13762.2 1796.3
1000a 156.8 1322 1152 1084 97.1 1060 91.1 12835 44044 721.6

heuristic behavior. The computational time spent by the best partitioning is much shorter than
the time spent by full optimization of instances. The computational results are relatively very
close, which validates the algorithm proposed in this paper. The result obtained for instance 800a
is remarkable. The partitioning method achieved a better result than the primal bound obtained
by optimization of the mathematical formulation. The limit of 50000.0 seconds was achieved by
CPLEX without having completed the optimization of the instance. According to [23], the dual
bound for this instance was 38729.8. It is likely that the result obtained by partitioning is not the
global optimum, but the method proposed in this article could outperform the CPLEX.

6 CONCLUDING REMARKS

The proposed hybrid methods use only the CPLEX optimizer combined with partitions (inter-
vals) of the planning horizon. When a partition is executed, the tasks activated until the end of

Pesquisa Operacional, Vol. 34(1), 2014

140 AHYBRID METHOD FOR A PROJECT SCHEDULING PROBLEM

Table 8 — Comparison between the best partitioning scheme

and the best primal bound known so far.

Result Time (sec)
Inst. Partitioning CPLEX | Partitioning CPLEX
100a 304 304 0.0 0.1
200a 635 636 0.5 6.5
300a 2042 2073 5.7 196.3
400a 6641 7271 0.9 467.8
500a 14225 14336 342.5 6688.7
600a 10090 10157 172.4 50000.0
700a 31329 31820 164.7 50000.0
800a 38511 38351 6616.0 50000.0
900a 38684 38733 4072.4 50000.0
1000a 70519 71864 488.1 50000.0

the interval are fixed and the following interval runs. This algorithm is executed until the end of
the planning horizon.

To perform the divisions of the horizon, three strategies have been proposed. The first one works
with fixed-size partitions, i.e., all partitions (except the last) must have the same number of time
units. The second strategy analyzes the number of tasks that can start their activation in each unit
time. According to the number of partition required by the user, an average amount of tasks in
each interval is calculated. The consecutive time units are grouped so as to contain approximately
this amount of tasks regardless of the length that will have this partition.

The third approach is an extension of the second one. An initial partitioning is defined and im-
plemented as the previous strategy. After the initial execution, the first interval is shortened and
proceeds to a new execution. Then, the interval is lengthened compared to the original size and
another run happens. Next, the algorithm moves to the second interval performing the same two
procedures until the penultimate interval is considered. It is considered therefore repeated exe-
cutions of the second strategy, with minor differences in length of the intervals.

The results showed that the second strategy produces better average results than the first one and
is executed in less time. In fact, the CPLEX performance for each interval depends much more
on the amount of tasks (and consequently of variables) to be analyzed than units of time.

The average results of the third strategy are still a bit better than the second, but the computational
times grow significantly. Making a comparison of the cost-benefit ratio of the second and third
strategies, the second one was chosen as the most advantageous strategy for partitioning the
planning horizon.

The comparison of the best partitioning strategy with the full planning horizon utilization
showed that the partitioning is a valid strategy and presents very satisfactory results with heuristic
behavior.

Pesquisa Operacional, Vol. 34(1), 2014

ANDRE RENATO VILLELA DASILVA 141

ACKNOWLEDGMENTS

This work was partially supported by FAPERJ (grant E-26/112.411/2012).

REFERENCES

(1]

(2]

(3]

(4]

[3]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

ALCARAZ J & MAROTO C. 2001. A robust genetic algorithm for resource allocation in project
scheduling. Annals of Operations Research,102(1): 83—109.

ALVAREZ-VALDES R, CRESPO E, TAMARIT JM & VILLA F. 2006. A scatter search algorithm for
project scheduling under partially renewable resources. Journal of Heuristics, 12(1): 95-113.

BocToR FF. 1990. Some efficient multi-heuristic procedures for resource constrained project
scheduling. European Journal of Operational Research,49(1): 3—13.

BOULEIMEN K & LECOCQ H. 2003. A new efficient simulated annealing algorithm for the resource-
constrained project scheduling problem and its multiple mode version. European Journal of Opera-
tional Research,149(3): 268-281.

DAMAK N ET AL. 2009. Differential evolution for solving multi-mode resource-constrained project
scheduling problems. Computers & Operations Research, 36(9): 2653-2659.

