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ABSTRACT
In this paper we give some examples of surfacel fwith conformal normal Gauss map with
respect to the second conformal structure and prove some global properties.
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Itis well known that the Weierstrass representation formula has played an important role in studying
minimal surfaces irR3. To find a Weierstrass-type representation formula for simply connected
immersed minimal surfaces in hyperbatiespace, Kokubu (Kokubu 1997) considered the hyper-
bolic space as a Lie groug with a left invariant metric. Given a two-dimensional domdn

and a map(e) into the above Lie group, he considered the pullbagk of the Maurer-Cartan
forms toD. Using the standard harmonic map equation for such maps, and by pulling back the
Maurer-Cartan structure equations, he derived a complete integrability condition for the 1-forms
(¢"). Also, to assure that the associated harmonic map is a minimal surface, a conformality condi-
tion is imposed. The normal Gauss map into the hyperquadric is written down, which is the usual
tangential Gauss map translated to the Lie algebf@.aDn the other hand, Galvez and Martinez
(Galvez and Martinez 2000) studied the properties of the Gauss map of a shrfaumersed

into the Euclidean 3-spad®®, particularly those related to the geometry of the immersion and the
so-called second conformal structure of the surface, that is, the conformal strucriduaced

by the second fundamental form. Motivated by their work, the author (Shi 2004) gave a Weierstrass
representation formula for surfaces with prescribed normal Gauss map and Gauss curtature in
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by using the second conformal structure on surfaces (see section 1 for the definition). From this,
surfaces whose normal Gauss map are conformal maps have been found(see Theorem 1).

The propose of this paper is to classify locally the ruled surfaces with conformal normal Gauss
map inH?3 and also give some new examples of complete properly embedded ruled surfaces. The
rest of the paper is divided into three sections. The first one describes the definitions of the normal
Gauss map in context of this paper and the second conformal structure on surfaces and states
Theorem 1. The second section gets two local examples within the Euclidean ruled surface and in
the last section some global properties of the ruled surfaces and translational surfaces are proven.

1 PRELIMINARIES
Take the upper half-space model of the hyperbolic 3-sphte- {(X1, X2, X3) € R® : X3 > 0} with
the Riemannian metrids? = X—lz(dxf + dx3 + dx3) and constant sectional curvaturd.
3

Let = be a connected 2-dimensional smooth surfacexan® — H?2 be an immersion ok
into H3 with local coordinates, v. The first and the second fundamental forms of the immersion
are written, respectively, as# Edu? + 2Fdudv + Gdv? and Il = Ldu? 4+ 2Mdudv + Ndv?.
The unit normal vector field of(X) in H?® is written as

o 0 d d
N = X3€31— + X3€3 27— + X3€33—,
0X1 dXo 0X3

wheree3, + €2, + €3, = 1. The Gauss equation is

LN — M?2

K=-14—-——.
T EG_F2

Identifying H2 with the Lie group

1 0 O Ilogxs

0 0

H® = X XL (x40, %o Xa) € H3Y
0 0 x3 X2
00 O 1

the multiplication is defined as matrix multiplication and the unit elemeatis(0, 0, 1). The Rie-
mannian metric is leftinvariant andX; = Xgﬁ, Xp = xgaixz, X3 = x3& are the left-invariant
unit orthonormal vector fields. Now, the unit normal vector fieldx¢®) can be written as
i = e31X1 + e32X5 + e33X3. Left translatingi to To(H?), we obtain

- 9 ) )
A= L. 1 (f) = ex— - — (1) C To(H3).
n x—1,(N) 9318X1(6)+9328x2(e)+9338X3(e)e (1) C Te(H?)

