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Abstract 
 
In accelerated lifetime testing (ALT) the assumption of stress-independent spread in life is commonly 
used and accepted because the resulting models are typically easier to use and data or past experience 
suggest that such a constrain is sometimes valid. However in many situations and with a variety of 
products the spread in life does depend on stress, i.e., the failure mechanism is not the same for all 
stress levels. In this paper the assessment of product time to failure at service conditions from ALT 
with stress-dependent spread is addressed by formulating a Bayesian framework where the time to 
failure follows a Weibull distribution, scale parameter dependency on stress is given by the Power Law, 
and two cases for the dependency between shape parameter and stress are discussed: linear relationship 
and, in order to allow a comparative analysis, stress-independent shape parameter. A previously 
published dataset is used to illustrate the procedure. 
 
Keywords:  accelerated lifetime testing; Weibull distribution; Bayes’ theorem; reliability. 
 
 

Resumo 
 
Em testes acelerados de vida (ALT) a suposição de que a dispersão do tempo de falha é independente 
do stress é freqüentemente empregada e aceita pois os modelos resultantes são tipicamente mais fáceis 
de utilizar e dados ou experiência adquirida sugerem que tal simplificação é algumas vezes válida. 
Entretanto, em muitas situações e para uma variedade de produtos, a dispersão do tempo de falha 
depende do stress, i.e., o mecanismo de falha não é o mesmo em todos os níveis de stress. Neste artigo, 
a estimação do tempo de falha do produto nas condições de serviço a partir de ALT com dispersão 
dependente do stress é discutida através da formulação de um modelo Bayesiano onde o tempo de falha 
segue uma distribuição de Weibull e o parâmetro de forma é dependente do stress via uma relação 
linear. Um conjunto de dados anteriormente publicado é utilizado para ilustrar o procedimento. 
 
Palavras-chave:  testes acelerados de vida; distribuição de Weibull; teorema de Bayes; 
confiabilidade. 
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1. Introduction 

In many areas, difficulties in obtaining significant failure data for reliable products under 
service (normal) operational conditions, the speed of advance in technology that keeps 
pushing the necessity of gathering data in short periods of time before the product under 
development becomes obsolete, and the requirements to meet deadlines and cost constrains 
lead reliability engineers, statisticians and other specialist to consider accelerated life testing 
as the only available technique in order to overcome these obstacles. 

In an accelerated life test products are subjected to higher stress conditions than those for 
which they are designed to operate (service conditions) forcing the products to fail more 
quickly than it would have under service conditions. As a result, ALT reduces the test time 
and still provides valuable information for the manufacturer to understand the failure process 
(failure modes and related failure mechanisms and causes) impacting the reliability 
characteristics of products. 

In designing an accelerated life test special attention should be given to how stresses and 
stress levels are chosen. In fact, they should be chosen so that they accelerate failure modes 
under investigation but do not introduce failure modes that would never occur under service 
conditions. Furthermore, it is considered that the time to failure T of a product being tested is 
a random variable distributed according to a probability distribution ( | )f T θ  that depends 
on a unknown set of parameters θ . Furthermore, it is assumed that all or some of the 
parameters θ  (in general the scale parameter for the Weibull distribution or mean log life for 
the Lognormal distribution) are related to the stress s under which the test is carried out by a 
specified function of the form ( , )sθ ψ ω= , where the set of parameters ω  determine the 
relationship between θ  and s. The function ( , )sψ ω  is known as Acceleration or Time 
Transformation. It is important to note that in the case of more than one parameter being 
dependent on the stress s, each one can be related to s by a different relationship ψ . 

The goal of accelerated life testing is to make inferences about the failure times of products 
operating at normal stress conditions based on observed failure data under accelerated stress 
conditions. To do so, however, it is imperative to estimate the set of parameters θ  and ω . 
Thus, assumptions on the distribution of the times to failure and on the functional 
relationship between the parameters of the failure distribution and the applied stress, ψ , 
must be made. A common assumption is that, for all stress levels, the failure times are 
governed by the same parametric family of probability distributions such as Lognormal or 
Weibull distributions, and the time transformation ψ  is assumed to follow a parametric 
model such as the Arrhenius Law, Eyring Law or the Power Law. 

Besides the above premises, in many accelerated life testing models it is considered that the 
spread in life is constant for all stress levels. From a practical standpoint, this means that the 
failure mechanism remains the same for all the applied stress levels, i.e., the product units 
submitted to test will fail in the same manner across different stress levels. This assumption 
has been widely adopted in the ALT literature, for example, in the assessment of service life of 
solar thermal components (Carlsson, 2004), and the life prediction at use conditions of cathode 
ray tubes (Gaertner, 2003). Some authors however suggest checking the validity of the stress-
independent assumption by means, for example, a graphical procedure where the slopes of 
the lines of the probability plots for the different stress levels should be roughly parallel 
(Whitman, 2003). Koo & Kim (2005), for instance, present the reliability assessment of seat 
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belt webbings where lifetimes were predicted by performing accelerated life tests which were 
designed using temperature, UV irradiance and abrasion as stress factors. The ALT was carried 
out for each stress factor at a time and the validity of the stress-independent assumption was 
confirmed by using the Bonferroni’s simultaneous confidence interval (Nelson, 1982). ALT 
data is also a valuable source of evidence during the development stages of a new product. In 
this context, Groen & Droguett (2005) and Groen et al. (2004) have developed a Bayesian 
reliability assessment methodology for products under development that take into account 
different sources of evidence such as field data and prototype accelerated lifetime test data. 

In many situations however the stress-independent assumption is no longer valid. For instance, 
Nelson (1984) studies the fitting of fatigue curves to experimental data where the standard 
deviation is a function of stress. Also, Barlow et al. (1988) considers the case of the stress-
rupture life of Kevlar/Epoxy strands and show that such accelerated life testing data are 
Weibull distributed with a stress-dependent shape parameter. However no further insights in 
the accelerated life testing modeling and lifetime prediction at service conditions are provided. 

Available methodologies and applications concerning accelerated life testing have been 
documented by Nelson (1982), Kececioglu (1993), Tobias & Trindade (1995), 
Bagdonavicius & Nikulin (2002), to name just a few. These studies present a significant 
understanding on the modeling and analysis of accelerated tests. However, the issue of time 
to failure assessment at service conditions given a scenario of stress-dependent spread in life 
(e.g., standard deviation of log life in a Lognormal distribution or the shape parameter in a 
Weibull distribution) has not yet been fully addressed. 

The purpose of this paper is to address the issue of ALT with stress-dependent spread in life, 
and the application of the stress is independent of time, i.e., the stress level applied to a 
sample of units does not vary with time. This is presented with a formulation of a Bayesian 
model in which the time to failure distribution is assumed to follow a Weibull distribution, 
the scale parameter follows the Power Law, and the shape parameter is considered to be 
dependent on stress. The proposed model is validated using data obtained via Monte Carlo 
sampling method. The case where the shape parameter is assumed to be independent on 
stress is also presented and discussed under a Bayesian framework. Both models (stress-
independent and stress-dependent shape parameter) are used to fit previously published real 
censored data where clearly the shape parameter is strongly dependent on stress. The results 
from both models are compared and the fit checked. 

