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1 Introduction

Instanton is one of the classical solutions of the quantum field theory and labels a vacuum

state. In SU(Nc) gauge theories in the four-dimensional Euclidean spacetime (R4), an

instanton has a topological charge (instanton number) given by

Q =
1

32π2

∫
d4xTrεµνρσFµνFρσ, (1.1)

where εµνρσ denotes a totally anti-symmetric tensor. This Q always takes an integer

value [1]. The topological charge has been measured by lattice ab initio calculations [2].

The distribution of Q is broad in the hadronic (confinement) phase in the low temper-

ature, while it is narrow in the quark-gluon-plasma (deconfinement) phase in the high

temperature [3, 4]. According to lattice numerical studies [5–7], it has been shown that

the first-order phase transition occurs between these phases in the SU(3) gauge theory, so

that physical observables do not continuously change around the critical temperature.

Most calculations of lattice at zero temperature have been performed on the hypertorus

(T4) with the standard periodic boundary conditions, although the gauge theories on the

periodic hypertorus have neither self-dual nor anti-self-dual configuration as a classical

solution. To obtain a stable configuration with nonzero topological charge on the finite

lattice, we have to impose the twisted boundary conditions [8]. The reason why the ordinary
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lattice calculations with the periodic boundary conditions can observe the nonzero Q is that

the boundary effect is negligible in the strong coupling regime.

A question arises as to properties of the topological objects in the weak coupling

regime of the SU(3) gauge theory. To study the quantities in the perturbative regime on

the lattice, for instance, to calculate the running coupling constant, we need to set the

renormalization scale to be higher than the Lambda scale (Λ). The renormalization scale

is inversely proportional to the spatial lattice extent (Ls), hence we have to use the lattice

extent satisfying Ls � 1/Λ. We expect that the choice of the boundary condition in such a

small box has an influence on the property of classical solutions. Therefore, it is necessary

to consider which are a proper boundary condition and spacetime structure to investigate

the weak coupling regime.

As a proper boundary condition to match the lattice data with the perturbative calcu-

lations on R4, it is necessary to utilize nontrivial boundary conditions (e.g. the Schrödinger

functional [9, 10] and the twisted boundary conditions [11, 12]) on hypertorus (T4). Other-

wise, the classical solution does not connect to the standard perturbative vacuum [8, 13, 14]

because of a gauge inequivalent configuration, which is called toron, of the degenerate min-

imal action [15, 16].

On the other hand, as a proper spacetime structure, a large aspect ratio between

the spatial and temporal directions might be a good setup to consider a well-defined the-

ory in the weak coupling regime, according to the recent studies of the resurgence sce-

nario. It is well-known that the perturbative expansion of the SU(Nc) gauge theory on

R4 spacetime does not converge in higher order calculations. The resurgence scenario has

been proposed [17, 18] to solve this problem for the quantum mechanical models and low-

dimensional quantum field theories, which suffer from a similar problem. In the scenario,

a compact dimension and/or a boundary condition with ZN -holonomy are introduced as

a proper choice of the spacetime structure. On the modified spacetime, the perturbative

series and the nonperturbative effects of the theories are related to each other in the weak

coupling regime, and physical quantities are determined without any imaginary ambiguities.

A characteristic phenomenon in the nonperturbative side of this scenario is the appearance

of local topological objects with a fractional charge, which contributes to the perturbative

vacua, as a (semi)-classical solution of the theories. The fractionality of the topological

charges is needed to cancel the renormalon pole [19, 20] whose action is of order 1/Nc

in comparison with the action for the integer-instantons [21]. Recently, the resurgence

structure has been revealed in several quantum-mechanical models and low-dimensional

quantum field theories [21–30]. A signal of the fractionality of the energy density has been

observed in the Principle Chiral Model using the lattice numerical simulation [31].

For the SU(Nc) gauge theory, a recent paper [32] has proposed a promising regular-

ization formula on T3 ×R. The authors pointed out that the IR cutoff is necessary, which

should be higher energy than the dynamical IR scale, namely Λ scale in the SU(Nc) gauge

theory, otherwise, the trans-series expansion of physical observables breaks down. There-

fore, they introduce the twisted boundary conditions for the two compactified dimensions

using the center symmetry. The twisted boundary conditions induce the IR cutoff in the

gluon propagator, and the fractional-instanton is allowed as a nonperturbative object even
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Figure 1. Relationships among the SU(3) gauge theories on various spacetime structures and

coupling regimes. The topological property (Q) for each setup is also shown. Cross symbols on the

arrow denote that two theories does not connect with each other smoothly. In this work, we focus

on two boxes located at the center and the center-right.

in the weak coupling regime [8, 11, 13, 33]. Furthermore, the center symmetry can be

dynamically restored because of the tunneling behavior between ZNc-degenerate vacua. It

seems to be promising to discuss the adiabatic continuity, where no phase transition oc-

curs toward the decompactified limit in contrast to the first order phase transition at the

finite-temperature. Although the resurgence structure of the SU(Nc) gauge theory on the

modified spacetime has not yet been proven, these phenomena are very similar to the ones

in low-dimensional models, which are successfully resurgent.

Based on these situations, we perform the lattice numerical simulation on T3×S1 with

the twisted boundary conditions to study the topology in the weak coupling regime. Here,

we maintain a large aspect ratio between two radii for the three-dimensional torus (Ls) and

the temporal circle (Lτ ) as Ls � Lτ (center box in figure 1). The boundary conditions and

the spacetime structure used here are equivalent to those in refs. [32, 33] in the continuum

and S1 → R limits. We tune lattice parameters to be in a weak coupling regime, where the

running coupling constant under the same twisted boundary conditions has already studied

in ref. [12]. For a comparison purpose, we also perform the simulations on the ordinary

periodic lattice with the same lattice parameters (center-right box in figure 1). To study

the fractional topology and its basic properties of the SU(3) gauge theory is interesting

itself. Furthermore, it is a first step for the challenge to define a regularized gauge theory

from the perturbative to the nonperturbative regimes without any obstructions.
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To confirm whether the configurations with fractional charges are generated, we di-

rectly measure the topological charge of configurations on the twisted lattice. We find

that the configurations with nonzero Q appear on the twisted lattice even in the weak

coupling regime. Although the total topological charge, Q, takes an integer value as in

the strong coupling regime on the ordinary periodic lattice, some of them consist of multi-

ple fractional-instantons. We also study the relationship between the fractional-instantons

and other nonperturbative phenomena, namely the tunneling, the center symmetry, and

the confinement. We show that the fractional-instanton connects two of the degenerate

ZNc-broken vacua, that is the same properties with the fractional-instantons discussed in

refs. [32, 33]. Investigating the scaling law of the Polyakov loop, we find that although the

center symmetry seems to be partially restored, the free-energy of single probe quark is

still finite, which is consistent with the deconfinement.

