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Abstract

Background: Living organisms need to allocate their limited resources in a manner that optimizes their overall
fitness by simultaneously achieving several different biological objectives. Examination of these biological trade-offs
can provide invaluable information regarding the biophysical and biochemical bases behind observed cellular
phenotypes. A quantitative knowledge of a cell system's critical objectives is also needed for engineering of cellular
metabolism, where there is interest in mitigating the fitness costs that may result from human manipulation.

Results: To study metabolism in photoheterotrophs, we developed and validated a genome-scale model of metabolism
in Rhodopseudomonas palustris, a metabolically versatile gram-negative purple non-sulfur bacterium capable of growing
phototrophically on various carbon sources, including inorganic carbon and aromatic compounds. To quantitatively
assess trade-offs among a set of important biological objectives during different metabolic growth modes, we used our
new model to conduct an 8-dimensional multi-objective flux analysis of metabolism in R. palustris. Our results revealed
that phototrophic metabolism in R. palustris is light-limited under anaerobic conditions, regardless of the available carbon
source. Under photoheterotrophic conditions, R. palustris prioritizes the optimization of carbon efficiency, followed by ATP
production and biomass production rate, in a Pareto-optimal manner. To achieve maximum carbon fixation, cells appear
to divert limited energy resources away from growth and toward CO; fixation, even in the presence of excess reduced
carbon. We also found that to achieve the theoretical maximum rate of biomass production, anaerobic metabolism
requires import of additional compounds (such as protons) to serve as electron acceptors. Finally, we found that
production of hydrogen gas, of potential interest as a candidate biofuel, lowers the cellular growth rates under all
circumstances.

Conclusions: Photoheterotrophic metabolism of R. palustris is primarily regulated by the amount of light it can absorb
and not the availability of carbon. However, despite carbon’s secondary role as a regulating factor, R. palustris” metabolism
strives for maximum carbon efficiency, even when this increased efficiency leads to slightly lower growth rates.

Keywords: Multi-objective analysis, Metabolic trade-offs, Flux balance analysis, Genome-scale model, Rhodopseudomonas
palustris, Phototrophic metabolism, Autotrophy, Light limitation, Carbon efficiency, Carbon storage

Background

The high-throughput “omics” revolution has resulted in a
deluge of system-level information about the components
of living organisms. Optimally, integration and interpret-
ation of these data can provide mechanistic insights about
cellular behaviors and function [1]. This new information
can also be used by synthetic biologists to manipulate the
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biochemical processes within select (primarily microbial)
organisms in order to achieve desired outcomes, such as
production of valuable compounds like drugs or biofuels.
Biofuels generated via microbial metabolism are of signifi-
cant interest because they could theoretically serve as a
primary source of energy for industry and transportation,
thus supplanting fossil fuels and mitigating the harmful ef-
fects of global climate change.

These positive attributes have resulted in significant
interest in conducting system-level analyses of those
modes of metabolism that can sustainably result in

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2844-z&domain=pdf
http://orcid.org/0000-0003-2560-6984
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:navid1@llnl.gov

Navid et al. BMC Bioinformatics (2019) 20:233

generation of biofuels, i.e, those modes of metabolism that
use renewable resources and release part of the generated
energy in useful forms. Metabolism in phototrophic organ-
isms, as well as those that can catabolize aromatic com-
pounds (a major component of plant biomass), are such
modes of metabolism.

To manipulate cellular metabolism to achieve a de-
sired biological task (or objective), while mitigating the
fitness costs that may result from our tampering, it is
necessary to have a quantitative knowledge of a system’s
critical objectives. This is because it is important to
ensure our goals do not significantly alter the natural
balance of objectives in a system for a given environ-
ment. Life is based on a series of trade-offs that repre-
sent the price living organisms pay in term of fitness
when improvement in one of their traits results in detri-
mental change in another; a system state called ‘Pareto
efficient’. Evolution ensures that all living organisms are
Pareto efficient; otherwise, on an evolutionary timescale
the non-efficient would be outcompeted and outlasted
by organisms with better performance in all or some
biological tasks.

Knowing the nature and magnitude of biological
trade-offs can provide invaluable information regarding the
biophysical and biochemical bases behind observed cellular
phenotypes. This type of knowledge can be gained through
the use of genome-scale models (GSM) and system-level
multi-objective analyses of cellular processes. Genome-scale
mathematical modeling of metabolic networks is a key tool
of systems biology that has been used to examine the bio-
chemical underpinnings of cellular phenotypes in microbes
ranging from model organisms like Escherichia coli [2, 3]
and baker’s yeast [4], to those of ecological and industrial
interest [5-8], and even deadly pathogens [9, 10]. A num-
ber of models have also been developed for photosynthetic
organisms, such as purple non-sulfur bacterium Rhodobac-
ter sphaeroides [11] and cyanobacterium Synechococcus sp.
PCC 7002 [12]. When used with constraint-based methods
like flux balance analysis (FBA) [13, 14], these models can
quantitatively describe the metabolic network’s fluxes under
a steady state assumption. This permits analyses of different
types of omics data via in silico simulation of all processes
of interest following assorted genetic and environmental
perturbations [15].

Despite its many uses [15, 16], standard FBA is insuffi-
cient for analysis of trade-offs between large numbers of
objectives in a system. FBA examines the feasible flux pat-
terns in a system while optimizing a single biological ob-
jective function. To examine trade-offs between different
objectives of a system, a multi-objective flux analysis
(MOFA) approach is needed. MOFA is based on the widely
used multi-objective optimization (MO) method, which is a
critical tool in a number of fields where a decision maker
needs to consider trade-offs between various conflicting
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objectives. The desired outcomes of MO simulations are
Pareto-optimal (PO) solutions. A PO solution of a problem
is one for which any improvement in value of one objective
will lead to diminishment of another [17, 18].

To date, there have been a number of important MO
analyses of biological processes using constraint-based
models [19-24]. Phenotype phase plane analysis is one
such method used to study the optimal utilization of a
system’s metabolic network as a function of variations of
two environmental constraints [25, 26]. Thus, this
method examines the interactions between three system
objectives (growth and the two constraints). Other
MO-based studies have provided important insights for
bioengineering of systems such as the relationships
between environments and regulatory mechanisms [27-
29], the minimal number and combination of augmenta-
tions to a system that would result in greatest amount of
strain optimization [30, 31], and guidelines for tuning
synthetic biology devices [32].

All these MO analyses (including MOFA) are based on
a reconstruction of the system’s metabolic network. Like
FBA, the networks are constrained based on fundamen-
tal physico-chemical laws and experimental observations
and measurements. For all MO analyses, the n-dimen-
sional (n =number of objectives) solution space of the
model is discretized, and a Pareto optimal solution is
calculated for each section of the space. The combined
set of these Pareto optimal solutions forms the #-dimen-
sional Pareto front for the MO analysis. A variety of dif-
ferent methods are used to identify the examination loci
and hence constrain the values for n-1 objectives. Subse-
quently, like FBA, the value of the one remaining object-
ive is optimized.

In this study, we report the first results of a MOFA
examination of metabolic trade-offs in a phototrophic
organism. The modeled organism, Rhodopseudomonas
palustris (RP), is a purple non-sulfur (PNS) proteobac-
terium from the Rhodospirillaceae family. RP’s metabol-
ism is extremely versatile and serves as a model for
several important biological phenomena, including bio-
degradation of industrial waste [33, 34], electricity gener-
ation [35], and production of hydrogen gas (H,) [36—38].
RP has the capability to switch between four different
types of metabolism (photoautotrophy, photoheterotro-
phy, chemoautotrophy, and chemoheterotrophy). It can
grow in both aerobic and anaerobic conditions while
using light and organic compounds as energy sources,
and organic or inorganic [38—40] compounds as electron
sources. RP can also fix both carbon dioxide (CO,) and
nitrogen gas [41, 42].

Finally, RP can metabolize aromatic compounds as a
carbon source in a light-dependent fashion under anaer-
obic conditions (LN). New insights gained through our
MO system-level analyses of this type of RP metabolism
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are important for industrial and environmental reasons,
since microbial production of biofuels as well as bio-
remediation of aromatic pollutants usually occur in low
oxygen environments.

To determine carbon and energy fluxes among RP’s
different metabolic modes, we developed a GSM of me-
tabolism in RP. Although previously a model of central
carbon metabolism in RP had been developed [43], that
model did not account for a majority of the metabolic
reactions in the system and did not use an RP-specific
biomass composition. Our curated genome-scale model
incorporates most of the metabolic reactions in RP and
uses an RP-specific biomass composition. Our model
was extensively curated to ensure proton mass balance,
because we discovered (as others have also noted [44,
45]), poor accounting of protons can result in erroneous
outcomes. For specific details of our model building
process, we refer the reader to the Methods section.

Although system-level MOFA analyses of metabolism
have expanded analyses of biosystems beyond FBA’s canon-
ical single objective optimization, to date, the maximum
number of objective trade-offs that have been simultan-
eously examined has not exceeded eight [28]. In one of the
most detailed analyses, researchers studying trade-offs
among a larger group of objectives examined trade-offs
among different combinations of 3—5 objectives [46]. While
this method would work for analysis of a small set of objec-
tives; when analyzing larger sets of objectives, in order to
avoid incomplete considerations of feasible functional cap-
abilities of the system, one would need to analyze an
ever-increasing number of small subsets of objectives.

Given RP’s versatile metabolism, our system-level MOFA
analysis of its metabolism meant we needed to simultan-
eously examine trade-offs among more than five inter-
dependent biological objectives and environmental
constraints. To this end, we developed a computational al-
gorithm for MOFA that (like another published MO sys-
tems biology study [20]) uses the Normalized Normal
Constraint (NNC) method [47] to generate multidimen-
sional Pareto solutions for our analyses. In our program,
the number of objectives that can be analyzed simultan-
eously is unlimited. However, as the number of examined
objectives increases, the computational resources needed
for the calculations increase nonlinearly.

In addition to our MOFA analyses of metabolic objective
trade-offs, we used the RP GSM to: a) investigate RP’s me-
tabolism of different carbon sources, b) examine the role of
proton availability in affecting mode of metabolism, and c)
study RP’s capacity to produce H,.

