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ABSTRACT
The inhibition of the d-class carbonic anhydrase (CAs, EC 4.2.1.1) from the diatom Thalassiosira weissflogii,
TweCAd, was investigated using a panel of 36 mono- and di-thiocarbamates chemotypes that have
recently been shown to inhibit mammalian and pathogenic CAs belonging to the a- and b-classes.
TweCAd was not significantly inhibited by most of such compounds (KI values above 20 mM). However,
some aliphatic, heterocyclic, and aromatic mono and di-thiocarbamates inhibited TweCAd in the low
micromolar range. For some compounds incorporating the piperazine ring, TweCAd was effectively
inhibited (KIs from 129 to 791 nM). The most effective inhibitors identified in this study were 3,4-dimethox-
yphenyl-ethyl-mono-thiocarbamate (KI of 67.7 nM) and the R-enantiomer of the nipecotic acid di-thiocarba-
mate (KI of 93.6 nM). Given that the activity and inhibition of this class of enzyme have received limited
attention until now, this study provides new molecular probes and information for investigating the role
of d-CAs in the carbon fixation processes in diatoms, which are responsible for significant amounts of CO2

taken from the atmosphere by these marine organisms.
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Introduction

The di-thiocarbamates (DTCs) possessing the general formula
RR1NCS2M (where R, R1 may be H, alkyl, cycloalkyl, aryl, hetaryl,
etc., and M is a cation) were recently reported as a new class of
inhibitors of the metalloenzyme carbonic anhydrase (CA, EC
4.2.1.1)1. Their inhibitory activity was investigated against a- and
b-class CAs from various organisms1,2 and they also led to the dis-
covery of two new CA inhibitor (CAI) classes, the xanthates3 and
the mono-thiocarbamates (MTCs)4. Representatives of MTCs and
DTCs acting as CAIs are shown in Figures 1 and 2.

Inhibition of CAs belonging to some of the seven genetically
distinct families known to date5–10 has various biomedical applica-
tions owing to the fact that these enzymes catalyse a simple but
physiologically crucial reaction: the hydration of CO2 to bicarbon-
ate and hydronium ions5–10. Interference with this process has
important physiological and pathological consequences because
CAs are involved in pH regulation, biosynthetic processes, metab-
olism, secretion of electrolytes, transport of CO2/bicarbonate,
etc.5–10. Their dysregulated expression or activity leads to various
pathologies, and as a consequence, their inhibitors are clinically
used as diuretics, antiglaucoma, antiepileptic, anti obesity, and
antitumour agents5–9. Recently, the CAIs were also shown to be
effective for the control of neuropathic pain, cerebral ischemia,
and some forms of arthritis10. The primary sulphonamides and
their isosteres (sulphamides and sulphamates) are the main class

of CAIs, but in many cases, they indiscriminately inhibit most of
the many CA isoforms known in an organism (e.g. 15 CA isoforms
belonging to the a-class are known in humans5,11–16). This is the
reason why alternative chemotypes, such as the DTCs and MTCs
have recently been explored1–4. However, this class of CAIs has
only been investigated to date for their interaction with human
(h), a-class enzymes, and with several CAs from pathogens or
model organisms, belonging to the a- and b-CA classes1–4. The
d-CAs were discovered in the diatom Thalassiosira weissflogii6d, but
orthologues of this enzyme have been identified in most diatoms
from natural phytoplankton assemblages and are responsible
(along with other CAs) for CO2 fixation by marine organisms17. A
related species of this diatom, Thalassiosira pseudonana, was
shown to possess genes for three a-, five c-, four d-, and one
f-CAs18. However, none of these enzymes have been cloned and
characterised in detail to date, except TweCAd11. Diatoms can be
considered to be the organisms with the most intricate and poorly
understood distribution of CAs, but the roles of these enzymes
seem to be crucial for CO2 fixation and photosynthesis in many
organisms and are estimated to be responsible for at least 25% of
the inorganic carbon fixation in the oceans6,17,18. However, few
studies are available for the interaction of d-CAs with modulators
of activity, inhibitors, and activators. TweCAd was the only repre-
sentative of the d-class for which anion and sulphonamide inhib-
ition studies have been reported to date6d,11. Here we report the
first CA inhibition study with MTCs and DTCs of a d-CA class
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enzyme, TweCAd, which was cloned and characterised from the
marine diatom T. weissflogii6d,6e.

