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ABSTRACT

Despite the substantial clinical success of aspirin and clopidogrel in secondary prevention of ischemic
stroke, up to 40% of patients remain resistant to the available antiplatelet treatment. Therefore, there is an
urgent clinical need to develop novel antiplatelet agents with a novel mechanism of action. Recent studies
revealed that potent alpha 2B-adrenergic receptor (alpha 2B-ARs) antagonists could constitute alternative
antiplatelet therapy. We have synthesized a series of N-arylpiperazine derivatives of 4,4-dimethylisoquino-
line-1,3(2H,4H)-dione as potential alpha 2B receptor antagonists. The most potent compound 3, effectively
inhibited the platelet-aggregation induced both by collagen and ADP/adrenaline with ICso of 26.9 uM and
20.5 uM respectively. Our study confirmed that the alpha 2B-AR antagonists remain an interesting target
for the development of novel antiplatelet agents with an alternative mechanism of action.
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Introduction

Antiplatelet drugs are the mainstay of the pharmacological treat-
ment for patients with various cardiovascular diseases’. Large clin-
ical trials have revealed that treatment with antiplatelet agents
such as clopidogrel and aspirin may reduce the risk of myocardial
infraction, stroke or death by almost 22%2. This fact has made
them one of the most widely prescribed drugs in the world>.
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However, despite significant clinical success in preventing the
adverse outcome of cardiovascular diseases, many patients experi-
ence recurrent atherothrombotic events, despite the treatment
with antiplatelet agents. Moreover, many patients are resistant to
aspirin and/or clopidogrel, which results in poor prognosis and
increased risk of further cardiovascular events?.

Clopidogrel and aspirin act via a blockade of adenosine diphos-
phate (ADP) receptor and inhibition of cyclooxygenase-1 (COX-1)
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respectively. These mechanisms result in the inhibition of the
platelet activation and aggregation and further clot formation®. It
has been suggested that aspirin resistance may be related to the
lack or insufficient inhibition of the COX-1-mediated thromboxane
A2 pathway, while clopidogrel resistance is related to the P2Y12
ADP receptor signaling®®. Therefore, there is an urgent clinical
need to develop novel antiplatelet agents involving different path-
ways of platelet aggregation, which would constitute an alterna-
tive for the treatment of resistant patients.

Recent studies revealed that the blockade of platelet alpha 2B-
adrenergic receptors (alpha 2B-ARs) may play a role in platelet
aggregation’®. Interestingly, inhibition of alpha 2B-ARs in patients
with ischemic heart disease, treated with clopidogrel and aspirin,
resulted in an additional antiplatelet effect®. Moreover, it has been
shown that adrenaline under the stimulation of alpha-adrenergic
receptors leads to increased platelet aggregation and may over-
come the aspirin-induced blockade of platelet function'®'.
Therefore, the blockade of platelet alpha 2B-ARs may have also a
clinical benefit for aspirin-resistant patients. The results of these
studies suggest that the blockade of platelet alpha 2B-ARs offers a
new therapeutic strategy for the development of novel antiplatelet
agents.

Among many structurally different classes of alpha adrenergic
ligands, arylpiperazine derivatives have been the most intensively
investigated'?. The conformationally rigid arylpiperazine fragment
is crucial for proper interactions with the alpha 2B-AR. It provides
charge-reinforced hydrogen bond between nitrogen atom of
piperazine ring and Asp3.32 residue from the orthosteric binding
site of alpha 2B-ARs. At the same time, the phenyl ring enables
essential aromatic CH-n stacking with Phe6.52, which provides fur-
ther stabilization of the ligand-receptor complex, along with inter-
actions in the second (allosteric) binding site (Figure 2)'*'4,

A phenylpiperazine derivative of 4,4-dimethylisoquinoline-
1,3(2H,4H)-dione, compound ARC-239 (Figure 1), is a well-known,
potent alpha 2B receptor antagonist, selective vs. 2A subtype'.
However, as an orto-methoxyphenylpiperazine derivative, ARC-239
shares a similar pharmacophore with alpha 1 adrenoceptor
ligands'. In fact, our research, in addition to other literature
reports, show that ARC-239 exhibits strong binding affinity also for
alpha 1 adrenoreceptor (Table 1)'*'¢, which could be the source
of additional unwanted adverse reactions'’. We used the com-
pound ARC-239 as a starting point in the design of selective alpha
2B-AR ligands with antiplatelet activity, assuming that it can be
deprived of the alpha 1 adrenergic activity, by changing the sub-
stitution pattern at the phenylpiperazine moiety. It has been
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reported that ortho-methoxyphenyl group is privileged for alpha
1A receptor affinity'®'®. Therefore, in order to obtain selective
alpha 2B-AR ligands, we replaced the ortho-methoxyphenyl group
with meta-substituted phenyl moiety or with bulkier hetero-
aromatic rings, all acceptable for alpha 2B-AR binding site restric-
tions, while maintaining the 4,4-dimethylisoquinoline-1,3(2H,4H)-
dione scaffold unchanged (Figure 1). The latter moiety has been
recognized as a key pharmacophore fragment and therefore its
replacement might result in loss of affinity or selectivity towards
alpha adrenergic receptors®. Therefore, we postulated that modifi-
cations restricted to the phenylpiperazine scaffold would reduce
the interaction with alpha 1-AR while maintaining the alpha 2-AR
affinity.

Moreover, previous research showed that bulky aromatic sub-
stituents rich in m electrons may increase the electrostatic interac-
tions with aromatic amino acid residues of alpha 2-AR binding
pocket®'*2, Therefore, by enhancing the electron density with a
proper aromatic substituent, we expected to strengthen interac-
tions between the aromatic ring and Phe6.52 residue of alpha 2-
AR binding pocket and thus increase ligand affinity for this
molecular target.