This paper is organized as follows: in section 2, we give a review of the basic properties

of the lattice gauge theory with the twisted boundary conditions for the two compactified

directions. We give comments on the absence of the zero-modes and the existence of the

fractional-instantons as a classical solution. In section 3, the strategy of the Monte Carlo

simulation is explained. We tune the simulation parameters to be in the perturbative regime

(g2 ≈ 0.7) and take a sufficiently large extent to generate multi-instanton configurations.

We also describe our sampling method for a tiny lattice spacing with a long autocorrelation.

Section 4 presents the simulation results. In section 4.1, the configurations with nonzero

Q show up on the twisted lattice in the weak coupling regime, while there is no such

configuration on the ordinary periodic lattice with the same lattice parameters. We find

the local topological object with a fractional charge in the configurations with nonzero

Q. The distribution of the Polyakov loop on the twisted lattice has the different behavior

from that on the periodic lattice as shown in section 4.2. We also show the tunneling

phenomena between the ZNc-degenerate vacua by studying the local topological charge and

the Polyakov loop on each site in section 4.3. In section 4.4, the deconfinement property

of these configurations is discussed. The last section contains the summary and several

future directions.

2 Twisted boundary conditions on hypertorus lattice

2.1 Twisted boundary conditions and the absence of zero-modes

We review the properties of the SU(Nc) gauge theory on the lattice with the two-

dimensional twisted boundary conditions. On the hypertorus with the ordinary periodic

boundary conditions, the saddle points of the action are not only degenerate through gauge

transformations, but an extra degeneracy exists due to the global toroidal structure [15, 16].

The configuration is related to a part of the zero-modes and is called toron. On the other

hand, the two-dimensional twisted boundary conditions eliminate all zero-modes, so that

it is not suffered from the toron problem. Here we explain the detail setup and show the

gluon propagator is regularized by an IR momentum cutoff because of the twisted boundary

conditions [11, 12, 14].
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Let us start with the Wilson-Plaquette action for the SU(Nc) gauge theory;

SW =
2Nc

g20

∑
n,µ>ν

(
1− 1

Nc
TrPµν(n)

)
. (2.1)

Here, g0 and Pµν denote the lattice bare coupling constant and the plaquette,

Pµν(n) = Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n), (2.2)

respectively. Uµ(n) represents a link variable from a site n = (nx, ny, nz, nτ ) to its neighbor

in the µ-direction, and takes values with the SU(Nc) group elements.

We introduce the twisted boundary conditions in the x and y directions;

Uµ(n+ ν̂Ns) = ΩνUµ(n)Ω†ν for ν = x, y, (2.3)

Ων ∈ SU(Nc),

while the ordinary periodic boundary conditions are imposed in the z and τ directions;

Uµ(n+ ν̂Ns) = Uµ(n) for ν = z, τ . (2.4)

Here, Ns denotes the lattice extent for each direction in lattice unit and is related with the

size of the torus (Ls = aNs). For simplicity, only in this subsection, we consider the lattice

extents for all directions have the same length. Ων (ν = x, y) are the twist and SU(Nc)

matrices. In the case of Nc = 3, they have the following properties,

ΩνΩ†ν = I, (Ων)3 = I,Tr[Ων ] = 0, and ΩµΩν = ei2π/3ΩνΩµ, (2.5)

for a given µ and ν( 6= µ).

At a corner on the lattice in the x-y plane, a translation of a link variable is given by

Uµ(n+ x̂Ns + ŷNs) = ΩxΩyUµ(n)Ω†yΩ
†
x. (2.6)

The interchanging Ωx and Ωy in this equation leads to the same result. The gauge trans-

formation for the original link variable;

Uµ(n)→ Λ(n)Uµ(n)Λ†(n+ µ̂) (2.7)

implies

Λ(n+ ν̂Ns) = ΩνΛ(n)Ω†ν . (2.8)

Then, the Wilson-Plaquette action with the twisted boundary conditions at the boundary,

for instance ny = Ns − 1, is given by

Pxy = Ux(nx, Ns − 1, nz, nτ )Uy(nx + 1, Ns − 1, nz, nτ )ΩyU
†
x(nx, 0, nz, nτ )

×Ω†yU
†
y(nx, Ns − 1, nz, nτ ). (2.9)

The toron configurations, which are related to the closed winding around the whole torus,

are not transformed into themselves by the twisted conditions [15]. They do not have a
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degenerate energy with the standard vacuum, since the plaquette on the boundary gives a

different contribution from the standard one.

Next, we consider the gluon propagator and show that it has an IR cutoff in this lattice

setup. The link variable can be parameterized by the gauge fields (Aµ(n)) as

Uµ(n) = eig0Aµ(n), with A†µ(n) = Aµ(n), Tr[Aµ(n)] = 0. (2.10)

The corresponding boundary conditions for gauge field Aµ(n) imply

Aµ(n+ ν̂Ns) = ΩνAµ(n)Ω†ν , ν = x, y, (2.11)

Aµ(n+ ν̂Ns) = Aµ(n), ν = z, τ. (2.12)

The plane-wave expansion of the gauge field is given by

Aµ(n) =
1

N4
s

∑
k

ΓkÃµ(k)eikn+ikµ/2, (2.13)

where Γk is a Nc ×Nc complex matrix. Substituting eq. (2.13) to eq. (2.11) gives

eikνNsΓk = ΩνΓkΩ
†
ν , (2.14)

for ν = x, y. The non-zero solution is realized only if the momentum components satisfy

kx,y = kphx,y + k⊥x,y, kz,τ = kphz,τ , (2.15)

where

kµ =
2πmph

µ

Ns
, k⊥µ =

2πm⊥µ
NcNs

. (2.16)

Here, −Ns/2 ≤ mph
µ < Ns/2 denotes the degree of freedom for the ordinary physical

momentum for µ = x, y, z, and τ , while there is an additional unphysical degree of freedom

m⊥µ = 0, 1, Nc−1 for the twisted directions. There is a one-to-one correspondence between

the unphysical momenta and the color degrees of freedom of Aµ [11]. Actually, the number

of the combination of (m⊥x ,m
⊥
y ) is Nc

2−1 due to the traceless condition of the gauge field.

We can carry out perturbative calculations using those unphysical momenta instead

of the color degrees of freedom. If we take the Feynman gauge, then the gluon propagator

in the momentum space is given by

〈Ãµ(qph, q⊥)Ãν(kph, k⊥)〉 =
1

2Nc
δ
(4)

(q+k)ph,0
δ
(2)

(q+k)⊥,0
(1− δ(2)

k⊥,0
)e−πi(k

⊥,k⊥)/3 1

k2
δµν ,

(2.17)

where k2 = 4
∑

µ sin2(kµ/2) and (k̃⊥, k⊥) = m̃⊥xm
⊥
x + m̃⊥y m

⊥
y + (m̃⊥x + m̃⊥y )(m⊥x + m⊥y ).