The paper is organized as follows. The next section discusses the models proposed in this 
work for both cases comprehending constant and stress-dependent shape parameter. Then, 
the proposed Power-Weibull model with linear stress-dependent shape parameter is validated 
via a Monte Carlo generated data set. Section 4 presents an example of application in the 
context of the lifetimes of Kevlar/Epoxy Spherical Pressure Vessels. Section 5 provides 
some insights from the comparison between the Power-Weibull with constant and linear 
shape parameter models. Then some concluding remarks are provided. 

 

2. Model Development 

This section presents the development of the proposed model in which the shape parameter 
of the Weibull distribution is considered to be dependent on the stress level s. To establish a 
comparative analysis, however, the case of constant (stress-independent) shape parameter is 
also presented. 
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Let us assume that at any stress level s the time to failure T is distributed according to a 
Weibull distribution with the following probability density function (Weibull, 1951) 
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and reliability function given by (Weibull, 1951) 
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where ( )sα  is a scale parameter and ( )sβ  is a shape parameter, both considered to be 
dependent on stress, s. 

Sometimes, however, it is useful (from a computational perspective) to analyze Weibull data 
under the Smallest Extreme Value Distribution and such procedure is applied in this paper 
for the cases where the dependency on stress is analyzed. Indeed, if the time to failure T is 
Weibull distributed, then the natural log of time to failure ln( )Y T=  has an extreme value 
distribution with the following probability density function (Gumbel, 1958) 
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and reliability function (Gumbel, 1958) 
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where ( ) 1/ ( )s sξ β=  is a scale Parameter and ( ) ln[ ( )]s sλ α=  is a location parameter. 

 
2.1 The Power-Weibull Model: General Modeling 

This section initially presents a general modeling in which we do not assume any particular 
functional relationship between the scale parameter and stress or the shape parameter and 
stress, but it is assumed that at any stress level js  the failure times or the censored times are 
distributed according to the same parametric probability distribution. The general model 
deduction is performed using the natural log of life ln( )Y T≡ , which is Extreme Value 
distributed with scale parameter ( ) 1/ ( )s sξ β=  and location parameter ( ) ln[ ( )]s sλ α= . 

Assume that the available evidence at each stress level js  is composed by a series of u 

failure times 1, , it t… , i u∈ , or equivalently for log times 1, , iy y… , i u∈ , and c singly or 
multiply censored times 1, , it t… , i c∈ , which correspond to the log times 1, , iy y… , i c∈ . 
The likelihood for a failure at iy , i u∈  is the probability density function given by equation 
(3) evaluated at iy , and at js  as one has to take into account the effect of stress into the 

distribution parameters ( )sλ  and ( )sξ . Then, 

 ( , | ( ), ( )) ( | ( ), ( ))i i j j j i j jL y s s s f y s sξ λ ξ λ=  (5) 
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or, 
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The likelihood for a censored observation at iy , i c∈  and stress level js  is the survival 
probability for the Extreme Value distribution, namely, 

 ' ( , | ( ), ( )) ( , | ( ), ( ))i i j j j i i j jL y s s s R y s s sξ λ ξ λ=  (7) 

Taking equation (4) into equation (7) results in the likelihood function for each censored 
time: 
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The total likelihood for the n=u+c specimens under test at stress level js  is 
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As we have a total of m stress level, the final form for the likelihood function is given by the 
following expression: 

 

( ) ( )

( ) ( )
( )

( )

1

1
( , | ( ), ( ))

( )

y s y sij j ij jij j
s sj j

j

y s
m

s e e
i j j j

j i u i cj

L y s s s e e e
s

λ λ

ξ ξ
λ

ξξ λ
ξ

   − −
   
   
   

 −
   − − 

= ∈ ∈

    
    =           

∏ ∏ ∏  (10) 

Let D represent the total available evidence. If 0 ( ( ), ( ))s sπ ξ λ  is the prior distribution for the 
parameters ( )sλ  and ( )sξ , the posterior distribution of the model parameters is as follows: 
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2.2 Power-Weibull Model with Constant Shape Parameter 

Consider now that the Power Law (Nelson, 1982) describes the relationship between the 
scale parameter ( )sα  of a Weibull distribution and stress. This choice should be guided by 
the nature of the failure mechanism influencing the failure process. Therefore, the Power 
Law is here used based on results from the pressure vessel experiment to be discussed in 
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section 4 (Barlow et al., 1988). Then, one can write 0 1( ) /s e sγ γα =  where 0γ  and 1γ  are 
parameters to be estimated from data. In the case of log life ln( )Y T≡ , the location 
parameter ( ) ln[ ( )]s sλ α=  assumes a linear function in Log (base e) stress given by 

0 1( ) ln( )s sλ γ γ= − ⋅ . 

Under the assumption of stress-independent shape parameter, it is possible to write 
( )sβ β= . This results in the following scale parameter of a Extreme Value distribution: 

1/ξ β= , which is to be estimated from accelerated life testing data. 

Inserting the location and scale parameters ( )sλ  and ξ  in equation (10), the total likelihood 
function for the Power-Weibull model with constant shape parameter is given by 
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Using equation (12) and a generic prior distribution, the posterior probability distribution of 
the parameters 0 1{ , , }θ ξ γ γ=  has the following form: 
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where 1k  is a normalizing constant. 

 

2.3 Power-Weibull Model with Stress-Dependent Shape Parameter 

Several functional forms for the shape parameter have been proposed. In general, one can 
consider 0 1( ) ( ; , , )s g sβ δ δ= …  where ( )g i  is a specified function and 0 1, ,δ δ …  are 
parameters to be determined from the accelerated life testing data. A simple relationship is 
the linear model, 0 1( )s sβ δ δ= + ⋅ , or in alternate form 0 1( ) ln( )s sβ δ δ= + ⋅ . Another 

possible formulation is to consider a quadratic term in stress 2
0 1 2( )s s sβ δ δ δ= + ⋅ + ⋅  which 

has the property to describe a shape parameter the can, for example, initially increase with 
stress and after a certain stress level, it decreases as further stresses are applied. 

In this work, for mathematical convenience, it is assumed that the relationship between shape 
parameter and stress is given by 0 1( ) ln( )s sβ δ δ= − ⋅ , and the Power Law is assumed to 
describe the relationship between scale parameter and stress. As before, this last choice is 
based on the nature of the failure mechanism observed to influence the pressure vessel 
experiment discussed in section 4 (Barlow et al., 1988). Theoretically, however, the 
Bayesian framework allows for the choice of different formulations for the relationships 
between scale parameter and stress as well as shape parameter and stress. From a practical 
point of view, however, such choices are likely to be constrained by available data, 
difficulties and cost in the data gathering process, and computational related issues such as 
posterior distribution sampling procedures. 
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From this, the equivalent extreme value distribution has parameters 0 1( ) 1/[ ln( )]s sξ δ δ= − ⋅  
and 0 1( ) ln( )s sλ γ γ= − ⋅ . We will refer to this model as Power-Weibull-Linear Model. 
Therefore, the likelihood for the Power-Weibull model with non constant shape parameter is: 
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The posterior probability distribution for the parameters 0 1 0 1{ , , , }θ γ γ δ δ=  is then given by 
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where 2k  is a constant of normalization. 