Results & discussion

First, we used available RP flux measurements [48] for
photoheterotrophic metabolism of acetate to validate our
model’s predictions. Next, we used acetate import and CO,
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export flux measurements to constrain our model based on
an experimentally observed metabolic phenotype. This
allowed us to assess the metabolic limitations of the system.
Using this new-found insight and MOFA we then exam-
ined the relative importance of different biological objec-
tives during different forms of mixotrophic metabolism.
The results of these analyses are detailed below. We also
used FBA to examine the robustness of RP’s metabolism to
genetic perturbations. The results of these analyses are in-
cluded in the Additional files 1 and 2.

Metabolic trade-offs during mixotrophic growth

Recently Shuetz et al. [46] showed that when examining
trade-offs between double and triple combinations of differ-
ent biological objectives in microbes, a PO combination of
three tasks — maximum biomass yield, maximum yield of
ATP, and optimal allocation of resources — best explains the
measured flux distribution for a variety of organisms and
conditions. Henceforth we will refer to these objectives as
primary objectives. While the primary objectives are the top
evolutionarily important objectives and their combined
optimization best describes observed metabolic fluxes
among all examined trios of objectives, the match with ex-
perimental results is not exact. To improve the match be-
tween optimization predictions and flux measurements,
Pareto optimization of other biological objectives (hence-
forth labeled secondary objectives) that are pertinent to spe-
cific organisms and growth conditions, could help.
Examination of secondary objectives also provides us with
quantitative insights into how these activities influence cellu-
lar workings and could be used to assess the effects of meta-
bolic engineering on the normal workings of a system. The
effects of secondary objectives could be particularly pro-
nounced in metabolically versatile organisms. In this study,
we examined energy and carbon trade-offs for different
types of phototrophic metabolism. So, in order to gain a
more complete understanding of the system, besides the
three primary objectives, we examined objectives related to
environmental nutritional conditions as well as production
of compounds of interest (such as H, gas). We examined
the RP’s metabolism on 4 different carbon sources (one ali-
phatic and three aromatic) and the role of proton economy
in each case. We also used GX-FBA [49], an in silico
method that uses transcriptomic data as constraints for
GSMs (see Methods), and permits examination of changes
in metabolism of a system as it transitions between various
environments and types of carbon sources. The results of
these analyses are included in the Additional files 1, 2 and 3.

Light-anaerobic metabolism of acetate

One of the most detailed studies of metabolism in RP is
McKinlay et al’s examination of photoheterotrophic
growth on acetate [48]. The flux measurements reported
in that manuscript provided us with a detailed snapshot
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of the metabolic state of RP during growth in a defined
medium, and we used it to quantify the extent to which
some biological objectives of RP dictate the behavior of
the system under anaerobic mixotrophic conditions. To
this end, we conducted a system-level MOFA analysis of
LN metabolism of acetate, assuming that the system
operated in a Pareto efficient manner (Fig. 1). In order
to quantitatively examine how RP allocates its limited
resources, we compared the experimental flux measure-
ments with output from an 8-dimensional MOFA study.
The examined objectives were: 1) biomass production
(growth), 2) CO, export, 3) ATP production, 4) nutrient
allocation (minimal metabolite transport), 5) H, export,
6) pyruvate export, 7) succinate export, and 8)
a-ketoglutarate export. The latter three objectives were
included to examine the role of carbon fixation as a sink
for excess electrons. For the nutrient allocation object-
ive, we minimized the sum of the absolute value of the
transport rates. In a complex medium, the optimum
value of this objective can be degenerate, i.e., different
combinations of metabolite imports/exports could result
in the same optimum value. However, for our minimal
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medium, each optimum value results in a singular trans-
port profile.

The growth medium for the MOFA study included
acetate as the sole carbon source. It also included am-
monium, sulfate, and phosphate as the sole nitrogen,
sulfur, and phosphorus sources. Finally, the medium in-
cluded unlimited photons, as well as Ca**, CI7, and all
the metal cations (e.g., Mg>*, Mn**, etc.) that are neces-
sary for cellular biomass production.

Figure 1a shows the result of our MOFA analysis. The
analysis identifies 1719 Pareto optimal solutions that
form the 8-dimensional Pareto front for the examined
objectives. As it can be seen, a majority of the Pareto
optimal solutions display low growth phenotypes. This is
because:

a) The majority of the examined objectives have a
negative trade-off with respect to growth, i.e., if
their values increase then the growth rate reduces.

b) The negative effects of these objectives are additive
and hence small improvements to the value of all of
them will drastically reduce the growth rate of RP.

Normalized
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Fig. 1 Heat map of the 8-dimensional Pareto front from MOFA analysis (objectives: growth, carbon fixation/carbon efficiency, nutrient allocation, ATP
production, production of some small organic byproduct (pyruvate, succinate and a-ketoglutarate), and H, production) of anaerobic mixotrophic
metabolism of acetate in R. palustris. @ 1719 unique Pareto-optimal solutions identified during our analysis. b Select Pareto-optimal solutions from same
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MOFA study are highlighted for discussion. Each biological objective was examined at intervals equaling 1/10 maximum normalized value. The analyses
showed that the observed growth rate (E) is smaller than the maximum theoretical growth rate (A) in a carbon-limited system with unlimited light
absorbing capability. When CO, export was constrained with experimental measurements (without limiting light) the predicted growth rate was still larger
than the measured value (B). Eliminating CBB (with unlimited light) resulted in increased production of CO,, but the predicted growth rate was still greater
than the measured value (C). Limiting light and carbon import brought the predicted growth rate closer to measured value (D), however the rate of CO,
export was greater than measured value. When light, acetate import, and CO, export were limited the model predicted that succinate will be exported.
Blocking export of succinate slightly lowered the growth rate and resulted in production of other small organic acids (F). Finally, the simulations showed
that H, production competes with growth pathways for resources and that maximum theoretical H, production (G) would result in cessation of growth.
This result is supported by experimental observations [61]
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¢) Some of imported carbon is exported as reduced
organic byproducts, which removes energy needed
for biomass formation.

Given the fact the measured growth phenotype is very
close to the theoretical growth archetype (a phenotype
that optimizes a single task) [50], it can be concluded
that a) growth is indeed a primary objective of RP, and
b) the secondary objectives that we examined, under
normal photoheterotrophic growth conditions, have sig-
nificantly lower values than their theoretical archetype.

By examining the predicted Pareto optimal phenotypes,
we can gain a better understanding of the quantitative
trade-offs among the different objectives we examined.
Figure 1b highlights some of the Pareto solutions of inter-
est for the photoheterotrophic metabolism of acetate and
below we discuss each specific phenotype.

Condition 1: Fixed import of acetate We first used
FBA to identify the theoretical growth archetype under
carbon-limited conditions. At a fixed uptake rate of acetate
that matches experimental flux measurements (1.96
mmol.gDW ' h™), the cell did not produce any small car-
bon byproducts (Fig. 1b, Row A). This clearly shows that
carbon limitation prohibits diversion of resources toward
production of non-biomass related byproducts. However,
even under this limiting condition, the cell clearly operates
near optimum values for the other two primary objectives,
i.e., ATP production and resource allocation.

In accordance with the goal of optimizing resource allo-
cation, our results indicate that all the CO, generated from
consumption of acetate was fixed and used for production
of biomass. For the theoretical growth archetype, FBA flux
predictions indicate that the Calvin-Benson-Bassham
(CBB) process fixed the majority of the produced CO, (>
70%). Conversion to bicarbonate by carbonate anhydrase
(EC. 4.2.1.1), and pyruvate via pyruvate synthase (E.C.
1.2.7.1) fixed the remaining produced CO,. However, the
predicted growth rate for the carbon-limited growth arche-
type was higher than experimentally measured values (pre-
dicted doubling time of 6.4 h vs. measured 8.4 + 0.6 h [51]).
This implied that the amount of carbon imported exceeded
the growth demands of RP. Thus, we concluded that under
the experimental conditions outlined by McKinlay and Har-
wood [48] for their flux measurements, RP’s metabolism
was not carbon limited.

To test the significance of carbon fixation toward
maximizing growth, we in silico inactivated CBB (by fix-
ing the reaction rate for RuBisCO to zero). Elimination
of CBB increased the predicted doubling time to 7.2h
(still smaller than the measured value) (Fig. 1b, Row C).
In the absence of CBB, the predicted rate of CO, export
was 21% of the rate of uptake of acetate. This value
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matches the total measured amount of CO, produced
(22% of acetate flux [48]).

Given that the experimentally observed phenotype
(Fig. 1b, Row E) includes export of CO,, we set the rate
of CO, export equal to the measured value (0.23
mmol.gDW~1h™'). With unlimited light, the predicted
doubling time (6.8 h) was still smaller than the measured
value (Fig. 1b, Row B). Thus, we found that if light is
available and the upper limit for the enzymatic capacity
of system to fix carbon has not been reached, CO, will
be fixed as long as maximization of growth is the sole
objective of the system.

Condition 2: Fixed import of acetate, varying
absorption of light We next began examining the effect
of light-absorption on the rate of biomass production.
Decreasing the amount of light absorbed by the cells in-
creased their doubling time, which improves the agree-
ment between model predictions and experimental
observations. However, when the rate of light absorption
decreased, the rate of CO, export began to rise above
experimentally observed values. To examine what drives
these observations:

1. At the measured CO, export rate, we reduced the
rate of light absorption until the doubling time
matched the experimentally measured value. This
was achieved at the photon uptake rate of 36.6
mmol.gDW ™ ".h™ ", suggesting a light-limited
metabolism. This is consistent with previous
examination of another phototrophic organism [52]
and our understanding of RP’s natural ecological
niche within light-limited environments (RP grows
underneath cyanobacteria in microbial mats [53]).
As we decreased the level of absorbed light, the
model predicted that RP begins to export succinate
(Fig. 1b, Row E; representing 18% of the carbon
imported as acetate).

2. When succinate export is blocked, we found a 1%
reduction in maximum growth rate, and pyruvate
is exported instead (Fig. 1b, Row F). The reduced
growth rate is attributable to higher energy cost
for the production of pyruvate from acetate in
comparison to succinate.

Condition 3: Fixed light import, fixed CO, export At
a fixed rate of photon absorption, with no limit to acet-
ate uptake, the model predicted that 17% less acetate
consumption results in a slightly (1%) higher growth
rate. This result suggest that the measured rate of acet-
ate import is higher than the amount needed for achiev-
ing the experimentally measured growth rate.
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Condition 4: Fixed acetate and light import Finally,
the model showed that at a fixed rate of photon and acet-
ate uptake, if the limit on CO, export is removed, CO, ex-
port increases, growth rate increases by ~ 3%, and the rate
of small organic acid export drops to ~ 13% of imported
carbon (Fig. 1b, Row D). This outcome suggests that the
measured CO, export rate is lower than what is needed for
achieving the theoretically predicted growth archetype.