Furthermore, in order to avoid interaction with other monoami-
nergic receptors (e.g. serotonin 5-HT1A, 5-HT2A, and dopamine
D2), we kept the original ethyl chain, linking the phenylpiperazine
fragment and 4,4-dimethylisoquinoline-1,3(2H,4H)-dione. It is worth
mentioning that previously it has been shown that increasing the
length of an alkyl linker in phenylpiperazine derivatives might
result in increased affinity towards the above-mentioned undesir-
able receptor targets?>*,

The proposed binding mode of the designed compounds,
presented on the example of the prototype compound 4, shows

Table 1. Molecular properties and PAINS analysis.

Lipinski rule of 5 Veber filter
PAINS
Compound QPLogP MW HBD HBA RB TPSA #Alerts
3 4.1 395.5 0 6 3 55.3 0
4 4.4 4119 0 6 3 554 0
5 5.0 445.5 0 6 3 59.7 0
6 39 407.5 0 7 4 63.6 0
7 33 393.5 1 7 4 78.0 0
8 2.7 379.5 0 8 3 739 0
9 4.1 449.5 0 8 3 70.6 0
10 24 434.5 1 9 3 109.3 0
1 2.8 448.5 1 9 3 104.6 0
The designed series
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Figure 1. Structures of the designed 4,4-dimethylisoquinoline-1,3(2H,4H)-dione derivatives.
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Figure 2. Prototype compound 4 in alpha 2B adrenergic receptor homology model based on beta 2 adrenergic receptor crystal structure (2RH1). Amino acid residues
engaged in ligand binding (within 4 A from the ligand atoms) are displayed as sticks, whereas those forming typical H-bonds (dotted yellow line), m-n stacking (dotted
blue lines) or H-bonds to halogens (dotted purple line) are represented as thick sticks. The extracellular loop (ECL) 2 was hidden for clarity. TMH — transmembrane

helix.

well-recognized anchoring interactions of arylpiperazine fragment
in the orthosteric binding site, between transmembrane helices
(TMHs) 3, 5, and 6%°°, Those include charge-reinforced hydrogen
bond of protonated piperazine with Asp3.32 and n-rt stacking of
3-chlorophenyl ring with Phe6.52, additionally stabilized by weak
interaction of chlorine substituent with Ser6.55. The standard inter-
actions for monoaminergic receptor ligands are complemented by
4,4-dimethylisoquinoline-1,3(2H,4H)-dione aromatic bonds (rn-n
stacking) with residues from the second (allosteric) binding site.
These are Tyr3.28 from TMH3 and Trp78 from extracellular loop
(ECL) 1 (Figure 2).

Materials and methods
Molecular modeling

Ligand docking studies involved human adrenergic alpha 2B
receptor homology model, developed using the well-validated
method?’.

The novel homology model was built on the basis of adrener-
gic B, receptor crystal structure (PDB ID: 2RH1)*. Sequence align-
ment between target receptor (UniProt database accession
number P18089) and the template were performed by hhsearch
tool via GeneSilico Metaserver (https://www.genesilico.pl/meta2/)°.
The artificial fragments replacing the third intracellular loop
(ICL3) in the protein crystal structure were removed and short
loops were created. The crude receptor models were obtained
using SwissModel (https://swissmodel.expasy.org/)** and were
validated by processing in Protein Preparation Wizard. ARC-239
structure was utilized for ligand-based binding site optimization,
performed using induced fit docking (IFD) workflow. That pro-
cedure resulted in conformational receptor model that served as
molecular target in docking studies.

Ligand structures were optimized using LigPrep tool
(Schrodinger, LLC, New York, USA). Glide SP flexible docking pro-
cedure was carried out using default parameters. OPLS3 force field
was applied on both energy minimization (protein and ligands)
and docking stages. H-bond constraint, as well as centroid of a
grid box for docking studies were located on Asp3.32.

Molecular properties were calculated using QikProp software
(Schrodinger, LLC, New York, USA) (QPLogP - Predicted octanol/

water partition coefficient; MW — molecular weight; HBD - hydro-
gen bond donor; HBA - hydrogen bond acceptor; RB - rotatable
bonds; TPSA - total polar surface area). Number of PAINS alerts
determined by SwissADME server (www.swissadme.ch)®', ADME
parameters were predicted by: QikProp (QPlogS - solubility;
QPPCaco - Caco-2 cell permeability; % PO Absorption — percent
human oral absorption), SwissADME (BBB - blood-brain barrier
permeability; Pgp - substrate of glycoprotein P) and
VolSurf + version 1.0.7.1 from Molecular Discovery (Borehamwood,
UK) (PB - % of protein binding; MetStab — metabolic stability after
CYP incubation).

Glide, induced fit docking, LigPrep, Protein Preparation Wizard,
and QikProp were implemented in Small-Molecule Drug Discovery
Suite (Schrodinger Release 2017-1: Maestro, Schrodinger, LLC,
New York, NY, USA, 2017), which was licensed for Jagiellonian
University Medical College.

