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Abstract
In this paper, we obtain sufficient conditions ensuring stability of the robust
finite-time for descriptor Markovian jump systems with impulsive effects and
time-varying norm-bounded disturbance, especially, when the system is in actuator
saturation. Using the theory of Lyapunov functions and the concept of convex
hull-based representation of saturation function. We design the state feedback
controller and obtain estimation of domain of attraction, extending the results to
convex optimization problems; the solvability condition of the controller can be
equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). Finally,
we present some numerical examples showing the effectiveness of the obtained
theoretical results.
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1 Introduction
Descriptor systems, also called singular systems, generalized state-space systems, or
differential-algebraic systems, have been widely used in many scientific areas because they
can better describe the actual system. Descriptor system theory has become an impor-
tant field in the study of modern control theory. When the structural parameters of a
system are randomly mutated, it is naturally modeled as a Markovian jump system or a
semi-Markov jump system. Markovian jump systems can be regarded as an extension of
single-mode systems to multimodal systems with essentially more complex structure than
single-mode systems. During the last decades, Markovian jump systems have attracted
great attention in the field of control because they are more suitable for dynamic systems
with random changes in the structure of model than single-mode systems. They are widely
used in some practical systems, such as manufacturing systems, power systems, economic
systems, spare systems, and many other systems [1, 2]. Hence a great number of funda-
mental notions and substantive results are also emerging. The authors in [3] investigated
the stochastic admissibility problems for descriptor Markovian jump systems with par-
tially unknown transition rates, descriptor Markovian jump systems with time-varying
delay, and nonlinear descriptor Markovian jump systems with time delay. The problems of
the robust exponential stability of uncertain singular Markovian jump time-delay systems
were studied in [4]. Shen, Su, and Park [5, 6] extended passive and nonfragile fault detec-
tion filtering problem, which is investigated for a class of discrete-time singular Markov
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jump systems (SMJs) with time-varying delays. Their attention is focused on the design
of a general filter that contains the mode-independent and mode-dependent parts to ad-
dress the filtering issue and on the design of a mode-dependent nonfragile fault detection
filter to guarantee the fault detection system to be stochastically admissible with an H∞
performance index for all admissible uncertainties. In [7] a reliable filtering is designed
so that the considered filtering error system in the presence of a time-varying delay and
sensor failures is mean-square exponentially admissible with a specified decay rate and
simultaneously satisfies an H∞ performance.

In addition, finite-time stability means that the system is stable in finite or short time,
which is first mentioned in [8]. Based on the Lyapunov theory, the transient performance
of the finite-time interval internal system is dealt with. Some researchers [9–12] give a
definition of finite-time stabilization and finite-time boundedness. The time-domain sta-
bility is a special form of time-domain boundedness, and time-domain boundedness is an
extended concept of time-domain stability. They are interrelated and different from each
other. During the last decades, people paid more attention to the bounded problem of the
system state within a limited time. With the advance of time and linear matrix inequality
(LMI) technology, scholars had a deeper understanding of the stability of the time domain
of a dynamic system and obtained some meaningful results about the stability of the time
domain. In particular, [13] focuses on the problem of robust finite-time stabilization for
one family of uncertain singular Markovian jump systems. Sufficient conditions for sin-
gular stochastic finite-time boundedness are obtained for a class of singular stochastic
systems with parametric uncertainties and time-varying norm-bounded disturbance.

Impulsive systems are a kind of discontinuous systems. The impulsive phenomenon ex-
ists in different fields of nature and evolutionary processes, which states sudden changes
at some points. It is a transient change of state at a certain time in the actual system. The
impulsive effect can better describe the evolution process of the system state. From the
control point of view, its influence on the stability of the pulse can be divided into two
categories, namely, suppression of the stability of an unstable pulse and improvement of
the stability of a stable pulse. It is worth mentioning that there have been some impor-
tant results in time-domain stability for Markov jump systems with impulses. In [14] a
new concept of stochastic finite-time stability for a class of nonlinear Markovian switch-
ing systems with impulsive effects is introduced. In [15] a stochastic finite-time stability
(SFTS) and control synthesis for a class of nonlinear Markovian jump stochastic systems
with impulsive effects is proposed. The impulsive of a system can be better described by
introducing a time-varying stochastic Lyapunov function with discontinuities at impulse
times.