By the stereographic projection, we get the map> C | {oo},

+ i
gl(x) —_ u

= _ 2
e, NEUL=SVN,
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€1 —ien = >
X) = ——,NelU;=S(D\(S}.
G2(X) 17 e 2 D\ {S}
Call gi(or g2) the normal Gauss map of surfacex) (Kokubu 1997). OrJ; (U, g102 = 1. In
this paper, we only consideg and write the normal Gauss mapgs X — C | J{oo}. Then we

have
_9+0 . _ ;9-6 . _lgF-1
1+|g? 1+19/7 1+19/?
Consider an immersior : ¥ — H?3 with Gauss curvatur& > —1. By the Gauss equation,
we can choose a suitable orientatiom@X) such that the second fundamental form Il becomes a
positive definite metric orx and induces a conformal structure B which is called the second
conformal structure like (Klotz 1963)X will be considered as a Riemannian surface with the

second conformal structure.

€31

THEOREM 1 (Shi 2004). Let X be a connected Riemannian surface and x : ¥ — H?2 be an
immersion with Gauss curvature K > —1. Assume that the set of umbilics has no interior point.
Then normal Gaussmap g : ¥ — C [ J{oo} of x(X) is conformal map if and only if the Gauss

curvature K and the normal Gauss map g satisfy K = —%

The Weierstrass representation formulas for these surfaces can be found in (Shi 2004).

> —1.

REMARK. For the Bryant’s hyperbolic Gauss map of surfaceHif(see (Bryant 1987) for the
definition), Galvez, Martinez and Milan (Galvez et al. 2000) proven that the hyperbolic Gauss map
is conformal if and only if the surface is either flat or totally umbilic.

4g/?

Locally, the graphu, v, f(u, v)) satisfyingK = — @97

fully nonlinear PDE of second order (Shi 2004),

> —1 must satisfy the following

f(fuufoo — F2) + 1A+ £2) fuy — 2, f, fu, + L+ £2)f,,] = 0. 1)

2 EXAMPLES

We consider the surfaces 43 as those ones ilR®. The simplest examples of surfaces with
conformal normal Gauss map are the equidistant surfaces and horospheramnst > 0, i.e.
ordinary Euclidean planes. They are totally umbilics with constant Gauss curvature and constant
normal Gauss map.

The following theorem gives all the ruled surfaces with conformal normal Gauss ntép in

THEOREM 2. Up to an isometric transformation
(X1, X2, X3) — (X1 €0SO — X2 Sinf + a, X1 SiNO + X, cosH + b, X3) (2)

of H3, every ruled surface with conformal normal Gauss map in H3 islocally a part of one of the
following,

(1) equidistant surface with respect to a vertical hyperbolic plane,
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(2) Horosphere x3 = constant > 0,
(3) (ucosv, c-sinv, usinv), for a constant ¢ # 0,

(4) (—cysinv 4+ ucosw, ¢; - Sinv, C, coSv + U sinw), for constantsc; # 0 and ¢, # 0.

REMARK. We may check that, among all isometric transformations {Korevaar et al. 1992),
the horizontal Euclidean translations and rotations (2), the hyperbolic reflections with respect to a
vertical hyperplane and the vertical hyperbolic translations

(Xl7 X2v X3) - ()\'(Xl - a)9 )\'(XZ - b)7 A‘X?))! ()\' > O)a
preserve the concept of the ruled surfaces and the conformality of the normal Gauss map of any
surface with conformal normal Gauss map and the hyperbolic reflections
A(X1 —a, Xo — b, X
(X1 2 3) 6.5 0)
(X1 — @)%+ (X2 — b)? 4+ x3
preserve the conformality of the normal Gauss map of all totally umbilics but totally geodesics.

(Xq, X2, X3) — (&, b, 0) +

PROOF. Generally, considered as surfacesR the ruled surfaces il can be represented as
X(u, v) = a(v) + uB(v) : D — H3,

whereD(C R?) is a parameter domain andv) andg(v) are two vector value functions int@®
corresponding to two curves iR,
First, we assume thatis locally nonconstant and without loss of generality assume that