 

3. Model Validation 

This section presents the validation of the proposed model using a simulated data set via 
Monte Carlo (Fishman, 2000). The life percentiles at a given stress will be calculated and 
checked against the corresponding ones from the simulated data. 

From the reliability function for a Extreme Value distribution given by equation (4), one can 
get the cumulative probability distribution in which both the location and the scale 
parameters are function of the stress as 
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From equation (16) it is easy to show that log life p-th percentiles at any stress are given 
by ( ) ( ) ln[ ln(1 )] ( )p s s p sλ λ ξ= + − − ⋅ . The shape parameter is 0 1( ) ln( )s sβ δ δ= − ⋅  and 

consequently the Extreme Value distribution scale parameter is 0 1( ) 1/[ ln( )]s sξ δ δ= − ⋅ . The 
Weibull scale parameter ( )sα  is assumed to follow the Power Law and, as before, the 
Extreme Value location parameter is 0 1( ) ln( )s sλ γ γ= − ⋅ . The corresponding life p-th 

percentiles can be obtained from ( )py s  as ( ) ln[ ln(1 )] ( ) 1/ ( )( ) ( ) [ ln(1 )]s p s s
pt s e s pλ ξ βα+ − − ⋅= = ⋅ − − . 

For illustrative purposes, consider that we are interested in estimating the life of a product at 
service conditions and that pressure is the relevant stress factor. The data set is obtained by 
setting the Power-Weibull model parameters to 0 5.0γ = , 1 1.5γ = , 0 0.7δ = , 0 0.4δ = . 
Assuming that pressure is in MPa, the following are the stress levels: 1 62.208s =  MPa 
(Ln[ 1s ] = 4.13 MPa, 90% stress level), 2 55.307s =  MPa (Ln[ 2s ] = 4.01 MPa, 80% stress 
level), 3 48.406s =  MPa (Ln[ 3s ] = 3.88 MPa, 70% stress level), 4 41.505s =  MPa (Ln[ 4s ] 
= 3.73 MPa, 60% stress level), 5 34.605s =  MPa (Ln[ 5s ] = 3.54 MPa, 50% stress level), 
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6 27.704s =  MPa (Ln[ 6s ] = 3.32 MPa, 40% stress level). Further, assume that the hypothetic 
goal of the experiment is to estimate the life percentile at 40% stress level. 

Note that the 40% stress level is not used to generate the posterior life percentiles, thus 
providing a way to check the extrapolation to lower stress levels. In Figure 1 and Figure 2 
are presented the generated time percentiles for 90% and 40% stress levels respectively. In 
order to estimate the life percentiles at 40% or lower stress levels, the simulated data set was 
modeled by the Power-Weibull model with stress-dependent shape parameter (equation 
(15)). It is used a constant prior distribution for the parameters 0 1 0 1, , ,γ γ δ δ . 

The data set generated via Monte Carlo is shown in Table 1 where type 0 means failure time 
and type 1 means censored time. Note that the number of data points is not equal for all the 
stress levels. Although the actual numbers of data points were randomly generated, units 
were allocated per stress level following a typical strategy used in accelerated testing 
(Nelson, 1990), i.e., one tends to preferably allocate more units at stress levels that are closer 
to the targeted use conditions. Also note that, as one would expect in a real situation, the 
higher is the applied stress, the lower is the number of censored units. In Table 2 are shown 
the parameters estimate 0 1 0 1

ˆ ˆˆ ˆ, , ,γ γ δ δ  at the likelihood mode. Note that these values are not 
obtained via application of a maximum likelihood method, but instead they are the 
parameters values corresponding to the mode of the joint likelihood function of 
equation (15). 

 

 
Figure 1 – Percentiles for 90% stress level. 

 
Figure 2 – Percentiles for 40% stress level. 

 
Through the application of the Bayesian inference technique represented by equation (15) to 
the simulated data, the time to observe 1% and 50% failure fractions at different stress levels 
were calculated from 0 1 0 1( , , , | )Dπ γ γ δ δ , posterior probability density function of the 
parameters, and are presented in Figure 3 and Figure 4, respectively. Note that in order to 
appropriately measure the uncertainty in the estimated times for specific failure fractions, the 
probability intervals are also provided ranging from 1% to 99% for a given failure level. 

In order to check the results obtained from the Power-Weibull-Linear model one can 
compare the time percentiles for each stress level given by Figure 1 and Figure 2 against the 
predicted ones for a specific failure fraction in Figure 3 and Figure 4. For example, at 90% 
stress level the 95% probability interval for the 50% failure fraction is (6959 - 8878) hours 
while the corresponding value from the simulated data is approximately 7812 hours 
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(see Table 3). Extrapolating down to the 40% stress level, the predicted 95% probability 
interval for the 50% failure fraction is (21050 – 35820) hours (or in Ln[time], 9.95 – 10.48) 
and the value from data is 27107.11 hours (or in Ln[time], 10.21). As it can be seen from 
Figure 4, for 50% of failure fractions all the percentiles from the simulated data are inside the 
predicted 95% probability interval. This is also observed for the extrapolated stress level of 
40% (see Table 3). For 1% failure fraction the estimated percentiles from the simulated data 
are located near to the lower 5% probability level (see Table 3). 

If further extrapolation is performed, it is observed that the predicted probability intervals do 
not enclose the true values originally simulated as shown in Figure 3 and Figure 4. This 
behavior is due to the increasing uncertainty as the extrapolation takes place at lower stress 
levels. For instance, the increase in uncertainty is reflected in wider probability intervals for 
estimates obtained for the 50% and 1% failure fractions, respectively, and also inside each 
predicted time percentile at a given fraction level. 

Figure 5 shows the predicted Life-Stress relationship for the Power-Weibull-Linear model 
with 95% probability intervals down to 40% stress level (Ln[Stress] = 3.32 MPa). Analyzing 
Figure 5, one can confirm the fact that the probability intervals become wider as the 
extrapolation is performed beyond the 40% stress level. Also, crossing percentiles are 
observed if extrapolation takes place at even lower stress levels as a consequence of such 
increase in uncertainty and wider probability intervals. Indeed, such fact is shown in Figure 6 
where the predicted time percentiles for 1%, 10% and 50% failure fractions are estimated to 
the 10% stress level. 

Such crossing percentiles result in longer life times for a lower failure fraction than at a 
higher one, which is physically implausible. For instance, the 5% probability level of 10% 
failure fraction at 10% stress level is Exp( 10.915 ) = 54995.13 hours, while the 95% 
probability level of 1% failure fraction at 10% stress level is Exp( 11.827 ) = 136899.18 
hours (see Figure 6). 

This fact indicates that the Power-Weibull-Linear model is inadequate for estimating failure 
times at extreme low stress levels. One possible approach to tackle this situation is to 
consider alternative testing plans in terms of testing unit allocation. For example, one could 
carry out tests at lower stress levels and testing more units at stress levels near the product 
service conditions. For an overview on accelerated life testing plans refer, for example, to 
Nelson (1990). For testing plan design from a Bayesian perspective see Chaloner & Larntz 
(1992), and for planning accelerated life tests under cost constrains see, for example, Tang & 
Xu (2005). 