Chemistry

Unless otherwise indicated, all the starting materials and the
reference compound ARC-239 were obtained from commercial
suppliers and were used without further purification. Analytical
thin-layer chromatography (TLC) was performed on Merck
Kieselgel 60 Fys4 (0.25mm) pre-coated aluminum sheets (Merck,
Darmstadt, Germany). Visualization was performed with a 254 nm
UV lamp. Column chromatography was performed using silica gel
(particle size 0.063-0.200 mm; 70-230 Mesh ATM) purchased from
Merck. The UPLC-MS or UPLC-MS/MS analyses were run on UPLC-
MS/MS  system comprising Waters ACQUITY® UPLC® (Waters
Corporation, Milford, MA, USA) coupled with Waters TQD mass
spectrometer (electrospray ionization mode ESI with tandem quad-
rupole). Chromatographic separations were carried out using the
ACQUITY UPLC BEH (bridged ethyl hybrid) C;g column:
2.1 x 100mm and 1.7 um particle size. The column was main-
tained at 40 °C and eluted under gradient conditions using 95% to
0% of eluent A over 10 min, at a flow rate of 0.3 ml/min. Eluent A:
water/formic acid (0.1%, v/v); eluent B: acetonitrile/formic acid
(0.1%, v/v). A total of 10 pul of each sample were injected, and
chromatograms were recorded using Waters el PDA detector. The
spectra were analyzed in the range of 200-700 nm with 1.2nnm
resolution and at a sampling rate of 20 points/s. MS detection
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settings of Waters TQD mass spectrometer were as follows: source
temperature 150°C, desolvation temperature 350°C, desolvation
gas flow rate 6001/h, cone gas flow 1001I/h, capillary potential
3.00kV, and cone potential 20 V. Nitrogen was used for both neb-
ulizing and drying. The data were obtained in a scan mode rang-
ing from 50 to 1000 m/z at 0.5s intervals; 8 scans were summed
up to obtain the final spectrum. Collision activated dissociation
(CAD) analyses were carried out with the energy of 20eV, and all
the fragmentations were observed in the source. Consequently,
the ion spectra were obtained in the range from 50 to 500 m/z.
MassLynx V 4.1 software (Waters) was used for data acquisition.
Standard solutions (1 mg/ml) of each compound were prepared in
a mixture comprising analytical grade acetonitrile/water (1/1, v/v).
The UPLC/MS purity of all the test compounds and key intermedi-
ates was determined to be >95%. 'H NMR and '>C NMR spectra
were obtained in a Varian Mercury spectrometer (Varian Inc., Palo
Alto, CA, USA), in CDCl;, operating at 300 MHz (*H NMR), 75 MHz
(**C NMR). Chemical shifts are reported in terms of & values (ppm)
relative to TMS =0 ('H) as internal standard. The J values are
expressed in Hertz. Signal multiplicities are represented by the fol-
lowing abbreviations: s (singlet), br.s (broad singlet), d (doublet),
dd (doublet of doublets), t (triplet), g (quartet)) m (multiplet).
Elemental analysis was performed using the VarioEL Ill - Elementar
apparatus (Hanau, Germany).

General procedure for the synthesis of 2-(2-chloroethyl)-4,4-
dimethylisoquinoline-1,3(2H,4H)-dione (2)

A mixture of 4,4-dimethylisoquinoline-1,3(2H,4H)-dione (2.11 mmol),
1-bromo-2-chloroethane  (5.58 mmol),  potassium  carbonate
(8.68 mmol), trimethylamine (3.96 mmol) in acetone (20ml) was
stirred for 72h at 55°C. Next, the reaction mixture was cooled to
the room temperature, potassium carbonate was filtered off and
the solvent was evaporated under the reduced pressure. The
crude mixture was purified via column chromatography using
n-hexane:DCM:MeOH 40:59.6:0.5 (v/v) as eluent.

Yield 60%, yellow crystalizing oil, '"H NMR (300 MHz, CDCl3): &
8.24-8.18 (m, 1H), 7.67-7.60 (m, 1H), 7.48-7.38 (m, 2H), 4.39-4.33
(t, J=6.6 Hz, 2H), 3.76-3.70 (t, J=6.6 Hz, 2H), 1.63 (s, 6H); Formula:
Cy3H14CINO; ESI-MS: 252 [M + H]*.

General procedure for the synthesis of the final molecules
(3-11)

Method C (for compounds 3-6)

A mixture of 2-(2-chloroethyl)-4,4-dimethylisoquinoline-1,3(2H,4H)-
dione (2) (0.247 mmol) and corresponding piperazine (0.5 mmol)
was stirred at 140°C for 30 min. After this time, the reaction mix-
ture was cooled to room temperature, EtOAc (4 ml) was added,
and the resulted solid was filtered off. The remaining solution was
concentrated in vacuum and further purified via column chroma-
tography using n-hexane:Et,O:DCM 20:40:40 or DCM:EtOAc:MeOH
69.8:30:0.2 as eluent.

2-(2-(4-(3-Fluorophenyl)piperazin-1-yl)ethyl)-4,4-
dimethylisoquinoline-1,3(2H,4H)-dione (3)

Yield 41%, pale yellow oil, '"H NMR (300 MHz, CDCl3): & 8.24-8.20
(dd, J=1.0 and 7.7Hz, 1H), 7.68-7.60 (m,1H), 7.49-7.38 (m, 2H),
7.17-7.10 (t, J=79Hz, 1H), 6.86-6.72 (m, 3H), 4.24-4.17 (t,
J=6.6Hz, 2H), 3.16-3.08 (t, J=4.9Hz, 4H), 2.70-2.62 (m, 6H), 1.63
(s, 6H); '*C NMR (75MHz, CDCl3): §; 177.1, 164.1, 163.8, 152.1,
145.1, 135.2, 129.7, 128.3, 127.3, 127.2, 125.1, 118.7, 115.6, 111.8,
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556, 534 (2C), 486 (2Q), 436, 371,
C23H26FN302; ESI-MS: 396 [M + H]+

294 (2C); Formula:

2-(2-(4-(3-Chlorophenyl)piperazin-1-yl)ethyl)-4,4-
dimethylisoquinoline-1,3(2H,4H)-dione (4)

Yield 38%, pale yellow oil, "H NMR (300 MHz, CDCls): & 8.24-8.20
(dd, J=1.0 and 7.7Hz, 1H), 7.68-7.60 (m, TH), 7.49-7.38 (m, 2H),
7.17-7.10 (t, J=79Hz, 1H), 6.86-6.72 (m, 3H), 4.24-4.17 (t,
J=6.6Hz, 2H), 3.16-3.08 (t, J=4.9Hz, 4H), 2.70-2.62 (m, 6H), 1.63
(s, 6H); *C NMR (75MHz, CDCl3): & 177.0, 164.1, 152.0, 145.0,
135.3, 129.2, 128.5, 127.3, 126.3, 125.6, 123.8, 118.3, 114.6, 111.2,
554, 533 (2C), 488 (2C), 434, 372, 293 (2Q); Formula:
C23H26CIN;O,; ESI-MS: 412 [M 4+ H] .

