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Abstract

We investigated the acute effects of centrally acting antihypertensive
drugs on the microcirculation of pentobarbital-anesthetized spontane-
ously hypertensive rats (SHR). The effects of the sympatho-inhibitory
agents clonidine and rilmenidine, known to activate both α2-adreno-
ceptors and nonadrenergic I1-imidazoline binding sites (I1BS) in the
central nervous system, were compared to those of dicyclopropyl-
methyl-(4,5-dimethyl-4,5-dihydro-3H-pyrrol-2-yl)-amine hydrochlo-
ride (LNP 509), which selectively binds to the I1BS. Terminal mesen-
teric arterioles were observed by intravital microscopy. Activation of
the central sympathetic system with L-glutamate (125 µg, ic) induced
marked vasoconstriction of the mesenteric microcirculation (27 ± 3%;
N = 6, P < 0.05). In contrast, the marked hypotensive and bradycardic
effects elicited by intracisternal injection of clonidine (1 µg), rilmeni-
dine (7 µg) and LNP 509 (60 µg) were accompanied by significant
increases in arteriolar diameter (12 ± 1, 25 ± 10 and 21 ± 4%,
respectively; N = 6, P < 0.05). The vasodilating effects of rilmenidine
and LNP 509 were two-fold higher than those of clonidine, although
they induced an identical hypotensive effect. Central sympathetic
inhibition elicited by baclofen (1 µg, ic), a GABAB receptor agonist,
also resulted in vasodilation of the SHR microvessels. The acute
administration of clonidine, rilmenidine and LNP 509 also induced a
significant decrease of cardiac output, whereas a decrease in systemic
vascular resistance was observed only after rilmenidine and LNP 509.
We conclude that the normalization of blood pressure in SHR induced
by centrally acting antihypertensive agents is paralleled by important
vasodilation of the mesenteric microcirculation. This effect is more
pronounced with substances acting preferentially (rilmenidine) or
exclusively (LNP 509) upon I1BS than with those presenting impor-
tant α2-adrenergic activity (clonidine).
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Introduction

Chronic elevation of peripheral vascular
resistance is considered to be the major he-
modynamic alteration in the established phase
of human essential hypertension (1). It is
also well known that most of this increased
vascular resistance is determined at the mi-
crovascular level, resulting mainly from func-
tional (changes in vascular reactivity) and/or
structural (increased arteriolar wall-to-lumen
ratio) abnormalities (2,3). Moreover, several
lines of evidence suggest that a reduction in
the density per volume of tissue (rarefaction)
of small arterioles and capillaries contri-
butes significantly to the elevation of resis-
tance and consequently of blood pressure in
essential hypertension (4,5).

Although the microcirculation plays a
causative role in certain forms of hyperten-
sion, it may also represent a preferential
target of this disease (6). Thus, in addition to
the apparent blood pressure lowering ef-
fects, which are similar between the differ-
ent classes of drugs used in the treatment of
high blood pressure, antihypertensive thera-
py should also be able to prevent and/or
reverse functional and structural changes of
the microcirculation (7,8).

The central sympathetic nervous system
plays a major role in the control of vascular
resistance (9). Moreover, several experimen-
tal and clinical evidence support the hypo-
thesis that an elevated sympathetic control of
vascular tone is one of the major causal factors
in the development of hypertension, as well as
in the induction of trophic effects such as
cardiac and vascular hypertrophy/remodeling
(for a review, see Ref. 10). Sympathetic hyper-
activity can be effectively modulated by drugs
acting directly on its site of origin, i.e., the
central nervous system (CNS). In this context,
first generation centrally acting antihyperten-
sive drugs such as clonidine have long been
used in the treatment of essential arterial hy-
pertension (11). Nevertheless, the antihyper-
tensive effect of this class of drugs was fre-

quently accompanied by important central side
effects such as sedation and dry mouth result-
ing in a loss of interest in its clinical use (11).