(B(v), BW)) =1, (B'(v), B'(v)) = 1, (d'(v), B'(v)) =0, (3)
where(., -) is the inner product irR®. Write ase = (0, 0, 1). We havex; = (x, €) andg” # 0.
The unit normal vector of the surfaggu, v) : D — H2is given by
ho XuAX (B A (@ +Up)
Xu A Xy 1B A (@ +up)l
whereX A'Y is the exterior product of the vecto¥sandY in R® and| - | is the Euclidean norm in
R3. So

_(BA@ +up), e

= . 4
= A @+ up)] @
By a straight computation, we have,
/ ’ l 2
E- Y  p_lh s _latu
(X, €)2 (x, €)? (X, €)2

(BA (@ +Uup),e
1B A (@ +uB)(x, €2
(B, B A (@ +up)) n (BA (@' +Uup), e, B)
|B A (o +UB)|(X, €) 1B A (@ +UB)(x, €2
(@ +uB”, B A (@ +up)) LB (@' +up), e) (o, o) + u?)
|B A (o + UB)|(X, €) 1B A (@ +Uup)|(X, €)2 '
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By the Gauss equatiold = —1 + '-E'\é:"é'f and (4), we know that

_ 4gP
=T @rigrE T s ©

is equivalent to
(BA (@' +up), e (" +up”, BA (e +up))

—(a+uB, e - (B, pAd)?
=2(BA (@ +Uup), e -(a,B)- (B, BA). (6)

Expanding the above formula and noting the linearly independenceuotiz andu?®, we get

(BAB.€-(B.BABY=0, (7)
(Bra.e) - (B .BAB)Y+(BAB. €. BABY+ (B Bra))=0, ®)
(BAB.€ (o BAL)+(BAc (" BAB)+ (B BA)
—2(a, B)- (B, BAC)-(BAB. € —(B. € (B,Bra) =0, (9)
(.8 - (B BAC) +2(. ) (B.BAC) - (BAC. €
—(BArd,e)-(a",BArd)y=0 (10)

By (7), if (B8 A B’,€) # 0 at a pointpg, then(g”, 8 A B’) = 0 in a neighbourhootd of py
and the curvep(v) is a geodesic of?. Hence,(8 A B, €) is locally constant and so is globally
constant.

Casel. If (B AB',e) =0, then(8 A B”,e) = 0. Hencep, g’, B” ande lie on same plane. We
get(B, B’ A B”) = 0. So the curves(v) is a plane curve irR%, i.e. a unit circle, and the plane
7 on which g lies passes through the origin Bf. By (8 A 8/, €) = 0, we knowr is a vertical
plane on whichxs-axis lies. Revolvingr aroundxz-axis, i.e. making an isometric transformation
(X1, X2, X3) — (X1€C0SH — XpSiNd, X1 SiN6 + Xp COSH, X3), we may assume that is the plane
X10X3. S0B(v) = (cosv, 0, sinv). Assumex (v) = (X1(v), X2(v), X3(v)), then equation systems
(3) and (7)—(10) may be written as

X1 Sinv — x5 cosv = 0, (11)

v

—X5X5 COSV = (X5) sinv, (12)

X3(X5)? + 2(X; COSv + X5 Sinv)(x5)% cosv
= X COSV(X5X5 COSU + X{ X5 SiNv — X{ X5 SiNv — X5 X5 COSV). (13)
Solving (11)(12)(13), we get

a(v) = (—Cp Sinv + Cz, €1 SiNv + C4, C; COSV),
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wherec; # 0, c,,c3 andc, are constants. Making a translation, Xz, X3) — (X1 +Cs, X2 +C4, X3),
we get (3) and (4) of Theorem 2.