Although this approach would possibly result in better predictions at lower stress levels as a 
result of the uncertainty reduction, on the other hand it would incur in higher costs as not 
only more units would be required but also because the testing procedure would be more 
time consuming as longer times to failures are expected at lower stress levels. Another 
approach is the consideration of alternative models for the dependency of the shape 
parameter with the applied stress. However, due to the increasing uncertainty at low stresses 
as less failures result from accelerated life testing, one can argue that other formulations are 
likely to suffer the same limitation. 
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Table 1 – Data simulated via Monte Carlo. 
% Stress Level Scale Shape CDF Time (h) Type % Stress Level Scale Shape CDF Time (h) Type

90% 9565.5026 1.8109 0.7401 11277.6262 0 60% 17551.5043 1.9728 0.0623 4366.5002 0

90% 9565.5026 1.8109 0.8054 12556.1323 0 60% 17551.5043 1.9728 0.8445 24047.1311 0

90% 9565.5026 1.8109 0.6056 9191.8737 0 60% 17551.5043 1.9728 0.2407 9127.8402 0

90% 9565.5026 1.8109 0.1032 2811.6608 0 60% 17551.5043 1.9728 0.7475 20635.9444 0

90% 9565.5026 1.8109 0.1301 3222.2516 0 60% 17551.5043 1.9728 0.0637 4418.9006 0

90% 9565.5026 1.8109 0.4213 6855.4374 0 60% 17551.5043 1.9728 0.9290 28738.6069 0

90% 9565.5026 1.8109 0.1863 3998.9470 0 60% 17551.5043 1.9728 0.9202 28089.9379 0

90% 9565.5026 1.8109 0.0378 1583.5158 0 60% 17551.5043 1.9728 0.1046 5747.2659 0

90% 9565.5026 1.8109 0.8924 14891.1698 0 60% 17551.5043 1.9728 0.2589 9528.2082 0

90% 9565.5026 1.8109 0.6807 10290.6028 0 60% 17551.5043 1.9728 0.8356 23678.2394 0

90% 9565.5026 1.8109 0.1556 3585.7379 0 60% 17551.5043 1.9728 0.3917 12314.4864 0

90% 9565.5026 1.8109 0.0619 2094.5990 0 60% 17551.5043 1.9728 0.8220 23146.7580 0

90% 9565.5026 1.8109 0.4398 7076.4597 0 60% 17551.5043 1.9728 0.5790 16309.2655 0

90% 9565.5026 1.8109 0.4281 6936.2718 0 60% 17551.5043 1.9728 0.1067 5808.9385 0

90% 9565.5026 1.8109 0.4847 7623.3654 0 60% 17551.5043 1.9728 0.5704 16114.3167 0

90% 9565.5026 1.8109 0.6461 9768.2835 0 60% 17551.5043 1.9728 0.4736 14016.8157 0

90% 9565.5026 1.8109 0.8039 12524.9786 0 60% 17551.5043 1.9728 0.0527 4001.2731 0

90% 9565.5026 1.8109 0.1978 4149.7397 0 60% 17551.5043 1.9728 0.5068 14719.9674 0

90% 9565.5026 1.8109 0.1821 3943.5117 0 60% 17551.5043 1.9728 0.0486 3837.3170 0

90% 9565.5026 1.8109 0.4818 7587.9588 0 60% 17551.5043 1.9728 0.6376 17684.4465 0

90% 9565.5026 1.8109 0.5974 9079.3380 0 60% 17551.5043 1.9728 0.6635 18328.5186 0

90% 9565.5026 1.8109 0.2489 4793.8372 0 60% 17551.5043 1.9728 0.3191 10808.5999 0

90% 9565.5026 1.8109 0.5593 8569.3366 0 60% 17551.5043 1.9728 0.4572 13672.8795 0

90% 9565.5026 1.8109 0.1130 2964.4717 0 60% 17551.5043 1.9728 0.8470 24152.3754 0

90% 9565.5026 1.8109 0.7754 11936.3845 0 60% 17551.5043 1.9728 0.8727 3894.4204 1

90% 9565.5026 1.8109 0.8769 14387.8516 0 60% 17551.5043 1.9728 0.1534 3894.4204 1

90% 9565.5026 1.8109 0.3341 5820.2079 0 60% 17551.5043 1.9728 0.4691 3894.4204 1

90% 9565.5026 1.8109 0.7389 11257.2631 0 60% 17551.5043 1.9728 0.6422 3894.4204 1

90% 9565.5026 1.8109 0.0974 1855.2090 1 60% 17551.5043 1.9728 0.2087 3894.4204 1

90% 9565.5026 1.8109 0.4449 1855.2090 1 60% 17551.5043 1.9728 0.3140 3894.4204 1

80% 11410.4810 1.8579 0.8091 14969.7373 0 60% 17551.5043 1.9728 0.8966 3894.4204 1

80% 11410.4810 1.8579 0.0293 1719.7444 0 60% 17551.5043 1.9728 0.8716 3894.4204 1

80% 11410.4810 1.8579 0.8520 16168.0743 0 60% 17551.5043 1.9728 0.8088 3894.4204 1

80% 11410.4810 1.8579 0.8777 17015.7419 0 60% 17551.5043 1.9728 0.5968 3894.4204 1

80% 11410.4810 1.8579 0.5345 9876.4509 0 50% 23054.9471 2.0455 0.3783 16026.8197 0

80% 11410.4810 1.8579 0.1827 4820.9963 0 50% 23054.9471 2.0455 0.3540 15380.0343 0

80% 11410.4810 1.8579 0.8622 16490.5386 0 50% 23054.9471 2.0455 0.8560 31861.5520 0

80% 11410.4810 1.8579 0.8479 16043.4874 0 50% 23054.9471 2.0455 0.1841 10583.9201 0

80% 11410.4810 1.8579 0.6889 12403.0504 0 50% 23054.9471 2.0455 0.2035 11181.0037 0

80% 11410.4810 1.8579 0.5894 10717.6242 0 50% 23054.9471 2.0455 0.7816 28304.5322 0

80% 11410.4810 1.8579 0.1228 3822.1157 0 50% 23054.9471 2.0455 0.7458 26887.5498 0

80% 11410.4810 1.8579 0.3944 7869.7155 0 50% 23054.9471 2.0455 0.9142 35771.1764 0

80% 11410.4810 1.8579 0.8569 16318.3899 0 50% 23054.9471 2.0455 0.2954 13800.9281 0

80% 11410.4810 1.8579 0.4821 9108.6521 0 50% 23054.9471 2.0455 0.5671 21136.1181 0

80% 11410.4810 1.8579 0.1292 3935.6837 0 50% 23054.9471 2.0455 0.1887 10728.4062 0

80% 11410.4810 1.8579 0.6733 12121.4436 0 50% 23054.9471 2.0455 0.0697 6382.8743 0

80% 11410.4810 1.8579 0.0884 2306.8559 1 50% 23054.9471 2.0455 0.1792 10431.5343 0