The last model prediction implies that the cell uses pro-
cesses other than export of CO, to expunge excess carbon.
Instead, the cells divert a fraction of the absorbed and
metabolically generated energy for the production and ex-
port of small organic acids, likely driven by redox balance
or regulatory constraints.

This result slightly differs from that found in another in
silico analysis of redox balancing and biohydrogen produc-
tion in PNS [43]. Hadicke et al. were able to grow PNS
photoheterotrophically by only exporting CO, and biomass
[43]. The difference can be explained by the fact that, in
our analysis, we constrained the model with three mea-
sured values (growth, CO, export rate, and acetate import
rate) and allowed for export of small organic compounds.
In contrast, Hadicke et al. [43] blocked the export of all
byproducts other than CO, and did not fix the rates of
light absorption or CO, export. Thus, they were able to
predict photoheterotrophic growth with only CO, and bio-
mass as byproducts (similar to our outcome for condition
1), whereas our model with fixed experimental measure-
ments and light absorption, required export of excess
imported carbon via means other than CO,.

Our 8-dimensional MOFA analysis of LN growth of RP
on acetate revealed a pattern consistent with Schuetz et al.
[46], i.e., maximizing efficient resource allocation (97% of
optimal value), ATP production (84% of maximum value),
and growth (the main FBA assumption, 79% of its theoret-
ical maximum value) are the top 3 biological objectives
that are optimized. However, our results also seem to indi-
cate that a fourth objective — production of small organic
acids (while light energy is available) — is also optimized.

Optimization of this fourth objective diminishes the
ability of the cell to achieve the growth archetype for the
amount of resources that are imported. Model predictions
suggest that the cell by design diverts some of the
absorbed light energy toward the production of reduced
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organic compounds. We can better understand this
process by examining the degree of reduction of various
carbon-based compounds imported and exported by the
system. The degree of reduction for a compound per car-
bon atom (k) can be quantified using the concept devel-
oped by Roels [54].

We have noted that our predictions indicate that the cell
imports extra carbon and electrons in the form of acetate
(k =4), uses some of this resource for biomass (k= 4.19)
production and then uses light energy to export the
remaining electrons as organic compounds like succinate
(k = 3.5) that although more oxidized than acetate are sig-
nificantly more reduced than CO, (x = 0). One possible ex-
planation for this behavior could be that the cell stores
some of the available energy as easily metabolized com-
pounds for consumption during dark periods, a behavior
that has been observed in cyanobacteria [55].

Another point to keep in mind is that the amount of
carbon predicted by the model to be used for the pro-
duction of reduced byproducts is small and well within
the range of uncertainties of experimental measure-
ments. Sensitive experimental analyses to identity and
quantity the metabolic byproducts of LN metabolism
could either validate our MOFA prediction of organic
carbon export or support the previous assumption that
CO, is the sole byproduct [43].

Light-anaerobic metabolism of aromatic compounds

We also conducted a MOFA analysis to examine the
metabolic trade-offs of different biological objectives
while consuming 3 different aromatic compounds
(Table 1). The growth medium for this study blocked
import of all carbon sources except the 3 aromatic com-
pounds. The rate of uptake of the 3 compounds was not
constrained. Other than the difference in carbon source,
the rest of the medium remained the same as for our
LN acetate analysis.

Figure 2a shows the result of our MOFA analysis. The
analysis identified 2303 Pareto optimal solutions that
form the 7-dimensional Pareto front for the examined
objectives. As it can be seen, a significant majority of the
Pareto optimal solutions (~ 84%) display growth pheno-
types that are less than half that of the growth archetype.
This is because:

Table 1 Summary of model predicted characteristics of light anaerobic mixotrophic metabolism of three aromatic compounds. In each
case the model predicted doubling time is smaller than the measured value. To achieve the theoretical maximum growth rates, the cell

must extensively use rTCA (a carbon inefficient pathway) to fix CO,

Aromatic Predicted minimum Measured doubling Rate of substrate import Percent of imported
substrate doubling time (hours) time (hours) [62] (mmol/gDW.h) carbon as CO,
4-Coumarate 9 94 +02 033 46

4HBZ 88 12+02 044 8

Benzoate 8.7 93+02 043 3
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normalized value. b Select Pareto-optimal solutions from the MOFA analysis of growth, carbon fixation/carbon efficiency and H, production in RP when
growing on a variety of different aromatic compounds. The predicted growth archetypes (A, B & C) have greater growth rates than measured values (D to
). At the measured growth rates, our MOFA analyses predict presence of many metabolic phenotypes. Some (D, F & H) use lower amounts of carbon and
fix greater amounts of CO,. These phenotypes do not produce H, gas. Others (E, G & I), import extra carbon and use the energy from metabolizing this
resource to produce small amounts of H, gas. As with aliphatic metabolism, maximum production of H, results in cessation of growth and full oxidation
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a) Exports of Hy and CO, diminish growth. The
former siphons electrons and protons needed for
growth; while the latter removes carbon that can be
fixed back into biomass.

b) Excess import of carbon in the absence of
absorbing more light or increased export of CO,

(a byproduct of chemotrophic metabolism) would
lead to export of reduced organic byproducts,
which removes energy needed for biomass
formation.

The results of our MOFA analyses also indicate that, as
with metabolism of acetate, efficient carbon utilization is a
primary objective of RP metabolizing aromatic carbon
sources. Below we describe the results of our analysis in
more detail.

Condition 1. Light-anaerobic metabolism of 4-
coumarate Under light-limited anaerobic conditions
with 4-coumarate as the sole carbon source, a small
fraction (4.6%) of the imported carbon was exported as
CO, while the majority of the produced CO, (83%) was
incorporated into biomass. Unexpectedly, at the growth
archetype (Fig. 2b, Row C), our model predicted that the
CBB cycle was not the primary route of carbon fixation.
Instead, a large fraction (~61%) of CO, was fixed by

enzymes pyruvate:ferredoxin  oxidoreductase (E.C.
1.2.7.1) and 2-oxoglutarate synthase (E.C. 1.2.7.3). These
enzymes are associated with the reductive citric acid
cycle (rTCA) which is a pathway for carbon fixation in
some photoautotrophic organisms such as the
green-sulfur bacterium Chlorobium limicola [56] and
chemolithoautotrophic archaea [57].

Presence of rTCA in RP is intriguing since it is not
present in another well-studied, closely related species,
Rhodobacter sphaeroides. One advantage of using rTCA
for carbon fixation is that it requires less energy than
CBB [57]. Thus, given the energy-limited state of the
system when light absorption is restricted, using this
mode of carbon fixation is essential for achieving the
growth archetype.

However, the rTCA-based optimum theoretical growth
rate was 4% higher than the measured value (Table 1).
At the growth rate that matches experimental measure-
ments (Fig. 2b, Row F), the system can use CBB for car-
bon fixation (accounting for ~56% of the produced
CO,). The switch to CBB also resulted in a 5% improve-
ment in carbon utilization efficiency. Gene expression
analyses have verified extensive use of CBB during LN
metabolism of 4-coumarate [58]. Thus, our results indi-
cate that under light-limited conditions RP does not
achieve the theoretical growth archetype and instead the
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primary objective during LN metabolism of 4-coumarate
is maximum growth while striving to achieve maximum
metabolic efficiency.

Condition 2. Light-anaerobic metabolism of benzoate
MOFA analyses of growth archetype with benzoate as the
sole carbon source under light-limited anaerobic condi-
tions (Fig. 2b, Row A) predicted that only 3% of the
imported carbon was exported as CO, while approxi-
mately 90% of the produced CO, was fixed into biomass.
However, as with 4-coumarate, due to energy consider-
ations, 67% of CO, was fixed by rTCA. MOFA results at
the measured growth rate (Fig. 2b, Row D) showed that
the system can switch to CBB for CO, fixation (~50% of
generated CO,). This mode of metabolism is about 2%
more carbon efficient than the metabolism at the
optimum theoretical growth rate.

Condition 3. Light-anaerobic metabolism of 4-
hydroxybenzoate Using the model to examine flux pat-
terns in the growth archetype when RP consumes
4-hydroxybenzoate (4HBZ) under light-limited anaerobic
conditions (Fig. 2b, Row B), we found that 8% of the
imported carbon was exported as CO,. Only about half
of the CO, that was produced was fixed through the ac-
tivity of rTCA while around 20% is fixed through the
formation of carbonic acid. The results at the measured
growth rate (which was significantly smaller than the
predicted growth archetype value, Table 1) identify a
likely change in the mode of carbon fixation. At the
measured growth rate (Fig. 2b, Row H), the carbon effi-
cient CBB pathway can become the primary route of
CO, fixation (83% of produced CO,). This mode of me-
tabolism is 8% more carbon efficient than the one used
to achieve theoretical optimum growth rate.

Overall, when simulating light-limited (absorption
values similar to those calculated for acetate metabolism,
36.6 mmol.gDW ™ ".h™") photoheterotrophic growth of
RP on aromatic compounds, with exception of metabol-
ism on 4HBZ, the model predicts growth rates that are
reasonably close to measured values. This can be viewed
as further proof of light-limited nature of RP’s photo-
trophic metabolism.

Also, if we assume that RP’s enzymatic capacity to fix
CO, by r'TCA is comparable to that of CBB, then it ap-
pears that optimum growth is not the sole objective that
controls LN metabolism of aromatics in RP. Our results
indicate that the cell grows at the maximum growth rate
that also optimizes carbon efficiency. Hence, the cell
uses the more energy expensive CBB carbon fixation
pathway that results in a lower growth rate in compari-
son to theoretical growth archetype, but instead mini-
mizes carbon waste.
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Proton economy of light-anaerobic metabolism

Our simulations of RP acetate metabolism under LN con-
ditions indicate that RP must import protons from the sur-
rounding medium in order to achieve the measured
growth rate. This agrees with previous studies that showed
exchange of protons with growth medium is important for
maximizing cellular growth [2]. It also has been shown that
in other species of Rhodopseudomonas, lower pH values in
the surrounding medium result in an increased rate of bio-
mass production [59].

