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ABSTRACT
Pulmonary embolism (PE) and other pulmonary vascular diseases, have been found associated
with the changes in arterial morphology. To detect arterial changes, we propose a novel, fully
automatic method that can extract pulmonary arterial tree in computed tomographic pulmonary
angiography (CTPA) images. The approach is based on the fuzzy connectedness framework,
combined with 3D vessel enhancement and Harris Corner detection to achieve accurate seg-
mentation. The effectiveness and robustness of the method is validated in clinical datasets con-
sisting of 10 CT angiography scans (6 without PE and 4 with PE). The performance of our
method is compared with manual classification and machine learning method based on random
forest. Our method achieves a mean accuracy of 92% when compared to manual reference,
which is higher than the 89% accuracy achieved by machine learning. This performance of the
segmentation for pulmonary arteries may provide a basis for the CAD application of PE.

KEYWORDS
Pulmonary artery
segmentation; 3D vessel
enhancement; fuzzy
connectedness; pulmon-
ary embolism

Introduction

Pulmonary vascular diseases often occur in pulmonary
arteries, such as pulmonary emboli (PE), pulmonary
arterial hypertension (PAH) or pulmonary aneurysm,
featured by the changes of arterial morphology, which
can be captured by computed tomography (CT) scan-
ners. Recently, CT pulmonary angiography (CTPA) has
been regarded as the gold standard for the diagnosis
of PE in clinical practice, as its advantages over
both traditional angiography and ventilation perfu-
sion scans.

But the large amount of CT images and imaging
noise make it time-consuming and difficult for physi-
cians to diagnose PE from CTPA images. Therefore,
the automatic segmentation and visualization of pul-
monary arteries is a critical step for the disease diag-
nosis [1]. Because of the multiple connections
between arteries and other anatomical structures,
such as the pulmonary veins intertwining with the
pulmonary artery, segmentation of the pulmonary
arterial tree is a complex problem. Even in contrast-
enhanced scans, sometimes it is still difficult to distin-
guish arteries and veins robustly, if the imaging delay

from the contrast injection is not controlled prop-
erly [2].

Although a large amount of work has been devoted
to the segmentation of vessels in different parts of
body, the automatic segmentation of pulmonary
arteries has not been performed successfully, in
respect of the segmentation performance and automa-
ticity. The approaches of pulmonary artery segmenta-
tion are normally built on the basis of vessel
enhancement or vessel segmentation. The perform-
ance is limited because these methods are often inter-
fered by the pulmonary vein. Most 3D pulmonary
artery segmentation methods take structural and ana-
tomical information into account, either tracking ves-
sels starting at given seed points or calculating a
voxel-wise distinction of arteries and veins [3–5],
and incorporating different anatomical features like
proximity of arteries and bronchi [6]. Saha et al. [7]
introduced fuzzy distance transform to realize the sep-
aration of arteries and veins, however, in which the
interactive refinement is complex and indispensable.
Christian et al. [2] used fully automatic method based
on integer program to separate arteries and veins in
chest CT images, but it may cause the discontinuity of
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arteries which have an influence on the diagnosis of
pulmonary embolism.

To resolve these problems, we introduce a novel,
fully automatic approach which segment arteries from
volumetric chest CTPA images. We were inspired by
the anatomic structure of the pulmonary artery, auto-
matically tracked the directions of artery which starts
from pulmonary trunk. There are no interactive
options in the method, the degree of automation is
comparative to machine learning [8,9].

Method

Our work for pulmonary artery segmentation is shown
in Figure 1. We started with lung segmentation based
on 3D region growing from CTPA images. Next, the
3D multi-scale vessel enhancement filter based on
Hessian matrix was applied to enhance vessels. For
later pulmonary artery segmentation, the Harris Corner
detection was applied to remove the vena cava, which
are adjacent to pulmonary artery trunk in CT images.
Finally, at the core of our approach is a fuzzy connect-
edness framework, by computing the probability that
a voxel belongs to the artery tree.