80% 11410.4810 1.8579 0.4825 2306.8559 1 50% 23054.9471 2.0455 0.4041 16710.8044 0

80% 11410.4810 1.8579 0.1595 2306.8559 1 50% 23054.9471 2.0455 0.4811 18762.3184 0

80% 11410.4810 1.8579 0.9108 2306.8559 1 50% 23054.9471 2.0455 0.4266 17305.2363 0

70% 13935.4628 1.9113 0.6319 13930.7079 0 50% 23054.9471 2.0455 0.5299 20093.0460 0

70% 13935.4628 1.9113 0.1671 5728.9711 0 50% 23054.9471 2.0455 0.1872 10681.0104 0

70% 13935.4628 1.9113 0.7030 15423.2933 0 50% 23054.9471 2.0455 0.6755 24426.0692 0

70% 13935.4628 1.9113 0.4238 10205.5613 0 50% 23054.9471 2.0455 0.5821 21569.0192 0

70% 13935.4628 1.9113 0.7581 16736.7951 0 50% 23054.9471 2.0455 0.1315 8847.1233 0

70% 13935.4628 1.9113 0.0586 3208.5220 0 50% 23054.9471 2.0455 0.2872 13578.1190 0

70% 13935.4628 1.9113 0.3243 8537.2126 0 50% 23054.9471 2.0455 0.8631 32260.6367 0

70% 13935.4628 1.9113 0.6507 14307.9197 0 50% 23054.9471 2.0455 0.5024 19337.0388 0

70% 13935.4628 1.9113 0.9770 27918.7192 0 50% 23054.9471 2.0455 0.2876 5396.8702 1

70% 13935.4628 1.9113 0.3581 9104.7540 0 50% 23054.9471 2.0455 0.5580 5396.8702 1

70% 13935.4628 1.9113 0.6058 13422.2088 0 50% 23054.9471 2.0455 0.1600 5396.8702 1

70% 13935.4628 1.9113 0.5569 12512.7396 0 50% 23054.9471 2.0455 0.6672 5396.8702 1

70% 13935.4628 1.9113 0.9552 25215.6950 0 50% 23054.9471 2.0455 0.9832 5396.8702 1

70% 13935.4628 1.9113 0.1028 4359.3991 0 50% 23054.9471 2.0455 0.5123 5396.8702 1

70% 13935.4628 1.9113 0.0375 2945.7955 1 50% 23054.9471 2.0455 0.8992 5396.8702 1

70% 13935.4628 1.9113 0.9421 2945.7955 1 50% 23054.9471 2.0455 0.6620 5396.8702 1

70% 13935.4628 1.9113 0.0013 2945.7955 1 50% 23054.9471 2.0455 0.8816 5396.8702 1

70% 13935.4628 1.9113 0.9320 2945.7955 1 50% 23054.9471 2.0455 0.9666 5396.8702 1

70% 13935.4628 1.9113 0.3407 2945.7955 1 50% 23054.9471 2.0455 0.5908 5396.8702 1

70% 13935.4628 1.9113 0.6307 2945.7955 1 50% 23054.9471 2.0455 0.7182 5396.8702 1

60% 17551.5043 1.9728 0.4472 13465.3639 0 50% 23054.9471 2.0455 0.3465 5396.8702 1

60% 17551.5043 1.9728 0.6611 18266.1794 0 50% 23054.9471 2.0455 0.1251 5396.8702 1  
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Table 2 – Parameters values at the likelihood mode. 

 0γ  1γ  0δ  1δ  

Input 5.0 1.5 0.7 0.4 
Mode 5.1353 1.4447 0.7414 0.4974 
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Figure 3 – 1% Failure fraction as function of stress. 
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Figure 4 – 50% Failure fraction as function of stress. 
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Table 3 – Predicted 95% probability intervals for 50% and 1% failure fractions as function 
of stress. 

Failure Fraction % Stress Level Ln[Time] (h) Time (h) Ln[Time] (h) Time (h) Ln[Time] (h) Time (h)
90% 8.85 6959.00 9.09 8878.00 8.96 7812.87
80% 9.05 8532.00 9.25 10410.00 9.15 9367.67
70% 9.26 10540.00 9.45 12760.00 9.35 11503.73
60% 9.47 13000.00 9.73 16740.00 9.59 14575.67
50% 9.70 16260.00 10.06 23480.00 9.87 19272.91
40% 9.95 21050.00 10.49 35820.00 10.21 27107.11
90% 6.62 746.80 7.26 1422.00 6.63 754.22
80% 6.87 958.50 7.47 1763.00 6.87 959.44
70% 7.14 1258.00 7.73 2273.00 7.14 1255.53
60% 7.44 1701.00 8.04 3098.00 7.44 1704.58
50% 7.76 2353.00 8.41 4509.00 7.80 2432.63
40% 8.14 3418.00 8.89 7290.00 8.22 3729.73

50%

1%

Lower Upper True Failure Fraction
Predicted Failure Fraction
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Figure 5 – Predicted time percentiles for 1%, 10% and 50% failure fraction from 90% to 40% 

stress levels. 
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Figure 6 – Predicted time percentiles for 1%, 10% and 50% failure fraction from 90% to 10% 

stress level. 

 

4. Application: The Case of Pressure Vessels 

The problem of stress-dependent life spread in accelerated life testing has been pointed out in 
the literature (see for instance Nelson, 1984). Barlow et al. (1988) presents a data set that is 
the result of a study of lifetimes of Kevlar/Epoxy Spherical Pressure Vessels subjected to 
constant sustained pressure until vessel failure known as stress-rupture. The experience with 
previous similar units and also with Kevlar 49/Epoxy strands leads to the conclusion that the 
lifetime of such pressure vessels is Weibull distributed, and the shape parameter is stress-
dependent (Barlow et al., 1988). Although a stress-dependent shape parameter has been 
identified, no further modeling and analysis are presented toward the problem solution of 
predicting life at service conditions. 

This section presents the analysis of the data set in (Barlow et al., 1988) under the Bayesian 
Power-Weibull-Linear model and predicts life percentiles for different failure fractions as a 
function of stress and extrapolating to lower stress levels representing service conditions. In 
order to allow for a comparative analysis, the pressure vessels data set is also analyzed 
considering a stress-independent shape parameter. 

 
4.1 Pressure Vessels Data 

The pressure vessels data set used for illustration of the model consists of 39 failure times 
out of 39 units at 86% stress level or also called mean rupture stress at 4300 psig, 24 failure 
times out of 24 units tested at 80% stress level (4000 psig), 16 failures out of 24 at 74% 
stress level (3700 psig) and 5 failures out of 21 units tested at 68% stress level (3400 psig). 
The sets of data are presented in Table 7, Table 8, Table 9, and Table 10 of the Appendix for 
68%, 74%, 80% and 86% stress levels, respectively. The objective is to determine the time 
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percentiles for 1%, 10% and 50% failure fraction at 50% stress level (2500 psig) and 
investigate further extrapolation to lower stress levels. As stated before, the lifetime of 
pressure vessels follows a Weibull distribution (Barlow et al., 1988). Table 4 shows the 
coefficient of variation based on maximum likelihood estimates of mean lifetime and 
standard deviation of lifetime. The estimates are based on a Weibull lifetime distribution. 
The column ‘trend’ indicates whether the time to failure distribution has decreasing failure 
rate (DFR), increasing failure rate (IFR) or approximately constant failure rate (exponential) 
at a given stress level. 

