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Unsupervised binocular depth prediction network for laparoscopic surgery
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ABSTRACT
Minimally invasive laparoscopic surgery is associated with small wounds and short recovery
time, reducing postoperative infections. Traditional two-dimensional (2D) laparoscopic imaging
lacks depth perception and does not provide quantitative depth information, thereby limiting
the field of vision and operation during surgery. However, three-dimensional (3D) laparoscopic
imaging from 2D images lets surgeons have a depth perception. However, the depth informa-
tion is not quantitative and cannot be used for robotic surgery. Therefore, this study aimed to
reconstruct the accurate depth map for binocular 3D laparoscopy. In this study, an unsuper-
vised learning method was proposed to calculate the accurate depth while the ground-truth
depth was not available. Experimental results proved that the method not only generated accur-
ate depth maps but also provided real-time computation, and it could be used in minimally
invasive robotic surgery.
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1. Introduction

Laparoscopic surgery (LS) has many advantages, such
as less bleeding and faster recovery, compared with
open surgery. LS is now widely used in abdominal
surgery, for example, removal of liver tumors, resec-
tion of uterine fibroids, and so on. The surface recon-
struction of soft-tissue and organs is an important
part of minimally invasive surgery. Traditional two-
dimensional (2D) laparoscopy has shortcomings in
spatial orientation and identification of anatomical
structures. Three-dimensional (3D) laparoscopy has
greatly improved the shortcomings of 2D laparos-
copy. It not only provides surgeons with a visual
depth perception but also quantitative depth infor-
mation for surgical navigation and robotic surgery. In
binocular stereoscopic 3D imaging, accurate registra-
tion of depth maps and abdominal tissue is an
important technical component of minimally invasive
robot-assisted surgery. The binocular stereo depth
estimation has become a hot research spot in
many countries.

At present, the binocular 3D reconstruction method
of soft-tissue surface can be roughly divided into three
categories: stereo matching, simultaneous localization
and mapping (SLAM), and neural network.

Stereo matching mainly uses feature point match-
ing or block matching to perform 3D reconstruction
matching calculation and reconstructs a 3D scene
according to image feature points or blocks. Penza
et al. [1] used a modified census transform to calculate
the similarity to find the matching regions correspond-
ing to the left and right images, and optimized dispar-
ity maps using the super-pixel method for 3D
reconstruction. Luo et al. [2] compared the similarity
of the color and gradient of the two images of the left
and right laparoscopies to find the best-matching fea-
ture area and used the bilateral filtering method to
optimize the disparity map for 3D reconstruction.
However, the time complexity of this kind of 3D
reconstruction method was high, but the depth map
accuracy was not high.

Most SLAM algorithms achieve interframe estima-
tion and closed-loop detection by feature point
matching. For example, Mahmoud et al. [3] proposed
an improved parallel tracking and mapping method
based on the ORB-SLAM to find new key-frame feature
points for 3D reconstruction of porcine liver surface.
However, its accuracy was not high.

Laparoscopic 3D reconstruction studies based on
neural network are few, and most studies focused on
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natural scenes. Luo et al. [4] transformed natural scene
images into matching blocks for 3D reconstruction.
Antal [5] used each feature point of the two images of
the left and right hepatic body membranes. The inten-
sity values formed a set of 3D coordinates as the
inputs, while the depth image was calculated by a
supervised learning neural network method. Zhou
et al. [6] jointly trained a monocular disparity predic-
tion network using an unsupervised convolutional
neural network and camera pose estimation networks,
and these two networks were combined to compute
an unsupervised depth prediction network. Garg et al.
[7] used the Alexnet network structure [8] to predict
the monocular depth image and replace the last layer
with a convolution layer to reduce the training param-
eters. The first two methods were deep predictive net-
works using supervised learning. The latter two
methods used deep predictive networks for unsuper-
vised learning.

Unsupervised learning is more suitable for LS in-
depth prediction networks because the ground-truth
depth map for laparoscopic soft-tissue and organs is
difficult to obtain.

2. Methods

The experimental data for this study came from the
Hamlyn Center Laparoscopic/Endoscopic Video
Datasets [9]. In this study, the residual network was
used to predict the depth map of the soft-tissue sur-
face under LS for the first time. This method was an
end-to-end approach where the input was a pair of
calibrated stereo images and the output was the

corresponding depth image. An unsupervised learn-
ing-based binocular dense depth estimation network
was trained on unlabeled calibrated laparoscopic bin-
ocular stereo image sequence data. The predicted
depth image was generated directly when the testing
calibrated dataset was input to the trained model.