Lung segmentation

In order to improve the performance of artery seg-
mentation, the lung segmentation is a prerequisite for
our algorithm. The pulmonary region was automatic-
ally extracted by 3D region growing algorithm. For the
region growing, a threshold is defined as:

th ¼ jIðx1Þ � Iðx2Þj (1)

where I is the CT image, x1 and x2 are two points with
maximum and minimum intensity connected to the
seed point on the cross section. All 26-neighbourhood
connected voxels which fulfill jI(x) �Iseedj < th are
added to the segmentation until no new points

added. Then, to remove holes caused by vessels and
other high intensity structures inside the lung, 3D
hole filling and morphological close operation are
applied [10].

Vessel enhancement

To eliminate the effects of lymphoid tissues, the vessel
enhancement filter based on the 3D Hessian matrix
was used to differentiate vascular tree from other
structures, according to the second order gradient
information of images. In addition, multi-scale
Gaussian filter was used to discriminate vessels with
different radius.

In order to get the vessel enhancement filter
response at voxel~r ¼ x; y; zð Þ in a 3D image, we calcu-
lated the eigenvalues k1, k2 and k3 (ordered such that
jk1j > jk2j > jk3j) and the associated eigenvectors are
e1, e2 and e3 of the Hessian matrix at each scale rs
[10]. The multi-scale response function:

R ~r;rs; k1; k2; k3ð Þ

¼
k1j j þ k2j jð Þ
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where n is a constant, plays an important role in
enhancement of the tubular and the blob-like struc-
tures in Equation (2). For tubular structure of vessels
branch, the eigenvalues subjected to jk1j � jk2j, jk1j
� jk3j, and jk3j � 0. And the vessel bifurcation which
forms a blob-like structure when the vessel splits into
two or more branches, with the eigenvalues jk1j �
jk2j � jk3j. While the lymphoid tissues surrounding
the pulmonary vessels which generally are plate-like
structures with jk1j � jk2j, and jk2j � jk3j � 0 [11].
The response functions of blob-like and tubular

Figure 1. Overview of our proposed pulmonary artery segmentation algorithm.
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structures in images were enhanced, and plate-like
structures were suppressed, achieving aims of vessels
enhancement.

Harris corner detection

Due to the contrast injection from vena cava, the vena
cave greatly interfered the segmentation of pulmonary
artery, because the vena cava has high image intensity
and is close to the pulmonary artery trunk. To solve
this problem, Harris corner detector was used to
detect the boundaries between vena cava and pul-
monary artery trunk, which depends on the autocor-
relation of gradient magnitude image to analyze the
corner points in image [12]. The pixels have been clas-
sified on the basis of the relation of eigenvalues as
follows, both high eigenvalues representing the corner
pixel, while both small eigenvalues indicating that
pixel is in flat region, and only one eigenvalue repre-
senting the edge pixel.

The corner points between vena cava and pulmon-
ary artery trunk were detected by setting a threshold
for Harris detector, and then fitted to a line to separ-
ate vena cava from pulmonary artery trunk through
3D region growing method.

Fuzzy connectedness

The 3D fuzzy connectedness algorithm was introduced
to the automatic segmentation of pulmonary arterial
tree, which is based on a global fuzzy relation that
assigns a strength of connectedness to every pair of
voxels in an image [13]. Given an object O with a seed
point s and its background B are classified by dividing
the set of voxels in the volumetric image in a way of
computing its affinity mk with the seed point. The
“strength of connectedness” of two distant voxels c
and d along a certain path p(c, d) within the image is
simply the smallest pairwise local affinity along this
path. If two pixels c and d are adjacent, their affinity
mk(c, d) decides whether they belong to the same class
or not. The adjacency component ma is a non-increas-
ing function of the distance in voxels jjc� djj. One
general form is

lkðc; dÞ ¼ laðc; dÞ
h
x1h1ðfðcÞ; fðdÞÞ þ x2h2ðfðcÞ; fðdÞÞ

i
(3)

where f(c) and f(d) correspond to the CT intensities at
pixels c and d respectively, h1 and h2 are the Gaussian
metric which is a function of mean and standard devi-
ation of the CT intensity values of the object, and x1

þ x2 ¼ 1 [14].