Actuator saturation [16–20] means that if the input of the system actuator reaches a cer-
tain limit, then it enters the saturation state. Because further increasing the input cannot
affect the output of the actuator, the saturation of the actuator reduces the dynamic per-
formance of the system and even leads to instability of the closed-loop system. Therefore,
it is necessary to study the saturation problem. In [21] the robust stochastic problem for
discrete-time uncertain singular Markov jump systems with actuator saturation is con-
sidered. In [22] the problem of robust exponential stabilization for uncertain impulsive
bilinear time-delay systems with saturating actuators is investigated. In [23] the problems
of robust linear feedback stabilization and estimation of domain of attraction for a class
of uncertain impulsive systems with saturating actuator are investigated.
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It can be seen from analysis of the previous literature that, in spite of many studies about
the finite-time stability of Markovian jump systems, there are no papers on finite-time
stability of systems with actuator saturation and impulse and disturbance effects, which is
important and significant in engineering applications. Motivated by these, in this paper,
we consider the finite-time stability of systems with simultaneous impulse and saturation
effects. Sufficient conditions for the time-domain stability of the system are given by Lya-
punov function theory, free weight matrix, LMI, and S-procedure. Based on the previous
conditions, a state feedback controller is designed so that the resultant closed-loop system
is finite-time stable. Finally, an example is given to solve the problem by MATLAB.

2 Notations
Throughout the paper, for real symmetric matrices X and Y , the notation X > Y means
that the matrix X – Y is positive definite; I is the identity matrix of appropriate dimension;
the superscript T represents the transpose; diag{· · · } denotes a block-diagonal matrix. For
a symmetric block matrix, we use ∗ as an ellipsis for the terms that are introduced by sym-
metry; E{·} denotes the expectation operator with respect to given probability measure P.

3 Modeling
Given a complete probability space (Ω , F , P), the continuous-time descriptor Markovian
jump impulsive system is described by

Eẋ(t) =
(
A

(
r(t)

)
+ �A

(
r(t)

))
x(t) +

(
B
(
r(t)

)
+ �B

(
r(t)

))
,

sat
(
u(t)

)
+ G

(
r(t)

)
ω(t), t �= tk ,

x+
k (t) = Ad,kx(t), t = tk ,

x(t0) = x0, r(t0) = r0, k = 1, 2, . . . ,

y(t) = C
(
r(t)

)
x(t) + D

(
r(t)

)
sat

(
u(t)

)
+ M

(
r(t)

)
ω(t),

(1)

where x(t) ∈ Rn is the state vector, y(t) = Rm is the control output, u(t) ∈ Rm is the con-
trol input, E ∈ Rn×n is a descriptor matrix with rank(E) = r ≤ n, A(r(t)), B(r(t)), C(r(t)),
D(r(t)), M(r(t)), and G(r(t)) are known matrices of appropriate dimensions depending on
r(t), where {r(t), t ≥ 0} is a continuous-time Markovian stochastic process defined on a
probability space and taking values in a finite space; its transition probabilities from mode
i at time t to mode j at time t + 1 are described as

P
(
r(t + δ) = j|r(t) = i

)
=

⎧
⎨

⎩
γij + o(δ) if j �= i,

1 + γijδ + o(δ) if j = i,

where δ > 0, limt→0(o(δ)/δ) = 0, γij ≥ 0 (i, j ∈ S, j �= i) is the transition rate from i to j, and
γii = –

∑
j∈S,j �=i γij. The saturating function sat : Rp – Rp is defined as

sat
(
u(t)

)
=

[
sat

(
u1(t)

)
sat

(
u2(t)

) · · · sat
(
up(t)

)]T ,

sat
(
ui(t)