DEMEULEMEESTER E & HERROELEN W. 1992. A branch-and-bound procedure for multiple
resource-constrained project scheduling problem. Management Science, 38(12): 1803—1818.

FEO T & RESENDE M. 1995. Greedy randomized adaptive search procedures. Journal of Global
Optimization, 6: 109-133.

GOLFETO RR, MORETTI AC & SALLES NETO LL. 2009. A genetic symbiotic algorithm applied to
the one-dimensional cutting stock problem. Pesquisa Operacional, 29(2): 365-382.

GONCALVES JF, RESENDE MGC & MENDES JIM. 2011. A biased random-key genetic algo-
rithm with forward-backward improvement for the resource constrained project scheduling problem.
Journal of Heuristics, 17(5): 467-486.

HEBERT JE & DECKRO RF. 2011. Combining contemporary and traditional project management
tools to resolve a project scheduling problem. Computers & Operations Research, 38(1): 21-32.

HOMBERGER J. 2007. A multi-agent system for the decentralized resource-constrained multi-project
scheduling problem. Int. Trans. in Oper. Res., 14(3): 565-589.

KoLiscH R. 1996. Efficient priority rules for the resource-constrained project scheduling problem.
Journal of Operations Management, 14(1): 179-192.

LIN S-W, LEE Z-J, YING K-C & LEE C-Y. 2009. Applying hybrid meta-heuristics for capacitated
vehicle routing problem. Expert Systems with Applications, 36(2): 1505-1512.

MINGOZI A ET AL. 1998. An exact algorithm for project scheduling with resource constraints based
on a new mathematical formulation. Management Science, 44(5): 714-729.

MLADENOVIC N, BRIMBERG J, HANSEN P & PEREZ JAM. 2007. The p-median problem: A survey
of metaheuristic approaches. European J Operational Research, 179(3): 927-939.

NET — INSTITUCIONAL. 2013. http://www.netcombo.com.br/institucional

Pesquisa Operacional, Vol. 34(1), 2014

142 A HYBRID METHOD FOR A PROJECT SCHEDULING PROBLEM

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

NONOBE K & IBARAKI T. 2002. Formulation and tabu search algorithm for the resource constrained
project scheduling problem. In: RIBEIRO C & HANSEN P (editors), Essays and Surveys in Meta-
heuristics, pp. 557-588.

POORZAHEDY H & ROUHANI OM. 2007. Hybrid meta-heuristic algorithms for solving network
design problem. European J, of Operational Research,182(2): 578-596.

ROSING KE & HODGSON MJ. 2002. Heuristic concentration for the p-median: an example demon-
strating how and why it works. Computers & Operations Research,29(10): 1317-1330.

SABINO JA, LEAL JE, STUTZLE T & BIRATTARI M. 2010. A multi-objective ant colony optimiza-
tion method applied to switch engine scheduling in railroad yards. Pesquisa Operacional 30(2):
486-514.

SILVA ARV & OcHI LS. 2007a. Effective grasp for the dynamic resource-constrained task schedul-
ing problem. In: Proc. of International Network Optimization Conference (INOC), Spa (Belgium).

SILVA ARV & OcHI LS. 2007b. A hybrid evolutionary algorithm for the dynamic resource con-
strained task scheduling problem. In: Proc. of the International Workshop on Nature Inspired Dis-
tributed Computing (NIDISC’07), LongBeach (EUA).

SILVA ARV & OcHI LS. 2010. Hybrid heuristics for dynamic resource-constrained project schedul-
ing problem. In: Proc. of the 7th International Workshop on Hybrid Metaheuristics, Viena (Austria).

(2011) SiLvA RC, CANTAO LAP & YAMAKAMI A. Application of an iterative method and an
evolutionary algorithm in fuzzy optimization. Pesquisa Operacional 32(2): 315-329.

VALLS V, BALLESTIN F & QUINTANILLA S. 2008. A hybrid genetic algorithm for the resource-
constrained project scheduling problem. European Journal of Operational Research, 185(2): 495—
508.

YANASSE HH. 2013. A review of three decades of research on some combinatorial optimization
problems. Pesquisa Operacional, 33(1): 11-36.

Pesquisa Operacional, Vol. 34(1), 2014