If the affinity is larger than a certain threshold, the
respond voxels will be defined as object. Through sev-
eral iterations, the strength of relative paths can be
weaken, the responsive voxels are excluded from the
class of object. The advantage of our method is the
automaticity that even the only one seed point is
chosen automatically at the point of highest intensity,
owing to our images are contrast enhanced on the
pulmonary artery.

Experimental results

Data preparation

For testing our algorithm, we used the clinical data-
sets which obtained from China-Japan friendship hos-
pital. The thoracic regions were imaged using
Toshiba Medical Systems multi-detector CT scanner at
120kVp under automatic exposure control. Contrast
materials were injected into patients at 3.0ml/sec for
obtaining contrast data. The dataset consists of 6
non-embolism and 4 embolism patients. All CTPA
images were read and labelled by trained radiologists
through 3D Slicer.

Experimental design

In section of lung segmentation, when consider the
connectivity between the lung and the airway, an ini-
tial seed point was set automatically inside the air-
way, which had low CT value and near the middle of
the image of the upper chest. The results for lung
segmentation were shown in Figure 2. In vessel
enhancement filter, n¼ 0.7 may achieve the differen-
ces of tubular-like and blob-like structures from
plate-like structures [11]. Figure 3 showed the effect
of the parameter n on the vessel enhancement, indi-
cating that n was not so sensitive, since the results
of vessel enhancement did not vary significantly
when n ranged from 0.5 to 0.7. The scales of
Gaussian filter was set from 1 to 12 correspond to
different vessel sizes according to the image size.
The results for vessel enhancement was shown in
Figure 4, where the pseudo-color showed the likeli-
ness of enhanced vessels, the red parts of which
were obviously enhanced. The Harris Corner detec-
tion was introduced, and the result for corner detec-
tion was shown in Figure 5. The cross section
between pulmonary artery and vena cava was high-
lighted in different colors.

In fuzzy connectedness algorithm, we set the
threshold of mk(c, d) as 0.1, which distinguished the
voxel with the fuzzy connectedness smaller than 0.1
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Figure 3. The effect of the parameter n on the results of vessel enhancement. (a) is the original image; (b) is the zoomed area
marked in (a); (c), (d), and (e) is the results of vessel enhancement when the parameter n is 0.3, 0.5, 0.7, and 0.9 respectively. The
plate-like structure marked with red arrow in (c) is falsely enhanced when the n ¼ 0.3. The small vessel marked with red arrow in
(f) is not enhanced when n ¼ 0.9, because the structure of these vessels is not ideally tubular.

Figure 2. The results for the image segmentation of lung. (a) The original image; (b) the results for the segmentation of lung; (c)
the 3D rendering of lung.

Figure 4. The results for the Hessian enhancement. (a) The original image; (b) the results for the Hessian enhancement of vessels;
(c) the pseudo-color display for the probability that the pixel belongs to a vessel, calculated by the eigenvalues in Hessian
enhancement.
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as the same object as the seed point [13]. The influ-
ence of the threshold on the results of pulmonary
artery segmentation was shown in Figure 6. And h1
and h2 are automatically computed by 3� 3 � 3 vol-
umes round the voxel. The final results were shown in
Figure 7, where the 3D surface rendering was used to
reconstruct the pulmonary artery tree. The patients
(g)-(j) suffered with PE, and they are different from (a)-
(f) in vessel density and distribution, indicating that
our method could be helpful to distinguish PE. The
average processing time of each case is about
3.5minute on a machine with Intel Core (i5) CPU, 8 GB
RAM and Windows 7 OS.