)
= sign

(
ui(t)

)
min

{
1,

∣
∣ui(t)

∣
∣}.
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In the case of unity saturation level, that is, sat(ui(t)) ≤ 1, i = 1, 2, . . . , p; �A(r(t)) and
�B(r(t)) are matrix functions with time-varying uncertainties. Further,

[
�A(r(t)) �B(r(t))

]
= He(i)�(t, i)

[
Fa(i) Fb(i)

]
, (2)

where He(i), Fa(i), Fb(i) are the known real constant matrices of appropriate dimensions,
and �(t, i) is an unknown analytic function matrix with Lebesgue-measurable elements
satisfying

�(t, i)T�(t, i) ≤ I. (3)

If (2) and (3) are established, then �A(r(t)) is called the structural robust uncertainty, and
�B(r(t)) is said to be permissible.

Moreover, the disturbance ω(t) satisfies
∫ ∞

o
ωT (t)ω(t) dt ≤ d, d ≥ 0. (4)

For a matrix, we denote the jth row of F(i) as fij and define L(F(i)) as

L
(
F(i)

)
=

{
x(t) ∈ Rn :

∣∣fijx(t)
∣∣ ≤ 1, j = 1, 2, . . . , p

}
.

Let P ∈ Rn×n be a symmetric matrix such that ET PE ≥ 0 and define the set

Ω
(
ET PE

)
=

{
x(t) ∈ Rn : xT (t)ET PEx(t) ≤ 1

}
.

Let D be the set of p × p diagonal matrices whose diagonal elements are either 1 or 0.
Suppose that each element of D is labeled as Dl , l = 1, 2, . . . , 2p and denote D–

l = I – Dl ,
Clearly, if Dl ∈ D, then D–

l ∈ D.

Definition 1
1. The continuous-time system (1) is said to be uniformly regular if there is a constant s

such that the characteristic polynomial det(sE – A(r(t))) is not identically 0 for any
t ∈ [0, T].

2. The continuous-time system (1) is said to be impulse free in the time interval [0, T] if
deg(det(sE – A(r(t)))) = rank(E) for all t ∈ [0, T].

Definition 2 Given three positive scalars c1, c2, T with c1 < c2, positive definite matrices
Ri, i ∈ S, and positive definite matrix-valued functions Γi, a descriptor Markovian jump
impulsive system is finite-time stable with respect to (c1, c2, T , Ri,Γi) if

xT (0)ET RiEx(0) ≤ c1 ⇒ xT (t)ETΓiEx(t) < c2 ∀t ∈ [0, T]

for all admissible uncertainties satisfying (2).

Definition 3 ([13]) Let V (x(t), r(t), t) be a stochastic Lyapunov function of a closed-loop
SMJS. We define the operator J by

JV
(
x(t), r(t), t

)
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= lim
�t→0

1
�t

{
E
{

V
(
x(t + �t)

)
, r(t + �t),

t + �t|x(t) = x, r(t) = i
}

– V
(
x(t), r(t), t

)}

= Vt
(
x(t), r(t), t

)
+ Vx

(
x(t), r(t), t

)

+
k∑

j=1

πijV
(
x(t), r(t), t

)
.

Lemma 1 ([24]) Let F(i), H(i) ∈ Rp×n. Then for any x(t) ∈ L(H(i)),

sat
(
F(i)x(t)

) ∈ co
{

DiF(i)x(t) + Dj
–H(i)x(t), j = 1, 2, . . . , 2p}

or, equivalently,

sat
(
F(i)x(t)

) ∈
2p∑

l=1

al(t)
(
DlF(i) + Dl

–H(i)
)
x(t),

where co stands for the convex hull, al , l = 1, 2, . . . , 2p, are some scalars satisfying 0 ≤ al ≤ 1
and

∑2p

l=1 al = 1.

Lemma 2 ([25]) Given a set of suited dimension real matrices T1, T2, and F(t) is a time-
varying matrix with F(t)T F(t) ≤ I , Then, we have the following:

(1) For any scalar ε > 0,

T1F(t)T2 + T2
T F(t)T T1

T ≤ εT1T1
T + ε–1T2

T T2.