Since then, the existence of specific bind-
ing sites for these drugs characterized by their
lack of sensitivity to catecholamines has been
demonstrated in the CNS, i.e., the nonadrener-
gic I1-imidazoline binding sites (I1BS) (12,13).
The dissociation of the pharmacological
mechanisms involved in the hypotensive ef-
fect of clonidine-like drugs (imidazoline bind-
ing sites in the ventrolateral medulla) (14-16)
and the one responsible for their sedative ac-
tion (α2-adrenoceptors in the locus coeruleus)
(14,17) was also established. As a result, a
second generation of centrally acting antihy-
pertensive drugs has been developed. In fact,
new drugs such as rilmenidine and moxoni-
dine have proved to be effective in the treat-
ment of mild to moderate arterial hypertension
without significant sedative effects (18). In the
present study we also used a new pharmacolo-
gical tool, dicyclopropylmethyl-(4,5-dimethyl-
4,5-dihydro-3H-pyrrol-2-yl)-amine hydrochlo-
ride (LNP 509), which has been shown to bind
selectively to the I1BS, having no affinity for
α2- and α1-adrenoceptors or activity on α2-
adrenoceptors (19,20).

The present study was designed to inves-
tigate the in vivo microcirculatory modifica-
tions induced by centrally acting antihyper-
tensive agents in anesthetized spontaneously
hypertensive rats (SHR). We hypothesized
that the antihypertensive effects of these
drugs could be associated to significant va-
sodilation of the SHR microvessels, result-
ing from the inhibition of sympatho-excita-
tory neurons in the brainstem. Intravital video
microscopy was used to assess the microcir-
culatory parameters of the rat mesentery dur-
ing central administration of drugs.

Material and Methods

General procedures

All procedures were approved by the
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Animal Welfare Committee of the Oswaldo
Cruz Foundation and were consistent with
the USA National Institutes of Health Guide
for the Care and Use of Laboratory Animals
(NIH Publication No. 85-23, revised 1996).
Twelve- to 16-week-old male SHR derived
from the Okamoto-Aoki strain (UNIFESP,
São Paulo, SP, Brazil) were housed 4 per
cage with a 12-h light/dark cycle and had
free access to tap water and standard pellet
food. Before the experiment, animals were
fasted overnight but given water ad libitum
in order to minimize peristaltic movements
of the intestine. The animals were anesthe-
tized with sodium pentobarbital (50 mg/kg,
ip), tracheostomized, immobilized with pan-
curonium bromide (1 mg/kg, iv), and artifi-
cially ventilated with room air (tidal volume,
10 ml/kg, stroke rate 45/min); anesthesia
was complemented hourly with ip injections
of 5 mg/kg pentobarbital. The rats were then
placed on a surgical table and a rectal ther-
mometer was inserted. The thermometer
was connected to a temperature monitor
(Effenberger, Kirchheim, Germany), which
maintained temperature constant at 37ºC with
a thermal pad during all procedures. The
right femoral vein was catheterized to permit
ip injections. Arterial pressure was continu-
ously monitored with a catheter placed in the
right carotid artery connected to a Hewlett
Packard (Palo Alto, CA, USA) quartz trans-
ducer (1290 A), which in turn was connected
to a pressure processor and recorder (Hewlett
Packard 7754 system with 8805B amplifier).
Systolic (SAP) and diastolic (DAP) arterial
pressures were obtained directly from the
recordings. The mean arterial pressure (MAP)
was calculated as diastolic pressure plus one
third of the differential pressure; heart rate
(HR) was counted from the blood pressure
waves by rapid running of the pressure re-
cording. The abdomen was carefully opened
by a small midline incision, the rat was then
placed on its side on a plate support and the
ileojejunal part of the mesentery was exteri-
orized carefully and arranged in such a way

that the mesentery came to lie over a trans-
parent plate set, exactly above the window
light source of the microscope. To prevent
drying of the exposed mesentery, we used a
plate support containing a continuous water
circulating system inside at 37ºC and cov-
ered it with plastic film.