Quantitative evaluation

In this part, accuracy of our method is defined by
comparing its results Arteryseg with manual labeling of

arteries in Arterylabel, which was regarded as ground
truth. Here, we have defined segmentation perform-
ance measures in terms of voxel-based agreement
(Dice coefficient) Agreementvoxel, the number of vessels
on each slice Similaritynumber, Sensitivityvoxel and
Precisionvoxel as follows:

Agreementvoxel ¼
2 Arteryseg \ Arterylabel
�� ��
Arteryseg
�� ��þ Arterylabelj j (4)

Similaritynumber ¼ 1� Numlabel�Numsegj j
Numlabelj j (5)

Sensitivityvoxel ¼
Arteryseg \ Arterylabel
�� ��

Arterylabel
(6)

Precisionvoxel ¼
Arteryseg \ Arterylabel
�� ��

Arteryseg
(7)

where Agreementvoxel was used to measure reproduci-
bility between automatic and ground truth

Figure 5. The results for the Harris corner detection. (a) The corners detected between vena cava and pulmonary artery trunk; (b)
the results for the removal of vena cava by the connection of the two corners; (c) the 3D view of vena cava and pulmon-
ary images.

Figure 6. The effect of threshold of mk(c, d) in fuzzy connectedness algorithm. (a) The original image; (b) to (e) denotes the result
for the artery segmentation when the threshold of lk(c, d) is 0.05, 0.1, 0.15, and 0.2 respectively; (f) to (j) is the zoomed image
of the upper right lung in the upper row. The veins near the pulmonary arteries were marked with red arrows in (f). The veins
are correctly separated from arteries when the threshold of lk(c, d) is from 0.05 to 0.15 in (g), (h), and (i); while they are falsely
segmented when the threshold increases to 0.2 in (j).
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segmentations. Sensitivityvoxel denotes the percentages
of the volume that vessel in the ground truth was cor-
rectly classified in the manual segmentation, and
Precisionvoxel was used to calculate the percentage of
the vessel in the ground truth that was correctly clas-
sified in the segmentation results. Table 1 shows the
results to evaluate our method and machine learning
method based on random forest proposed by Zhao
[8]. The machine learning method consists of 3 steps.
Firstly, multi-scale representations of images are
obtained via the Gaussian pyramid. Then, a large num-
ber of patches are randomly selected from multiscale
representations and a sparse auto-encoder is trained
using these patches. Finally, the random forest
method is applied to segment lung arteries with fea-
tures and labelled data. The set of the parameters in
this method is as follow: (1) the level of Gaussian pyra-
mid is 6; the window size is 5� 5; (2) the patch size is
5� 5; the layer of sparse auto-encoder is 3; the num-
ber of neurons in the input and output layers is 25;

the number of neurons in the hidden layer is 32; (3)
the number of trees in random forest is 500 and the
number of randomly selected feature is 8.

From Figure 8, we can find that the pulmonary
arteries segmented by our method may have less area
than the ground truth, namely the manual segmenta-
tion results, in some cases, which may be caused by
the border-effect in the vessel enhancement. The seg-
mentation results from previous conventional random-
forest-based method random forest algorithm showed
some discontinuity of vessels marked in Figure 3,
which was also reported by former researchers in the
studies of machine learning algorithm. To summarize
the results, the algorithm performs very well in voxel-
based agreement, vessel numbers agreement and pre-
cision, however improvement in the sensitivity is still
necessary. From Table 1, we can see that the pro-
posed method achieves a mean voxel-based agree-
ment with manual references of 92.16%, and the
precision is 94.32%, which are both significantly higher

Figure 7. Segmentation results from 10 datasets. The images (a)-(f) are people without PE, while images (g), (i) and (h), (j) are
chronic PE and acute PE respectively.

Table 1. Our method in comparison with the machine learning (ML) algorithm.