Because of the factor (1 − δ
(2)

k⊥,0
), the zero-modes including the torons are excluded in

the propagator. It corresponds to introducing the IR cutoff proportional to 1/(NcNs) in

momentum space.
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2.2 Classical solutions with twisted boundary conditions

If the four-dimensional twisted boundary conditions are introduced on the hypertorus (T4),

it is known that the topological charge can be a fraction [8, 13];

Q =
1

32π2

∫
d4xTrεµνρσFµνFρσ = integer− κ

Nc
. (2.18)

Here, κ = 1
8εµνρσnµνnρσ, and nµν has six integers (nµν = −nνµ) defined modulo Nc and

labels the twist;

ΩµΩν = e2πinµν/NcΩνΩµ. (2.19)

The boundary conditions correspond to the introduction of the magnetic flux for all four-

directions. To see the fractional-instantons, the strength of the magnetic flux (or size of

the torus) for each direction has to be tuned (see eq. (4.19) in ref. [8]). It shows that Q

is always integer if we introduce the twisted boundary conditions only in two dimensions,

since n12 = −n21 = 1 and the others are zero.

On the other hand, it is known that even though only two dimensions have the twisted

boundary conditions, the classical solution with the fractional topological charge emerges on

T3×R (see also section 7 in [33]). There are Nc degenerate classical vacua, and a fractional-

instanton appears as a configuration connecting between them [32]. In our simulations, if

we take the infinite size limit of the temporal direction, then the spacetime structure is the

same with the one in refs. [32, 33]. Then, we expect that the similar fractional-instantons

as these works could emerge as a classical solution in the numerical simulations. Therefore,

it is worth to summarize the origin of the fractional topological charge and the properties

of the fractional-instantons on T3 × R.

When we consider the perturbative expansion around the classical solution, we have

to take not only Uµ = 1 but also its gauge equivalent configurations. For simplicity, we

take pure gauge and consider Aµ = −Λ(∂µΛ). The gauge field Aµ satisfies the twisted

boundary conditions eqs. (2.11) and (2.12). In previous subsection, we consider the naive

boundary condition, eq. (2.8), for Λ, but the boundary conditions for Aµ are still satisfied

even if the following extended ZNc gauge transformations are added;

Λ(n+ x̂Ns) = e2πilx/NcΩxΛ(n)Ω†x,

Λ(n+ ŷNs) = e2πily/NcΩyΛ(n)Ω†y,

Λ(n+ ẑNs) = e2πilz/NcΛ(n), (2.20)

where lx, ly, and lz are integers (modulo Nc). We denote these ZNc gauge transformations

with (lx, ly, lz) = (1, 0, 0), (0, 1, 0), and (0, 0, 1) as Tx, Ty, and Tz, respectively. Then, any

gauge transformation Λ with the boundary conditions, eq. (2.20), can be written by

Λ = (Tx)lx(Ty)
ly(Tz)

lz Λ̃, (2.21)

where Λ̃ satisfy the original gauge transformation eq. (2.8). Tx and Ty can be chosen as a

constant matrix, and then (Tx)Nc = (Ty)
Nc = 1. However, (Tz)

Nc can not be continuously

deformed to the identity in all spacetime coordinates, and shifts the topological charge.

– 7 –
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To see that, we put the topological charge (eq. (1.1)) in

Q =
1

8π2

∫
Tr(F ∧ F ),

= − 1

24π2

∫
Tr(Λ−1dΛ) ∧ (Λ−1dΛ) ∧ (Λ−1dΛ). (2.22)

Utilizing (Λ−1dΛ) = d(ln Λ) and substituting eq. (2.21) to eq. (2.22) imply

Q =
l′

Nc
+ integer. (2.23)

Here, l′ = lz ·n′, where n′ appears since the logarithmic function is a multi-valued function.

Thus, if lz and/or n′ are not a multiple of Nc, then a fractional topological charge is allowed

on T3 × R.

Furthermore, the extended ZNc gauge transformation could rotate the Polyakov loop in

the z-direction in the complex plane. Let us consider the Polyakov loop in the z-direction;

Pz =
1

Nc
Tr exp

[
i

∫
Azdz

]
. (2.24)

Then, the Polyakov loop for the gauge equivalent, Az → Λ−1AzΛ− iΛ−1(∂zΛ), is given by

1

Nc
Tr exp

[
i

∫
(Λ−1AzΛ− Λ−1(∂zΛ))dz

]
=

1

Nc
Tr exp

[
i

(∫
Azdz + 2πlz/Nc + 2πn

)]
,

= e2πilz/NcPz. (2.25)

If lz is not a multiple of Nc, then the phase factor remains in Pz. It is therefore possible

that if the classical solution with fractional topological charge appears at some spacetime

coordinate, then the complex phase of Pz rotates at the same coordinate.

The other typical property of the fractional-instantons on T3 ×R is an absence of the

size-modulus [32]. The IR cutoff is also related to the existence of the fractional instanton on

T3×R. According to ref. [32], all size-moduli of the integer-instanton on R4 are associated

with the translation moduli of the fractional-instanton on T3 × R. Then, the fractional-

instanton with the smallest topological charge (Q = 1/Nc) has no size modulus, and hence

the size of fractional-instantons is unique. The size is related to the compactification

radius (Ls) of T3. The intuitive understanding of the absence of the size-modulus is the

following;1 if the size of instanton is smaller than the compactification radius, then the

instanton becomes the ordinary integer-instanton, since the situation is the same as in

the R4 spacetime. On the other hand, the fractional-instantons with a large size is also

forbidden, since Aµ has a non-zero “mass” coming from the unphysical momenta (k⊥ ∝
1/Ls) of the twisted directions. Then, the size of the fractional-instanton with the smallest

charge is fixed. The fractional-instanton with larger charges can be constructed from the

composite states of the smallest one.

In this work, we consider T3×S1, where the radius of T3 is smaller than the one of S1

(Lτ ), and introduce the two-dimensional twisted boundary conditions into T3. The total

1We appreciate K. Yonekura for useful discussions.
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topological charge must be integer, since κ = 0 in eq. (2.18) and the homotopy class of

T3×S1 is the same with the one of T4. However, if the instanton size is much smaller than

Lτ , the spacetime structure, that the instanton feels, can be approximated by T3×R. Then,

the emergent of several fractional-instantons is locally allowed as a classical solution, if the

sum of these topological charges is an integer. We may see the evidence of the fractional-

instantons from the rotation of the Polyakov loop and the uniqueness of the size of the

fractional-instantons in numerical simulations.