Cardiac output measurements

In separate groups of animals a thora-
cotomy was performed via a left intercostal
incision between the second and third ribs.
The heart was exposed by incising the peri-
cardium and the aorta was isolated from
contiguous structures and freed from adven-
titia and adipose tissue at the site of the flow
measurements. An electromagnetic flow
probe was then placed around the ascending
aorta and connected to a blood flowmeter
(Skalar model MDL 1401, Litchfield, Ca-
nada) and cardiac output (CO, ml/min) was
recorded continuously with the above-men-
tioned recorder. Systemic vascular resistance
(SVR) was calculated as the quotient of the
MAP and the CO multiplied by a conversion
factor (80) and reported as dyn s-1 (cm5)-1.

Intravital microscopy

After surgery, the animal was transferred
to a fixed-stage upright intravital videomi-
croscopy (Olympus BX5-1WL, Melville,
NY, USA) coupled to a CCD video camera
(Samsung BW 273A, Seoul, Korea). Obser-
vations were made using conventional trans-
illumination with a 10X eyepiece and 10X
objectives (Olympus) with final magnifica-
tion of 100X. Video images were displayed
on a video monitor (National, Tokyo, Japan)
coupled to a time-date generator and stored
in a videocassette recorder (VHS VC 1694-
B; Sharp, Manaus, AM, Brazil) for off-line
analyses. The selected pictures (six images
for each time point) were captured and pro-
cessed for static display with a specialized
software (Ecoview ImagePro, Media Cyber-



1544

Braz J Med Biol Res 37(10) 2004

V. Estato et al.

netics Inc., Silver Springs, MD, USA), and
suitable unbranched arterioles with diam-
eters between 15 and 30 µm were selected.
Arteriolar diameters were measured as the
distance between the two clearly defined
muscular walls and expressed in µm. The
data were automatically transferred to the
Microsoft® Excel for calculations.

Intracisternal injections

The head of the animal was fixed in a
stereotaxic apparatus (Stoelting, Wood Dale,
IL, USA). A craniotomy was performed, the
cisterna magna was localized with stereo-
taxic coordinates and the needle was fixed
on the skull with dental cement for drug
administration (10 µl). At the end of the
experiment, the same volume of Evans blue
dye was injected under the same conditions.
The brain was removed post mortem and
dissected to determine if the drugs had dif-
fused properly and which structures were
reached.

Experimental protocol

After completion of the surgical proce-
dures, the animals were allowed to equili-
brate for 30 min or until a stable tracing had
been obtained (control period). Before drug
injection, the means of three arterial pres-
sure measurements (SAP, DAP and MAP),
HR and CO, recorded at 5-min intervals,
were calculated and considered as the basal
hemodynamic values. The microvascular
parameters of the arterioles and venules were
recorded for 2 min at 10-min intervals
throughout the experimental period (≈120
min).

Drugs

The following drugs were used: sodium
pentobarbital, pancuronium bromide, L-glu-
tamate, baclofen, and clonidine hydrochlo-
ride, purchased from Sigma (St. Louis, MO,

USA). Rilmenidine (2-[N-(dicyclopropyl-
methyl)amino]oxazoline) was kindly provid-
ed by Institut de Recherches Internationales
Servier (Courbevoie, France). LNP 509 (dicy-
clopropylmethyl-(4,5-dimethyl-4,5-dihydro-
3H-pyrrol-2-yl)-amine hydrochloride was
from the Laboratoire de Neurobiologie et
Pharmacologie Cardiovasculaire (LNPCV),
Université Louis Pasteur (Strasbourg,
France). Drugs were dissolved in saline (0.9%
(w/v) NaCl).

Statistical analysis

All data are reported as mean ± SEM for
each group of 6 rats. Comparisons between
the groups were made with one-way ANOVA
and within-group variations with time were
analyzed by repeated measures ANOVA.
When an overall difference was detected by
ANOVA, the Student-Newman-Keuls test
was used to localize the statistically signifi-
cant differences. P values of less than 0.05
were considered to be significant. All calcu-
lations were made by computer-assisted
analyses using a commercially available sta-
tistical package (Graphpad Instat, Graphpad
Software, University of London, UK).