4,4-Dimethyl-2-(2-(4-(3-(trifluoromethyl)phenyl)piperazin-1-
yl)ethyl)isoquinoline-1,3(2H,4H)-dione (5)

Yield 35%, pale yellow oil, '"H NMR (300 MHz, CDCls): & 8.24-8.20
(dd, J=1.0 and 7.9Hz, 1H), 7.67-7.59 (m, 1H), 7.48-7.39 (m, 2H),
735-7.22 (t, J=82Hz, 1H), 7.09-6.98 (m, 3H), 4.25-4.15 (t,
J=6.6Hz, 2H), 3.20-3.10 (t, J=4.9Hz, 4H), 2.72-2.64 (m, 6H), 1.63
(s, 6H); "*C NMR (75MHz, CDCls): & 177.1, 164.1, 151.3, 145.0,
133.9, 1316 (q, J=63.0 and 31.5Hz), 129.4, 12838, 127.3, 126.2,
125.1, 123.8, 118.5, 1155, 111.8, 55.5, 53.4 (2C), 48.6 (2C), 43.5,
37.2, 29.4 (2 C); Formula: C4H,6F3N305; ESI-MS: 446 [M 4+ H]™.

2-(2-(4-(3-Methoxyphenyl)piperazin-1-yl)ethyl)-4,4-
dimethylisoquinoline-1,3(2H,4H)-dione (6)

Yield 61%, yellow oil, '"H NMR (300 MHz, CDCls): & 8.26-8.18 (dd,
J=07 and 7.7Hz, 1H), 7.66-7.58 (m, 1H), 7.48-7.38 (m, 2H),
7.18-7.10 (t, J=7.9Hz, 1H), 6.54-6.48 (m, 1H), 6.46-6.36 (m, 2H),
424-418 (t, J=6.6Hz, 2H) 3.78 (s, 3H), 3.16-3.08 (t, J=4.61Hz,
4H), 2.72-2.62 (m, 6H) 1.63 (s, 6H); '*C NMR (75MHz, CDCl): &
177.0, 164.1, 160.5, 152.7, 145.0, 133.9, 129.7, 128.8, 127.2, 125.0,
123.9, 108.6, 104.2, 102.2, 55.5, 55.1, 53.2 (2C), 49.0 (2C), 43.5,
37.2, 29.3 (2 C); Formula: Co4H»oN303; ESI-MS: 408 [M + H] ™.

General procedure for the synthesis of 2-(2-(4-(3-
hydroxyphenyl)piperazin-1-yl)ethyl)-4,4-dimethylisoquinoline-
1,3(2H,4H)-dione (7)

To a solution of 2-(2-(4-(3-methoxyphenyl)piperazin-1-yl)ethyl)-4,4-
dimethylisoquinoline-1,3(2H,4H)-dione (6) (0.312mmol) in 5ml of
DCM, at 0°C BBrs; (0.624 mmol) was added dropwise. The resulted
orange slurry was stirred for 24h at room temperature. After that
time, methanol (10ml) was added and the reaction mixture was
quenched with water. Next, the organic layer was washed with
water, dryed over sodium sulfate and the solvent was evaporated.
The crude mixture was purified via column chromatography using
n-hexane:EtOAc:DCM:MeOH 10:10:79.8:0.2 as eluent.

Yield 75%, brown oil, '"H NMR (300 MHz, CDCl;): & 8.25-8.19
(dd, 1H, J=1.0 and 7.7Hz), 7.66-7.59 (m, 1H), 7.49-7.35 (m, 2H),
7.08-6.98 (m, 1H), 6.49-6.40 (m, TH), 6.35-6.25 (m, 2H), 5.2 (s, 1H),
4.25-4.19 (t, 2H, J=6.6 Hz), 3.05-3.12 (t, 4H, J=4.4Hz), 2.74-2.65
(m, 6H), 1.63 (s, 6H); *C NMR (75MHz, CDCls): & 177.2, 164.2,
152.6, 145.1, 135.8, 133.9, 129.9, 128.9, 127.3, 125.1, 124.7, 108.2,
106.8, 103.1, 55.5, 53.1 (2C), 48.8 (2C), 43.6, 37.2, 293 (2Q);
Formula: C23H27N3O3; ESI-MS: 394 [M + H]+



540 M. MARCINKOWSKA ET AL.

General procedure for the synthesis of the final molecules (8-10)

Method B (for compounds 8-10)

A mixture of 2-(2-chloroethyl)-4,4-dimethylisoquinoline-1,3(2H,4H)-
dione (2) (0.247 mmol) and corresponding piperazine (0.5 mmol)
was stirred at 140 °C for 30 min. After this time, the reaction mix-
ture was cooled to room temperature, EtOAc (4 ml) was added,
and the resulted solid was filtered off. The crude mixture was puri-
fied via column chromatography using n-hexane:Et,O:DCM
20:40:40 or DCM:EtOAc:MeOH 69.8:30:0.2 as eluent.