3 Simulation strategy

3.1 Lattice parameters

The simulation strategy to investigate the nonperturbative properties in the perturbative

regime is as follows. We utilize the Wilson-Plaquette gauge action given by eq. (2.1) as a

lattice gauge action. We put the lattice parameter β = 2Nc/g
2
0 with Nc = 3. The other

lattice parameters, which we can control by hand, are the lattice extents in spatial (Ns)

and temporal directions (Nτ ). The lattice spacing “a” is put unity during the numerical

simulation. Once we introduce the physical quantity as a reference scale, for instance,

the Sommer scale [34] and t0 scale in the gradient flow method [35], then we obtain a

one-to-one correspondence between β and “a”, since the SU(3) gauge theory has only one

dynamical scale.

To investigate a nontrivial semi-classical solution, we set the lattice parameters

(β,Ns, Nτ ) to satisfy the following three conditions;

(1) the twisted boundary conditions on the two spatial dimensions to introduce the IR

cutoff and to kill the torons;

(2) sufficiently large lattice extent to generate multiple topological objects;

(3) tuned lattice gauge coupling to realize the perturbative regime

To satisfy the condition (1), we use the N3
s ×Nτ lattice, where the twisted boundary

conditions is imposed on the x and y directions in the three spatial directions. The z-

direction has the same lattice extent with the x, y-directions, but its boundary condition

is periodic.

The size of the fractional-instanton is predicted to be the same with the compactifica-

tion radius (Ns). Then, at least one-direction (here Nτ ) is larger than Nc ×Ns, to satisfy

the condition (2). We choose (Ns, Nτ ) = (12, 60) for this work.

For the condition (3), we take β = 16. According to figure 4 in ref. [12], the running cou-

pling constant at the scale (Ls = aNs) indicates g2(1/Ls) ≈ 0.7. It is consistent well with

the result of the 1-loop approximation, which is independent of the renormalization scheme.

If we fix the Λ scale where the running coupling constant in the Twisted-Polyakov-Loop

scheme diverges as shown in ref. [12], the lattice setup with (β,Ns) = (16, 12) corresponds

to LsΛ ≈ 1.5−24. It satisfies the Dunne-Ünsal condition, NcLsΛ� 2π, where it is expected

that the system is in the weak coupling regime but still there are some nonperturbative

– 9 –
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features. The lattice spacing is a ≈ 5.0×10−6 [fm], if we use Λ = 200 [MeV]. Although the

size of this lattice is extremely small, the small lattice would be suitable to study the semi-

classical behavior in the weak coupling regime. Actually, the action density (SW /N
3
sNτ )

is roughly 0.048 in (β,Ns, Nτ )=(16, 12, 60), which is close to the classical limit, where the

action takes a minimum value.

3.2 Sampling method of the configurations in high β

To collect the gauge configurations in a weak coupling regime, we have to take care of

the autocorrelation; a newly generated configuration, which is updated from the old con-

figuration using the random numbers, is very similar to the old one. The autocorrelation

length depends on observables, and generally, quantities related to the low-modes have a

long autocorrelation. The autocorrelation length of the topological charge is a few ten-

or hundred-sweeps (see e.g. [36]) in a typical calculation for the SU(3) gauge theory at

the zero-temperature with a ≈ O(10−2)[fm]. Since the length grows in proportion to

O(1/a5) [36–38], the simulations with a ≈ 5.0× 10−5 must suffer from a severe autocorre-

lation problem.

To avoid this, we prepare the 100 seeds of random-number generation, here we label

them as #1–#100. We independently update O(103) sweeps using each random-number

series. Here, we call one sweep as a combination of one Pseudo-Heat-Bath (PHB) update

and 10 over-relaxation steps. We collect 100 configurations as samples in a fixed N -th

sweep and label the samples “conf.#” using its seed of the random-number series. For the

comparison, we also generate the other 100 configurations using the same method and the

same lattice parameters, while the boundary conditions are periodic for four directions.

From now on, we use the term “TBC lattice” to denote the lattice with (x, y, z, τ) =

(twisted, twisted, periodic, periodic) boundaries, while the term “PBC lattice” denotes the

one with the periodic boundaries for all directions.

In the end of this section, let us show the explicit form of the twist matrices in our

numerical calculations for Nc = 3 [12, 39],

Ωx =

 0 1 0

0 0 1

1 0 0

 ,Ωy =

 e−i2π/3 0 0

0 ei2π/3 0

0 0 1

 . (3.1)

4 Results

4.1 Topological charge

We measure the topological charge, eq. (1.1), by using the clover-leaf operator on the lattice

(see eq. (2.18) in ref. [40]). The topological charge of the gauge configuration generated by

Monte Carlo simulations usually does not take an integer value because of UV fluctuations.

We utilize the cooling method [41–43], which is an evolving step to minimize the gauge

action by smoothing the configurations. Figure 2 presents Q as a function of the cooling

steps for several configurations (conf.# 1–30) in the TBC lattice. Q rapidly converges

to an (almost) integer value with a few cooling steps. We perform the cooling until 200
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Figure 2. Cooling step dependence of the topological charge on the TBC lattice.

0 20 40 60 80 100
conf. #

-4

-3

-2

-1

0

1

2

3

4

Q

0 20 40 60 80 100
conf. #

PBC TBC

Figure 3. Total topological charge (Q) on the PBC (left) and the TBC (right) lattices for each of

100 configurations.

steps and confirm that the plateau continues. Here, the discrepancy from an integer value,

at most (∆Q/Q) ≈ 0.04, comes from lattice artifacts. In this paper, we neglect the small

discrepancy and approximate the value of Q in the plateau of the cooling steps to an integer

value. Now, we fix the number of cooling steps as 50 (N -cool = 50) and the number of

sweeps as 2000.

The left (right) panel of figure 3 shows the result on the PBC (TBC) lattice. The

horizontal axis denotes the configuration-number labeled by the seed of random-series. All

configurations have Q = 0 on the PBC lattice, while some configurations have non-zero Q

on the TBC lattice. Q is distributed over −2 ≤ Q ≤ 3, and the number of configurations

with non-zero Q is 66 while the remaining 34 configurations live in the Q = 0 sector on

the TBC lattice.