Case 2. If (B A B',e) #0, then(”, B A B’') = 0. We also get that the curygis a plane curve
in R® and the planer on which the curves lies passes through the origin Bf but is not totally
geodesic. Similar to case 1, making a rotation transformation anoytaglis, we may assume that
X1-axis lies onrr. Now, B(v)is a unit circle onzr. B(v) = (cosv, Sinv cosy, sinv sind), where
constand is the angle between plaxgox, ands. By (8), we get(e”, 8 A B’) = 0. Multiplying
(10) by (B A B’, €) and using (9), we get

(@, ) - (BAB. & - (B, BAV=(Brd, € (B, (B,BAa)

Then, according to whethég’, 8 A «’) = 0 or not, we again get two cases from equation systems
(3) and (7}-(10),

CAsE (i),
(@,B)=0,(BAB.€) #0, (", BAB) =0,
(B',BAaYy=0, (", BAra) =0,
and
CAsE (ii),

(,B)=0,(BAB. € #0, (" BAB)=0,(B,BAd)#D,
(. €) - (BAB. € =(B.€ (Brd,8),
(BAB.€ (" BAd)—2( B)-(B.Brd)-(BAB. €
=(B. &) - (B, B ).

Inthe case (i), taking derivative da”, BAB’) = 0, we geta”, BAB') = 0.So(a'Aa”, &) =
0, i.e. the torsion of the curve(v) is zero. We infer that the curve(v) is a plane curve and the
plane on which the curve lies parallels tor. Hencex satisfies either (1) or (2) of Theorem 2. As
for the case (ii), similar to the proof in the case 1, we know that this is a contradictory system of
equations.

Next, wheng is constant, we havg A e # 0. Or else, by proposition 34 in chapter 7 of
(Spivak 1979), we hav = —1. A contradiction. We may assume

(o, B) =0. (14)
Thusa(v) is a plane curve and (6) becomes

(BAd,€) (@, BAra)=0. (15)
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NEW EXAMPLES OF SURFACES INH3 13

We have(B A o', €) # 0. Or elsex(v) is a plane curve and lies on a plane parallel to the one
spanned by ande. Thenx : D — H?2 is totally geodesic planéi® andK = —1. This is
contradictory toK > —1. So(a”, B A a’) = 0. By (14) , we know thatr(v) is a straight line in
R3andx : D — H3is either a equidistant surface or a horosphere- constant > 0. We have
proved Theorem 2.

Locally, the ruled surfaces (3) and (4) in Theorem 2 can be represented as a graph
U, v, f(u,v)).

Ci1Co + Uv . . .
COROLLARY 1. f(u,v) = :I:ﬂ is a solution of equation (1), wherec; # 0 and c; are

c? — 2
constants.

3 GLOBAL PROPERTIES

The equidistant surfaces and horosphere- const > 0 are simply connected, complete, totally
umbilics and properly embedded surfaces. Generally, we have the following global properties for
the ruled surfaces obtained in theorem 2.

THEOREM 3. The following are simply connected, complete and properly embedded surfaces in
HS3,
(1) X(u, v) = (ucosv, ¢-sinv,usinv) : D1 = {(u,v)|[0 < U < 400,0 < v <7} — H?3 and

(2) x(u, v) = (—CzSinv + ucosv, ¢; Sinv, C; COSvY + USINY) :
u u 3
D, =3(U,v)] — o0 < U< 400, arctan— — — < v < arctan— + — ¢ — H?,
Co 2 Co 2

wherec > 0, ¢; > 0and ¢, > 0 are constants.

PrROOFE

(1) The mapx : D; — H?3is one-to-one. For any compact subSeén H3, it is easy to know that
the relative closed sat 1(S)(cc D), as the subset d®2, is bounded and closed set®f. Hence
x~1(S) is a compact set. Sa,: D; — H?is a proper map anxi(D) is a complete surface iH 3.
On the basis of this, we can infer that D; — r (D) is closed. Sx mapsD; homeomorphically
onto its image with the induced topology arnd D; — H? is embedded.

(2) By a parameter transformatian= 0 andv = v + arctanc—f‘2 — %, D2 is diffeomorphic to
D, ={(0,v)] —o0 <l < +400,0< v <m}.Thenx: Dy — H?3 becomex : D, — H 3 with

- _ _ ¢1(Gsinv — ¢ cosv - .
x(0, v) = | /G2 + ¢ cosy, ), U2 + c3sinv

J2+cs

Similar to the proof of (1), we can prove (2).
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We have obtained the translational surfaces with conformal normal Gauss map in nonparameter
form (Shi 2004),

f(U,v)=\/a2—U2:|:\/b2—v2

satisfying (1). Now, the parameter form of these translational surfaces is locally givgn by =
(acosu, bcosv, asinu + bsinv).