The imported protons are bound to the excess oxygen
atoms that were imported as acetate and are exported as
water. The model predicts that without proton uptake and
under LN conditions, the growth rate is 13% lower (9.7 h
doubling time), due to excess oxygen being exported as
a-ketoglutarate, wasting carbon and electrons that could
otherwise be used for growth. a-ketoglutarate is exported
because it has a low degree of reduction (k=3.2). If we
eliminate export of a-ketoglutarate, this further reduces
the growth rate (10.5h doubling time) because alternative
oxygen carriers (e.g, pyruvate and succinate (k = 3.5)) con-
tain more reduced carbon than a-ketoglutarate. The
model’s prediction that RP imports protons during LN
acetate metabolism should lead to a pH increase in the
growth media, consistent with our experimental observa-
tion. Phototrophic growth of RP on acetate in poorly buff-
ered minimal media leads to a medium pH increase (from
6.7 to 7.2) (Fig. 3).

Examining the proton economy of LN metabolism of
aromatic compounds, the model predicts that unlike me-
tabolism of acetate, breakdown of some compounds (e.g.,
benzoate and 4-coumarate) results in production of pro-
tons that are exported. This is due to the low (compared to
biomass) hydrogen and oxygen content of these aromatic
compounds. The reactions for metabolism of 4-coumarate
and benzoate are:
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CHo 780033 + 0.22 NH, "
+ 0.21 HyO—CH;.0300,54No 2> + 0.15 H* (1)
CHp710g29 + 0.22 NH,*
4 0.25 HyO—CHj.930054Ng 22 + 0.16 H" (2)

Each carbon that is imported into the cell carries fewer
protons and oxygen atoms than acetate (CH;50) and thus
water needs to be used to make up for this shortcoming.
Our experiments verified that LN metabolism of benzoate
indeed reduces the pH of the growth medium (Fig. 3).

Under light limited conditions, at the measured growth
rate, the model predicts that metabolism of 4HBZ should
result in import of protons from the medium. This is
because the amount of water imported satisfies the oxygen
difference between 4HBZ and biomass but not the hydro-
gen difference. The 4HBZ metabolism equation is:

CHo.710043 + 0.22 NH, " + 0.11 H,O
+0.12 H* —CHj 930054No 22 (3)

However, our experiments revealed that LN metabolism
of 4HBZ reduces the pH of the medium (Fig. 3). We attri-
bute this discrepancy between the model’s predictions and
experimental measurements to the fact that the model-
predicted metabolism utilizes the theoretical minimum
amount of carbon necessary to achieve the growth arche-
type. If the 4HBZ metabolism of RP is any less carbon effi-
cient than the model prediction, then the proton
metabolism of the system would change. This is because
production and export of CO, would increase the amount
of H,O that needs to be imported to maintain the elemen-
tal balance of oxygen. Breakdown of water would result in
greater production of protons. For example, if as measured
for acetate metabolism [48], 10% of the imported carbon is
exported as CO,, the metabolic process becomes proton
producing and the metabolic equation becomes:

CHo710043 + 0.2 NH,*
+ 0.26 H,O—0.9 CH;.930¢.54Ng.20 + 0.1 CO,
+0.29H" (4)

Yet again, as with acetate, upon analyzing the experi-
mental observations with the model, it can be construed
that the behavior of the cell does not solely optimize just
a single biological objective such as growth or maximum
nutrient use efficiency, but rather a combination of
multiple objectives.

Hydrogen gas production by R. palustris

Examining hydrogen gas production from R. palustris’ LN
metabolism of acetate, our model predicted a maximum H,
production yield of 4mol Hy/mole acetate, matching the
previously published value [43]. The model predictions also
suggest that at both theoretical maximum and observed
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growth rates, RP should not produce H, gas (Fig. 1b, Rows
A and E), in agreement with previous experimental obser-
vations [48]. MOFA results showed that H, production
negatively effects RP’s growth rate and carbon efficiency
(i.e, carbon fixation via the CBB pathway) (Fig. 1b, Row
G). Production of small amounts of H, is necessary for
the production of small organic acids like pyruvate and
a-ketoglutarate. Only CO, production is positively af-
fected by H, production. In solely carbon limited condi-
tions, maximum theoretical H, production requires that
RP fully oxidize acetate to CO, and use all the energy gen-
erated from this chemical process as well as photon
absorption to produce H, gas (Fig. 1b, Row G).

It is known that production of highly reduced energy
and carbon storage compounds such a polyhydroxybuty-
rate (PHB) can negatively affect H, production in PNS
[60]. PHB production requires use of significant quan-
tities of reducing equivalents and are needed for H, pro-
duction. Our simulations concur with these findings.
Simulating nitrogen starvation while growing on acetate,
our model predicts that RP will produce the subunits
(C4HeO3) of PHB, if this compound is allowed to be
exported as a metabolic byproduct. When we optimized
PHB production while minimizing the total exchange of
nutrients and byproducts (at fixed rates of carbon and
photon import), RP produced water, PHB (1 PHB/6 acet-
ate), and succinate.

Previous studies have also shown that nitrogen starved,
non-growing RP cells produce H, gas along with PHB and
a-ketoglutarate and CO, as metabolic byproducts [61]. To
test whether we could predict the same metabolic pheno-
type for the nitrogen-starved and non-growing condition,
we blocked export of succinate. This constraint resulted in
export of a-ketoglutarate as a byproduct. We also observed
that while the total amount of PHB produced was lower
than when succinate was exuded as a byproduct, the effi-
ciency of PHB production increased (1 PHB/5 acetate).
Thus, it appears that nitrogen-starved RP cells simultan-
eously maximize PHB production and carbon efficiency
while minimizing transport fluxes.

MOFA analyses of H, production during LN metabolism
of three aromatic compounds indicate that regardless of
carbon source, at the theoretical growth archetypes, RP
would not produce H, gas (Fig. 2b, A, B, C). Although the
examined aromatic compounds (average k = 4.17) are more
reduced than acetate (x =4), and usually carry extra pro-
tons (Egs. 1 & 2); at the growth archetypes, the available
energy and reducing equivalents are used to fix CO,. At
the experimentally measured growth rates, which are lower
than the predicted growth archetype rates, the cells can
use the excess energy that is not used for production of
biomass to produce Ho.

Production of H, can be induced if the objective of
RP’s metabolism is changed from maximized carbon
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efficiency to one where extra carbon is imported and
wasted as CO,. For example, when growing on
4-coumarate at the measured growth rate, the model
predicts that RP can produce 1.1 mol of H, for every
mole of 4-coumarate metabolized (Fig. 2b, Row G). This
number is similar to that for benzoate (1.14 H,/benzo-
ate) (Fig. 2b, Row E), both of which are significantly
smaller than the ratio for 4HBZ (4.6 H,/4HBZ, Fig. 2b,
Row I). This significantly higher predicted ability to pro-
duce H, while metabolizing 4HBZ is due to the fact that
the measured growth rate for 4HBZ is ~25% slower
than for benzoate and 4-coumarate [62]. Thus, in theory,
to produce 5 molecules of H, per 4HBZ, the cell imports
45% more carbon and does not use the extra energy that
is available from absorbing light to fix CO, via CBB. The
available excess energy is instead used to produce H,
gas. As with acetate metabolism, for maximum H, pro-
duction, MOFA analyses predicted absolute cessation of
growth (Fig. 2b, Rows J, K, L).

When we examine H, production via phototrophic me-
tabolism of RP, our results consistently show that produc-
tion of H, diminishes the activity of other important
biological objectives that have been considered for FBA
analysis, such as optimum growth or metabolic efficiency
(Figs. 1 and 2). This is consistent with previous suggestions
that H, production competes with biomass generation for
resources such as energy, protons, and electrons [61, 63].
So, while H, production can serve as an electron sink simi-
lar to CBB; the important difference between the two pro-
cesses is that the latter conserves cellular resources while
the former (due to absence of uptake hydrogenase activity
[64] in RP) wastes it.

It appears that expression of nitrogenase automatically
results in H, production as long as the redox state of
the system provides it with reducing agents [61, 65]. To
lower the negative cost of nitrogenase activity, RP regu-
lates nitrogenase expression through nitrogen sensing
and post-translational modification [66].

Thus, we surmised that presence of nitrogenase under
normal conditions is extremely deleterious to cellular
growth as well as a number of other cellular objectives.
The enzyme’s main function is to fix nitrogen when this re-
source is scarce, and given the importance of this task, we
hypothesize that it has a very high affinity for the sub-
strates it needs for accomplishing its task, namely reduced
ferredoxin and protons. Indeed, computational analyses
have shown that the active site of the nitrogenase enzyme
has more affinity for protons and electrons than the
platinum-based catalysts that are used for abiotic produc-
tion of H, [67]. Hence, if nitrogenase is expressed, irre-
spective of the primary objective of the cellular
metabolism, it will siphon reduced ferredoxin and protons
from other important metabolic processes and, depending
on the redox state of the system, produce H,. However,
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these resources are essential for a variety of other import-
ant functions. This could explain why layers of transcrip-
tional control (e.g, nifA [68]) and post-translational
regulation exist to tightly control nitrogenase activity.

Conclusions

Our MOFA analyses described herein examined the
trade-offs between 8 biological objectives for RP’s photohe-
terotrophic metabolism of acetate (matching the max-
imum number of objective trade-offs that have been
simultaneously examined to date [28]) and 7 objectives for
photoheterotrophic metabolism of aromatic compounds.
Our results provide new insights into the phototrophic
metabolism of RP and indicate that the rate of light ab-
sorption limits cellular growth. While our analyses have
shown that like other forms of metabolism [50], the pri-
mary objectives that the system optimizes are growth, ATP
production, and metabolic efficiency; our results suggest
that RP’s phototrophic metabolism is energy limited which
defines the order of importance of these objectives. Our re-
sults indicate that during LN phototrophic metabolism in
RP, optimum allocation of resources and production of
ATP are more important than growth. Our results also
hint at a preference for a fourth cellular objective during
phototrophic growth, i.e., production and excretion of re-
duced carbon compounds that might be used as an energy
source during dark periods.

Our examination of differences between RP’s metabolism
of aromatic and aliphatic carbon sources using GX-FBA
(see Additional files 1, 2 and 3) indicated that transitioning
from the former to latter will result in a reduction of CBB
activity, consistent with measurements that suggest down-
regulation of genes associated with this pathway [58]. We
(and others [58]) attribute this to the fact that the generally
aromatic compounds are more reduced than aliphatic ones
and hence during metabolism of aromatics there is a
greater need for use of CBB as an electron sink.