Now, let us focus on the results on the TBC lattice. We classify the configurations

into two types: Type-I for Q = 0 and Type-II for Q 6= 0. Furthermore, we find that

the magnitude of topological charge on each lattice site strongly depends on τ in several

– 11 –
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Figure 4. Typical distributions of the local topological charges (q(τ)). The integer-instanton and

integer-anti-instanton are shown in the top-right panel. On the other hand, the topological charges

are “fractionalized” in the bottom-left panel (see eq. (4.2)).

configurations. Taking the sum for the three-dimensional spaces, we define a local charge,

q(τ) =
1

32π2

∑
x,y,z

TrεµνρσFµνFρσ(x, y, z, τ). (4.1)

We plot the local charge for several typical configurations in figure 4. The top-left panel

shows the local charge of the configuration in Type-I (conf.#2). We find that q(τ) is

always zero for any τ for all configurations in this type. Type-II configurations are further

classified into three types as follows;

Type-II(a) it has a single peak (the top-right panel)

Type-II(b) it has several peaks (the bottom-left panel)

Type-II(c) it takes a continuous non-zero value (the bottom-right panel)

In the case of Type-II(a), the sum of q(τ) around the single peak agrees with the value

of Q. For instance, the confs.#1 (red-circle) and #17 (blue-square) have Q = +1 and

Q = −1, respectively. These peaks can be interpreted as the integer-instanton and integer-

anti-instanton, respectively. In the case of Type-II(c), we cannot see an excess of q(τ) in

spite of the fact that the sum of q(τ) for all τ gives a nonzero integer. For instance, the

sum of q(τ) in the conf.#23 (read-circle) is Q = −1, and the one in conf. #100 (blue-

square) is Q = +1. We find a uniform behavior for the z-direction of the local charge on

site-by-site, which is similar to that for the action density in the Principal Chiral Model

– 12 –
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Figure 5. Cooling step dependence of the local charges, Q1 (filled symbol) and Q2 (open symbol),

for confs. #4 (red-circle) and #24 (blue-square).

given in ref. [31]. The local charge of Type-II(c) configurations is of the same order on all

sites in contrast to the appearance of more than O(102) difference in Type II(a) and Type

II(b). This suggests that there is no local excess of q(τ) in the whole spacetime coordinate

in Type-II(c) configurations.

The configurations in Type-II(b) are the most interesting. We can take the sum of

q(τ) around each peak by dividing whole the domain of τ into several domains, whose

boundaries are defined by the local minimum of |q(τ)|. Then, each sum is proportional

to n/3 within ∆Q/Q ≈ 0.04 error, where n is an integer except for a multiple of 3. The

confs.#4 (red-circle) and #24 (blue-square) plotted in figure 4 have the total instanton

number Q = −1 and Q = +2, respectively. We find

conf.#4 Q1 =

55∑
τ=29

q(τ) = −0.343 ≈ −1

3
,

Q2 = Q−Q1 = −0.647 ≈ −2

3
,

conf.#24 Q1 =

33∑
τ=6

q(τ) = 1.269 ≈ 4

3
,

Q2 = Q−Q1 = 0.656 ≈ 2

3
. (4.2)

Thus, some integer-instantons contain multiple fractional-instantons in the weak coupling

regime. This is the first obeservation of the fractional-instantons of the SU(3) gauge theory

on the deform spacetime using the lattice simulation.

To confirm that the fractionality of the charge is not a quantum fluctuation, let us

investigate the stability of local fractional-instantons during the cooling processes. If it

is just a quantum fluctuation then the charge would disappear by the cooling process.

Figure 5 displays the local charges (Q1, Q2) as a function of the cooling steps for confs. #4

(red-circle) and #24 (blue-square). We find that the position of the local minimum of

|q(τ)| is independent of the cooling steps. Then, each charge (Q1,Q2) is very stable.
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Figure 6. Example of the sweep dependence of the local topological charge (q(τ)). The magenta-

triangle, blue-square, and red-circle symbols denote the confs. #1,#91, and #69, respectively.

Next, we investigate the topology changing during the Monte Carlo updates. In or-

dinary lattice calculations for the SU(3) gauge theory in the strong coupling regime, the

total topological charge can change within a few ten or hundred Monte Carlo sweeps, since

the potential barrier is finite on the lattice. In general, the topology changing does not so

frequently occur if the lattice spacing is very tiny on the PBC lattice. However, we find

that a changing of the local topological charge rather frequently occurs on the TBC lattice,

and then Q can also change its value during the Monte Carlo updates.

Typical results for the topology changing are shown in figure 6. In all panels, the

number of cooling processes is fixed to 50. During the Monte Carlo updates from the

2100-th to 4000-th sweep, the total charge changes as follows;

conf.#1 Q does not change (Q = +1),

conf.#91 Q = +2→ Q = +2→ Q = +1,

conf.#69 Q = −2→ Q = −1→ Q = 0.

Meanwhile, the combination of the local charges shows rich variations;

conf.#1 (+1 with single peak)→ (+2/3,+1/3)→ (+2/3,+1/3),

conf.#91 (+2/3,+4/3)→ (+2/3,+2/3,+2/3)→ (+1/3,+2/3),

conf.#69 (−4/3,−2/3)→ (−1 with single peak)→ (q(τ) = 0).

Thus, multiple fractional-instantons merge into an integer-instanton and vice versa, and a

fractional-instanton with a large charge deforms into multiple fractional-instantons with a

small charge.

It is known by the analytical study on the CPN−1 model in low dimensions that

the fractional-instantons can transform into the integer-instanton and vice verse if the

moduli-parameter is changed by hand (see figure 4 in ref. [44]). If two fractional-instantons

approach to each other and merge into one, then the translation moduli of the fractional-

instanton are back to the size-moduli of the integer-instanton. On the other hand, if the
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size of an integer-instanton is larger than the radius of the compactified direction, then

the integer-instanton is divided into several fractional-instantons. We can conclude that a

similar phenomenon dynamically occurs during the Monte Carlo simulations of the SU(3)

gauge theory.

We put three remarks; the first one is related to a bion configuration. Among 2100

configurations we investigated, there is no Q = 0 configuration containing a pair of the

fractional-instanton and the fractional-anti-instanton. Such a configuration is called bion,

which plays an important role to see the resurgence structure in the CPN−1 model [28,

29]. We consider that the absence of bions would come from the interaction between the

fractional-instanton and fractional-anti-instanton and the finite volume effect.

The second one is a distribution of the topological charge in the weak coupling regime.

In our calculation, we find a decrease in the topological charge in the long Monte Carlo

sweeps. The numbers of configurations in the Q = 0 and Q 6= 0 sectors are 34 and 66 at

2000-th sweep, respectively, and become 49 and 51 at 4000-th sweeps. We cannot find the

configuration whose |Q| increases during these Monte Carlo sweep. It might suggest that

only the Q = 0 sector is preferred after the infinitely long updates that would be related

to the probability weight of the topological sector. On the other hand, we believe that

the fractional-instantons will be stabilized in the Lτ → ∞ limit. The determination of

the topological susceptibility in T3 × R must be interesting and will be carried out by the

simulations with a large volume and a large aspect ratio (Lτ/Ls).