(2) For any positive definite matrix G,

T1T2 + T2
T T1

T ≤ T1GT1
T + T2

T G–1T2.

Lemma 3 ([22]) Let v(t) be a nonnegative function such that

v(t) ≤ a + b
∫ t

0
v(s) ds, 0 ≤ t ≤ T ,

for some constants a, b ≥ 0. Then we have the following inequality:

v(t) ≤ aebt , 0 ≤ t ≤ T .

In this paper, we consider the state feedback controller

u(t) = K
(
r(t)

)
x(t)
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such that the closed-loop system is defined by

Eẋ(t) =
2p∑

l=1

al(t)
(
Āix(t) + B̄i

(
DlKi + D–

l Hi
)
x(t) + Giω(t)

)
, t �= tk ,

x+
k (t) = Ad,kx(t), t = tk ,

x(t0) = x0, r(t0) = r0, k = 1, 2, . . . ,

y(t) =
2p∑

l=1

al(t)
(
Cix(t) + Di

(
DlKi + D–

l Hi
)
x(t) + Miω(t)

)
.

(5)

For convenience, denote the matrix A(r(t)) as Ai and

Āi = Ā
(
r(t)

)
= A

(
r(t)

)
+ �A

(
r(t)

)
, Bi = B

(
r(t)

)
= B

(
r(t)

)
+ �B

(
r(t)

)
.

4 Main results
4.1 Robust finite-time stabilization
Theorem 1 Consider the closed-loop system (5) for t ∈ [0, T]. Let c1, c2, T be three positive
scalars with c1 < c2, let Ri, i ∈ S be positive definite matrices, and let Γi be positive definite
matrix-valued functions, Suppose that there exist a scalar α ≥ 0, a set of nonsingular ma-
trices Pi ∈ Rn×n, two sets of symmetric positive definite matrices Q2(i) ∈ Rd×d , i ∈ S, and
Q1(i) ∈ Rn×n, i ∈ S, such that the following hold:

ET Pi = Pi
T E ≥ 0, (6)

⎡

⎢
⎣

AT
l (i)Pi + PT

i Al(i) + εPT
i He(i)HT

e (i)Pi+
ε–1FT

l (i)Fl(i) +
∑2p

j=1 πijET Pj – αET Pi
PT

i Gi

∗ –Q2(i)

⎤

⎥
⎦ < 0, (7)

AT
d,kET PiAd,k – ET Pi < 0, t = tk , (8)

ETΓi ≤ ET Pi ≤ ET Ri, (9)

λmax
(
Q1(i)

)
c1eαt + dλmax

(
Q2(i)

)
eαt < c2λmin

(
Q1(i)

)
, (10)

where

Āi + B̄i sat(ui) = Ai + �Ai + (Bi + �Bi)
(
DlKi + Dl

–H(i)
)

= Al(i) + He(i)�(t, i)Fl(i),

Al(i) = Ai + Bi
(
DlKi + D–

l H(i)
)
,

Fl(i) = Fa(i) + Fb(i)
(
DlKi + D–

l H(i)
)

for all i, j = 1, 2, . . . , s, l = 1, 2, . . . , 2n, and Ω(ET XiE) ⊂ L(Hi). Then the closed-loop system
(5) with respect (c1, c2, T , R, d,Γi) is robust finite-time stable within

⋂N
i=1 Ω(ET XiE).

Proof Firstly, we prove that the closed-loop systems (5) is regular and impulse-free in the
time interval [0, T]. By the Schur complement and condition (7) we obtain

AT
l (i)Pi + PT

i Al(i) + (πij – α)ET P(i) < –
2p∑

j=1,j �=i

πijET Pj ≤ 0. (11)
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Choose nonsingular matrices M and N such that

MEN =

[
Ir 0
0 0

]

, MAl(i)N =

[
A11(i) A12(i)
A21(i) A22(i)

]

,

MP(i)N =

[
P11(i) P12(i)
P21(i) P22(i)

]

.