Patients

Agreementvoxel Similaritynumber Sensitivityvoxel Precisionvoxel

Our ML Our ML Our ML Our ML

a 0.9081 0.9234 0.9247 ± 0.0275 0.8727 ± 0.0025 0.9243 0.9366 0.8925 0.9106
b 0.9185 0.8903 0.8942 ± 0.0349 0.6894 ± 0.0318 0.8656 0.9168 0.9781 0.8654
c 0.9427 0.9243 0.8135 ± 0.0523 0.7984 ± 0.0231 0.8949 0.9439 0.9959 0.9054
d 0.9019 0.9062 0.9098 ± 0.0223 0.8641 ± 0.0283 0.8580 0.9425 0.9505 0.8726
e 0.9172 0.9011 0.9511 ± 0.0194 0.8019 ± 0.0011 0.8638 0.9407 0.9776 0.8647
f 0.9351 0.8927 0.9540 ± 0.0118 0.6500 ± 0.0500 0.8955 0.9367 0.9785 0.8526
g 0.9334 0.8995 0.9557 ± 0.0106 0.8500 ± 0.0188 0.9820 0.8998 0.8894 0.9363
h 0.9407 0.8851 0.9419 ± 0.0211 0.9260 ± 0.0114 0.9630 0.8936 0.9194 0.8767
i 0.9208 0.9109 0.8601 ± 0.0565 0.8333 ± 0.0556 0.9243 0.9448 0.9173 0.9151
j 0.8978 0.8522 0.8918 ± 0.0372 0.7867 ± 0.0187 0.8650 0.8877 0.9332 0.8545
mean 0.9216� 0.8986 0.9097 ± 0.0293�� 0.8073 ± 0.0241 0.9036 0.9243 0.9432� 0.8854
�
Represents significant difference with p< .05.��Pepresents very significant difference with p< .01.
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than machine learning. Our method achieves a mean
number similarity of 90.97%, which is dramatically
greater than machine learning of 80.73%. On the other
hand, the mean value of sensitivity of our method is
slightly lower than machine learning. To conclude, for
majority of datasets we get an excellent performance
than the random-forest-based method.

Discussion and conclusion

Our method was based on the anatomical structure of
lung, by tracking the path of arteries or contrast agent
inside lung to segment arteries. The novelty of our
work is that we proposed an improved fuzzy connect-
edness algorithm combined with Harris corner detec-
tion and Hessian filter, which achieved fully automatic
arterial tree segmentation, and could be used in the
CAD application of PE. Hessian filter and Harris corner
detection was used to separate arteries from veins
and other organs around heart. In our method, there
are few parameters need to be adjusted, which is eas-
ier to form into an automatic image-based CAD sys-
tem, than other methods like level set. For most cases,
the automaticity of our method is comparable to the
machine learning method.

Although a few promising methods have been pro-
posed for arterial segmentation, they made strict
demands on the imaging process, which made it diffi-
cult to compare these results with ours [15,16]. When
comparing our method to machine learning, the

automaticity of the two methods is comparable. More
importantly, the results and connectivity of our
method is better in small datasets, although the per-
formance of machine learning may improve with the
increasing of datasets. Therefore, more subjects are
needed to add to the datasets to validate the effect of
our method. For now, our datasets are proved to be
challenging due to the complex clinical samples. In
the patients with PE, the structure of pulmonary
arteries may be irregular, less like a tubular structure,
which may reduce the accuracy of the segmentation.
However, for the images from Patient (g) – (i), who
suffered from PE, the performance of our method is as
good as that from the normal. For Patient j, the seg-
mentation results are relatively low, probably due to
the presence of bronchiectasis. In the future, more
pulmonary embolism datasets should be tested
through our method. Since PE reduces the arterial dis-
tribution in CT images, our method is expected to cal-
culate the artery density or distribution, which could
be used for the aided detection of PE.
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Figure 8. The comparison between the segmentation of pulmonary arteries by the ground truth, our method and previous con-
ventional random-forest-based method. The images are from subject a. The first column is the original image. The second is the
manual segmentation results of pulmonary arteries, while the third and fourth column is the results of our method and the ran-
dom-forest-based method respectively.
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