The third one is for the size-modulus of the fractional-instantons. According to ref. [32],

there is no size-modulus of the fractional-instantons. Ten fractional-instantons with Q =

±2/3 are plotted in figures 4 and 6. It seems that they all have almost the same shape,

namely a similar height of the peak and a similar curve around it. To be precise, the

peak-height takes |q(τ)| = 0.04 ∼ 0.07. We consider that they are consistent with each

other because there is a ∆Q/Q ≈ 0.04 error in our simulations. On the other hand,

some fractional-instantons with the other charges have a broader width. The loss of the

uniqueness of the size for the fractional-instantons would come from the periodicity of

the temporal direction (S1) in our simulation compared with R. It deforms the shape of

the fractional-instantons to satisfy the constraint, that the sum of them takes an integer

value. The simulations with a larger extent for the temporal direction and the continuum

extrapolation could improve the situation, and reveal the uniqueness of the shape for the

fractional-instantons.

4.2 Polyakov loop and center symmetry

The Polyakov loop (P ) is an order parameter of the center symmetry breaking, and behaves

as P → Pe2πik/3 with k = 0, 1, and 2, under the center transformation. On the PBC

lattice, the Polyakov loop in the µ-direction is given by the product of the link variables of

the direction;

Pµ =
1

V

∑
sites of ν( 6=µ)

1

Nc
Tr

[∏
j

Uµ(µ = j, ν)

]
. (4.3)
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Figure 7. Scatter plot of the Polyakov loop for each direction. Top-left and bottom-left panels

show the spatial and the temporal Polyakov loops on the PBC lattice, respectively. Top-right panel

shows the results of Pz , while the bottom-right panel gives the ones of Px (blue-triangle) and Pτ
(red-square) on the TBC lattice.

Here, we take the spacetime average for each configuration, and V = N3
s for µ = τ and

V = N2
sNτ for the others. On the other hand, the definition of the Polyakov loop in the

twisted directions on the TBC lattice are modified as,

Px =
1

N2
sNτ

∑
y,z,τ

1

Nc
Tr

[∏
j

Ux(x = j, y, z, τ )Ωxe
i2πy/3L

]
, (4.4)

in order to satisfy the gauge invariance and the translational invariance.

The scatter plots of the Polyakov loop in each direction are given in figure 7. Each

point denotes the data for one configuration. Here, all configurations are at 2000-th sweep

from the random start. The results for the PBC lattice are shown in the left panels. Since,

the x, y, and z directions are equivalent, we present the Polyakov loop only in the z and

τ directions in the top-left and bottom-left panels, respectively. At β = 16 with Ns = 12,

it is clearly in the deconfinement phase because of its scale (LsΛ ≈ 6.0 × 10−5). Then,

the Polyakov loop in the z-direction is located at one of three degenerate vacua, whose

complex phases are 0 and ±2π/3. In the continuum limit with fixed physical lattice-size,

one of three vacua is chosen, and therefore the center symmetry is spontaneously broken,

which is the same as in the situation of the SU(3) gauge theory in the high-temperature.

The Polyakov loop in the τ direction seems to be invariant under the center transformation

since they are located around the origin.
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On the other hand, the right panels in figure 7 show the Polyakov loop on the TBC

lattice. The Polyakov loop in the x-direction, where the twisted boundary condition is

imposed, is shown in the right-bottom panel. Because of the twist matrix, the Polyakov

loop is located around the origin in the complex plane. The result for the y-direction is

the same as the one for the x-direction. For the τ -direction, the behavior is the same

as the one on the PBC lattice. Pz on the TBC lattice shows a curious behavior, even

though the boundary condition for the z-direction is periodic. Pz is spread over almost the

whole triangle, where the product of the link variables before taking the trace in eq. (4.3)

satisfies the unitarity condition. The location of each data is changed under the center

transformation if |Pz| 6= 0, so that the center symmetry in most configurations is broken

in the same meaning as in the case of the finite-temperature. However, we find that its

breaking is milder than the one on the PBC lattice because the average of |Pz| is smaller.

Note that in the top-right panel of figure 7, the red-circle symbols located in one of

the Z3-degenerate vacua denote the configurations with Q = 0, while the blue-diamond

symbols inside the triangle correspond to the configurations with Q 6= 0. The figure clearly

suggests that there is a relationship between the value of Q and the Polyakov loop in the

z-direction.

4.3 Tunneling phenomena and fractional instanton

Now, let us investigate the relationship shown at the end of the previous subsection. We

introduce the Polyakov loop in the z-direction on each lattice site;

P̃z(x, y, τ) =
1

Nc
Tr

[∏
j

Uz(x, y, z = j, τ)

]
,

≡ |P̃z(x, y, τ)|eiϕ(x,y,τ). (4.5)

The histograms of ϕ(x, y, τ) for typical configurations are shown in figure 8. Here, the

corresponding data of the local charge are displayed in figure 4. In the case of Type-I and

Type-II(a), P̃z(x, y, τ) on all sites are located at one of the Z3-degenerate vacua.

On the other hand, in the case of Type-II(b) configurations, two of the Z3-degenerate

vacua are chosen. To see the manifest relationship between the fractional-instanton and

the distribution of the Polyakov loop, we plot the averaged complex phase 〈ϕ(τ)〉, which

is defined by 〈ϕ(τ)〉 ≡
∑

x,y ϕ(x, y, τ)/N2
s , for conf.#24 as a function of τ (the blue-circle

symbols) in figure 9. We also present the local topological charge q(τ) as the red-square

symbols, where it is multiplied by 20 so as to be easily seen. We find that 〈ϕ〉 starts changing

its value around the peak of the local charge (q(τ)), where the fractional-instanton exists.

This indicates that the fractional-instanton is related to the rotation of the complex phase

of Pz. That is the same as the properties of the classical solutions on T3 × R as shown

in section 2.2. We can therefore conclude that the fractional-instantons on T3 × R are

obtained by the numerical simulations on T3 × S1.

Furthermore, it shows the relation between the tunneling among the Z3-degenerate

vacua and the fractional-instantons. It has been also discussed in the context of the two-

dimensional CPN−1 model. The model is obtained from the dimensional reduction of the
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Figure 8. Histograms of ϕ(x, y, τ) for typical configurations, which are classified by the local

charge (q(τ)). The corresponding data of the local charge are shown in figure 4.
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Figure 9. τ -dependence of the averaged complex phase (blue-circle) and the local topological

charge (red-square) for conf.#24.
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four-dimensional SU(N) gauge theory with the twisted boundary conditions [32, 44–49].

In the limit where the (x, z) directions shrink, the four-dimensional SU(N) gauge theory

is reduced to the two-dimensional nonlinear sigma model, whose boundary condition in

the compactified direction (y) has the ZN -holonomy. Non-zero expectation values of the

Polyakov loop for the shrinking direction (z) correspond to the vacuum expectation value

(v.e.v.) of the complex scalar field in the reduced theory, where the v.e.v. depends on τ .

The fractional-instanton can be interpreted as a classical solution connecting two vacua

with different v.e.v. of the complex scalar field. Our numerical results in figure 9 show

that similar phenomenon occurs in the fractional-instantons of the four-dimensional SU(N)

gauge theory.