(12)

Then, according to (6) and (12), it is not difficult to prove that P12(i) = 0 and det(P22(i)) �= 0.
Pre- and post-multiplying (11) by NT and N , we get

NT AT
l (i)PiN + NT PT

i Al(i)N + (πii – α)NT ET PiN < 0,
(
MAl(i)N

)T (MPiN) + (MPiN)T(
MAl(i)N

)
+ (πii – α)(MEN)T (MPiN) < 0,

[
AT

11(i)P11(i) AT
12(i)P22(i)

AT
21(i)P11(i) AT

22(i)P22(i)

]

+

[
PT

11(i)A11(i) PT
11(i)A12(i)

PT
22(i)A21(i) PT

22(i)A22(i)

]

+ (πii – α)

[
P11(i) 0

0 0

]

< 0.

We can easily obtain that AT
22P22(i) + PT

22A22(i) < 0 and A22(i) is nonsingular, which implies
that the closed-loop SMJS is regular and impulse-free in the time interval [0,T].

Construct the following Lyapunov function: V (x(t), i) = xT (t)ET Pix(t).
When t �= tk , using Definition 3, we obtain that

�V
(
x(t), i

)
= ẋT (t)ET Pix(t) + xT (t)ET Piẋ(t) + xT (t)

( N∑

j=1

ET Pj

)

x(t)

=
(
Eẋ(t)

)T Pix(t) + xT (t)Pi
T Eẋ(t) + xT (t)

( N∑

j=1

ET Pj

)

x(t)

= xT (t)

[

ĀT
i Pi + Pi

T Ā +
(
DlKi + D–

l Hi
)T B̄T

i Pi

+ Pi
T B̄i

(
DlKi + D–

l Hi
)

+
N∑

j=1

(
ET Pj

)
]

x(t)

+ ωT (t)GT (i)Pix(t) + xT (t)PT
iG(i)ω(t) < 0,

where z(t) =
[ x(t)

ω(t)
]
, so that

�V
(
x(t), i

)
= zT (t)

⎡

⎢
⎣

(ĀT
i + DlKi + D–

l Hi
T B̄T

i )Pi+
PT

i (Āi + B̄iDlKi + D–
l Hi) +

∑2p

j=1 πijET Pj
PT

i Gi

∗ 0

⎤

⎥
⎦ z(t).
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By Lemma 1, Lemma 2, and (2), this formula is equivalent to

�V
(
x(t), i

)
= zT (t)

⎡

⎢
⎣

AT
l (i)Pi + PT

i Al(i) + εPT
i He(i)HT

e (i)Pi+
ε–1FT

l (i)Fl(i) +
∑2p

j=1 πijET Pj
PT

i Gi

∗ 0

⎤

⎥
⎦ z(t).

According the last formula and (7), we can obtain that �V (x(t), r(t) = i, t) < 0 and

�V
(
x(t), i

)
< αV

(
x(t), i

)
+ ωT (t)Q2(i)ω(t). (13)

When the system depends on the state to jump, applying (8), we have

V
(
t, x+

k
)

– V (t, x) = xT (t)
[
AT

d,kET P(t)Ad,k – ET P(t)
]
x(t) < 0.

So we derive that V (t, x) is strictly decreasing on T .
Integrating (13) from 0 to t and using Lemma 3, we have

E
{

V
(
x(t), i

)}
< V

(
x(0), i

)
+ α

∫ t

0
V

(
x(s), i

)
ds +

∫ t

0
ωT (t)Q2(i)ω(t) dτ

< V
(
x(0), i

)
+ α

∫ t

0
V

(
x(s), i

)
ds + dλmax

(
Q2(i)

)

<
[
V

(
x(0), i

)
+ dλmax

(
Q2(i)

)]
eαt

< V
(
x(0), i

)
eαt + dλmax

(
Q2(i)

)
eαt , (14)

where Q1(i) = E–T R– 1
2

i ET P2R
1
2
i E–1, and λmax(Q1(i)) and λmin(Q1(i)) are the maximum and

minimum eigenvalues of Q1(i). Thus

E
{

V
(
x(t), i

)}
= E

{
xT (t)ET R

1
2
i Q1(i)R

1
2
i Ex(t)

}

≥ λminQ1(i)E
{

xT (t)ETΓiEx(t)
}

.

