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Novel donors of nitric oxide derived of
S-nitrosocysteine possessing antioxidant
activities
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Abstract

Novel S-nitrosothiols possessing a phenolic function were investi-
gated as nitric oxide (NO) donors. A study of NO release from these
derivatives was carried out by electron spin resonance (ESR). All
compounds gave rise to a characteristic three-line ESR signal in the
presence of the complex [Fe(II)(MGD)2], revealing the formation of
the complex [Fe(II)(MGD)2(NO)]. Furthermore, tests based on cyto-
chrome c reduction were performed in order to study the ability of each
phenolic disulfide, the final organic decomposition product of S-
nitrosothiols, to trap superoxide radical anion (O2

-). This study re-
vealed a high reactivity of 1b and 3b towards O2

-. For these two
compounds, the respective inhibitory concentration (IC) 50 values
were 92 µM and 43 µM.
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Introduction

The nitric oxide (NO) radical is an impor-
tant and versatile mediator in biological sys-
tems (1). This molecule is known to play an
important role in the regulation of a wide
range of physiological processes. NO is bio-
synthesized from L-arginine by NO synthases
(NOS) in a two-step oxidation process (2)
and has an extremely short lifetime. In order
to increase its stability to reach its biological
targets, NO radical must be carried by chem-
ical species. It has been suggested that NO
radical is stabilized in vivo by reactions with
molecules such as proteins containing nu-
cleophilic residues or bioinorganic molecules
(3,4).

The physiological role of the NO radical
involves cellular immunity (5), neurotrans-
mission (6), inhibition of platelet aggrega-
tion (7), and particularly dilation of blood

vessels (8). In the case of pathological states
which are associated with a lack of NO
(angina pectoris), this molecule can be ad-
ministered by inhalation or by NO donor
molecules. A great interest has thus arisen in
NO donors such as sodium nitroprusside
(9), Roussin�s salts (10,11), organic nitrates
(12) and nitrites (13), furoxans (14,15),
diazenium diolates (16,17), a-ß ethylenic
oximes (18), and S-nitrosothiols (19,20)
(also named thionitrites), due to their appli-
cation in medicinal therapy and in pharma-
cology.

Among the most important natural carri-
ers of nitric oxide are S-nitrosoalbumin, S-
nitrosoglutathione and S-nitrosocysteine (21).
Once thiols are converted to S-nitrosothiols,
these molecules release NO by a homolytic
break of the S-N bond. Sulfhydryl radicals
then couple to give rise to symmetrical disul-
fide (19,20).
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2 RS-NO ® 2 NO + RS-SR (Equation 1)

In contrast to the beneficial activities of
NO, abnormally high levels of this radical
can be deleterious to the cell. This toxicity
has been partially attributed to the formation
of peroxynitrite anion (ONOO-) via reaction
of the NO radical with superoxide radical
anion (O2

-) (22).

NO + O2
- ® ONOO- (Equation 2)

Peroxynitrous acid formed thereafter in-
duces the oxidation of cell membranes as
well as iron/sulfur centers (23,24).

Our group has recently developed the
concept of an original NO carrier by which
S-nitrosothiol is conjugated with an antioxi-
dant molecule in order to couple two comple-
mentary activities: NO release and scaveng-
ing of the free superoxide radical present in
the biological environment to inhibit the sub-
sequent formation of peroxynitrite (Scheme
1).

We have synthesized novel S-nitrosocys-
teine derivatives denoted 1a-5a (depicted in
Scheme 2) associated with various phenolic
acids, some of which are known in the litera-
ture for their efficiency as scavengers of
superoxide radical (25,26).

In the present study we investigated
whether the association of these two func-
tions interferes with NO release and tested
the reactivity of the antioxidant moiety to-
wards the superoxide radical. As a control,
the same study was carried out on S-nitroso-
thiols possessing no such phenolic moiety
(molecules 6a and 7a depicted in Scheme 2)
under identical conditions as for thionitrites
1a-5a.

We present herein studies of the NO
release from derivatives 1a-7a and of the
ability of each disulfide (1b-7b), produced
simultaneously to NO release, to trap the
superoxide radical.

Results and Discussion

Study of NO radical release

The NO radical originating from the de-
composition of S-nitrosothiols 1a-7a was in-
directly detected by electron spin resonance
(ESR) spectroscopy via a reaction with the
inorganic complex [Fe(II)(MGD)2], gener-
ated with Mohr�s salt [Fe(II)(SO4)2(NH4)2]
and with a large excess of N-methyl glycamyl
dithiocarbamate (MGD) in water. Despite
being paramagnetic, NO cannot be directly
detected by ESR spectroscopy because of its
very low stability in solution. It can, how-
ever, be detected when it is trapped by the
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ferrous complex at room temperature to yield
a radical adduct (27).