4,4-Dimethyl-2—-(2-(4-(pyrimidin-2-yl)piperazin-1-
yl)ethyl)isoquinoline-1,3(2H,4H)-dione (8)

Yield 30%, dark yellow oil, "H NMR (300 MHz, CDCl3): & 8.26-8.18
(dd, J=0.7 and 7.7Hz, 1H), 7.63-7.60 (m, 1H), 7.48-7.39 (m, 2H),
7.09-6.99 (m, 2H), 6.48-6.44 (m, TH), 4.25-4.18 (t, J=6.6 Hz, 2H)
3.77, 3.16-3.07 (t, J=4.6Hz, 4H), 2.73-2.61 (m, 6H) 1.63 (s, 6H);
'3C NMR (75 MHz, CDCl5): 8 178.1, 165.0, 147.8, 145.0, 135.1, 134.2,
129.0, 127.4, 125.1, 124.7, 123.5, 121.1, 61.7 (2Q), 43.7 (2Q), 42.9,
34.2, 30.1, 29.3 (2C) Formula: Cy;H,5Ns05; ESI-MS: 380 [M + H]™*.

2-(2-(4-(2,2-Dimethylbenzo[d][1,3]dioxol-4-yl)piperazin-1-
yl)ethyl)-4,4-dimethylisoquinoline-1,3(2H,4H)-dione (9)

Yield 39%, pale yellow oil, '"H NMR (300 MHz, CDCl3): § 8.25-8.18
(dd, J=0.7 and 7.7Hz, 1H) 7.66-7.58 (m, 1H), 7.48-7.39 (m, 2H),
6.74-6.66 (t, J=79Hz, 1H), 6.44-6.33 (m, 2H), 4.25-4.15 (t,
J=6.4Hz, 2H), 3.17-3.08 (m, 4H), 2.75-2.61 (m, 6H), 1.68 (s, 6H),
1.66 (s, 6H); Formula: C5¢H3:N304; Anal. calcd for CyeH31N304: C,
69.47; H, 6.95; N, 9.35; Found: C, 69.25; H, 6.99; N, 9.38; ESI-MS:
450 [M 4+ HI™.

4,4-Dimethyl-2—-(2-(4-(2-oxo-2,3-dihydrobenzo[d]oxazol-7-
yl)piperazin-1-yl)ethyl)isoquinoline-1,3(2H,4H)-dione (10)

Yield 33%, yellow oil, "H NMR (300 MHz, CDCl3): 6 8.26-8.19 (dd,
J=0.7 and 7.6Hz, 1H) 7.67-7.59 (m, 1H), 7.50-7.33 (m, 3H),
7.08-6.96 (m, 1H), 6.64-6.54 (m, 2H), 4.24-4.18 (t, J=6.6 Hz, 2H),
330-3.20 (t, J=4.3Hz 4H), 2.78-2.67 (m, 6H), 1.63 (s, 6H);
Formula: C54H26N404; Anal. calcd for Cy4H,6N404: C, 66.34; H, 6.03;
N, 12.89; Found: C, 66.28; H, 6.07; N, 12.94; ESI-MS: 435 [M+H] ™.

4,4-Dimethyl-2-(2-(4-(3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-
8-yl)piperazin-1-yl)ethyl)isoquinoline-1,3(2H,4H)-dione (11)

Yield 67%, yellow oil, "H NMR (300 MHz, CDCl5): 5 8.26-8.19 (dd,
J=07 and 7.7Hz, 1H) 7.66-7.59 (m, 1H), 7.49-735 (m, 2H),
7.00-6.98 (m, 1H), 6.90-6.83 (t, J=8.2Hz, 1H), 6.62-6.58 (dd,
J=23 and 6.9Hz, 1H), 6.45-6.49 (d, J=7.6Hz, 1H), 4.60 (s, 2H),
425-4.19 (t, J=6.6Hz, 2H), 3.08-3.00 (m, 4H), 2.78-2.64 (m, 6H),
1.63 (s, 6H); Formula: C53H,,N404; Anal. calcd for CysHogN4O4: C,
66.95; H, 6.29; N, 12.49; Found: C, 66.87; H, 6.30; N, 12.52; ESI-MS:
449 [M4HI™.

Determination of the intrinsic activity of the test compounds at
the «2A-adrenoreceptors and «2B-adrenoreceptors

An intrinsic activity assay was performed according to the instruc-
tions of the manufacturer of the assay kit containing ready-to-use
cells with stable expression of the a2A-adrenoceptor (In-vitrogen,
Life Technologies, Carlsbad, CA, USA) or o2B-adrenoceptor
(PerkinElmer, Inc, Waltham, MA, USA).

Determination of the affinity of the test compounds at the
al-adrenoreceptors and a2-adrenoreceptors

The affinity of the obtained compounds was evaluated by radioli-
gand binding assays (the ability to displace [3H] prazosin and
[3H]clonidine from al1- and a2-AR, respectively) on rat cerebral cor-
tex. The brains are homogenised in 20 volumes of an ice-cold
50 mM Tris-HCl buffer (pH 7.6) and is centrifuged at 20,0009 for
20 min (0-4°CQ). The cell pellet is resus-pended in the Tris—HCI buf-
fer and centrifuged again. Radioligand binding assays are per-
formed in plates (MultiScreen/Millipore). The final incubation
mixture (final volume 300 pL) consisted of 240 Il of the membrane
suspension, 30 uL of [3H]prazosin (0.2nM) or [3H]clonidine (2 nM)
solution and 30 pL of the buffer containing seven to eight concen-
trations (1.07"" to 1.07*M) of the tested compounds. For measur-
ing the unspecific binding, phentolamine, 10IM (in the case of
[3H]prazosin) and clonidine, 10 uM (in the case of [3H]clonidine)
are applied. The incubation is terminated by rapid filtration over
glass fiber filters (Whatman GF/C) using a vacuum manifold
(Millipore). The filters are then washed twice with the assay buffer
and placed in scintillation vials with a liquid scintillation cocktail.
Radioactivity was measured in a WALLAC 1409 DSA liquid scintilla-
tion counter. All the assays were performed in duplicate.