Materials and methods

Materials

MTCs 1–154 and DTCs 16–361,2 were reported earlier by our
group. Reagents/buffers of the highest available purity were
obtained from Sigma-Aldrich, Milan, Italy. TweCAd was a recom-
binant protein produced as reported earlier by our group6e,11.

CA enzyme inhibition assay

An Sx.18Mv-R Applied Photophysics (Oxford, UK) stopped-flow
instrument has been used to assay the catalytic activity of various
CA isozymes for CO2 hydration reaction12. Phenol red (at a con-
centration of 0.2mM) was used as indicator, working at the
absorbance maximum of 557 nm, with 10mM Hepes (pH 7.5) as
buffer, and 0.1 M Na2SO4 (for maintaining constant ionic strength,
which is not inhibitory against TweCAd11), following the CA-cata-
lysed CO2 hydration reaction for a period of 10 s at 25 �C. The CO2

concentrations ranged from 1.7 to 17mM for the determination of
the kinetic parameters and activation constants. For each inhibitor
at least six traces of the initial 5–10% of the reaction have been
used for determining the initial rate. The uncatalysed rates were
determined in the same manner and subtracted from the total
observed rates. Stock solutions of inhibitors (10mM) were pre-
pared in distilled-deionised diluted to 1 nM using the assay buffer.
Inhibitor and enzyme solutions were pre-incubated together for
15min (standard assay at room temperature) prior to assay, in
order to allow for the formation of the enzyme inhibitor complex.
The inhibition constant (KI), was obtained by considering the clas-
sical Michaelis–Menten equation and the Cheng-Prusoff algorithm
by using non-linear least squares fitting as reported earlier13–16.

Results and discussion

TweCAd is the only CA belonging to the d-class for which anion
and sulphonamide inhibition studies were reported so far6d,11.
Here, we investigated the inhibition of this enzyme with the panel
of MTCs and DTCs of the types 1–36 shown in Figures 1 and 2.
The results are shown in Table 1, where for comparison reasons,
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Figure 1. Monothiocarbamates (MTCs) 1–15 investigated as CA inhibitors4.
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the inhibition of the human dominant isoforms hCA I and II with
the same compounds are reported1,2,4.

The following structure-activity relationship (SAR) can be
obtained from the data of Table 1:

(i) A number of MTCs, including 4–6, 10 and the DTCs 20, 21,
23–25, 32, and 33, did not inhibit TweCAd up to 20 mM, although
many of these compounds were rather effective inhibitors of hCA
I and/or hCA II (Table 1). Such MTCs/DTCs inhibitors are classified
as aliphatic, heterocyclic, aromatic, or polycyclic types. Given the
structural diversity of such compounds and high inhibition con-
stants, it is challenging to delineate the SAR.

(ii) The MTCs/DTCs 3, 13–19, 22, 26, 29, and 31 were relatively
ineffective inhibitors of TweCAd with inhibition constants in
the micromolar range (KIs ranged between 1142 and 9239 nM;

Table 1). These compounds are also highly heterogeneous. The
main observation of these data is that the identity of the zinc-
binding group, ZBG (MTC or DTC), does not significantly impact
the activity of TweCAd.

