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ABSTRACT
In this paper we show the existence of new families of spatial central configurations for the 7-body problem. 
In the studied spatial central configurations, six bodies are at the vertices of two equilateral triangles T1, 
T2 and one body is located out of the parallel distinct planes containing T1 and T2. The results have simple 
and analytic proofs.
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INTRODUCTION

In this paper we study spatial central configurations for the N-body problem. Before we can address our problem, 
some definitions are in order. Consider N punctual bodies with masses mi > 0 located at the points ri of the 
Euclidean space R3 for i = 1, . . . , N. Assume that the origin of the inertial system is the center of mass of the 
system (inertial barycentric system). The set {(r1, r2, . . . , rN) 2 R3N : ri ≠ rj , i ≠ j} is called space of configurations.

For the Newtonian N-body problem a configuration of the system is central if the acceleration of each 
body is proportional to its position relative to the inertial barycentric system. It is usual to study classes of 
central configurations modulo dilations and rotations. See Hagihara (1970), Moeckel (1990), Saari (1980), 
Smale (1970), Wintner (1941) and references therein for more details.

Spatial central configurations give rise to homothetic orbital motions which are the simplest solutions 
of the N-body problem. However to know the central configurations for a given set of bodies with positive 
masses is a very hard and unsolved problem even in the case of few bodies. For instance, in Lehmann-Filhés 
(1891) and Wintner (1941) can be found classical examples of spatial central configurations where the bodies 
with suitable masses are at the vertices of a regular tetrahedron and a regular octahedron, respectively. 
More recent examples were studied in Corbera and Llibre (2008) and Corbera and Llibre (2009) in which 
2N and 3N bodies are arranged at the vertices of two and three nested regular polyhedra, respectively. 
See also Zhu (2005) in which nested regular tetrahedrons were studied.

A stacked spatial central configuration is defined as a central configuration for the spatial N-body problem 
where a proper subset of the N bodies is already in a central configuration. See Hampton and Santoprete (2007), 
Mello and Fernandes (2011a, b), Mello et. al. (2009) and Zhang and Zhou (2001).
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Figure 1 - Illustration of the configurations studied here. The position 
vectors r1, r2 and r3 are at the vertices of an equilateral triangle T1 
whose sides have length a > 0, r4, r5 and r6 are at the vertices of an 
equilateral triangle T2 whose sides have length a > 0 and r7 is out of the 
parallel distinct planes Π1 and Π2 that contain T1 and T2, respectively.

Denote by rij = |ri − rj| the Euclidean distance between the bodies at ri and rj. The main results of this 
paper are the following.

Theorem 1. Consider 7 bodies with masses m1, m2, . . . , m7, located according to the following description 
(see Figure 1):

(i) The position vectors r1, r2 and r3 are at the vertices of an equilateral triangle T1 whose sides have length a > 0;
(ii) The position vectors r4, r5 and r6 are at the vertices of an equilateral triangle T2 whose sides have length a > 0;
(iii) The triangles T1 and T2 belong to parallel distinct planes Π1 and Π2, respectively;
(iv) The triangles T1 and T2 are coincident under translation;
(v) The position vector r7 is located between the planes Π1 and Π2. Then the following statements hold.

Then the following statements hold.

(a) If ri7 = d > 0 for all i 2 {1, 2, . . . , 6}, then in order to have a central configuration the masses must satisfy:

m1 = m2 = m3 = m4 = m5 = m6.

(b) If ri7 = d > 0 for all i 2 {1, 2, . . . , 6} and m = m1 = m2 = m3 = m4 = m5 = m6, then there is only one 
class of central configuration.

Furthermore such central configurations are independent of the values of the masses m7 and m and are of 
stacked type.

The proof of Theorem 1 is given in the next section. Concluding remarks are presented in Section 3.
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PROOF OF THEOREM 1

According to our assumptions, the equations of motion of the N bodies are given by Newton (1687)

r̈i = − 
N
∑

j=1, j≠i
 
mj

rij
3  (ri − rj), (1)

for i = 1, . . . , N. Here the gravitational constant is taken equal to one. Equations (1) are well defined since 
rij ≠ 0 for i ≠ j.

Note that to find central configurations is essentially an algebraic problem. In fact, from the definition 
of central configuration there exists λ ≠ 0 such that r̈i = λri, for all i = 1, . . . , N. From equation (1) it 
follows that

λri = − 
N
∑

j=1, j≠i
 
mj

rij
3  (ri − rj), (2)

for i = 1, . . . , N. The equations in (2) are called equations of central configurations and are equivalent to 
the following set of equations (see Hampton and Santoprete 2007)

fijl = 
N
∑

k=1, k≠i, j, l
mk(Rik − Rjk)∆ijlk= 0, (3)

for i < j, l ≠ i, l ≠ j, i, j, l = 1, . . . , N, where Rij = rij
−3 and ∆ijlk = (ri − rj) ˄ (ri − rl) · (ri − rk) is six times the 

oriented volume defined by the tetrahedron with vertices at ri, rj , rl and rk.
For the 7-body problem there are 105 equations in (3) which are called Andoyer equations. They are 

a convenient set of equations to study some classes of central configurations, mainly when there exist 
symmetries in the configurations.