2.1. Binocular depth estimation network

A nonlinear auto-encoder model was trained to esti-
mate the depth map corresponding to a pair of RGB
images. The flowchart of the unsupervised binocular
depth estimation network is illustrated in Figure 1.
First, given the calibrated stereo image pairs IL and IR
to the auto-encoder network, the corresponding dis-
parity maps (inverse depth) DL and DR were calculated.
The spatial transformer network (STN) [10] was used
for bilinear sampling DL (DR) to generate IL� (IR�). The
image reconstruction process is illustrated with
straight lines and the loss function establishment with
dashed lines in Figure 1.

The auto-encoder network comprised two parts:
encoder network and decoder network. The encoder
network was inspired by the methods described in
previous studies [11–13]. The deeper bottleneck archi-
tectures [14] were adopted for the Resnet101 encoder
network, and the last layer of the fully connected layer
was removed to reduce the number of parameters.
The encoding network architecture is summarized in
Table 1. The architecture with multiscale and skip plus
[15] was used in the decoder network part. The
method discussed in previous studies [6, 9] was used
in the disparity acquisition layer. The sigmoid

Figure 1. Unsupervised binocular depth estimation network.

COMPUTER ASSISTED SURGERY 31



activation function was used in the convolution layer
to obtain the depth image.

2.2. Binocular depth estimation loss function

The loss function was minimized to train the unsuper-
vised binocular depth estimation network. The loss
function included three parts. The first part was the
left–right consistency loss of the error calculated by
the L1 metric CLR between the predicted left disparity
DL and right disparity DR, where (i, j) is the pixel index
of the image:

CLR ¼ 1
N

X
i;j

�
jDLði; jÞ � DRðiþ DLði; jÞ; jÞj

�
(1)

The second part was the structural similarity loss
CSSIM (where SSIM is the structural similarity index) of
the error between the input image and the recon-
struction image (the right counterpart is CSSIMR)

CSSIM ¼ 1
N

X
i;j

2
5

j1� SSIM IL i; jð Þ; I�L i; jð Þ� �j� �
(2)

The third part was the reconstruction error loss
between the input image IL(i,j) and the reconstruction
image IL�(i, j) (the right counterpart isCRECR):

CREC ¼ 1
N

X
i;j

�
jILði; jÞ � I�Lði; jÞj

�
(3)

Four layers of loss function occurred at different
scales, and the scale factor was 2. The total loss func-
tion was as follows, and a¼b = k¼ 1.

C ¼
X4

s¼1
a CLR þ CLRRð Þ þ b CREC þ CRECRð Þ�

þk CSSIM þ CSSIMRð ÞÞ
2.3. Training details

An unsupervised binocular depth estimation method
was implemented using the TensorFlow framework on

Table 1. Encoder and decoder part.
Encoder (Resnet101)

Layer In/Out/K/S Number Output size

Conv1 3/64/7/2 1 128� 64
Pool –/–/3/2 1 64� 32
Conv2_x Conv2_1 64/64/1/1 3 32� 16

Conv2_2 64/64/3/–
Conv2_3 64/256/1/1

Conv3_x Conv3_1 256/128/1/1 4 16� 8
Conv3_2 128/128/1/–
Conv3_3 128/512/1/1

Conv4_x Conv4_1 512/256/1/1 23 8� 4
Conv4_2 256/256/3/–
Conv4_3 256/1024/1/1

Conv5_x Conv5_1 1024/512/1/1 3 4� 2
Conv5_2 512/512/3/–
Conv5_3 512/2048/1/1

Decoder

Layer In/Out/K/S Output size

DeConv6_x DeConv5_3 2048/512/3/2 8� 4
Plus6 DeConv5_3 þ Conv4_3 –/1536/–/–
Conv6 Plus6 1536/512/3/1

DeConv5_x DeConv6 1024/256/3/2 16� 8
Plus5 DeConv6 þ Conv3_3 –/768/–/–
Conv5 Plus5 768/256/3/1

DeConv4_x DeConv5 512/128/3/2 32� 16
Plus4 DeConv5 þ Conv2_3 –/384/–/–
Conv4 Plus4 384/128/3/1
Disp4 Conv4