(iii) The MTC/DTCs 1, 2, 7–9, 28, 30, and 34–36 were relatively
effective inhibitors of TweCAd, with inhibition constants in the
range of 129–997 nM (Table 1). Some of the MTC and DTCs incorp-
orate the piperazine ring (7–9, 34). In addition, MTC 9 and DTC 34
have the same scaffold but a different ZBG. In this particular case,
MTC 9 inhibited TweCAd 6.1-times more efficiently than DTC 34.
Interestingly, for the b-CAs, the MTCs were usually much weaker
inhibitors compared to the structurally similar DTCs4. In addition,
the sulphonamide-containing DTC 36 (which contains two poten-
tial ZBGs, the sulphonamide and the DTC), there are no net
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differences of TweCAd inhibitory activity compared to the structur-
ally similar derivatives (e.g. 35) which probably is due to the fact
that the DTC in 36 is primarily binding to the metal ion in the
enzyme active site, and not the sulphonamide moiety. However,
the heterocyclic sulphonamide acetazolamide (AAZ, 5-acetamido-
1,3,4-thiadiazole-2-sulphonamide), a clinically used drug5, is a
much more potent inhibitor (KI of 83 nM) of TweCAd compared to
36 (Table 1).

(iv) The most effective TweCAd inhibitors identified in this
MTC/DTC panel were the MTC 12 (KI of 67.7 nM) and the DTC 27
(KI of 93.6 nM). These compounds incorporate scaffolds rather simi-
lar to those present in other investigated compounds, which were,
however, much less effective as inhibitors of this enzyme. For
example, 12 has two methoxy moieties on the scaffold of 11, but
there is a difference of activity of 14.7-fold between the two
MTCs. The R-enantiomer 27 was on the other hand 5.9 times a
more effective inhibitor compared to the S-enantiomer 28. All
these data show that small changes in the structure or the

stereochemistry of a DTC/MTC lead too dramatic changes of affin-
ity for the target enzyme.

(v) With a few exceptions, TweCAd was less sensitive to this
class of CAIs compared to the a-CAs hCA I and II (Table 1). There
are several X-ray crystal structures that demonstrate that the DTCs
(and presumably also the MTCs) bind to the metal ion in the CA
active site by substituting the hydroxide nucleophile that is
responsible for the catalytic activity of the enzyme1,2. Most prob-
ably, this is also the inhibition mechanism by which DTCs and
MTCs interact with d-CAs. However, this enzyme class is the least
studied of the 7 CA genetic families, and there are no X-ray crystal
structures or even homology models available for any d-CAs.

We try to rationalise the obtained inhibition data based on the
amino acid sequence of TweCAd, which has been aligned with
that of a-CAs for which the X-ray crystal structure is known, of
bacterial (HpylCA, a-CA from Helicobacter pylori, SspCA, a-CA from
Sulfurihydrogenibium yellowstonensis) or human origin (hCA I and
II) (Figure 3). Data of Figure 3 show that for the a-CAs, the zinc

Table 1. TweCAd, hCA I, and hCA II Inhibition Data with MTCs 1–15, DTCs 16–36, and acetazolamide (AAZ, 5-acetamido-1,3,4-thiadiazole-2-sulphonamide) as stand-
ard drug, by a stopped-flow CO2 hydrase assay.

RR1NCOS� Naþ (1–15) RR1NCS2M (16–36)

