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In this study, we focus our attention on the forecasting of daily PM2.5 concentrations. According to the principle of “divide and
conquer,” we propose a novel decomposition ensemble learning approach by integrating ensemble empirical mode decom-
position (EEMD), artificial neural networks (ANNs), and adaptive particle swarm optimization (APSO) for forecasting PM2.5
concentrations. Our proposed decomposition ensemble learning approach is formulated exclusively to deal with difficulties in
quantitating meteorological information with high volatility, irregularity, and complicacy. +is decomposition ensemble learning
approach mainly consists of three steps. First, we utilize EEMD to decompose original time series of PM2.5 concentrations into a
specific amount of independent intrinsic mode functions (IMFs) and residual term. Second, the ANN, whose connection
parameters are optimized by APSO algorithm, is employed to model IMFs and residual terms, respectively. Finally, another
APSO-ANN is applied to aggregate the forecast IMFs and residual term into a collection as the final forecasting results. +e
empirical results show that the forecasting of our decomposition ensemble learning approach outperforms other benchmark
models in terms of level accuracy and directional accuracy.

1. Introduction

With the development at the technological level and the
improvement of people’s living standards, environment
pollution becomes more and more serious, especially in
developing countries. PM2.5 refers to the particles having the
diameter of 2.5 micrometers or smaller, which can go di-
rectly to the alveoli of the lungs. Compared to the PM10 (size
of 10 microns or less) and TSP (size of 100 microns or less),
PM2.5 is more likely to absorb hazardous and noxious
substances. It is the carrier of all sorts of toxic substances in
the air. Some scientific research shows that nitrogen oxides
and sulfur dioxide emissions may be separately transformed
to PM2.5 nitrate ion and sulfate ion in particular environ-
mental conditions. Human exposure to PM2.5 can lead to a
variety of adverse health impacts, such as cardiovascular and
respiratory problems [1–3]. Based on the effect on envi-
ronment and human health, PM2.5 pollution hierarchies

have been divided into six grades from excellent to serious
pollution, which are described in Table 1. During the past
two decades, some epidemiological studies have demon-
strated that the major air pollutant impacting human health
is particulate matter [4]. +e adverse health impacts of
particulate matter have become a well-known problem in
our daily life. Except the accumulation of dust and the re-
duction of visibility, the direct effect on human health via
inhalation is a severe problem [5, 6].

Due to the worse harm of PM2.5, it became the study
object and chief pollutant for rigorous control in the world,
especially in the developed countries, during recent years.
Air quality monitoring systems have gain large amounts of
pollutant concentration data hourly or daily; it is necessary
for us to analyze the data through appropriate methods
[7, 8]. However, due to the serious environmental pollution,
air quality monitoring systems show that many areas do not
conform to the standards, which may lead to serious health
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problems, with ecological and economic effects. However,
very few countries have a real-time air quality forecasting
(RT-AQF) platform. In the United States, the public can
learn about the future air quality index (AQI) through
television, newspapers, radio, Internet, and other media,
including air pollutant concentration and its associated
health risks [9]. +erefore, PM2.5 concentration forecasting
is obviously necessary, which will be able to give early
pollution warnings and nip the pollution in the bud, so
precaution and governing can get in progress as early as
possible. Recently, a lot of efforts have been made in the
research of PM2.5 concentration forecasting.

A lot of mathematical models are applied for forecasting
PM2.5 concentrations. According to their fundamental
principles and math representation, the mathematical
models are mainly classified into two types: empirical
models and deterministic models [10, 11]. Empirical model
is the use of statistics or big data technology to quantify the
relationship between AQI observed by air quality moni-
toring systems and that observed by meteorological pa-
rameters. Deterministic model is to estimate the air quality
index based on simulating physical and chemical reaction,
which uses mathematical models to understand how
chemical processes occur in the transmission and trans-
formation process of the atmosphere, and then test these
models to see if they can create the desired results [11].
However, because of the complexity of meteorological pa-
rameters and the difficulty of quantitative estimation, there
exists a vast amount of uncertainty which causes PM2.5
concentration forecasting to differ from reality. +erefore,
compared with deterministic model, empirical model has
higher precision of forecasting and better adaptability. Many
empirical models, such as Autoregressive Integrated Moving
Average (ARIMA), multilinear regression (MLR), and ar-
tificial neural network (ANN) models, have been applied to
PM2.5 concentration forecasting [12–15]. As a traditional
statistical model, ARIMA needs historical data continuity,
because it is better at capturing the linear pattern of a time
series, especially seasonal pattern. Similarly, MLR is more
suitable for the linear pattern, but it is difficult in capturing
extreme values. Additionally, artificial neural networks
(ANNs), as a new machine learning technique which has
great versatility, can recognize noise and nonlinear patterns
that include extremes in the original data [16]. Moreover,
some researchers have found that, compared with the single
model, hybrid empirical models can better capture linear
and nonlinear patterns of the time series and deal with
extreme value effectively, ultimately improving the forecast
accuracy [17–19].