From the analysis of the coefficient of variation shown in Table 4, one can make some 
preliminary observations about the failure rate function inside each stress level. Indeed, the 
failure rate is decreasing for the 86% and 80% stress levels, while it is approximately 
constant at 74% stress level, and increasing at lowest experimental stress of 68%. As stated 
by Barlow et al. (1988), the pressure vessels data indicate that the time the time to failure 
distribution shape parameter depends on the stress level. A more detailed data analysis of the 
data at each stress level can be found in Barlow et al. (1988). 

 
Table 4 – Departure from exponentiality for the pressure vessels data. 

Pressure Vessels Data
Stress Level (%) Coefficient of Variation Sample Size Number of Failures Trend

68 0.60 21 5 IFR
74 1.00 24 16 Exponential
80 1.38 24 24 DFR
86 1.63 39 39 DFR  

 

4.2 Fitting the Power-Weibull Model with Stress-Independent Shape Parameter 

To predict the posterior time percentiles at different stress levels assuming a constant shape 
parameter for the Weibull distribution it is necessary to obtain the posterior probability 
density function for the model parameters 0 1, ,ξ γ γ  in equation (13). Given the considerable 
amount of available data, it is considered a flat prior distribution for the model parameters. 
Note that this is a conservative modeling option as it assumes no relevant prior information 
on the parameters. For cases dealing with small sample sizes, an informative prior 
distribution should be considered. For a detailed discussion about the construction of an 
informative prior distribution in the context of Weibull models see, for example, Groen & 
Droguett (2006). 

Table 5 shows the parameter estimates at the likelihood mode. The Extreme Value scale 
parameter estimate at the mode is 2.916Mξ = , which corresponds to a Weibull shape 
parameter of 1/ 0.343M Mβ ξ= =  indicating a decreasing failure rate in the region near the 
maximum likelihood. This result is somewhat expected as the most significant information is 
for higher stress levels, condition which is characterized by decreasing failure rates 
(see Table 4). 

The 95% probability intervals are: 01.476 5 2.3817 4E Eγ− < < − , 12.1136 2.3462γ< < , 
2.0441 2.7746ξ< < . Note that the parameter 0γ  has a very small value which is acceptable 
if one analyzes the data in Appendix A in which the times to failure at higher stresses span 
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from almost zero (2.2 hours) to approximately 6177 hours at 86% and 80% stress levels, and 
these stresses are the ones with the higher number of failures. In Figure 7 is shown the time 
percentiles at various stress levels for 50% failure fraction (in Ln scales). It can be observed 
that as the stress decreases the uncertainty bounds become wider. The same fact is observed 
among different failure fractions, where the 95% probability interval at 50% failure fraction, 
for example, is narrower than the 95% probability interval at 10% and 1% failure fractions, 
as shown in Figure 8. 

Figure 8 shows the 95% probability intervals of the time percentiles as function of stress 
ranging from 90% stress level to 10% stress level for three different failure fractions. As 
expected, the curves for different percentage points are parallel as a result of a stress-
independent shape parameter. 

 
Table 5 – Parameter estimates at the likelihood mode for the Power-Weibull model with stress-

independent shape. 

 
0γ  1γ  ξ  

Mode 1.24E-5 2.116 2.916 
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Figure 7 – Time percentiles as a function of stress for the 50% failure fraction under the Power-

Weibull model with stress-independent shape. 
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Figure 8 – Time percentiles as function of stress for 1%, 10% and 50% failure fractions under the 

Power-Weibull model with stress-independent shape. 

 

4.3 Fitting the Power-Weibull Model with Stress-Dependent Shape Parameter 

The pressure vessels data sets are now modeled according to the Power-Weibull-Linear 
model which has posterior parameters pdf given by equation (15). Once again, it was solved 
considering a flat prior pdf. The parameters mode estimates are: 0 1.3533E-25γ = , 

1 2.2459γ = , 0 9.022E-28δ = , 1 0.1205δ = . 

Observe that as in the previous case of constant shape, the parameter 0γ  has a very small 
value, indicating the data behavior of very small failure times at high stress levels. However, 
in the present situation, the shape parameter is considered as a linear function of the 
log (base e) stress. The parameter 0δ  shows a small value at the mode. Thus, for the pressure 
vessels data sets, both scale and shape parameters are expected to range from near zero at 
high stress levels based on the present state of knowledge provided by the available 
evidence. Further observations can be made analyzing the 95% Bayesian probability 
intervals for the model parameters: 01.54E-35 1.66E-34γ< < , 12.1352 2.3679γ< < , 

01.339E-35 5.0325E-35δ< < , 10.1017 0.1323δ< < . The 95% probability interval of the 1δ  
does not include the zero value. Thus this coefficient, which defines the linear dependency 
between the shape parameter and stress, is significantly (convincingly) different from zero 
and hence ( )sβ  depends on stress in this model. Further insights will be given via application 
of the Likelihood Ratio test in the next section. 

In Figure 9, Figure 10, and Figure 11 are shown the time percentiles for 50%, 10% and 1% 
failure fractions in the case of Power-Weibull-Linear model. It can be observed that as the 
time percentiles are extrapolated to lower stress levels, the probability intervals for 50%, 
10% and 1% become wider, an expected result due to increased uncertainty. Furthermore, 
such curves are not parallel to each other at different pressures (see Figure 12), as now the 
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shape parameter is a linear function of the log stress. Indeed, the time percentiles tend to 
approximate to each other as the stress is decreased, and one would expect that they will 
cross each other at very low pressures. However, even extrapolating down to the 10% stress 
level (3.4591 MPa), the percentiles do not cross (see Figure 12). This fact is associated with 
this particular set of data which not only have a fairly large sample sizes but also a high 
number of failures. 
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Figure 9 – Time percentiles as a function of stress for the 50% failure fraction under the Power-

Weibull model with stress-dependent shape. 
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Figure 10 – Time percentiles as a function of stress for the 10% failure fraction under the Power-

Weibull model with stress-dependent shape. 
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Figure 11 – Time percentiles as a function of stress for the 1% failure fraction under the Power-

Weibull model with stress-dependent shape. 
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Figure 12 – Time percentiles as function of stress for 1%, 10% and 50% failure fractions under 

the Power-Weibull model with stress-dependent shape. 
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5. Comparison of the Models 

As shown in Figure 13, Figure 14 and Figure 15, the resulting uncertainty bounds for 
different time percentiles for various failure fractions (1%, 10% and 50%, respectively) for 
the Power-Weibull model with constant shape parameter are wider than the ones for the 
Power-Weibull-Linear model. 

Another aspect to note is the form of the percentiles curves. For the model with stress-
independent shape the curves are parallel to each other at different stress levels, but they 
present a curvature at high stress levels and tend to approximate to each other at lower 
pressures for the stress-dependent case. For the pressure vessels data, however, they do not 
cross at very low pressures. 