S-nitrosothiols 1a-7a at 0.1 mM in a mix-
ture of 99% water and 1% DMF and in the
presence of 2 mM [Fe(II)(MGD)2] gave rise
to a characteristic three-line ESR signal (with
a hyperfine splitting constant aN = 12.85 G),
depicted in Figure 1.

In aqueous medium, corresponding di-
sulfides were obtained as the sole final or-
ganic decomposition products for each case,
revealing that the presence of phenolic func-
tion for thionitrites 1a-5a did not obstruct a
quantitative NO release from these com-
pounds. The disulfides 1b-5b generated dur-
ing NO release are expected to possess an
antioxidant effect towards reactive oxygen
species due to their phenolic moiety.

Study of the ability of the disulfides to trap
superoxide radical

In order to check whether the novel com-
pounds 1b-5b would retain their ability to
trap superoxide radical, colorimetric tests
with cytochrome c were carried out. As a
control, these tests were also performed with
disulfides possessing no phenolic group (6b
and 7b). Superoxide radical is generated by
the xanthine-xanthine oxidase system in the
presence of cytochrome c, itself reduced by
this radical. Reduced cytochrome c absorbs
at 550 nm (28). Inhibition of this reaction by
various concentrations of the compounds
studied was therefore monitored at this wave-
length.

Our results describe various behaviors of
each derivative at 100 µM in 50 mM phos-
phate buffer. None of the disulfides 5b, 6b or
7b had any effect on the reduction of cyto-
chrome c. Compounds 2b and 4b trapped
superoxide radical by as much as 13 and
19%, respectively. On the other hand, com-
pounds 1b and 3b were capable of inhibiting
the reduction of cytochrome c under identi-
cal conditions by as much as 55 and 100%,
respectively.

10 G

Figure 1 - ESR trapping of NO
radical obtained from 1a-5a (0.1
mM) in DMF/H2O: 1/99.
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Figure 2 - Inhibition of cytochrome c reduction by disulfides 1b and 3b (1-100 µM) in 50 mM
phosphate buffer, pH = 6.9.

In order to investigate whether phenolic
compounds 1b-4b could influence enzyme
activity (i.e., xanthine oxidase), uric acid
production was monitored by following its
absorbance at 291 nm (28). These molecules
did not decrease the rate of formation of uric
acid, implying that compounds 1b-4b do not
inhibit xanthine oxidase.

To establish a concentration correspond-
ing to 50% of inhibition (IC 50) for com-

1b
3b
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determined from this graph and are depicted
in Figure 3.

A possible structure-activity relationship
can be deduced from this experiment: disul-
fides possessing a para phenolic hydroxyl
(in relation to amides or vinyl-amides (1b
and 3b)) are more reactive towards O2

- than
those possessing a meta phenolic hydroxyl
(2b and 4b).

Moreover, compound 3b, possessing an
a-ß ethylenic amide group rather than only a
para amide funtionality, is more active than
compound 1b.

These results are in agreement with the
fact that these phenolic compounds react
with O2

- radical by a radical mechanism to
give quinone-like compounds: phenoxy radi-

Figure 3 - Concentration of disul-
fides 1b and 3b for 50% of cyto-
chrome c reduction inhibition.
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pounds 1b and 3b, i.e., those giving the most
interesting results, new tests were carried
out at concentrations between 1 µM and 100
µM (Figure 2).

The IC 50 values for both disulfides were
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cal formed by 3b is more stable than that
formed by 1b, implying that this entity is
generated more easily by the former than by
the latter (Scheme 3).

In the same way, phenoxy radicals origi-
nating from compounds with a phenolic group
meta to the amide and a-ß ethylenic amide
functions are less stable because of non-
participation of carbonyl electrons. Such radi-
cals are thus produced less easily than para-
phenols (Scheme 4).

Conclusion

Novel donors of nitric oxide with anti-

oxidant properties derived from S-nitroso-
cysteine were prepared.

Studies of NO release from S-nitrosothi-
ols 1a-7a were carried out by ESR. The
ability of disulfides 1b-7b to react with su-
peroxide radicals was also investigated,
showing that compounds with vanillic (1b)
and ferulic (3b) moieties are the most effi-
cient antioxidants in this series towards O2

-.
For these two compounds, the respective IC
50 values are 92 µM and 43 µM.

Both S-nitrosothiols 1a and 3a seem to be
interesting novel NO donors for pharmaco-
logical, or indeed for clinical use.
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