There exist several symmetries in our configurations (see Figure 1). From the hypotheses of Theorem 1 
we have

R12 = R13 = R23 = R45 = R46 = R56,
R14 = R25 = R36,

Ri7 = d−3 > 0, 8i 2 {1, 2, . . . , 6},

2∆1237 = ∆1234 = ∆1235 = ∆1236 = −∆4561 = −∆4562 = −∆4563 = −2∆4567, and many others.

Using these symmetries in equations (3), it follows that the equations

f124 = 0,    f125 = 0,    f134 = 0,    f136 = 0,    f235 = 0,    f236 = 0,
f451 = 0,    f452 = 0,    f461 = 0,    f463 = 0,    f562 = 0,    f563 = 0

are already verified. Thus, we still have to study the remaining 93 equations.
Consider the equations f123 = 0 and f135 = 0. Using the above symmetries we have

f123 = (m4 − m5) (R14 − R24)∆1234 = 0

and
f135 = (m4 − m6) (R14 − R34)∆1354 = 0.
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By the hypotheses of Theorem 1, R24 ≠ R14 ≠ R34, ∆1234 ≠ 0 and ∆1354 ≠ 0. So, such equations are 
satisfied if and only if

m4 = m5 = m6.

Consider also the equations f456 = 0 and f462 = 0. Using the above symmetries we have

f456 = (m1 − m2) (R41 − R51) ∆4561 = 0

and

f462 = (m1 − m3) (R41 − R61) ∆4621 = 0.

By the hypotheses of Theorem 1, R51 ≠ R41 ≠ R61, ∆4561 ≠ 0 and ∆4621 ≠ 0. So, such equations are satisfied 
if and only if

m1 = m2 = m3.

Consider now the equation f142 = 0. Using the above symmetries we have

f142 = (m3 − m6) (R13 − R43) ∆1423 = 0.

By the hypotheses of Theorem 1, R13 ≠ R43, ∆1423 ≠ 0. So, such equation is satisfied if and only if

m3 = m6.

Thus, in order to have a central configuration with the symmetries imposed in Theorem 1, the masses 
m1, m2, m3, m4, m5 and m6 must be equal. Item a) of Theorem 1 is proved.

Taking into account m = m1 = m2 = m3 = m4 = m5 = m6 and the symmetries in the hypotheses of 
Theorem 1, the following equations are already satisfied:

f123 = 0,    f126 = 0,    f127 = 0,    f132 = 0,    f135 = 0,
f137 = 0,    f142 = 0,    f143 = 0,    f145 = 0,    f146 = 0,
f147 = 0,    f152 = 0,    f154 = 0,    f163 = 0,    f164 = 0,
f174 = 0,    f231 = 0,    f234 = 0,    f237 = 0,    f241 = 0,
f245 = 0,    f251 = 0,    f253 = 0,    f254 = 0,    f256 = 0,
f257 = 0,    f263 = 0,    f265 = 0,    f275 = 0,    f341 = 0,
f346 = 0,    f352 = 0,    f356 = 0,    f361 = 0,    f362 = 0,
f364 = 0,    f365 = 0,    f367 = 0,    f376 = 0,    f453 = 0,
f456 = 0,    f457 = 0,    f462 = 0,    f465 = 0,    f467 = 0,
f471 = 0,    f561 = 0,    f564 = 0,    f567 = 0,    f572 = 0,

and f673 = 0. Thus, we have 42 equations remaining to analyze.
The 42 remaining equations can be divided into three sets of equivalent equations.

Case 1. The following 12 equations are equivalent:

f153 = 0,    f156 = 0,    f162 = 0,    f165 = 0,    f243 = 0,    f246 = 0,
f261 = 0,    f264 = 0,    f342 = 0,    f345 = 0,    f351 = 0,    f354 = 0.
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Thus it is sufficient to study only one of these equations, for instance, the equation f153 = 0 which can be 
written as

(3R12 − 2R52 − R53) ∆1532 = 0. (4)

Case 2. The following 6 equations are equivalent:

f157 = 0,    f167 = 0,    f247 = 0,    f267 = 0,    f347 = 0,    f357 = 0.

Thus it is sufficient to study only one of these equations, for instance, the equation f157 = 0 which can be 
written as

(3R12 − 2R52 − R53) ∆1572 = 0. (5)

Case 3. The following 24 equations are equivalent

f172 = 0,    f173 = 0,    f175 = 0,    f176 = 0,    f271 = 0,    f273 = 0,
f274 = 0,    f276 = 0,    f371 = 0,    f372 = 0,    f374 = 0,    f375 = 0,
f472 = 0,    f473 = 0,    f475 = 0,    f476 = 0,    f571 = 0,    f573 = 0,
f574 = 0,    f576 = 0,    f671 = 0,    f672 = 0,    f674 = 0,    f675 = 0.