Results

Central cardiovascular effects of clonidine,
rilmenidine and LNP 509

There were no significant differences in
baseline blood pressure, HR or CO between
experimental groups, as shown by ANOVA
(P > 0.05). The intracisternal (ic) injection of
1 µg clonidine and 7 µg rilmenidine elicited
marked and long-lasting antihypertensive
effects characterized by a maximum decrease
on MAP of 53 ± 3 and 50 ± 8%, respectively
(N = 6, P < 0.05; Figure 1 and Table 1). HR
was significantly reduced by both drugs,
reaching a maximum of 30 ± 2 and 19 ± 5%,
respectively (N = 6, P < 0.05). The central
administration of clonidine and rilmenidine
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also induced a significant decrease of CO
(50 ± 10 and 39 ± 2%, respectively; N = 6, P
< 0.05) whereas there was a significant de-
crease in SVR of 24 ± 7% (N = 6, P < 0.05)
only after rilmenidine (Figure 1 and Table
1). The central administration of 60 µg LNP
509 evoked effects similar to those of cloni-
dine and rilmenidine on MAP, the maximum

reduction being of 56 ± 4% (N = 6, P < 0.05).
The effects of LNP 509 on CO (-22 ± 3%, N
= 6, P < 0.05) and on SVR (-28 ± 6%; N = 6,
P < 0.05) were significantly different from
those observed after clonidine treatment (Fig-
ure 1 and Table 1). On the other hand, 60 µg
ic LNP 509 had no significant effect on HR
(Figure 1 and Table 1).

Figure 1. Time course of the he-
modynamic changes in re-
sponse to intracisternal injection
of saline (SAL, control group),
clonidine (CLO, 1 µg), rilmeni-
dine (RIL, 7 µg), or LNP 509
(LNP, 60 µg) in anesthetized
spontaneously hypertensive rats.
Each set of points represents
the mean ± SEM for 6 experi-
ments. *P < 0.05 compared to
the control group. +P < 0.05
compared to the clonidine-
treated group     (ANOVA).

Table 1. Maximum effects of the intracisternal injection of clonidine (1 µg), or LNP 509 (60 µg) on the macrohemodynamic parameters of
pentobarbital-anesthetized spontaneously hypertensive rats.

Saline Clonidine Rilmenidine LNP 509

Before After Before After Before After Before After

MAP (mmHg) 150 ± 6 147 ± 7 157 ± 10 74 ± 7* 146 ± 7 74 ± 16* 153 ± 8 68 ± 8*
HR (bpm) 424 ± 11 405 ± 9 405 ± 9 281 ± 7* 451 ± 19 365 ± 15* 417 ± 33 380 ± 29*
CO (ml/min) 191 ± 20 191 ± 19 229 ± 11 129 ± 11* 222 ± 30 137 ± 16* 156 ± 22 122 ± 16*
SVR (dyn s-1 (cm5)-1 52 ± 2 55 ± 4 46 ± 3 45 ± 2 52 ± 7 40 ± 6* 69 ± 6 49 ± 4*

CO = cardiac output; HR = heart rate; MAP = mean arterial pressure; SVR = systemic vascular resistance. Each value represents the mean ±
SEM for 6 experiments.
*P < 0.05 compared to basal values (ANOVA).

M
ea

n 
ar

te
ria

l p
re

ss
ur

e
(%

 v
ar

ia
tio

n)

125

100

75

50

25

C
ar

di
ac

 o
ut

pu
t 

(%
 v

ar
ia

tio
n)

125

100

75

50

25

H
ea

rt
 r

at
e 

(%
 v

ar
ia

tio
n)

125

100

75

50

25 S
ys

te
m

ic
 v

as
cu

la
r 

re
si

st
an

ce
(%

 v
ar

ia
tio

n)

125

100

75

50

25
-10 0 10 20 30 40 50 60 70-20

Time (min)
-10 0 10 20 30 40 50 60 70-20

Time (min)

*

*

*

*
* *

* *

*

*

*

*

*

*

*

* * * *

*+*+

*+*+
*

*+*+*+*+
*+*+*+

* * * *

**

* * * * *

SAL CLO RIL LNP

*
* * * *



1546

Braz J Med Biol Res 37(10) 2004

V. Estato et al.

Microcirculatory effects induced by ic
injection of clonidine, rilmenidine and LNP
509

The hypotensive effect induced by ic in-
jection of 1 µg clonidine, 7 µg rilmenidine
and 60 µg LNP 509 was accompanied by
mesenteric arteriolar vasodilation, charac-
terized by a maximum increase in arteriolar
diameter of 12 ± 1% (N = 6, P < 0.05), 25 ±
10% (N = 6, P < 0.05) and 21 ± 4% (N = 6, P
< 0.05; Figure 2) from the basal values of 19
± 1.9, 18.8 ± 1.8 and 22 ± 1 µm, respectively.