In examining the fit of the Power-Weibull-Linear model to the pressure vessels data, it was 
checked whether the probability interval for the 1δ  parameter enclosed the zero value. If it 
does not enclose zero, one can conclude that the coefficient differs from zero, that is, a 
nonzero coefficient provides a convincing improvement in the fit of the model to the data. 
This procedure, however, may be misleading when the coefficient estimates are statistically 
correlated, and they usually are. 
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Figure 13 – Comparison for time percentiles as function of stress for 1% failure fractions under 

the Power-Weibull model with stress-independent versus stress-dependent shape models. 
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Figure 14 – Comparison for time percentiles as function of stress for 10% failure fractions under 

the Power-Weibull model with stress-independent versus stress-dependent shape models. 
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Figure 15 – Comparison for time percentiles as function of stress for 50% failure fractions under 

the Power-Weibull model with stress-independent versus stress-dependent shape models. 
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The Likelihood Ratio Test (DeGroot & Schervish, 2002) is another way to deciding which 
coefficients to include in the model, i.e., whether the 1δ  parameter is important in order to 
obtain an improved fit for the pressure vessels data. The log likelihood ratio test statistic for 
comparing the fit of two models with k  and k ′  parameters, respectively, is 

2[max max ]T L L′= −  where T has a Null distribution that is approximately 2χ  with k k′−  
degrees of freedom, and max L  is the maximum log likelihood. The maximum log 
likelihood for the case of stress-independent shape parameter is max 242.396L′ = − , and for 
the case of linear shape is max 238.6574L = − . Then, the statistic to test if the linear 
coefficient 1δ  for the shape parameter differs from zero is 2[ 238.657 ( 242.396)]T = − − − =  
7.478 . As four coefficients are estimated for the Power-Weibull-Linear model and three 
coefficients for the model with constant shape parameter, one has that the 2χ  95% percentile 

with one degree of freedom is 2 (95%,1) 3.841χ = . The calculated T statistic exceeds this 
critical value, hence 1δ  is statistically significant at the 5% level. Furthermore, one can 

observe that the T statistic also exceeds the 1% confidence level ( 2 (99%,1) 6.635χ = ). Thus, 
the coefficient 1δ  significantly improves the fit. 

What are the implications on the product life at service conditions given prediction from the 
stress-independent and stress-dependent models? To answer this question, one can inspect 
Table 6 that shows the median estimates and corresponding uncertainty bounds (5% and 95% 
percentiles) of failure times at two product service conditions (50% stress level = 2500 psig, 
and 40% stress level = 2000 psig) for 1%, 10% and 50% failure fractions. Observe that, for 
the pressure vessel data, the stress-independent model consistently underestimates the time to 
failure across all the failure fractions compared to the estimates given by the stress-
dependent model. Take the 50% failure fraction as an example. The median estimate of the 
failure time at 50% stress level (2500 psig) given the stress-independent model is 3193.9 
hours, and 4315.6 hours for the stress-dependent model. The same behavior prevails for 10% 
and 1% failure fractions, with median failure times of 25.0 hours (10% failure fraction) and 
0.06 hour (1% failure fraction), and 91.8 hours (10% failure fraction) and 0.7 hour 
(1% failure fraction) for the stress-independent and stress-dependent models, respectively. 

This behavior can be explained in the following way. The shape parameter strongly depends 
on the stress level: it increases as the stress level decreases. The 86% and 80% data show 
decreasing failure rate, the 74% data show approximately constant failure rate, and 68% data 
show increasing failure rate. As Barlow (1988) had suspected, this behavior “implies in 
significant potential for error in predicting lifetimes at low stress levels on the basis of data 
acquired only at very high stress levels”. As most of the failures were observed for high 
stress levels (86% and 80%), the decreasing failure rate trend tend to be dominant in the 
model parameters posterior distribution and therefore in the lifetime prediction process. As a 
result, the 95% probability interval for the shape parameter in the stress-independent model 
is 0.3604 0.4899β< < , a decreasing failure rate behavior. The stress-independent model 
therefore leads to significant errors in predicting the product life at use conditions (low stress 
levels) where a wear out process is present, underestimating the time to failure. On the other 
hand, the stress-dependent model is able to capture the inverse relationship between shape 
parameter and stress via equation 0 1( ) ln( )s sβ δ δ= − ⋅ , resulting in more realistic predictions 
for the product lifetime at service conditions. 
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Many are the implications of the lifetime underestimation at service conditions. For instance, 
it would undoubtedly imply in higher cost for the manufacturer as at one end it would offer 
more conservative warranty policies, and at the other end it would, for example, lead to 
unnecessary and unrealistic maintenance policies (e.g., shorter than necessary inspection 
intervals) and spare parts inventory. 

 
Table 6 – Time to failures predictions at two service conditions for 1%, 10% and 50% failure 

fractions (time in hours). 

Model 50% Stress Level (2,500 psig) 40% Stress Level (2,000 psig) Failure 
Fraction  5% 50% 95% 5% 50% 95% 

Indep. 0.01 0.06 0.13 0.02 0.10 0.22 
1% 

Dep. 0.4 0.7 1.3 1.2 2.0 3.5 

Indep. 10.5 25.0 46.8 16.9 41.3 78.3 
10% 

Dep. 60.3 91.8 137.0 125.2 192.5 292.9 

Indep. 1919.8 3193.9 5486.2 3071.7 5218.7 8955.3 
50% 

Dep. 3010.9 4315.6 6002.9 5064.4 7405.7 10829.2 

 

6. Concluding Remarks 

The Bayesian model presented in this paper allows for the modeling of accelerated life 
testing data that show stress-dependent spread in life, i.e., the failure mechanism is not 
equal for different stress levels. The model has been developed under the assumptions of 
Weibull distributed failure times, shape parameter as a linear function of the log stress, and 
scale parameter related to stress via the Power Law. However the modeling procedure can 
be applied, in principle, to any family of parametric distributions and functional forms for 
the relationships of scale and spread parameters and stresses. The Bayesian model has 
been validated through the use of simulated data (failure and censored times) via Monte 
Carlo, and its application to a real world scenario illustrated by using a previously 
published data. 

It has also been shown in this article that with stress-dependent shape parameter it is 
possible to observe crossing time percentiles as the probability intervals become wider at 
lower stress levels, resulting in a physically implausible situation represented by longer life 
times at a lower failure fraction than at a higher one. This is mainly a result of an increased 
uncertainty at stress levels closer to the service conditions. The inadequacy of the Power-
Weibull-Linear model for failure time estimation at very low stress levels could be 
overcome by the use of different testing plans such as testing more units at stress levels 
closer to the service conditions. This approach, however, would possibly result in higher 
costs as not only more units would be required for testing but also because the testing 
procedure would be more time consuming as longer times to failures are expected at lower 
stress levels. Alternatively, it should be considered other models for the stress-dependent 
shape parameter. 

 



Droguett & Mosleh – Time to failure assessment of products at service conditions from accelerated lifetime tests with stress-dependent spread in life 

Pesquisa Operacional, v.27, n.2, p.209-233, Maio a Agosto de 2007 231 

References 

(1) Bagdonavicius, V. & Nikulin, M. (2002). Accelerated Life Models, Modeling and 
Statistical Analysis. Chapman and Hall/CRC, Boca Raton. 