Finally, we found that proton metabolism plays a key
role in shaping observed growth phenotypes. Under an-
aerobic conditions, the ratio of carbon, oxygen and
hydrogen in RP’s carbon source relative to its biomass,
and the overall carbon efficiency of phototrophic metab-
olism, determine whether the system prefers a more
basic or acidic medium for growth.

Methods

Metabolic network reconstruction

The metabolic network reconstruction for Rhodopseudo-
monas palustris (model iAN1128) is based on the anno-
tated genome of Rhodopseudomonas palustris CGA009
[41]. Of the 4836 predicted genes present in the genome,
1514 are related to cellular metabolism and biosynthesis.
Our model accounts for the activity of 1128 of these genes
(75%), resulting in 1000 enzymatic reactions. Additional
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literature surveys identified the activity of 37 local orphan
enzymes (13-critical for biomass production, 20-based on
literature, 4-pathway hole-filling) and 14 non-enzymatic
reactions, resulting in a final model of 1037 reactions and
949 metabolites.

The initial foundation of the model is a draft model ob-
tained from Model SEED [69]. So, all the initial gene-pro-
tein-reaction (GPR) associations were based on RAST
annotation [70]. During the curation process, all RAST-
based GPR associations were compared against the original
annotation [41] as deposited on National Center for Bio-
technology Information (NCBI) [71], and KEGG [72]. In
cases where there were disagreements between the annota-
tions, the original annotation was used as the highest au-
thority followed by KEGG, and lastly RAST. We prioritized
KEGG assignments of function because KEGG ortholog as-
sighment bases are continually updated in the KEGG
Orthology And Links Annotation program (KOALA) [72].
Also, we recently showed [73] that when comparing accur-
acy of enzymatic annotation (characterized by Enzyme
Commission (EC) numbers), KEGG predictions are signifi-
cantly more accurate than RAST for E. coli.

The same curation scheme was used to ensure that
multiple genes associated with a reaction are correctly
labeled as either isozymes or components of an enzyme
complex. In cases where multiple reactions were com-
bined into one reaction (e.g., multi-step isomerization
reactions), the reaction in the GPR was treated as if it
was catalyzed by a multi active-site enzyme complex.

In some cases, we used KEGG to improve/update the
originally published annotations. For example, byproducts
of some genes in the original annotation have been
assigned a clearly annotated function (e.g., phosphoglycer-
ate kinase for the gene RPA(0943) but have not been
assigned an EC number. In these cases, we used KEGG to
assign the correct EC number for the enzyme and the as-
sociated reactions were added to the metabolic network re-
construction. In some other cases, the EC numbers
assigned in the original annotation have become obsolete.
For example, the original annotation assigns the EC num-
ber 1.3.99.1 to the byproduct of gene RPA0216. That EC
number is no longer in use and has been changed to
1.3.5.1. For such cases we used KEGG to identify and cor-
rect these dated assignments and added the correct reac-
tions to our model.

Finally, in some cases KEGG had assigned a function
to a protein that did not have one in the original annota-
tion. We did not blindly accept KEGG’s assignment, and
instead examined the initial experimental basis for the
KEGG ortholog (KO) assignment and verified the KEGG
association using BLAST.

In cases where the roles of essential regulatory genes
were known, such as the need for hbaR (RPA0673) and
aadR (RPA4234) for growth with 4-hydroxybenzoate as
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the carbon source [74, 75], these associations were in-
corporated in the model’s GPR basis. But for situations
where deletion of a gene reduces RP’s growth rate only
under specific media conditions (e.g, badR (RPA0655)
mutants grow slowly on benzoate [76]), then the gene
was not included in the GPR.

The biomass equation for RP was developed using a var-
iety of data sources. The overall breakdown of cellular
components is from McKinlay and Harwood [48]. The
amino acid, nucleotide, cofactors, carotenoids and
phospholipid composition of the biomass are unique to
RP. It has been shown that the composition of RP’s cellular
membrane changes when the cell transitions between
dark-aerobic environments to LN environments [77, 78].
We implemented this change in our model by developing
two separate biomass compositions, with bacteriochloro-
phyll composition of LN biomass drawn from Firsow et al.
[79] and composition of lipids and fatty acids (both dark
and light conditions) drawn from Wood et al. [77]. The
composition of the polysaccharide moiety of lipopolysac-
charides is from Weckesser and Drews [80]. Although in
most photosynthetic organisms, genes for carotenoid bio-
synthesis are simultaneously expressed with other genes
involved in chlorophyll biosynthesis and light harvesting
process [81], and overall carotenoid concentrations greatly
increase between dark and light conditions [82], we did
not remove carotenoids from the biomass composition in
dark aerobic conditions. This is because carotenoids have
other functions in dark conditions, such as quenching free
radicals and roles in overall cellular response to environ-
mental stress [83].

It is known that oxygen is not required for the oxidative
reactions that are involved in biosynthesis of carotenoids,
different forms of quinones, nicotinates, and nicotinamides
[84—86]. However, the enzymes associated with these an-
aerobic transformations are not known. In our RP model,
anoxygenic reactions for production of these compounds
were drawn from the Model SEED database [69], and were
used as orphan reactions without any GPR association.

One significant challenge encountered during the
course of our RP GSM development was the unique
structure of RP’s Lipid A. The lipid A base of lipopoly-
saccharides (LPS) in RP has been shown to be composed
of 2,3-diamino-2,3-dideoxyglucose [87]; however, the
metabolic pathway for production of this compound is
unknown. We used microarray analyses to measure the
expression of genes known to be associated with usual
pathways of LPS production to test whether common
pathways for glucosamine-based lipid A synthesis were
active in RP. Our analyses showed that most of these
genes were prominently expressed in RP. Given this in-
formation, we used a number of in silico methods such
as AS2TS [88] protein structure modeling tool and tools
for identification of catalytic sites [89] and protein
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function predictions (CATSID) [90] to assess whether
any of these enzymes could catalyze production of dia-
mino-glucose. However, based on our analyses of RP
proteins, we could not find any enzyme able to catalyze
the required chemical reactions.

Our model’s biomass has an elemental composition of
CH; 9300.54N0 25. This formula is somewhat different from
that measured for the elemental composition of RP strain
420L (CH; g0¢3sNp1s) [91]. However, the model’s bio-
mass is closer in composition and degree of reduction per
carbon mole (k =4.19) to the “standard” biomass formula
of CH;8005Np2 [92] (k=4.2) than the composition for
strain 420L (x = 4.5). Hence for our simulations the over-
all formula for conversion of acetate to biomass is:

CH;50 +0.05H"
+0.17 NH4+—>0.76 CH1.9300.54N0.22
+0.29 H,O + 0.06 CO, + 0.18 CHO (5)

We set the value for non-growth associated mainten-
ance ATP usage to that previously used for Escherichia
coli (7.6 mmol.gDW~ Lh~1) [93]. Variation of this value
does not change the outcome of metabolic simulations
since changing the rate of light absorption will account
for any increase or decrease in this value.

We curated the model extensively to ensure absolute
mass balance, including proper proton balance under
physiological pH values. We also imposed the loop law
on the model and eliminated all thermodynamically in-
feasible type III extreme pathways [94].

An SBML file of the model is included in the Add-
itional file 3. The model can be also downloaded from
bbs.lInl.gov/AliNavidhtml and EMBL-EBI's Biomodels
Database [95].

Comparing the predicted metabolic phenotypes with
experimental observations validated the model. We ex-
amined the model’s ability to consume a variety of differ-
ent carbon sources as reported in the literature [39, 96].
It is known that strains of RP can consume a large array
of different aromatic compounds [97-103]. However,
while the mechanism for breakdown of the common
intermediate in the process of anoxic aromatic catabol-
ism (i.e., benzoyl-coa) [74, 104-109] has been exten-
sively examined, the enzymatic process and associated
genes for breakdown of some parent compounds are not
known. Furthermore, strain CGA009 cannot consume
some of the aromatic compounds that other strains ca-
tabolize. For example, while strain CGA009 cannot use
3-chlorobenzoate [110], RP strain RCB100 uses this
compound as a carbon source [111]. Thus, our model
only accounts for metabolisms of aromatic compounds
whose degradation pathways have been identified
(benzoate, 4-hydroxybenzoate, phenol, cresol, couma-
rate, protocatechoate, vanillate, phenol, and cinnamate).
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Flux balance analysis

The FBA modeling approach uses a genome-scale meta-
bolic reconstruction as its basis. The reconstruction is de-
veloped using elementary functional information derived
from annotated genomes and available knowledge of en-
zymology. The reconstruction of an organism’s metabolic
reactions is represented as a stoichiometric matrix, S (m x
n), where m is the number of metabolites and # the num-
ber of different reactions. Applying the assumptions of
mass balance and metabolic steady-state, the following set
of linear equations govern the system’s behavior:

ax;
=S s -o
]

where X; is the concentration of metabolite i. For FBA,
other limitations are imposed on the system based on ex-
perimental studies, including a limit on the amount of flux
that courses through a reaction, as well as constraints on
the amount of nutrients imported, and the waste products
secreted from the system. These constraints are formu-
lated as:

CKSViS/)),

ngisq)v

where b; and v; are the export/import flux of metabolite
species i, and the flux through internal reaction i re-
spectively, and a, 5, x, and ¢ are the lower and upper
limits for these fluxes. Finally, FBA utilizes linear pro-
gramming to determine a feasible steady-state flux vec-
tor that optimizes an objective function, most
commonly chosen to be the production of biomass, i.e.
cellular growth. FBA was used with our RP GSM to
analyze single gene knockout phenotypes for all the
genes in the model. Several reviews [112, 113] provide
detailed description of this process.

GX-FBA

In order to assess differences in RP metabolism when grow-
ing on aliphatic and aromatic carbon sources, we used the
GX-FBA modeling methodology [49] with available
gene-expression measurements [58] for RP growing on dif-
ferent carbon sources. We combined mRNA expression
data with a constraint-based framework using the multi-
step approach previously detailed for GX-FBA [49]. Note
that, for our analyses we chose to only take into account
gene-expression changes of at least 50% (+0.5 fold change).

A brief description of GX-FBA steps is:

1. Generate the flux distribution v} for the starting
condition (1) using an Interior Point optimization
algorithm with biomass growth or any other
appropriate goal as the objective function.
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2. For nutritional constraints associated with the post-
transition environment (condition (2)), flux variability
analysis (FVA) [114] with minimal flux for biomass
production set to zero is utilized to calculate the
lower and upper fluxes that each model reaction i
(viMin and V"™ respectively) can carry solely based on

environmental limitations and network connectivity.