In the case of Type-II(c), the histogram of ϕ(x, y, τ) has three peaks at three degenerate

vacua equally. Here, we find that no clear τ -dependence exists in its distribution. We expect

that the tunneling phenomena among three vacua occur also through x and y directions.

Because the magnitude of the Polyakov loop given in eq. (4.3) is very small (|Pz| � 0.1),

the Polyakov loops (Pµ) in all directions are located near the origin in the complex plane.

That means the center symmetry is dynamically restored. Such a dynamical restoration

of the center symmetry is predicted in ref. [32] on T3 × R spacetime. In our numerical

calculation on T3×S1 lattice, the configuration Type-II(c) is rare: three per one-hundred.

If Type-II(c) is dominant in the continuum and/or the S1 → R limits, then the center

symmetry would be completely preserved even in weak coupling regime. It is an important

future work to find which type of configurations remains in these limits.

4.4 Polyakov loop and confinement

In this section, we focus on the other nonperturbative phenomenon: the confinement. We

have seen from the Polyakov loops in the x, y, and τ directions that the center symmetry

seems to be restored. The center-symmetric distribution of the Polyakov loops in the x and

y directions comes from the twist matrices in eq. (4.4). On the other hand, the Polyakov

loop in the τ -direction also indicates the center-symmetric property, though it is possible to

show the spontaneous symmetry-breaking. Generally, the Polyakov loop is related to the

free-energy of single (probe) quark, 〈|Pτ |〉 ∝ e−NτFq . In the confinement phase, Fq is large

and diverges in the infinite-volume limit, so that 〈|Pτ |〉 ∼ 0 can be naively interpreted as

a confinement. However, we need to find whether the smallness of |Pτ | comes from a large

Fq or a large Nτ with a finite value of Fq, since we take a large lattice extent (Nτ = 60)

with an extremely small lattice spacing. Here, we will confirm the deconfinement property

of our configurations on the TBC lattice even though these configurations exhibit |Pτ | ∼ 0.

Figure 10 shows |Pτ | as a function of 1/Nτ for two lattice parameters: (β,Ns) = (16, 12)

on the TBC lattice and (β,Ns) = (5, 12) on the PBC lattice. It is known that the latter

case exhibits the confinement since the critical temperature is determined as βc = 6.3384

in (Ns, Nτ ) = (∞, 12) in the finite-temperature simulations [50]. The blue-square symbols

denote the results for the PBC lattices. All data in 30 ≤ Nτ ≤ 80 agree with each

other within 2-σ statistical error bar, which implies no Nτ -dependence. This is a natural

consequence in the confinement phase. On the other hand, |Pτ | on the TBC lattice (red-
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Figure 10. Magnitude of Polyakov loop in the τ -direction as a function of Nτ . We take Nτ =

30, 40, 60, and 80 from right to left.

circle symbols) decreases as increasing Nτ .2 The data at Nτ = 60, which we mainly focus

on in this work, is still in the middle of its decreasing beyond the statistical error bar.

We conclude that the configurations with the fractional-instanton have the deconfinement

property in the present lattice setup.

5 Summary and future works

We have studied the nonperturbative phenomena of the SU(3) gauge theory in the weak

coupling regime on T3 × S1 with the large aspect ratio between two radii. This is the first

work to find a fractional-instanton in the weak coupling regime and its nonperturbative

properties in the Monte Carlo simulations on a promising deformed spacetime toward the

resurgence of the SU(3) gauge theory. Introducing the twisted boundary conditions into two

directions realizes the perturbative standard vacuum on the hypertorus and is related to

the existence of the fractional-instantons. We can conclude that the fractional-instantons in

this work have the same properties as the ones of the classical solutions given by the gauge

equivalent of the standard perturbative vacua under the extended Z3 gauge symmetry in

the S1 → R limit.

The numerical results show that the total topological charge (Q) always takes integer-

values including nonzero on the TBC lattice, while it is fixed to only zero on the PBC lattice.

On the TBC lattice, there are four types of configurations depending on its distribution

of the local topological charge (q(τ)); it takes zero in all τ (Type-I ), it exhibits a integer-

instanton (Type-II(a)), it includes multiple fractional-instantons (Type-II(b)), and it is

continuously nonzero (Type-II(c)). We find that the fractional-instantons can merge into

2We cannot directly compare the absolute values of Polyakov loop between β = 5 and β = 16, since the

lattice raw data have to be multiplicatively renormalized, where the renormalization factor depends on the

value of β [51].
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the integer-instanton and vice versa during the Monte Carlo update processes. On the

other hand, they are stable during a cooling process, and therefore we conclude that the

fractionality is not a quantum fluctuation.

We have also investigated the center symmetry by observing the Polyakov loop for each

spacetime direction. The Polyakov loop in the z-direction on the TBC lattice shows the

different behavior from the one on the PBC lattice, though the same boundary condition

is applied to the direction. The Polyakov loop is scattered over the unitary triangle in the

complex plane. Configurations are located at one of the Z3-degenerate vacua for Q = 0,

while the Polyakov loops live inside the unitary triangle for Q 6= 0. We have shown that the

averaged complex phase of Pz rotates if the fractional-instanton emerges. Thus, fractional-

instantons connect two of the Z3-degenerate phases of the Polyakov loop in the z-direction.

It is the same property as the one of the classical solution on T3 × R. On the other hand,

the Polyakov loop in the τ -direction seems to be center-symmetric, but its scaling property

indicates the deconfinement property. Furthermore, we have found that the configurations

of Type-II(c) exist, whose Polyakov loops in all directions exhibit the center-symmetric

property even in the weak coupling regime.

According to the analogy of the quantum mechanical models and the low-dimensional

quantum field theories, the existence of the fractional-instantons will give an additional con-

tribution to physical observables in the weak coupling regime and will solve the imaginary-

ambiguity problem of the perturbative expansion. Furthermore, the center-symmetric

property even in the weak coupling regime is promising to show the adiabatic continu-

ity between the weak and strong coupling regimes. We believe that these phenomena in

the weak coupling regime, which are found in this work, will play an important role to

study the resurgence structure of the SU(3) gauge theory.

We address the future works and related lattice works as follows.

Resurgence structure of the SU(3) gauge theory. To see a resurgence structure, we

have to investigate at least three points in future: (i) finding a fractional topological object

which gives a contribution to an physical observable (e.g. plaquette) in the Q = 0 sector

(ii) comparing the contribution between the renormalon pole [52] in the perturbative series

and the nonperturbative background with the fractional topology (iii) seeing the adiabatic

continuity [53, 54] to the decompactified limit. It is also an important work to see how

to take the decompactified limit with keeping the resurgence structure and contributions

coming from the fractional-instantons.