(2) Barlow, R.; Toland, R. & Freeman, T. (1988). A Bayesian Analysis of the Stress-
Rupture Life of Kevlar/Epoxy Spherical Pressure Vessels. In: Accelerated Life Testing 
and Experts’ Opinions in Reliability. Proceedings of the International School of Physics 
“Enrico Fermi”, Course CII. 

(3) Carlsson, B.; Möller, K.; Köhl, M.; Heck, M.; Brunold, S.; Frei, C.; Marechal, J. & 
Jorgensen (2004). The Applicability of Accelerated Life Testing for Assessment of 
Service Life of Solar Thermal Components. Solar Energy Materials & Solar Cells, 84, 
255-274. 

(4) Chaloner, K. & Larntz, K. (1992). Bayesian Design for Accelerated Life Testing. 
Journal of Statistical Planning and Inference, 33, 245-259. 

(5) DeGroot, M.H. & Schervish, M.J. (2002). Probability and Statistics. Third Edition, 
Addison Wesley. 

(6) Fishman, G.S. (2000). Monte Carlo, Concepts, Algorithms and Applications. Springer. 

(7) Gaertner, G.; Raasch, D.; Barratt, D. & Jenkins, S. (2003). Accelerated Life Tests of 
CRT Oxide Cathodes. Applied Surface Science, 215, 72-77. 

(8) Groen, F. & Droguett, E.L. (2006). Prior Specification for Multi-Failure Mode Weibull 
Reliability Models. IEEE Reliability, Availability, Maintainability Symposium, 
California, USA. 

(9) Groen, F. & Droguett, E.L. (2005). Competing Failure Mode Modeling in a Bayesian 
Reliability Assessment Tool. IEEE Reliability, Availability, Maintainability 
Symposium, Alexandria – VA, USA. 

(10) Groen, F.; Droguett, E.L.; Jiang, S. & Mosleh, A. (2004). A Reliability Data Collection 
and Analysis System for Products under Development. Brazilian Journal of Operations 
Production Management, 1, 93-106. 

(11) Gumbel, E.J. (1958). Statistics of Extremes. Colombia University Press, New York. 

(12) Kececioglu, D. (1993). Reliability and Life Testing Handbook. Englewood Cliffs, NJ, 
Prentice-Hall. 

(13) Koo, H.J. & Kim, Y.K. (2005). Reliability Assessment of Seat Belt Webbings through 
Accelerated Life Testing. Polymer Testing, 24, 309-315. 

(14) Meeker, W.Q. & Escobar, L.A. (1998). Statistical Methods for Reliability Data. John 
Wiley, New York. 

(15) Nelson, W. (1984). Fitting of Fatigue Curves with Nonconstant Standard Deviation to 
Data with Runouts. Journal of Testing and Evaluation, 12, 69-77. 

(16) Nelson, W. (1982). Applied Life Data Analysis. John Wiley and Sons, New York. 

(17) Nelson, W. (1990). Accelerated Testing. John Wiley and Sons, New York. 



Droguett & Mosleh – Time to failure assessment of products at service conditions from accelerated lifetime tests with stress-dependent spread in life 

232 Pesquisa Operacional, v.27, n.2, p.209-233, Maio a Agosto de 2007 

(18) Tang, L.C. & Xu, K. (2005). A Multiple Objective Framework for Planning 
Accelerated Life Tests. IEEE Transactions on Reliability, 54 (1), 58-63. 

(19) Tobias, P.A. & Trindade, D.C. (1995). Applied Reliability. 2nd edition, New York, 
Van Nostrand Reinhold. 

(20) Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability. Journal 
of Applied Mechanics. 18, 293-297. 

(21) Whitman, C.S. (2003). Accelerated Life Test Calculations Using the Method of 
Maximum Likelihood: An Improvement over Least Squares. Microelectronics 
Reliability, 43, 859-864. 

 

Appendix 

In this appendix is presented the Pressure Vessels Accelerated Life Testing Data obtained 
from Barlow et al. (1988). Note that Type 0 means failure time and Type 1 means censored 
time. 

 
Table 7 – Kevlar 49/Epoxy pressure vessels 

data tested at 68% stress level. 

68% Stress Level
 (3400 psig)

(n = 21  k = 5)
Rank Time(h) Type

1 4000.00 0
2 5376.00 0
3 7320.00 0
4 8616.00 0
5 9120.00 0
6 13272.00 1
7 13272.00 1
8 13272.00 1
9 13272.00 1
10 13272.00 1
11 13272.00 1
12 13272.00 1
13 13272.00 1
14 13272.00 1
15 13272.00 1
16 13272.00 1
17 13272.00 1
18 13272.00 1
19 13272.00 1
20 13272.00 1
21 13272.00 1  

Table 8 – Kevlar 49/Epoxy pressure vessels 
data tested at 74% stress level. 

74% Stress Level 
(3700 psig)

(n = 24  k = 18)
Rank Time(h) Type

1 225.20 0
2 503.60 0
3 1087.70 0
4 1134.30 0
5 1824.30 0
6 1920.10 0
7 2383.00 0
8 2442.50 0
9 3708.90 0
10 3708.90 0
11 4908.90 0
12 5556.00 0
13 6271.10 0
14 7332.00 0
15 7918.70 0
16 7996.00 0
17 9240.30 0
18 9973.00 0
19 9973.00 1
20 9973.00 1
21 9973.00 1
22 9973.00 1
23 9973.00 1
24 9973.00 1  
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Table 9 – Kevlar 49/Epoxy pressure vessels 
data tested at 80% stress level. 

80% Stress Level 
(4000 psig)

(n = 24  k = 24)
Rank Time(h) Type

1 19.10 0
2 24.30 0
3 69.80 0
4 71.20 0
5 136.00 0
6 199.10 0
7 403.70 0
8 432.20 0
9 453.40 0

10 514.10 0
11 514.20 0
12 541.60 0
13 544.90 0
14 554.20 0
15 664.50 0
16 694.10 0
17 876.70 0
18 930.40 0
19 1254.90 0
20 1275.60 0
21 1536.80 0
22 1755.50 0
23 2046.20 0
24 6177.50 0  

Table 10 – Kevlar 49/Epoxy pressure vessels 
data tested at 86% stress level. 

86% Stress Level
 (4300 psig)

(n = 39  k = 39)
Rank Time(h) Type

1 2.20 0
2 4.00 0
3 4.00 0
4 4.60 0
5 6.10 0
6 6.70 0
7 7.90 0
8 8.30 0
9 8.50 0
10 9.10 0
11 10.20 0
12 12.50 0
13 13.30 0
14 14.00 0
15 14.60 0
16 15.00 0
17 18.70 0
18 22.10 0
19 45.90 0
20 55.40 0
21 61.20 0
22 87.50 0
23 98.20 0
24 101.00 0
25 111.40 0
26 144.00 0
27 158.70 0
28 243.90 0
29 254.10 0
30 444.40 0
31 590.40 0
32 638.20 0
33 755.20 0
34 952.20 0
35 1108.20 0
36 1148.50 0
37 1569.30 0
38 1750.60 0
39 1802.10 0  

 