THEOREMA4.

(1) The map x(u, v) = (cosu, cosv, sinu + sinv) : D; — H?3 isa simply connected, complete
and properly embedded surface, where D1 is a simply connected open domain of R? enclosed by
four straight linesv =u+m, v=—-u+2r andv = —u.

(2) For 0 < a < b, theimage of the map x(u, v) = (acosu, bcosv, asinu+bsinv) : D, — H?3
isa complete and properly embedded surface diffeomorphicto St x R, where

fa . . fa .
D, = {(u, V)| — 00 < U< 400, —arcsm(B smu) <v<mw+ arcsm(B smu)} .

PROOF

(1) By a parameter transformatian= 0 + v andv = 0 — v, D; is diffeomorphic toD; =

{(@,0)0<b<m —% <v <%} C R Thenx: D; - H3becomes : D} — H?with

(T, v) = (cog0 + ), cosl — ), 2 sindicosv) : D} — H3,

Similar to the proof of (1) in Theorem 3, we can prove (1).

(2) It is easy to know that image(D-) is diffeomorphic toS' x R. For any divergent curve
a : [0,1) - Dy, whent — 1—, a(t) tends to either the boundary curve= — arcsin(2 sinu)
andv = 7 + arcsin(% sin u) or co. For the former, if the length of(«(t)) is finite, then there
exist a compact se$ in H3 containing completely the curve(x(t)). However, when restricting
x(Dy) on S, there exists a positive constaftsuch that@a sinu + bsinv > ¢g,. We may assume
g0 < min{a, b—a}. Sow(t) must satisfy— arcsin(2 sinu — ) < v < 7 4-arcsin(2 sinu — 2).
Soa(t) does not tend to the boundary@$, which is contradictory that(t) tends to the boundary
of D,. So the length ok(a(t)) is infinite. For the latter, as — 1—, u(t) — oo. The first
fundamental form ok : D, — H?2 satisfies

d4s? — a%du? + 2ab cosu cosvdudv + b2dv? . a? sin’ udu?
N (asinu + bsinv)2 ~ (asinu + b)?’

So the length ok («(t))
1

L= f a| sir_lU(t)Ilu/(t)ldt
asinu(t) +b

An Acad Bras Cienc (2006)78 (1)



NEW EXAMPLES OF SURFACES INH3 15

Noting thatf asinul 4y~ 0, we havel = +o0. Inaword, the length of (« (1)) is always infinite.

asinu+b
Hence the |magx(D2) is complete.

Next, we prove that the image(D,) is a proper surface. When restrictingD,) on any
compact setS in H3 mentioned above, the first fundamental formxof D, — H?3 satisfies
ds? < £ (du2 + dv?), whereC is constant and depend only anandb. So, we infer that the
restrlctlon ofSto x(D») is bounded closed subsetxafD,) and hence is compact subsedD,).
We complete the proof.

REMARK. The curvesin Theorem 3, corresponding respectivelyto? onx(Dj) andtov = +7%

onx (D) and the curvesin Theorem 4, corresponding 8 0,. u = 7, v = 0 andv = 7 onx(D;)
andx(D,) are all geodesics dfl 2 follow which K = —1 and accordingly the second fundamental
forms are degenerate. Furthermore, every such a geodesic is mapped to a point by the normal
Gauss map.
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RESUMO

Neste trabalho, damos alguns exemplos de superficies no espaco hiperbdlico de dimenséo trés com aplicacédo
de Gauss conforme relativamente & segunda estrutura conforme e provamos algumas propriedades globais.

Palavras-chave: espaco hiperbdlico, aplicacdo normal de Gauss conforme, superficie regrada, superficie
de translacéo.
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