In vitro whole blood aggregation test

In vitro aggregation tests were conducted using freshly collected
whole blood with Multiplate platelet function analyzer (Roche
Diagnostics Polska Sp. z 0.0, Warsaw, Poland), the five-channel
aggregometer based on measurements of electric impedance. The
Multiplate analyzer allows the duplicate measurement with dual
electrode probes. Blood was drawn from carotid of rats with hiru-
din blood tube (Roche Diagnostic). 300 uL of hirudin anticoagu-
lated blood was mixed with 300 uL pre-warmed isotonic saline
solution containing studied compound in DMSO or DMSO (0.1%
final) and pre-incubated for 3 min at 37 °C with continuous stirring.
The agonists (ADPtest, COLtest, Roche Diagnostic) were diluted
using isotonic sterile NaCl solution. Aggregation was induced by
adding collagen (final concentration 1.6 pg/mL), or adrenaline and
subthreshod  concentration of ADP (final concentration
50 uM + 1.6 uM). Activated platelet function was recorded for
6 min. The Multiplate software analyzed the area under the curve
of the clotting process of each measurement and calculated the
mean values.

Data were presented as Mean+SEM. Statistical comparisons
were made by the analysis of variance (ANOVA) and significance
of the differences between control group and treated groups was
determined by Dunnet post hoc test. p<.05 was considered
significant.

The bioavailability assays

The in vitro bioavailability assays were performed by Eurofins
Panlabs Inc. (St Charles, USA) according to the methods reported
in publications listed below:

Solubility: Lipinski, C.A et al. (2001) Adv Drug Del Rev,
46:3-26°7,
Protein binding: Banker, M.J et al. (2003) J. Pharm. Sci,

92:967-974%3,

Caco-2 permeability: Hidalgo, I.J et al. (1989) Gastroenterology,
96:736-749%4,

Microsomal stability: Obach, R.S et al. (1997) J Pharmacol Exp
Ther, 283:4658%>.



Results and discussion
Chemistry

The synthesis of a series of N-arylpiperazine derivatives of 4,4-
dimethylisoquinoline-1,3(2H,4H)-dione (3-11) is presented in the
Scheme 1. In the first step, alkylation of commercially available 4,4-
dimethylisoquinoline-1,3(2H,4H)-dione (1) with 1-chloro-2-bromoe-
tane in the presence of potassium carbonate and triethylamine
yielded 2-(2-chloroethyl)-4,4-dimethylisoquinoline-1,3(2H,4H)-dione
(2). The intermediate (2) was next reacted with corresponding aryl-
piperazines to give the final compounds 3-11. Initially, we obtained
the final molecules 3-11 with relatively small insufficient yields
(8-15%), which was related to the parallel formation of the side
product (2a). Therefore, we optimized the reaction conditions,
changing the solvent from acetonitrile to dry dioxane, which
allowed us to obtain the final products 8-11 with higher yields
(30-67%, Method b, Scheme 1). Compounds 3-6 were obtained in
solvent-free conditions, reacting the intermediate (2) with an excess
of corresponding arylpiperazines (Method c, Scheme 1), which
afforded the final compounds 3-6 with satisfactory yields (35-67%).
Additionally, compound 7 was obtained via demethylation of corre-
sponding methoxy derivative 6, using BBr; in DCM at 0°C.

Molecular properties and predicted ADMET parameters

The newly designed structures were tested for compliance with
two rules determining drug-like properties. Lipinski rule of five
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and Veber filter evaluate bioavailability of a compound after oral
administration. The first one assumes that compounds having
LogPo/w (octanol/water partition coefficient) lower than 5, MW
(molecular weight) below 500, less than 10 HBA (H-bond accept-
ors), and 5 HBD (H-bond donors) are more likely to show favorable
bioavailability®’. The Veber rule extends range of parameters
with <10 rotatable bonds and TPSA (total polar surface area)
of <140 A? 3°. Molecules that obey the restrictions are more likely
to show preferable membrane permeability. To this end, molecular
properties of the studied compounds were calculated (Table 1).

Properties calculated using QikProp software (Schrodinger Ltd):
QPLogP - Predicted octanol/water partition coefficient; MW -
molecular weight; HBD - hydrogen bond donor; HBA - hydrogen
bond acceptor; RB - rotatable bonds; TPSA - total polar surface
area (A%). Number of PAINS alerts reported by SwissADME.

The novel compounds comply with Lipinski and Veber rules
and may be therefore considered drug-like. The determined crucial
molecular properties show high probability that the molecules will
be bioavailable per os. Moreover, the designed structures were
examined for known classes of reactive assay interference com-
pounds that would disturb biological in vitro studies. According to
SwissADME tool®!, none of the compounds contain substructural
features recognized as pan assay interference compounds (PAINS)
(Table 1).

To further characterize the designed molecules, important ADME
parameters were predicted. The compounds were characterized
by moderate to high predicted water solubility (20-1259 uM/L,

2

R
(0]
0
N _~ +
0 K/N\Ar fe)
3-10 2a
eﬁg\@/OH

10 11

Scheme 1. Synthesis of compounds 3-11. Reagents and conditions: (a) TEA, K,COs, acetone, reflux, 72h, 60%; Method b: corresponding arylpiperazine, Kl, K,COs,
dioxane, reflux, 72 h; Method c: corresponding arylpiperazine, 140 °C, 30 min. Demethylation of 6: BBrs, DCM, 0°C, 24 h.
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Table 2. Predicted ADME parameters.