On the other hand,

V
(
x(0)

)
eαt = xT (0)ET R

1
2
i Q1(i)R

1
2
i Ex(0)eαt

≤ λmaxQ1(i)ET xT (0)RiEx(0)eαt ≤ λmaxQ1(i)c1eαt .

Therefore

E
{

xT (t)ETΓiEx(t)
} ≤ λmax(Q1(i))c1eαt + dλmax(Q2(i))eαt

λmin(Q1(i))
< c2.

This proves that system (5) is robust finite-time stable. �

Theorem 2 Let (5) be a closed-loop system with ω(t) = 0 for t ∈ [0, T], let c1, c2, T be
three positive scalars with c1 < c2, let Ri, i ∈ S, be positive definite matrices, and let Γi be
positive definite matrix-valued functions. Suppose that there exist a scalar α ≥ 0, a set of
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nonsingular matrices Pi ∈ Rn×n, and two sets of symmetric positive definite matrices Q2(i) ∈
Rd×d , i ∈ S, and Q1(i) ∈ Rn×n, i ∈ S, such that the following hold:

ET Pi = Pi
T E ≥ 0,

AT
d,kET PiAd,k – ET Pi < 0, t = tk ,

ETΓi ≤ ET Pi ≤ ET Ri,

AT
l (i)Pi + PT

i Al(i) + εPT
i He(i)HT

e (i)Pi + ε–1FT
l (i)Fl(i) +

2p∑

j=1

πijET Pj – αET Pi < 0,

λmax
(
Q1(i)

)
c1eαt < c2λmin

(
Q1(i)

)
,

for all i, j = 1, 2, . . . , s, l = 1, 2, . . . , 2n, and Ω(ET XiE) ⊂ L(Hi). Then the closed-loop system
(5) with respect (c1, c2, T , R, d,Γi) is robust finite-time stable within

⋂N
i=1 Ω(ET XiE).

This result can be proved in much the same way as Theorem 1.

4.2 Robust state feedback controller
Theorem 1 gives a set of conditions to judge if some initial state is in the domain of at-
traction in mean square sense. To further facilitate the synthesis procedure, we will state
these conditions in terms of LMIs.

Theorem 3 Suppose that, for each mode i ∈ S and given scalars εi > 0, there exist a positive
definite symmetric matrix Xi > 0, matrices Yi and Hi for i = 1, 2, . . . , 2n, and Ω(ET PiE) ⊂
L(Hi). Then for all uncertainties satisfying (2) and (3), the closed-loop system is robust finite-
time stable within

⋂N
i=1 Ω(ET XiE), and the state feedback controller gain matrix is given

by Ki = LiX–1
i , i = 1, 2, . . . , N .

Let XR ⊂ Rn be a prescribed bounded convex set containing origin that can be repre-
sented as the polyhedron XR = co{x1

0, x2
0, . . . , xq

0}, where x1
0, x2

0, . . . , xq
0 are a priori given initial

states in Rn. To see if the initial states x0 ⊂ Rn are in the domain of attraction in the mean
square sense, we can formulate the following optimization problem:

max
Pi>0,Fi ,Hi ,Qi ,εi

α

s.t. (i) αxj
0 ∈ Ω

(
ET PiE

)
, j = 1, 2, . . . , s,

(ii) Inequalities (7), (10),

(iii) Ω
(
ET PiE

) ⊂ L
(
H(i)

)
,

where hiq denotes the qth row of Hi. If max |α| > 1, then x0 ∈ Ω(ET PiE). Noticing that
the optimization problem is nonconvex, we need to formulate this problem into a convex
optimization problem.