Cardiovascular and microcirculatory effects
of ic injection of baclofen and L-glutamate

The central ic injection of 1 µg baclofen
elicited marked and long-lasting decreases
in MAP, with a maximum of 63 ± 8% (from
155 ± 7 to 62 ± 8 mmHg; N = 6, P < 0.05; data
not shown). HR decreased by 18 ± 5% (from
390 ± 11 to 316 ± 27 bpm; N = 6, P > 0.05;
data not shown). The hypotensive effect of
baclofen was accompanied by significant
vasodilation of the mesenteric microcircula-
tion (Figure 2). The maximum increase of
arteriolar diameter after baclofen was 11 ±
4% (from 30 ± 5 to 33.5 ± 5 µm; N = 6, P >
0.05). On the other hand, the central ic ad-
ministration of 125 µg L-glutamate evoked a
marked but short-lasting increase in MAP,
reaching a maximum of 24 ± 5% (from 161 ±
9 to 198 ± 9 mmHg; N = 6, P < 0.05; data not
shown). HR increased only by 6 ± 2% (from
432 ± 9 to 458 ± 5 bpm; N = 6, P > 0.05; data
not shown). The hypertensive effect of 125

µg L-glutamate was accompanied by mesen-
teric arteriolar vasoconstriction, reaching the
maximum of 27 ± 3% (N = 6, P < 0.05) from
the basal value of 19.6 ± 1.4 µm (Figure 2).

Discussion

The present study is the first to demon-
strate that acute administration of centrally
acting antihypertensive drugs such as cloni-
dine and rilmenidine significantly dilates the
microcirculation of SHR. It is noteworthy
that both drugs were injected directly into
the CNS (intracisternally) in doses that do
not present significant cardiovascular effects
when administered systemically (21,22).
Thus, although the activation of peripheral
α2-adrenoceptors in SHR also induces dila-
tion of terminal arterioles (23), the arteriolar
vasodilation observed in the present study
cannot be due to the peripheral effects of
clonidine.

The small arteries and arterioles of the
microcirculation are well known to be the
most important site of the increased vascular
resistance in hypertensive patients (7). In
SHR, the progressive development of hyper-
tension is associated with an increase in
arteriolar tone in different vascular beds (24)
that reaches even the terminal arterioles (lu-
men diameter of about 20 µm) (25,26). More-
over, compared to normotensive control rats
(Wistar-Kyoto), the vascular tone of SHR is
set at a higher steady-state level (27). In this
context, it has already been shown that a
decrease of only 13% in arteriolar diameter
is sufficient to produce an increase in sys-
temic blood pressure of about 50 mmHg
(26). Moreover, since sympathetic hyperac-
tivity is implicated in the development of
arterial hypertension (28), modulation of the
central sympathetic activity with centrally
acting antihypertensive agents turns out to
be a reasonable therapeutic target in the
treatment of this disease.

We evaluated the microcirculatory be-
havior of SHR using the microcirculation ofA
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the mesentery, which is known to respond to
peripheral or central sympathetic stimula-
tion (29,30). In fact, the mesenteric micro-
vascular network appears to have a dense
sympathetic innervation (31), which is in-
creased in arterioles of SHR (32). Functional
studies in the rat demonstrated that the elec-
trical stimulation of the posterior hypothala-
mus induces an increase in MAP accompa-
nied by a significant vasoconstrictor response
of mesenteric arterioles (31), thus demon-
strating that this particular vascular bed is
under sympathetic control. Moreover, Le
Noble et al. (33) showed that pentobarbital is
the anesthetic of choice to be used in exper-
imental studies assessing the mesenteric mi-
crocirculation of the rat, since it does not
interfere with microvascular reactivity to
adrenergic stimulation. Our results are con-
sistent with these observations, since the
pharmacological activation of the central
sympathetic nervous system with intracis-
ternal glutamate, the main excitatory neuro-
transmitter in the mammalian CNS, elicited
marked arteriolar constriction in the mesen-
tery.