From these results, the mean possible flux value for

each reaction (v;) and average flux carried by all

active reactions (#!) is determined.

3. Identify the set of reactions T for which an mRNA
expression value can be associated. For protein
complexes and reactions catalyzed by isozymes, the
maximal up- or down-regulation value is used
unless the mRNA expression values are inconsistent
(mixture of up- and down-regulation). In the latter
case, the reaction is excluded from T.

4. Construct a new objective function:

Z= Z log, (C;"RNA)g.

ieT 4

If the flux value for condition 1 of a reaction i is zero, v}
and ; are set equal to the average value for all active reac-

tions (7). For a more detailed description of this method
see Navid and Almaas (2012) [49].

Catalytic site identification server

The catalytic site identification (CATSID) web server
[89, 90] rapidly identifies structural matches to a
user-specified catalytic site among all Protein Data Bank
proteins. It also examines a user-specified protein struc-
ture or model to identify structural matches to a library
of catalytic sites. CATSID includes a database of
pre-calculated matches between all Protein Data Bank
proteins and the library of catalytic sites. The databank
has been used to derive a set of theorized new enzymatic
function annotations. Matches and predicted binding
sites can be visualized interactively online. We used
CATSID along with a number of other in silico methods
for examining protein structure such as AS2TS [88] to
determine if whether any of the enzymes encoded by RP
genome could catalyze production of diamino-glucose, a
key subunit of RP Lipid A.

Multi-objective flux analysis

As with the effort by Nagrath et al. [20], our MOFA pro-
gram uses the Normalized Normal Constraint (NNC)
method [47] to map the n-dimensional Pareto front of the
competing metabolic objectives. NNC generates an even
distribution of Pareto solutions on convex or non-convex
Pareto frontiers for problems of n-objectives. Additionally,
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NNC is usable for an arbitrary number of objectives and
its results are entirely independent of the scales of the ex-
amined objectives scales.

The mathematical representation of a generic multi-
objective optimization problem is:

mxin{zl (%), 22(%), ..., zn(x) }, (22)

subject to:
gj(x)so, (1<j<r) (6)
he(x) =0, (1<k<s) (7)
Xy Sx;<xy, (1<i<ny) (8)

Vector x denotes the design variables (fluxes) and z,
denotes the nth objective function. Equations 6-8 de-
note the inequality, equality and side constraints.

NNC can be briefly described as a method where an in-
vestigator’s choice of a set of n objectives defines an n-di-
mensional volume in which all Pareto solutions to the
problem are found. Next, # anchor points are identified.
Anchor Points are feasible solutions, in the objective space,
that correspond to the best possible values for respective
individual objectives. The values of the anchor points are
normalized to eliminate deficiencies associated with scales
of individual objectives. The solution space volume is then
reduced through the use of an n-dimensional “Utopia” hy-
perplane. The Utopia plane is defined such that it contains
all n anchor points. Finally, a set of evenly distributed
points on the Utopia hyperplane serve to constrain the all
but one of the objectives under consideration. Solving for
the optimal value of the lone objective at each one of these
points will result in calculation of a Pareto solution. For a
full mathematical description of NNC see the manuscripts
by Dr. Achille Messac and coworkers [47, 115].

It is interesting to note that Shoval et al. [50] recently
showed that best trade-off phenotypes for any organism are
the weighted averages of archetypes. In the NNC method
anchor points represent these archetypes. Results from
Shoval et al. also indicate that experimentally observed phe-
notypes are contained within simple geometric shapes that
are akin to the Utopia line, plane, or hyper-plane (depend-
ing on the dimension of MO analysis) in NNC - ie, the
geometric space defined by the anchor points.

For our MOFA analyses, we used the RP GSM and
changed the constraints based on the growth medium
we were examining. Based on the choice of the n objec-
tives we were examining; the algorithm would determine
the appropriate n anchor points to define the Utopia
plane for the problem. At each point on the hyperplane,
the value of n-1 objectives would be constrained, and
then (like FBA) linear programming will be used to solve
for the optimum value of the remaining objective.
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Analysis of growth-related pH changes in the medium
Rhodopseudomonas palustris CGA009 was grown in
modified photosynthetic medium [116] with low phosphate
under anaerobic conditions. To observe how pH of the
growth media was affected by bacterial growth on various
carbon sources, we lowered the phosphate concentration to
20% (5 mM) of the original concentration and adjusted the
initial pH to 6.7 prior to cell inoculation. An organic source
of acetate (10 mM), benzoate (3 mM), 4-hydroxylbenzoate
(2.2 mM) or 4-coumarate (2 mM) was provided as the sole
carbon source. Anaerobic cultures were placed 20 cm away
from a 60 W incandescent light bulb under constant light,
and optical density (OD at 660 nM) was monitored to cal-
culate doubling time. The pH of the spent media was mea-
sured upon cultures reaching late exponential phase. Three
biological replicates were included for each condition.
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environmental and genetic perturbations. (DOCX 3179 kb)

Additional file 2: RP model and gene knockout results. (XLSX 133 kb)
Additional file 3: SBML format of the RP model. (XML 1614 kb)

Abbreviations

4HBZ: 4-hydroxybenzoate; CBB: Calvin-Benson-Bassham; FBA: Flux balance
analysis; GSM: Genome-scale model; LN: Light, anaerobic condition;

MO: Multi-objective; MOFA: Multi-objective flux analysis; NNC: Normalized
normal constraint; PHB: Polyhydroxybutyrate; PNS: Purple non-sulfur;

PO: Pareto-optimal; RP: Rhodopseudomonas palustris; rTCA: Reductive citric
acid cycle

Acknowledgments

The authors would like to thank Professor Jake McKinlay for sharing his time
and expertise on R. palustris metabolism. We also would like to thank Drs.
Peter Weber and Jeff Kimbrel for their insightful comments and help with
editing this document. Work at LLNL was performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. LLNL-JRNL-727615.

Funding

This research was supported by the LLNL Biofuels Scientific Focus Area,
funded by the U.S. Department of Energy Office of Science, Office of
Biological and Environmental Research Genomic Science program under
FWP SCW1039 and the Laboratory Research and Development program (14-
ERD-091) at LLNL. The funding agencies did not play any roles in the design
of the study; collection, analyses, and interpretation of data; and in writing of
this manuscript.

Availability of data and materials
All data generated during this study are included in this published article
(and its Supplementary Information files).

Authors’ contributions

AN developed the model, conducted all in silico analyses, and wrote the
paper. YQ edited the paper and conducted all experimental analyses. SEW
conduced the molecular dynamics simulations and edited the paper. JPR
managed the project and edited the manuscript. All authors have read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Page 14 of 16

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Received: 4 April 2019 Accepted: 24 April 2019
Published online: 09 May 2019

References

1. Mayer K Biodata comes "“Ome” to roost: genomic, transcriptomic, and
Metabolomic data Can't be free, but it can be “free range”. Genet Eng
Biotechnol News. 2018;38(8):6.

2. Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded genome-scale model
of Escherichia coli K-12 (JR904 GSM/GPR). Genome Biol. 2003;4(9):R54.

3. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD,
Broadbelt LJ, Hatzimanikatis V, Palsson BO. A genome-scale metabolic
reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260
ORFs and thermodynamic information. Mol Syst Biol. 2007,3:121.

4. Duarte NC, Herrgard MJ, Palsson BO. Reconstruction and validation of
Saccharomyces cerevisiae IND750, a fully compartmentalized genome-scale
metabolic model. Genome Res. 2004;14(7):1298-3009.

5. Feng X, Xu Y, Chen Y, Tang YJ. Integrating flux balance analysis into kinetic
models to decipher the dynamic metabolism of Shewanella oneidensis MR-
1. PLoS Comput Biol. 2012;8(2):e1002376.

6. Klitgord N, Segré D. Ecosystems biology of microbial metabolism. Curr Opin
Biotechnol. 2011;22(4):541-6.

7. Zomorrodi AR, Maranas CD. OptCom: a multi-level optimization framework
for the metabolic modeling and analysis of microbial communities. PLoS
Comput Biol. 2012,8(2):1002363.

8. Babaei P, Marashi S-A, Asad S. Genome-scale reconstruction of the metabolic
network in pseudomonas stutzeri A1501. Mol BioSyst. 2015;11(11):3022-32.

9. Navid A, Almaas E. Genome-scale reconstruction of the metabolic network
in Yersinia pestis, strain 91001. Mol BioSyst. 2009;5(4):368-75.

10.  Raghunathan A, Shin S, Daefler S. Systems approach to investigating host-
pathogen interactions in infections with the biothreat agent Francisella.
Constraints-based model of Francisella tularensis. BMC Syst Biol. 2010;4:118.

11, Imam S, Yilmaz S, Sohmen U, Gorzalski AS, Reed JL, Noguera DR, Donohue
TJ. iRsp1095: a genome-scale reconstruction of the Rhodobacter
sphaeroides metabolic network. BMC Syst Biol. 2011;5(1):116.

12. Hendry JI, Prasannan CB, Joshi A, Dasgupta S, Wangikar PP. Metabolic model of
Synechococcus sp. PCC 7002: prediction of flux distribution and network
modification for enhanced biofuel production. Bioresour Technol. 2016,213:190-7.

13. Orth JD, Thiele |, Palsson BO. What is flux balance analysis? Nat Biotechnol.
2010;28(3):245-8.

14. Varma A, Palsson BO. Metabolic flux balancing: basic concepts, scientific and
practical use. Nat Biotechnol. 1994;12(10):994-8.

15. Price ND, Papin JA, Schilling CH, Palsson BO. Genome-scale microbial in silico
models: the constraints-based approach. Trends Biotechnol. 2003;21(4):162-9.

16. Bordbar A, Monk JM, King ZA, Palsson BO. Constraint-based models predict
metabolic and associated cellular functions. Nat Rev Genet. 2014;15(2):107-20.

17. Pareto V, Bousquet GH. CEuvres completes: Cours d'économie politique, vol.
1. Geneva: Librairie Droz; 1964.

18.  Pareto V. Manual of political economy: Augustus m Kelley Pubs. Oxford:
Oxford University Press; 1971.

19. Handl J, Kell DB, Knowles J. Multiobjective optimization in bioinformatics
and computational biology. IEEE/ACM Trans Comput Biol Bioinform/IEEE,
ACM. 2007;4(2):279.