Let Pi = X–1
i , Li = KiXi, ET Pi = Pi

T E = P–1
i H(i)P–T

i . Condition (i) is equivalent to

α2(xj
0
)T ET PiExj

0 ≤ 1, j = 1, 2, . . . , s.



Su and Zhao Advances in Difference Equations        (2019) 2019:196 Page 10 of 15

By the Schur complement it can be converted to

[
α–2 (xj

0)
T

ET Xi

XiExj
0 Xi

]

≥ 0, j = 1, 2, . . . . (15)

Letting β = α–2, (15) can be rewritten as

[
β (xj

0)
T

ET Xi

XiExj
0 Xi

]

≥ 0, j = 1, 2, . . . . (16)

Inequality (7) can be transformed into

⎡

⎢
⎣

∑
PT

i He(i) F(i)T

∗ –ε–1
i I 0

∗ ∗ εiI

⎤

⎥
⎦ < 0, (17)

where

∑
= AT

l (i)Pi + PT
i Al(i) +

N∑

j=1

πijET Pj – PT
i G(t)Q2G(t)T Pi – αET Pi.

Pre- and postmultiplying (17) by te diagonal matrix diag{Xi, I, I}, we obtain

⎡

⎢
⎣

Xi
∑

Xi XiPT
i He(i) XiF(i)T

∗ –ε–1
i I 0

∗ ∗ εiI

⎤

⎥
⎦ < 0.

This matrix can be transformed into

⎡

⎢
⎢⎢
⎣

Π XiPT
i He(i) XiFT

i Π1

∗ –ε–1
i I 0 0

∗ ∗ εiI 0
∗ ∗ ∗ –Π2

⎤

⎥
⎥⎥
⎦

< 0, (18)

where

Π = XiAT
m(i)PiXi + XiPT

i Am(i)Xi – XiPT
i G(t)Q2GT (t)Pi,

Āi + B̄i sat(ui) = Ai + �Ai + (Bi + �Bi)
(
DlLiX–1

i + Dl
–H(i)

)

= Am(i) + He(i)�(t, i)Fm(i),

Am(i) = Ai + Bi
(
DlLiX–1

i + D–
l H(i)

)
,

Fm(i) = Fa(i) + Fb(i)
(
DlLiX–1

i + D–
l H(i)

)
,

Π1 = [√πi,1Xi, . . . ,√πi,i–1Xi,
√

πi,i+1Xi, . . . ,√πi,kXi],

Π2 = diag

⎧
⎪⎨

⎪⎩

PT (1)H–1(1)P(1), . . . , PT (i – 1)
H–1(i – 1)P(i – 1)PT (i + 1)H–1(i + 1)

P(i + 1), . . . , PT (k)H–1(k)P(k)

⎫
⎪⎬

⎪⎭
.
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Let Qi = Q–1
1 (i) = R–1/2

i XiR–1/2
i and

λmax(Q) =
1

λmin(Q1(i))
,

λ < λmin
(
Q1(i)

)
, λmax

(
Q1(i)

)
> 1, λmax

(
Q2(i)

)
> 1.

Thus (10) can be rewritten as

c1 + d
λ1

– c2e–∂t < 0

or, equivalently,

[
–c2e–∂t √

c1 + d√
c1 + d –λ

]

< 0. (19)

Since Ω(ET PiE) ⊂ L(H(i)), we have

xT (t)hT
iqhiqx(t) ≤ xT (t)ET PiEx(t),

which is equivalent to

hT
iqhiq – Pi ≤ 0, i = 1, 2, . . . , s, q = 1, 2, . . . , m.

Using the Schur complements, we have

[
–Pi hT

iq

∗ –I

]

≤ 0, q = 1, . . . , m, (20)

and the optimization problem can be transformed into the following linear matrix inequal-
ity problem:

⎧
⎨

⎩
minXi>0,Yi,Hi β

s.t. LMIs (16), (18), (19), and (20),

where εi > 0 is a given scalar. If minβ < 1, then x0 ∈ Ω(ET PiE). The state feedback con-
troller gain Ki = LiX–1

i can be obtained by solving the linear matrix inequality problem
directly.