Compound QPlogS QPPCaco [nm/s] PO [%] BBB Pgp PB [%] MetStab [%]
3 —4.5 927 100 Yes No 87 29
4 —4.7 850 100 Yes No 100 23
5 —6.0 676 94  Yes No 92 19
6 —4.2 688 100 Yes No 88 27
7 —4.2 231 89 Yes Yes 84 36
8 -29 486 91 No Yes 69 45
9 —47 707 100 Yes Yes 90 16
10 -33 122 78 No Yes 81 42
1 —4.4 120 80 No Yes 84 36

Table 3. Functional activity results for compounds 3-11.
Antagonist potency towards alpha 2B-AR, expressed as ICso
(nM) = SEM values

Antagonist mode

Compound (ICso £ SEM) [nM]
3 61+254
4 25171
5 >1000
6 >1000
7 758 160
8 >1000
9 47+12.8
10 61+£22.5
11 >1000
ARC-239 84+3.2

expect of compound 5 - 1uM/L), which together with fair pre-
dicted Caco-2 cells permeability (compounds having permeability
values over 500 nm/s are considered well-permeable through gut-
blood barrier) stands for their favorable predicted human oral
absorption (78-100%). Majority of the compounds (except com-
pounds 8, 10, and 11) were predicted to have the ability to cross
the blood-brain-barrier (BBB). It has been suggested that anti-
coagulant activity in central nervous system might be regarded as
potential prevention of brain stroke, thus the ability of designed
compound to cross the blood-brain-barrier in this aspect might be
beneficial>’. Moreover, compounds 3-6 are not supposed to be P-
gp substrates. The tested compounds are expected to bind with
serum albumins at the rate of 69-100% and are supposed to have
fair metabolic stability after CYP3A4 incubation (16-45% com-
pound remaining, while compounds having predicted over 50%
are considered metabolically stable) (Table 2).

Predicted parameters: QPlogS - solubility; QPPCaco - Caco-2
cell permeability; %PO Absorption — percent human oral absorp-
tion (QikProp, Schrodinger Ltd.); BBB - blood-brain-barrier perme-
ability; Pgp - substrate of glycoprotein P (SwissADME); PB - % of
protein binding; MetStab — metabolic stability after CYP incubation
(VolSurf+, Molecular Discovery).

In vitro assays

Considering that a potent blockade of alpha 2B-ARs is required for
the antiplatelet effect®® we began an assessment of a pharmaco-
logical profile of all the synthesized molecules (3-11) with the
evaluation of their alpha 2B-ARs antagonistic properties. The
majority of the final molecules (3, 4, 9, and 10) elicited a potent
blockade of the alpha 2B-ARs, with the ICs, values ranging from
47 to 251 nM (Table 3). Next, we have determined the selectivity
of the obtained compounds vs. alpha 2 A-adrenoreceptor subtype.
All of the molecules showed a negligible affinity for alpha-2 A
adrenoreceptor giving no significant effect at the concentration of
1.0E-05 M. The above results suggest the desired level of selectiv-
ity vs. alpha 2 A-AR subtype.

Table 4. The results of binding to alphal-AR of the
final compounds 3-11 and the reference ARC-239
expressed as K;+SD values.

Affinity for alpha

Compound 1-ARs K; = SD [nM]
3 30.0+1.0

4 93.0+£2.0

5 703 £1

6 784+3.8

7 81.70£5.5

8 1500.0 = 100.0
9 30+0.2
10 103+0.3
11 3.0+0.1
ARC-239 0.3

Subsequently, we determined the selectivity vs. alpha 1-adre-
noreceptor (Table 4). The final compounds 3-11 were submitted
to a radioligand binding assay, measuring the ability to displace
[3H] prazosin from alpha 1-ARs, in the rat cerebral cortex. ARC-239
was used as a reference and it showed high binding properties for
alpha 1-ARs, with the K; value of 0.3 nM. These results are with the
agreement with the previous reports'>'>. The majority of newly
synthesized compounds showed a weaker affinity for alpha 1-ARs
comparing to ARC-239. It was found that the replacement of
2-methoxybenzene group with pyrimidine ring caused the most
significant drop in alphal-AR affinity. On the other hand, the intro-
duction of a hydrophobic group into meta position of the phenyl-
piperazine ring (3, 4, 5, 6) caused a relatively weaker decrease.
Interestingly, incorporation of hydroxyl group into meta position
of the phenylpiperazine ring gave similar result and caused slight
decrease in affinity. The incorporation of a bulky substituents such
as; 2,2-dimethylbenzo[d][1,3]dioxole (9), benzo[d]oxazol-2(3H)-one
(10), 2H-benzo[b][1,4]oxazin-3(4H)-one (11) maintained the affinity
for alphal-ARs. However, the K; (3-30nM) values were still signifi-
cantly higher than for ARC-239. The results of structure-activity
relationship unambiguously showed that the introduced modifica-
tions maintained antagonistic activity at alpha 2B-AR, did not
increase the affinity for alpha 2 A-AR and reduced the affinity for
alpha 1-AR.

Based on the aforementioned results, the most interesting com-
pounds (3, 4, 9, and 10) were selected for further studies. In order
to evaluate the anti-platelet effects of the new compounds in vitro,
freshly isolated rat whole blood was incubated with selected com-
pounds (3-100uM) or vehicle (DMSO), and the aggregation
responses were evaluated with multiplate whole blood aggregom-
eter by measuring impedance change. Platelet aggregation was
induced by collagen or sub-threshold concentration of ADP and
adrenaline. ARC-239 was used as a reference compound.