20. Nagrath D, Avila-Elchiver M, Berthiaume F, Tilles AW, Messac A, Yarmush ML.
Integrated energy and flux balance based multiobjective framework for
large-scale metabolic networks. Ann Biomed Eng. 2007;35(6):863-85.

21, Nagrath D, Avila-Elchiver M, Berthiaume F, Tilles AW, Messac A, Yarmush ML.
Soft constraints-based multiobjective framework for flux balance analysis.
Metab Eng. 2010;12(5):429.

22. Sendin J-O, Alonso A, Banga J. Multi-objective optimization of biological
networks for prediction of intracellular fluxes, vol. Springer; 2009. p. 197-
205. https://link.springer.com/book/10.1007/978-3-540-85861-4#about.


https://doi.org/10.1186/s12859-019-2844-z
https://doi.org/10.1186/s12859-019-2844-z
https://doi.org/10.1186/s12859-019-2844-z
https://link.springer.com/book/10.1007/978-3-540-85861-4#about

Navid et al. BMIC Bioinformatics

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45,

46.

47.

48.

(2019) 20:233

Oh YG, Lee DY, Lee SY, Park S. Multiobjective flux balancing using the NISE
method for metabolic network analysis. Biotechnol Prog. 2009;25(4):999-1008.
Costanza J, Carapezza G, Angione C, Lio P, Nicosia G, Gilbert D, Heiner M.
Multi-objective optimisation, sensitivity and robustness analysis in FBA
modelling Computational Methods in Systems Biology, vol. 0. Berlin /
Heidelberg: Springer; 2012. p. 127-47.

Edwards JS, Ibarra RU, Palsson BO. In silico predictions of Escherichia coli
metabolic capabilities are consistent with experimental data. Nat Biotech.
2001;19(2):125-30.

Edwards JS, Ramakrishna R, Palsson BO. Characterizing the metabolic phenotype:
a phenotype phase plane analysis. Biotechnol Bioeng. 2002;77(1):27-36.

Higuera C, Villaverde AF, Banga JR, Ross J, Moran F. Multi-criteria optimization of
regulation in metabolic networks. PLoS One. 2012,7(7).e41122.

Byrne D, Dumitriu A, Segré D. Comparative multi-goal tradeoffs in systems
engineering of microbial metabolism. BMC Syst Biol. 2012,6(1):127.
Costanza J, Carapezza G, Angione C, Li6 P, Nicosia G. Robust design of
microbial strains. Bioinformatics. 2012;28(23):3097-104.

Sendin JOH, Exler O, Banga JR. Multi-objective mixed integer strategy for
the optimisation of biological networks. IET Syst Biol. 2010/4(3):236-48.
Villaverde AF, Bongard S, Mauch K, Balsa-Canto E, Banga JR. Metabolic
engineering with multi-objective optimization of kinetic models. J
Biotechnol. 2016;222:1-8.

Boada Y, Reynoso-Meza G, Picé J, Vignoni A. Multi-objective optimization
framework to obtain model-based guidelines for tuning biological synthetic
devices: an adaptive network case. BMC Syst Biol. 2016;10(1):27.

Getha K, Vikineswary S, Chong VC. Isolation and growth of the phototrophic
bacterium Rhodopseudomonas palustris strain B1 in sago-starch-processing
wastewater. World J Microbiol Biotechnol. 1998;14(4):505-11.

Vincenzini M, Materassi R, Tredici MR, Florenzano G. Hydrogen production by
immobilized cells—II. H2-photoevolution and waste-water treatment by agar-
entrapped cells of Rhodopseudomonas palustris and Rhodospirillum
molischianum. Int J Hydrog Energy. 1982,7(9):725-8.

Xing D, Zuo Y, Cheng S, Regan JM, Logan BE. Electricity generation by
Rhodopseudomonas palustris DX-1. Environ Sci Technol. 2008;42(11):4146-51.
Oh Y-K, Seol E-H, Kim M-S, Park S. Photoproduction of hydrogen from
acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris
P4. Int J Hydrog Energy. 2004;29(11):1115-21.

McKinlay JB, Harwood CS. Photobiological production of hydrogen gas as a
biofuel. Curr Opin Biotechnol. 2010;21(3):244-51.

Huang JJ, Heiniger EK, McKinlay JB, Harwood CS. Production of hydrogen gas
from light and the inorganic electron donor thiosulfate by Rhodopseudomonas
palustris. Appl Environ Microbiol. 2010;76(23):7717-22.

Jiao Y, Kappler A, Croal LR, Newman DK. Isolation and characterization of a
genetically tractable photoautotrophic Fe (I)-oxidizing bacterium,
Rhodopseudomonas palustris strain TIE-1. Appl Environ Microbiol. 2005;
71(8):4487-96.

Jiao Y, Newman DK The pio operon is essential for phototrophic Fe (Il)
oxidation in Rhodopseudomonas palustris TIE-1. J Bacteriol. 2007;189(5):
1765-73.

Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA,
Beatty JT, Lang AS, et al. Complete genome sequence of the metabolically
versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotech.
2004;22(1):55-61.

Gibson J, Harwood C. Metabolic diversity in aromatic compound utilization
by anaerobic microbes. Annu Rev Microbiol. 2002;56(1):345-69.

Hadicke O, Grammel H, Klamt S. Metabolic network modeling of redox
balancing and biohydrogen production in purple nonsulfur bacteria. BMC
Syst Biol. 2011,5(1):150.

Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I. Detailing the
optimality of photosynthesis in cyanobacteria through systems biology
analysis. Proc Natl Acad Sci. 2012;109(7):2678-83.

Srinivasan K, Mahadevan R. Characterization of proton production and
consumption associated with microbial metabolism. BMC Biotechnol. 2010;10(1):2.
Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U.
Multidimensional optimality of microbial metabolism. Science. 2012;
336(6081):601-4.

Messac A, Ismail-Yahaya A, Mattson CA. The normalized normal constraint method
for generating the Pareto frontier. Struct Multidiscip Optim. 2003.25(2):86-98.
McKinlay JB, Harwood CS. Carbon dioxide fixation as a central redox
cofactor recycling mechanism in bacteria. Proc Natl Acad Sci. 2010;107(26):
11669-75.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Page 15 of 16

Navid A, Almaas E. Genome-level transcription data of Yersinia pestis analyzed
with a new metabolic constraint-based approach. BMC Syst Biol. 2012;6(1):150.
Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel E, Kavanagh
K, Alon U. Evolutionary trade-offs, Pareto optimality, and the geometry of
phenotype space. Science. 2012;336(6085):1157-60.

McKinlay JB, Harwood CS. Calvin cycle flux, pathway constraints, and
substrate oxidation state together determine the H2 biofuel yield in
photoheterotrophic bacteria. MBio. 2011,2(2):00323-10.

Nogales J, Gudmundsson S, Thiele |. Toward systems metabolic engineering in
cyanobacteria: opportunities and bottlenecks. Bioengineered. 2013;4(3):158-63.
Hirschler-Réa A, Matheron R, Riffaud C, Mouné S, Eatock C, Herbert RA,
Willison JC, Caumette P. Isolation and characterization of spirilloid purple
phototrophic bacteria forming red layers in microbial mats of
Mediterranean salterns: description of Halorhodospira neutriphila sp. nov.
and emendation of the genus Halorhodospira. Int J Syst Evol Microbiol.
2003;53(1):153-63.

Roels JA. Energetics and kinetics in biotechnology. Amsterdam: Elsevier
Biomedical Press; 1983.

Stuart RK, Mayali X, Lee JZ, Craig Everroad R, Hwang M, Bebout BM, Weber
PK, Pett-Ridge J, Thelen MP. Cyanobacterial reuse of extracellular organic
carbon in microbial mats. ISME J. 2016;10(5):1240-51.

Evans MC, Buchanan BB, Arnon DI. A new ferredoxin-dependent carbon
reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci. 1966;
55(4):928-34.

Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Higler M, Alber
BE, Fuchs G. Autotrophic carbon fixation in archaea. Nat Rev Microbiol.
2010;8(6):447-60.

Pan C, Oda Y, Lankford PK, Zhang B, Samatova NF, Pelletier DA, Harwood
CS, Hettich RL. Characterization of anaerobic catabolism of p-Coumarate in
Rhodopseudomonas palustris by integrating transcriptomics and
quantitative proteomics. Mol Cell Proteomics. 2008;7(5):938-48.

Liu B-F, Jin Y-R, Cui Q-F, Xie G-J, Wu Y-N, Ren N-Q. Photo-fermentation
hydrogen production by Rhodopseudomonas sp. nov. strain A7 isolated
from the sludge in a bioreactor. Int J Hydrog Energy. 2015;40(28):8661-8.
Wu SC, Liou SZ, Lee CM. Correlation between bio-hydrogen production and
polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-
5. Bioresour Technol. 2012;113:44-50.

McKinlay JB, Oda Y, Rihl M, Posto AL, Sauer U, Harwood CS. Non-growing
Rhodopseudomonas palustris increases the hydrogen gas yield from
acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle.
J Biol Chem. 2014;289(4):1960-70.

Hirakawa H, Schaefer AL, Greenberg EP, Harwood CS. Anaerobic p-
Coumarate degradation by Rhodopseudomonas palustris and identification
of CouR, a MarR repressor protein that binds p-Coumaroyl coenzyme a. J
Bacteriol. 2012;194(8):1960~7.

Abo-Hashesh M, Wang R, Hallenbeck PC. Metabolic engineering in dark
fermentative hydrogen production; theory and practice. Bioresour Technol.
2011;102(18):8414-22.

Rey FE, Oda Y, Harwood CS. Regulation of uptake hydrogenase and effects
of hydrogen utilization on gene expression in Rhodopseudomonas palustris.
J Bacteriol. 2006;188(17):6143-52.

Rey FE, Heiniger EK, Harwood CS. Redirection of metabolism for biological
hydrogen production. Appl Environ Microbiol. 2007;73(5):1665-71.

Heiniger EK, Oda Y, Samanta SK, Harwood CS. How posttranslational
modification of Nitrogenase is circumvented in Rhodopseudomonas
palustris strains that produce hydrogen gas constitutively. Appl Environ
Microbiol. 2012;78(4):1023-32.

Hinnemann B, Moses PG, Bonde J, Jargensen KP, Nielsen JH, Horch S,
Chorkendorff I, Narskov JK. Biomimetic hydrogen evolution: MoS2
nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc. 2005;
127(15):5308-9.

Dixon R, Kahn D. Genetic regulation of biological nitrogen fixation. Nat Rev
Micro. 2004;2(8):621-31.

Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. High-
throughput generation, optimization and analysis of genome-scale
metabolic models. Nat Biotechnol. 2010;,28(9):977-82.

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K,
Gerdes S, Glass EM, Kubal M. The RAST server: rapid annotations using
subsystems technology. BMC Genomics. 2008,9(1):75.

Coordinators NR. Database resources of the national center for
biotechnology information. Nucleic Acids Res. 2016;44(Database issue):D7.



Navid et al. BMIC Bioinformatics

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

(2019) 20:233

Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a
reference resource for gene and protein annotation. Nucleic Acids Res.
2016;44(D1):D457-62.

Griesemer M, Kimbrel JA, Zhou CE, Navid A, D'haeseleer P. Combining
multiple functional annotation tools increases coverage of metabolic
annotation. BMC Genomics. 2018;19(1):948.

Dispensa M, Thomas CT, Kim MK, Perrotta JA, Gibson J, Harwood CS.
Anaerobic growth of Rhodopseudomonas palustris on 4-hydroxybenzoate is
dependent on AadR, a member of the cyclic AMP receptor protein family of
transcriptional regulators. J Bacteriol. 1992;174(18):5803-13.

Egland PG, Harwood CS. HbaR, a 4-Hydroxybenzoate sensor and FNR-CRP
superfamily member, regulates anaerobic 4-Hydroxybenzoate degradation
byRhodopseudomonas palustris. J Bacteriol. 2000;182(1):100-6.

Harwood CS, Burchhardt G, Herrmann H, Fuchs G. Anaerobic metabolism of
aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev.
1999,22(5):439-58.

Wood BJB, Nichols BW, James AT. The lipids and fatty acid metabolism of
photosynthetic bacteria. Biochim Biophys Acta (BBA)-Lipids and Lipid
Metabolism. 1965;106(2):261-73.

Giraud E, Fardoux J, Fourrier N, Hannibal L, Genty B, Bouyer P, Dreyfus B,
Verméglio A. Bacteriophytochrome controls photosystem synthesis in
anoxygenic bacteria. Nature. 2002,417(6885):202-5.

Firsow NN, Drews G. Differentiation of the intracytoplasmic membrane of
Rhodopseudomonas palustris induced by variations of oxygen partial
pressure or light intensity. Arch Microbiol. 1977;115(3):299-306.

Weckesser J, Drews G, Mayer H. Lipopolysaccharides of photosynthetic
prokaryotes. Annu Rev Microbiol. 1979;33(1):215-39.

Bohne F, Linden H. Regulation of carotenoid biosynthesis genes in response
to light in Chlamydomonas reinhardtii. Biochim Biophys Acta (BBA)-Gene
Structure and Expression. 2002;1579(1):26-34.

Bhosale P. Environmental and cultural stimulants in the production of
carotenoids from microorganisms. Appl Microbiol Biotechnol. 2004:63(4)351-61.
Krinsky NI. Antioxidant functions of carotenoids. Free Radic Biol Med. 1989;
7(6):617-35.

Olson JA. The biosynthesis and metabolism of carotenoids and retinol
(vitamin a). J Lipid Res. 1964;5(3):281-99.

Matsumura M, Kobayashi T, Aiba S. Anaerobic production of ubiquinone-10 by
Paracoccus denitrificans. Eur J Appl Microbiol Biotechnol. 1983;17(2):85-9.
Panozzo C, Nawara M, Suski C, Kucharczyka R, Skoneczny M, Bécam A-M,
Rytka J, Herbert CJ. Aerobic and anaerobic NAD+ metabolism in
Saccharomyces cerevisiae. FEBS Lett. 2002;517(1):97-102.

Roppel J, Mayer H, Weckesser J. Identification of a 2, 3-diamino-2, 3-
dideoxyhexose in the lipid a component of lipopolysaccharides of
Rhodopseudomonas viridis and Rhodopseudomonas palustris. Carbohydr
Res. 1975;40(1):31-40.

Zemla A, Zhou CE, Slezak T, Kuczmarski T, Rama D, Torres C, Sawicka D,
Barsky D. AS2TS system for protein structure modeling and analysis. Nucleic
Acids Res. 2005;33(Web Server issue):W111-5.

Kirshner DA, Nilmeier JP, Lightstone FC. Catalytic site identification—a web
server to identify catalytic site structural matches throughout PDB. Nucleic
Acids Res. 2013;41(W1):W256-65.

Nilmeier JP, Kirshner DA, Wong SE, Lightstone FC. Rapid catalytic template
searching as an enzyme function prediction procedure. PLoS One. 2013;8(5):
€62535.

Carlozzi P, Sacchi A. Biomass production and studies on
Rhodopseudomonas palustris grown in an outdoor, temperature controlled,
underwater tubular photobioreactor. J Biotechnol. 2001,88(3):239-49.
Villadsen J, Nielsen JH, Lidén G. Bioreaction engineering principles. 3rd ed.
New York: Springer; 2011.

Varma A, Palsson BO. Stoichiometric flux balance models quantitatively
predict growth and metabolic by-product secretion in wild-type Escherichia
coli W3110. Appl Environ Microbiol. 1994,60(10):3724-31.

Price ND, Famili I, Beard DA, Palsson BO. Extreme pathways and Kirchhoff's
second law. Biophys J. 2002,83(5):2879-82.

Juty N, Ali R, Glont M, Keating S, Rodriguez N, Swat MJ, Wimalaratne SM,
Hermjakob H, Le Novere N, Laibe C. BioModels: content, features, functionality,
and use. CPT Pharmacometrics Syst Pharmacol. 2015/4(2):55-68.

Drews G, Witzemann V. Zur taxonomie von Rhodopseudomonas palustris.
Arch Mikrobiol. 1971;78(4):322-9.

97.

98.

99.

103.

105.

w

114.

115.

116.

Page 16 of 16

Harwood CS, Gibson J. Shedding light on anaerobic benzene ring
degradation: a process unique to prokaryotes? J Bacteriol. 1997;179(2):301.
Heider J, Fuchs G. Microbial anaerobic aromatic metabolism. Anaerobe.
1997;3(1):1-22.

Harwood CS, Gibson J. Anaerobic and aerobic metabolism of diverse
aromatic compounds by the photosynthetic bacterium
Rhodopseudomonas palustris. Appl Environ Microbiol. 1988;54(3):712-7.

. Kamal VS, Wyndham RC. Anaerobic phototrophic metabolism of 3-

chlorobenzoate by Rhodopseudomonas palustris WS17. Appl Environ
Microbiol. 1990;56(12):3871-3.

. Sasikala C, Ramana CV, Raghuveer Rao P. Nitrogen fixation by

Rhodopseudomonas palustris OU 11 with aromatic compounds as carbon
source/electron donors. FEMS Microbiol Lett. 1994;122(1-2):75-8.

. Sasikala C, Ramana CV, Rao PR. Photometabolism of heterocyclic aromatic

compounds by Rhodopseudomonas palustris OU 11. Appl Environ
Microbiol. 1994,60(6):2187-90.

Krooneman J, van den Akker S, Gomes TMP, Forney LJ, Gottschal JC.
Degradation of 3-chlorobenzoate under low-oxygen conditions in pure and
mixed cultures of the anoxygenic photoheterotroph Rhodopseudomonas
palustris DCP3 and an aerobic Alcaligenes species. Appl Environ Microbiol.
1999;65(1):131-7.

. Gibson KJ, Gibson J. Potential early intermediates in anaerobic benzoate

degradation by Rhodopseudomonas palustris. Appl Environ Microbiol. 1992;
58(2):696-8.

Perrotta JA, Harwood CS. Anaerobic metabolism of cyclohex-1-ene-1-
carboxylate, a proposed intermediate of benzoate degradation, by
Rhodopseudomonas palustris. Appl Environ Microbiol. 1994,60(6):1775-82.

. Dangel W, Brackmann R, Lack A, Mohamed M, Koch J, Oswald B, Seyfried B,

Tschech A, Fuchs G. Differential expression of enzyme activities initiating
anoxic metabolism of various aromatic compounds via benzoyl-CoA. Arch
Microbiol. 1991;155(3):256-62.

. Schink B, Philipp B, Mller J. Anaerobic degradation of phenolic

compounds. Naturwissenschaften. 2000;87(1):12-23.

. Boll M. Key enzymes in the anaerobic aromatic metabolism catalysing birch-

like reductions. Biochim Biophys Acta (BBA)-Bioenergetics. 2005;1707(1):34-50.

. Fuchs G, Boll M, Heider J. Microbial degradation of aromatic

compounds—from one strategy to four. Nat Rev Microbiol. 2011,9(11):803-16.

. Samanta SK, Harwood CS. Use of the Rhodopseudomonas palustris genome

sequence to identify a single amino acid that contributes to the activity of a
coenzyme a ligase with chlorinated substrates. Mol Microbiol. 2005,55(4):1151-9.

. Egland PG, Gibson J, Harwood CS. Reductive, coenzyme A-mediated pathway for

3-Chlorobenzoate degradation in the phototrophic BacteriumRhodopseudomonas
palustris. Appl Environ Microbiol. 2001;67(3):1396-9.

. Thiele I, Palsson BO. A protocol for generating a high-quality genome-scale

metabolic reconstruction. Nat Protoc. 2010;5(1):93-121.

. Navid A. Applications of system-level models of metabolism for analysis of

bacterial physiology and identification of new drug targets. Brief Funct
Genomics. 2011;10(6):354-64.

Mahadevan R, Schilling CH. The effects of alternate optimal solutions in
constraint-based genome-scale metabolic models. Metab Eng. 2003;5(4):264-76.
Messac A, Mattson CA. Normal constraint method with guarantee of even
representation of complete Pareto frontier. AIAA J. 2004;42(10):2101-11.
Kim M-K, Harwood CS. Regulation of benzoate-CoA ligase in
Rhodopseudomonas palustris. FEMS Microbiol Lett. 1991;83(2):199-203.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Results
	Conclusions

	Background
	Results & discussion
	Metabolic trade-offs during mixotrophic growth
	Light-anaerobic metabolism of acetate
	Light-anaerobic metabolism of aromatic compounds
	Proton economy of light-anaerobic metabolism
	Hydrogen gas production by R. palustris


	Conclusions
	Methods
	Metabolic network reconstruction
	Flux balance analysis
	GX-FBA
	Catalytic site identification server
	Multi-objective flux analysis
	Analysis of growth-related pH changes in the medium

	Additional files
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