5 Simulation example
Let us consider the robust finite-time stability for system (1) with the following coefficient
matrices:

E =

⎡

⎢
⎣

2.5 5 2.5
0 1.25 1.25
0 0 0

⎤

⎥
⎦ ,
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mode 1:

A(1) =

⎡

⎢
⎣

2 2.4 1.2
1.8 1.1 1.1
0.5 0.2 0.5

⎤

⎥
⎦ , B(1) =

⎡

⎢
⎣

0.6
0.4
0.1

⎤

⎥
⎦ ,

Fa(1) =
[

0.05 0.06 0.02
]

, Fb(1) = 0.03,

He(1) =

⎡

⎢
⎣

0.01
0.02
0.03

⎤

⎥
⎦ , W1 =

⎡

⎢
⎣

0.6 0.3 1.3
0.5 –0.2 0.25
1 1.5 0.5

⎤

⎥
⎦ ,

[
�A(1) �B(1)

]
=

⎡

⎢
⎣

0.0005 0.0006 0.0002
0.0010 0.0012 0.0004
0.0015 0.0018 0.0006

0.0003
0.0006
0.0009

⎤

⎥
⎦ ;

mode 2:

A(2) =

⎡

⎢
⎣

1 –1 0
2.25 0.75 2
1.25 0.5 0.75

⎤

⎥
⎦ , B(2) =

⎡

⎢
⎣

1.5
–1

–0.75

⎤

⎥
⎦ ,

Fa(2) =
[

0.02 0.04 0.05
]

, Fb(1) = 0.04,

He(2) =

⎡

⎢
⎣

0.03
0.05
0.06

⎤

⎥
⎦ , W2 =

⎡

⎢
⎣

0.2 0.3 1.3
0.5 –0.2 0.25
1 1.5 0.5

⎤

⎥
⎦ ,

[
�A(2) �B(2)

]
=

⎡

⎢
⎣

0.0006 0.0012 0.0015
0.0010 0.0020 0.0025
0.0012 0.0024 0.0030

0.0012
0.0020
0.0024

⎤

⎥
⎦ .

Let c1 = 1, c2 = 11, T = 3, α = 0.1,

x0 =

⎡

⎢
⎣

–0.56
0.36

0

⎤

⎥
⎦ , R =

⎡

⎢
⎣

0 0 1
0 0 1
0 0 1

⎤

⎥
⎦ ,

Γi =

⎡

⎢
⎣

1 0 0
0 0.2 0
0 0 0.5

⎤

⎥
⎦ .

We use the LMI toolbox of MATLAB software to solve the optimization problem β =
0.218 < 1. The gain of the state feedback controller is:

K1 =
[

–1.5983 –1.5495 0.0503
]

,

K2 =
[

–0.4159 –0.0910 –0.0306
]

.

Then the MATLAB simulation is shown in the following image.
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Figure 1 The jumping modes

Figure 2 The trajectory of states

One possible realization of Markovian jumping mode is given in Fig. 1. The simulation
results under this mode-dependent controller are shown in Fig. 2. We see that the state
responses are satisfactory when the saturation appears. The corresponding state trajectory
is shown in Fig. 3.

6 Conclusion
The robust finite-time control for descriptor Markov jump systems with impulsive effects,
actuator saturation, and time-varying norm-bounded disturbance have been investigated.
A sufficient condition for the finite-time stability of systems is given according to Lyapunov
function theory and LIMs. Based on the conditions above, a state feedback controller is
designed such that the resultant closed-loop system is finite-time stable. The simulation
results are given by MATLAB. The results in this paper can be applied in communication
engineering and other fields. It has important theoretical significance for further study of
some problems of descriptor Markovian jump systems (also, see [1–26]).



Su and Zhao Advances in Difference Equations        (2019) 2019:196 Page 14 of 15

Figure 3 The trajectory of xT (t)ETΓiEx(t)
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