DeConv3_x DeConv4 128/64/3/2 64� 32
Plus3 DeConv4 þ poolþDisp4� –/130/–/–
Conv3 Plus3 130/64/3/1
Disp3 Conv3

DeConv2_x DeConv3 96/32/3/2 128� 64
Plus2 DeConv3 þ Conv1 þ Disp3� –/98/–/–
Conv2 Plus2 98/32/3/1
Disp2 Conv2

DeConv1_x DeConv2 32/16/3/2 256� 128
Plus1 DeConv2 þ Disp2� 16/18/–/–
Conv1 Plus1 18/16/3/1
Disp1 Conv1

Conv, Convolution; pool, max pooling; Conv _x, convolution blocks; DeConv, deconvolution; DeConv _x, deconvolution block; Disp, disparity layer; In,
input channels; K, kernel size; Number, block number; Out, output channels; Output size, output image size; Plus, skip connection; S, stride; �, upsam-
pling factor 2.
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Nvidia Tesla P100 GPU (16GB). An exponential activation
function was used in each convolution and deconvolu-
tion except for convolution to obtain the disparity map.
The Adam optimizer was used. The network had 50
epochs on the training datasets, and the initial learning
rate was set to 10-4. The batch sizes were 16, and the
total training time was about 8h. The images were
resized to 256 � 128 to reduce the computational time.
The number of parameters was about 9.5 � 107.

3. Results

The unsupervised binocular Resnet network depth
estimation method was compared with the basic [14]
(unsupervised single convolutional neurla network
CNN) and Siamese [14] (unsupervised binocular CNN)
methods illustrated in Figure 2. The higher intensity
meant that the distance to the camera was closer.

No ground-truth result was available for the data-
set. Therefore, the performance was compared with all
published results, and the best results were taken as
the ground-truth result for evaluation using SSIM and
the peak signal-to-noise ratio (PSNR). The average
evaluation value of the 7191 pairs of calibrated stereo
images in the testing set was evaluated. The results
are described in Table 2. The time for generating the
predicted depth image was about 16ms.

The 3D reconstruction was performed on the left
image with the corresponding disparity map and the
internal and external parameters of the left camera of

Figure 2. Example results of the three methods. The left two columns are the input images; the third column is the Siamese
result; the fourth column is the Basic result; and the last column is the result of this study. Green boxes indicate comparisons of
different results under the same organization.

Table 2. Comparison of evaluation results between the basic
and the methods used in this study.
Method Basic Present study

Mean SSIM 0.5414 ± 0.0709 0.8349 ± 0.0523
Mean PNSR 7.7650 ± 1.3686 14.4957 ± 1.9676

PSNR, Peak signal-to-noise ratio; SSIM, structural similarity index.
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the 3D laparoscopy. In the process of 3D reconstruc-
tion, an error appeared on the left side of the disparity
map due to the occlusion of the laparoscopy, as
shown in Figure 3(b). We cut the occluded part and
the remaining part is shown in Figure 3(c), and the
remaining part is reconstructed as shown in
Figure 3(d).

4. Discussion

The results of the present study were found to be bet-
ter than those obtained using basic methods and simi-
lar to those obtained using the Siamese method
(Figure 2 and Table 2). For example, the green boxes
in Figure 2 show a whole piece of prominent human
tissue. The right half of the tissue is covered with
blood, indicating that the tissue was at the same dis-
tance from the camera and had same brightness. The
result correctly shows the depth map of the cov-
ered part.

In the 3D reconstruction in Figure 3, only pixels
were mapped to color in the left image to spatial 3D
coordinates, showing the correctness of the estimated
depth values and the superiority of the 3D reconstruc-
tion results.

5. Conclusions

In this study, a novel end-to-end depth prediction net-
work method was proposed for laparoscopic soft-tis-
sue 3D reconstruction. The residual network was first
used in the depth estimation of binocular laparoscopic
soft-tissue surface to generate better dense prediction
depth maps. The time to generate a map was only

16ms, which could fulfill the real-time display require-
ments of real surgical scenes because the calculation
of the depth images was the most time-consuming
part of the 3D reconstruction.

The future studies would train abdominal soft-tissue
surface depth estimation networks through transfer
learning and ensemble learning with fine-tuning,
enhancing the robustness and accuracy further.
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