Compounds 3, 4, 9, and 10 were found to inhibit collagen-
induced platelet aggregation in vitro as presented in Figure 3 and
Table 3. Compound 9 was active at the concentration of 100 uM,
attenuating platelet aggregation to 59.3%. Compounds 3, 4, and 9
exhibited significant anti-platelet efficacies also at lower concen-
tration (30 uM) giving ICso values ranging from 26.9+2.5uM? to
34.5+18.8uM*. The ICs, value for ARC-239 was in the similar
range as for the studied compounds and was equal to
20.7 £ 14.7 uM.

Further studies showed that three compounds: 3, 9, and 10
also inhibited aggregation induced by the sub-threshold concen-
tration of ADP and adrenaline. At a concentration of 1.6 uM, ADP
alone, only partially and transiently aggregated rat blood in vitro,
whereas adrenaline alone did not cause aggregation at any con-
centration tested. Combining adrenaline with the sub-threshold
concentration of ADP produced a maximal aggregation response.
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Figure 3. Effects of the studied compounds and ARC-239 on in vitro whole rat blood
aggregation induced by collagen (1.6 ng/mL). Results are expressed as mean + SEM,
n=3-6, *p < .05, **p < .01, ***p <.001 vs. control group (0.1% DMSO in saline).
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Figure 4. Effects of studied compounds and ARC-239 on in vitro whole rat blood
aggregation induced by simultaneous addition of adrenaline and ADP
(50 uM + 1.6 uM). Results are expressed as mean=+SEM, n=3-9, **p<.01,
**%p <001 versus control group (0.1% DMSO in saline).

Table 5. Potencies of the studied compounds and ARC-239 in inhibition in vitro
whole rat blood aggregation induced by (A) collagen (1.6 pg/mL), (B) ADP and
adrenaline (1.6 pM + 50 pM).

Compound A (collagen) ICsq [1M] B (ADP + A) ICso [1M]
3 26.9+18.8 20.5+7.1

4 345+25 n.a.

9 274+53 544+54

10 n.a. 76.5+5.8
ARC-239 20.7+14.7 63.9+21.3

1Cs5o (concentration of the compound that inhibits the whole rat blood aggrega-
tion in vitro by 50%), n.a. — not active.

Table 6. In vitro bioavailability data for compound 3.
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The adrenaline-mediated amplification of ADP-stimulated aggrega-
tion was attenuated when rat blood was pre-incubated with 3, 9,
10, and ARC-239. The ICs, values ranged from 20.5uM* to
76.5 uM'™®. The ICs, value for ARC-239 was in the similar range as
for the studied compounds 9 and 10 and it was equal to
63.9+21.3 uM. Compound 4, even up to 100 uM, did not exhibit
any significant inhibition against ADP and adrenaline induced
blood aggregation. The results are presented in Figure 4 and
Table 5. Compound 3 was observed to be the most potent among
the entire series and exhibited an ICso of 26.9 uM against collagen
and 20.5 uM against ADP and adrenaline induced blood aggrega-
tion and 3 was also superior to ARC-239 concerning ADP-adren-
aline induced aggregation.

Concerning the described above results, for the most promising
compound 3, we performed early in vitro bioavailability assays,
including aqueous solubility, human plasma protein binding,
human liver microsomes stability, and Caco-2 permeability
(Eurofins Bioavailability panel). The results are summarized in
Table 6.

Compound 3 displayed moderate aqueous solubility (in PBS pH
74=54 uM, simulated gastric fluid =150.9 uM and simulated
intestinal fluid =68.0 uM), high plasma protein binding (99%), fair
metabolic stability (half-life 14.1 min, intrinsic clearance 14 ml/min/
mg), and fair Caco-2 permeability (7.7 x 107° cm/s). Such character-
istics leave space for further optimization; however, they support
the selection of compound 3 for subsequent in vivo studies, that
will be addressed in the future.

Conclusions

In summary, we have synthesized a series of N-arylpiperazine
derivatives of 4,4-dimethylisoquinoline-1,3(2H,4H)-dione as potent
alpha 2B-receptor antagonists. The compounds were generated by
changing the substitution pattern at the phenylpiperazine moiety
of a known alpha 2B ARs antagonist, compound ARC-239, which
also exhibits a strong binding affinity for alpha 1 AR receptors. The
applied modification maintained an antagonistic activity at alpha
2B-ARs and reduced the affinity for alpha 1-ARs. The anti-platelet
effects of the new compounds were evaluated in in vitro models.
The most potent analog among all the series was compound 3,
since it effectively inhibited the platelet-aggregation induced both
by collagen and ADP/adrenaline. At the same time, compound 3
displayed drug-like properties in computational predictions, which
were positively verified by in vitro bioavailability assays. The results
of our study confirm that the alpha 2B-AR antagonists remain an

Assay Test Concentration [M] Property
Solubility [uM]
Aqueous solubility (simulated intestinal fluid) 2.0E-04 68.0
Aqueous solubility (PBS, pH 7.4) 5.4
Aqueous solubility (simulated gastric fluid) 150.9
% Protein bound
Protein binding (plasma, human) 1.0E-05 99
Permeability [10~° cm/s]
A-B permeability (Caco-2, pH 6.5/7.4) 1.0E-05 7.7
B-A permeability (Caco-2, pH 6.5/7.4) 2.6
Incubation % Compound Half-life Intrinsic clearance
time [minutes] remaining [minute] [puL/min/mg]
14.1 14

Metabolic stability (liver microsomes, human) 1.0E-07 0 100.0

15 49

30 18

45 8

60 6
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interesting target for the development of novel antiplatelet agents
with a different mechanism of action. Further studies to extend
the pharmacological profile of obtained compounds will be
conducted.
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