KI (nM)
a

No. R R1 TweCAd hCA I hCA II

1 n-Pr n-Pr 806.7 >2000 46.7
2 Et n-Bu 783.3 700 >2000
3 n-Bu n-Bu 1142 909 >2000
4 i-Bu i-Bu >20,000 681 43.0
5 Me CH2COOEt >20,000 827 44.5
6 –(CH2CH2)–O–(CH2CH2)– >20,000 569 >2000
7 H –N(CH2CH2)N(CH3)CH2CH2– 487 >2000 35.0
8 – (CH2CH2)–NH-(CH2CH2)– 483 876 22.4
9 –(CH2CH2)-N(CH2CONHC6H11)–(CH2CH2)– 129 949 45.9
10 Me CH2Ph >20,000 >2000 >2000
11 H CH2CH2Ph 997 >2000 43.7
12 HCH2CH2(3,4-di-MeO-C6H4) 67.7 891 26.7
13 – (CH2CH2)–N(3-Cl-C6H4)– (CH2CH2)– 1505 686 >2000
14 –(CH2CH2)–N(4-F-C6H4)–(CH2CH2)– 1498 895 46.8
15 –(CH2CH2)-N(4-CF3-C6H4)– (CH2CH2)– 1152 >2000 43.6
16 Me2N(CH2)2 H 8406 85.9 35.8
17 HO(CH2)3 H 8691 706 41.7
18 HO(CH2)4 H 7168 295 24.3
19 HO(CH2)5 H 8597 66.5 17.3
20

N

H >20,000 494 48.7

21 (R)

N

H >20,000 240 18.9

22 (S)

N

H 7995 615 65.9

23 –(CH2)5– – >20,000 252 30.1
24 –(CH2)3–CH(OH)CH2– – >20,000 428 60.7
25 –(CH2)4–CH(COONa)– – >20,000 485 80.1
26 –(CH2)3–CH(COONa)CH2– – 8429 290 45.4
27 (R)–(CH2)3–CH(COONa)CH2– – 93.6 496 80.5
28 (S) -(CH2)3–CH(COONa)CH2– – 556 109 8.9
29 –(CH2)2–CH(COONa)(CH2)2– – 8980 337 78.7
30 –(CH2)3-CH(NHAc)CH2– – 783 910 47.9
31 –(CH2)3-CH(NHBoc)CH2– – 9239 683 13.2
32 –CH(Me)CH2-O-(CH2)2– – >20,000 434 60.2
33 –CH(COONa)CH2-O– (CH2)2– – >20,000 84.7 78.5
34 – –(CH2)2 N(CH2CONHC6H11)(CH2)2– 791 415 67.2
35 Ph(CH2)2 H 897 425 107
36 – H2NO2SC6H4(CH2)2H 704 97.5 48.1
AAZ – – 83 250 12.1
aMean ± standard error (from three different assays), by a stopped-flow technique (errors were in the range of ±5–10% of the reported values).
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ligands are three His residues (His94, 96, and119, hCA I numbering
system), which align well for the bacterial and human enzymes,
whereas the putative zinc ligands of TweCAd do not align at all
with those of the a-class enzyme. The same is true for other
amino acid residues from the a-CAs, such as the proton shuttle
(His64) which is an Asp residue in TweCAd, or residues 106 (a con-
served Asp residue in all a-CAs), which is a Thr in TweCAd. Based
on these data it is obvious that it is not possible to rationalise the
observed SAR with mono- and di-thiocarbamates based only on
the sequence of the enzyme, without a homology model or better,
an X-ray crystal structure of the diatom enzyme.

Conclusions

The first inhibition study of a d-CA with mono- and di-thiocarba-
mates, classes of CAIs recently discovered, was reported. TweCAd
from the marine diatom T. weissflogii was not particularly sensitive
to inhibition by these classes of compounds. Many of the mono-
and di-thiocarbamates did not show inhibitory action up to
20 mM, whereas some aliphatic, heterocyclic, and aromatic inhib-
ited this enzyme in the low micromolar range. Several MTCs/DTCs
incorporating the piperazine ring effectively inhibited TweCAd
with KIs in the range of 129–791 nM. The most effective inhibitors
identified were 3,4-dimethoxyphenyl-ethyl-mono-thiocarbamate (KI
of 67.7 nM) and the R-enantiomer of the nipecotic acid DTC (KI of

93.6 nM). Such inhibitors can now be used as molecular probes to
investigate the role of this enzyme in the carbon fixation proc-
esses in diatom marine organisms that are responsible for remov-
ing large amounts of CO2 from the atmosphere.
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