Including the dynamical quarks: ZNc-QCD and adjoint QCD. We expect that

a similar topological object with the fractional charges appears in the QCD-like theories

including the dynamical fermions. It is known that there are at least two promising mod-

els: the ZNc-QCD [55, 56] and the adjoint QCD models [54, 57–59]. The formulation of

the two-dimensional twists of this work can be extended to systems including dynamical

fermions [60]. The advantage of the usage of the twisted boundary conditions is not only

the absence of toron but also the induced IR momentum cutoff. Hence, we can perform

simulations with exact massless fermions. It must be helpful to investigate the adiabatic

continuity near the massless limit as discussed in ref. [54].

– 21 –
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Other lattice calculations to find a fractional instanton: Schrödinger functional

boundary, the four-dimensional twisted, and other approaches. It might be

worth to mentioning the other formulations that show the fractional-instantons on the lat-

tice.

A similar discussion to this work might be possible by using the lattice setup with

the Schrödinger functional boundary [9] with a large aspect ratio between the spatial and

temporal extents. To kill all zero-modes and to stabilize fractional-instantons may also

need an additional gauge fixing or the other technique [61].

We can also consider the twisted boundary conditions for three or four directions.

Although it has been discussed in the strong coupling regime, the lattice numerical simula-

tions with the four-dimensional twists have successfully been carried for the SU(Nc) gauge

theories [62, 63]. Note that the theory with four-dimensional twisted boundary conditions

locally has the same gauge symmetry with SU(Nc), but the global symmetry becomes

SU(Nc)/ZNc . Furthermore, the fractional topologies at the finite- and zero-temperature

with a nontrivial holonomy have been investigated [64–71]. The energy density and the

zero-mode density of the calorons for the SU(2) and SU(3) gauge theories have been numer-

ically shown. The other approaches to find the fractional topological charges on the lattice

have been done by using the Dirac operator with the higher-dimensional representations

on the periodic lattices [72–74].
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[22] G.V. Dunne and M. Ünsal, Resurgence and trans-series in quantum field theory: the

CP (N−1) model, JHEP 11 (2012) 170 [arXiv:1210.2423] [INSPIRE].
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[65] K.-M. Lee and C.H. Lü, SU(2) calorons and magnetic monopoles, Phys. Rev. D 58 (1998)

025011 [hep-th/9802108] [INSPIRE].

[66] T.C. Kraan and P. van Baal, Exact T duality between calorons and Taub-NUT spaces, Phys.

Lett. B 428 (1998) 268 [hep-th/9802049] [INSPIRE].

[67] T.C. Kraan and P. van Baal, Periodic instantons with nontrivial holonomy, Nucl. Phys. B

533 (1998) 627 [hep-th/9805168] [INSPIRE].

[68] C. Gattringer and S. Schaefer, New findings for topological excitations in SU(3) lattice gauge

theory, Nucl. Phys. B 654 (2003) 30 [hep-lat/0212029] [INSPIRE].

[69] F. Bruckmann, D. Nogradi and P. van Baal, Instantons and constituent monopoles, Acta

Phys. Polon. B 34 (2003) 5717 [hep-th/0309008] [INSPIRE].

[70] F. Bruckmann, E.M. Ilgenfritz, B.V. Martemyanov and P. van Baal, Probing for instanton

quarks with epsilon-cooling, Phys. Rev. D 70 (2004) 105013 [hep-lat/0408004] [INSPIRE].

[71] E.M. Ilgenfritz, M. Muller-Preussker and D. Peschka, Calorons in SU(3) lattice gauge theory,

Phys. Rev. D 71 (2005) 116003 [hep-lat/0503020] [INSPIRE].

[72] R.G. Edwards, U.M. Heller and R. Narayanan, Evidence for fractional topological charge in

SU(2) pure Yang-Mills theory, Phys. Lett. B 438 (1998) 96 [hep-lat/9806011] [INSPIRE].

[73] Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, Topology and higher

dimensional representations, JHEP 08 (2009) 084 [arXiv:0905.3586] [INSPIRE].

[74] R. Kitano, T. Suyama and N. Yamada, θ = π in SU(N)/ZN gauge theories, JHEP 09 (2017)

137 [arXiv:1709.04225] [INSPIRE].

– 26 –

https://pos.sissa.it/contribution?id=PoS(LATTICE 2013)103
https://arxiv.org/abs/1311.0079
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.0079
https://doi.org/10.1016/S0550-3213(98)00742-1
https://arxiv.org/abs/hep-lat/9808007
https://inspirehep.net/search?p=find+EPRINT+hep-lat/9808007
https://doi.org/10.1016/0370-2693(90)90106-G
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B235,117%22
https://doi.org/10.1016/S0550-3213(02)01123-9
https://doi.org/10.1016/S0550-3213(02)01123-9
https://arxiv.org/abs/hep-lat/0211004
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0211004
https://doi.org/10.1016/S0370-2693(98)00283-4
https://arxiv.org/abs/hep-th/9802012
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802012
https://doi.org/10.1103/PhysRevD.58.025011
https://doi.org/10.1103/PhysRevD.58.025011
https://arxiv.org/abs/hep-th/9802108
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802108
https://doi.org/10.1016/S0370-2693(98)00411-0
https://doi.org/10.1016/S0370-2693(98)00411-0
https://arxiv.org/abs/hep-th/9802049
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802049
https://doi.org/10.1016/S0550-3213(98)00590-2
https://doi.org/10.1016/S0550-3213(98)00590-2
https://arxiv.org/abs/hep-th/9805168
https://inspirehep.net/search?p=find+EPRINT+hep-th/9805168
https://doi.org/10.1016/S0550-3213(03)00083-X
https://arxiv.org/abs/hep-lat/0212029
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0212029
https://arxiv.org/abs/hep-th/0309008
https://inspirehep.net/search?p=find+EPRINT+hep-th/0309008
https://doi.org/10.1103/PhysRevD.70.105013
https://arxiv.org/abs/hep-lat/0408004
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0408004
https://doi.org/10.1103/PhysRevD.71.116003
https://arxiv.org/abs/hep-lat/0503020
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0503020
https://doi.org/10.1016/S0370-2693(98)00951-4
https://arxiv.org/abs/hep-lat/9806011
https://inspirehep.net/search?p=find+EPRINT+hep-lat/9806011
https://doi.org/10.1088/1126-6708/2009/08/084
https://arxiv.org/abs/0905.3586
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.3586
https://doi.org/10.1007/JHEP09(2017)137
https://doi.org/10.1007/JHEP09(2017)137
https://arxiv.org/abs/1709.04225
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.04225

	Introduction
	Twisted boundary conditions on hypertorus lattice 
	Twisted boundary conditions and the absence of zero-modes
	Classical solutions with twisted boundary conditions

	Simulation strategy
	Lattice parameters
	Sampling method of the configurations in high beta

	Results
	Topological charge
	Polyakov loop and center symmetry
	Tunneling phenomena and fractional instanton
	Polyakov loop and confinement

	Summary and future works