Our results also demonstrate that the clas-
sical acute hemodynamic effects of centrally
acting antihypertensive drugs (i.e., hypoten-
sion and bradycardia) are accompanied by
significant dilatation of terminal arterioles in
SHR. It is noteworthy that the vasodilating
effects of rilmenidine and LNP 509 were
much more pronounced than that of cloni-
dine, thus supporting the view that different
mechanisms might be involved in the antihy-
pertensive effects of first- and second-gen-
eration drugs (11). Nevertheless, we did not
investigate the pharmacological mechanisms
involved in the microcirculatory effects of
these drugs, which could be clarified by the
use of selective antagonists. In fact, the pres-
ent study was designed to test our hypothesis
that the inhibition of the central sympathetic
system could be accompanied by a signifi-
cant dilation of the microcirculation in hy-
pertensive animals.

The central acute administration of anti-
hypertensive drugs also induced significant
decreases in CO, which were of greater mag-
nitude in response to clonidine than rilmeni-
dine or LNP 509. As a result, only rilmeni-
dine and LNP 509 produced a significant fall
in systemic vascular resistance. These re-
sults are consistent with those reported by
Azevedo et al. (34), who showed that acute
intravenous administration of clonidine elic-
its negative inotropic effects associated with
the inhibition of cardiac-specific sympathetic
outflow, evaluated by cardiac norepineph-
rine spillover in patients with congestive
heart failure. The acute hypotensive effect of
clonidine in anesthetized rats had been at-
tributed mainly to a reduction in CO rather
than in total peripheral resistance (35). On
the other hand, in conscious and freely mov-
ing SHR, clonidine-induced hypotension
seems to depend mainly on reduction of
vascular resistance (36). The greater selec-
tivity of rilmenidine for the I1BS, when com-
pared to the α2-adrenergic receptors (11,15),
could explain this preferential action on vas-
cular resistance since LNP 509, which is
devoid of α2-adrenergic-mediated cardiovas-
cular activity (19,20), elicited a hemody-
namic profile similar to that of rilmenidine
after intracisternal administration.

Our results also showed that the central
administration of baclofen, a GABAB recep-
tor agonist which inhibits the neuronal re-
lease of excitatory neurotransmitters such as
glutamate (37), also induced significant di-
lation of the SHR microvessels. Moreover, it
has already been demonstrated that the cen-
tral GABA-ergic system exerts a tonic inhib-
itory effect on the central sympathetic sys-
tem, and consequently on cardiovascular
function (38). These findings confirm the
hypothesis that the inhibition of the central
sympathetic drive results in vasodilation of
the microcirculation of hypertensive animals.

Finally, previous studies using the mes-
enteric vascular bed have shown that hemor-
rhagic hypotension in rats induces signifi-
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cant vasoconstriction of the microcircula-
tion (39,40), thus suggesting that the arteri-
olar vasodilation in the mesentery observed
in the present study did not result from the
large drop in arterial pressure induced by the
antihypertensive drugs.

Perspectives

The results of the present study show that
the reduction of blood pressure in the ge-
netic model of arterial hypertension induced
by centrally acting antihypertensive agents
is paralleled by important vasodilation of the
mesenteric microcirculation. This effect is
more pronounced with substances acting

preferentially (rilmenidine) or exclusively
(LNP 509) upon nonadrenergic imidazoline
binding sites than with those presenting im-
portant α2-adrenergic selectivity (clonidine).
Since important functional and structural
alterations of the microcirculation are in-
volved in the pathophysiology of primary
arterial hypertension, new therapeutic ap-
proaches should be able to prevent or even
reverse these major features of the disease.
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