Thus it is sufficient to study only one of these equations, for instance, the equation f172 = 0 which can be 
written as

(3R12 − 2R52 − R53) ∆1723 = 0. (6)

Under our hypotheses the terms ∆1532, ∆1572 and ∆1723 do not vanish, so equations (4), (5) and (6) are 
satisfied if and only if

3R12 − 2R52 − R53 = 0. (7)

Equation (7) implies that the central configurations studied here do not depend on the value of the mass m7.
In order to simplify our analysis and without loss of generality, take a system of coordinates in which 

ri = (xi, yi, zi) 2 R3, where

r1 = (x, 0, y),    r2 = (
‒ x
2 , √3x

2 , y),    r3 = (
‒ x
2 , ‒ √3x

2 , y),

r4 = (x, 0, ‒y),    r5 = (
‒ x
2 , √3x

2 , ‒ y),    r6 = (
‒ x
2 , ‒ √3x

2 , ‒y),

r7 = (0, 0, 0),    x > 0,    y > 0.

With these coordinates x = a > 0 and 2y > 0 is the distance between the planes Π1 and Π2. It follows that 
equation (7) is written as

F (x, y) = 3
(√3x)3 ‒ 2

(2y)3 ‒ 1
(3x2 + 4y2)3/2 = 0, (8)

with x > 0 and y > 0.

Therefore, to complete the proof of Theorem 1 we need to study the zero level of the function F in (8). 
We claim that the zero level of F is contained in a straight line passing through the origin. In fact, consider 
the change of variables defined by

u = √3x,    v = 2y.
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With these new variables the function F in (8) is written as

F (u, v) = 3
u3  ‒ 2

v3 ‒ 1
(u2 + v2)3/2. (9)

Now, taking polar coordinates

u = r cos θ, v = r sin θ,

the function F is given by

F (r, θ) = 1 3  ‒ 2 ‒1 = 1 3sin3θ ‒ 2cos3θ ‒ sin3θcos3θ
r3 cos3θ sin3θ r3 sin3θcos3θ . (10)

From (10) the zero level of F is obtained from the zeros of the function

3sin3θ ‒ 2cos3θ ‒ sin3θcos3θ = cos3θ (3tan3θ ‒ sin3θ ‒2),

that is, from the function

f(θ) = 3tan3θ ‒ sin3θ ‒2,    θ 2 (0, 
π
2 ). (11)

From elementary calculations we have

lim
θ →0+

 f(θ) = ‒ 2 < 0,    lim
θ → π ‒

2

 f(θ) = + ∞,    f '(θ) = 3sin2θ
cos4θ

 (3 ‒ cos5θ) > 0,

for all θ 2 (0, π/2). Thus, f is an increasing function that changes sign only once. Therefore, there is only 
one θ0 2 (0, π/2) such that f(θ0) = 0. This implies that the zero level of F is contained in the set {θ0, r > 0}, 
that is the zero level of F is given by the following set

Z ={(x, y) 2 R2 : x > 0, y = αx}, (12)

for some α > 0 in the original coordinates. Simple numerical computations give the approximated value 
α ~− 0.7935817272.

The uniqueness of the class of central configuration studied here follows from the set Z in (12). 
This end the proof of Theorem 1.

CONCLUSIONS

An interesting fact about the configuration studied here is that it does not depend on the values of the masses 
m and m7. So we have a unique two parameter class of central configurations. Also, if we remove the body 
of mass m7 the remaining six bodies are already in a central configuration (see Cedó and Llibre 1989). Thus 
the central configuration studied here is an example of spatial stacked central configuration with seven 
bodies (see Hampton and Santoprete 2007, Mello et al. 2009).

The results obtained in this paper also work for other regular n-gons instead the equilateral triangle, but 
this is a subject of a future work. At the moment we have just numerical results.

We believe that the results obtained are true for the case where one triangle is rotated by an angle of π/3 
with respect to the other one. Rotations by other angles require an approach different of the presented here 
and new techniques must be found.
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We also believe that similar results can be obtained taking the same structure with two equal co-circular 
central configurations (see Cors and Roberts 2012), instead of two equilateral triangles.
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RESUMO

Neste artigo estudamos a existência de novas famílias de configurações centrais espaciais para o problema de 7 corpos. 
Nas configurações estudadas aqui seis corpos estão nos vértices de dois triângulos equiláteros T1, T2 e um corpo está 
localizado fora dos planos paralelos distintos contendo T1 e T2. Os resultados apresentados aqui tem provas simples 
e analíticas.

Palavras-chave: configuração espacial, problema de 7 corpos, configuração central, configuração central empilhada.
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