Because of the computational efficiency and forecasting
accuracy, ANN model has been widely used [20, 21]. +ree
types of artificial neural network models and a linear model
have been chosen to forecast daily PM2.5 concentrations in El
Paso (USA) and Ciudad Juarez (Mexico) [22]. Zhu et al. put
forward a hybrid model optimized by particle swarm op-
timization (PSO) algorithm and obtained good performance
in PM2.5 concentrations forecasting [23]. However, even
considering the meteorological and geographical data,
combination of linear and nonlinear models cannot meet the
complexity of air quality data [24].

Fortunately, some problems we mentioned above can be
partially solved by the principle of “divide and conquer”
[25]. +e purpose of “divide” is to simplify the forecasting
difficulties by decomposing a task into some relatively easy
subtasks, while its overall goal is to formulate a consensus
forecasting result for the original data [26]. +erefore, re-
cently based on this principle, some hybrid ensemble ap-
proaches had been put forward to solve some difficult
forecasting problems, such as the forecasting of international
crude oil price, and empirical results show that hybrid
ensemble approaches are better than individual forecasting
models [27, 28]. In fact, previous research has already
demonstrated the advantage of “divide and conquer”
principle. For instance, while integral models may ignore
some value properties and thus lead to evaluation errors,
Fischer has proved that decomposition method can analyze
problems and their intrinsic properties andmake themmore
comprehensive and clear [28]. Likewise, Kleinmuntz argued
that individuals have the bounded ability to deal with the
information, which may become invalid in the face of a large
and complex system [29].

+emain contribution of this study is to establish a more
accurate approach to forecast PM2.5 concentrations, and
evaluate the forecasting performance of the approach. PM2.5
concentrations are influenced by a lot of factors, but the
influence law is uncertain, so we just care about PM2.5
concentrations. Based on the principle of “divide and
conquer”, this study proposes a novel decomposition en-
semble learning approach by integrating EEMD, ANN, and
APSO optimization algorithm for PM2.5 concentrations
forecasting at Lanzhou city in China. Generally, because of
the complexity and irregularity of PM2.5 concentration time
series, the principle of “divide and conquer” is established to
deal with this problem. +erefore, a novel framework of
decomposition ensemble learning approach integrating
EEMD, ANN, and APSO is presented. In the proposed
approach, a difficult forecasting task has been divided into
several relatively simple subtasks; the process of adding such
a decomposition process can make it easier to solve the
problem of forecasting, thus improving the forecasting
performance. +e main reason for selecting Lanzhou city as
the research area is that it has significant characteristics in
terms of climate, topography, and population. In addition,
the study verified how well the approach we presented
performs in different circumstances.

+e remaining parts of this article are organized as
follows. Section 2 will illustrate research data collection and
preprocessing. +en, Section 3 will briefly introduce the

Table 1: PM2.5 pollution hierarchies.

PM2.5 daily concentration Pollution levels
0–50 μg/m3 I (excellent)
50–100 μg/m3 II (good)
100–150 μg/m3 III (mild pollution)
150–200 μg/m3 IV (moderate pollution)
200–300 μg/m3 V (high pollution)
>300 μg/m3 VI (serious pollution)
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related methods used in this study. +e accuracy of fore-
casting results and validity of the proposed approach are
discussed in Section 4. Finally, the paper is concluded in
Section 5.

2. Data Collection and Preprocessing

+e research, analysis, and results of this paper are all based
upon the data of PM2.5 concentrations in Lanzhou, which is
the capital city of Gansu province and has specific location
and climatic conditions. Lanzhou is located on the upper
reaches of Yellow River and at the geometric center of
China’s continental territory. With the Yellow River going
through, the city is sandwiched by mountains on the
northern and southern banks. +e average altitude of
Lanzhou is 1520m, and it is located 36 degrees 3 minutes
north latitude and 103 degrees 40minutes east longitude and
situated in the temperate zone with a semiarid climate.

+e PM2.5 concentration data used in this study are
obtained from the Ministry of Ecology and Environment of
China (http://www.mee.gov.cn/). +e PM2.5 concentration
daily data covers the period from January 1, 2017, to October
31, 2019, with a total of 1004 observations.

3. Related Methods

As we all know the PM2.5 concentration has high volatility,
nonlinearity, and irregularity. In this study, we propose a
new decomposition ensemble learning approach to forecast
PM2.5 concentrations in terms of the principle of “divide and
conquer”. +e general framework of our proposed de-
composition ensemble learning approach is as follows: de-
composition, single forecasting, and ensemble forecasting.
First of all, some decomposition methods can be utilized to
decompose the original PM2.5 concentrations data into
several meaningful component consequences. +en, some
optimized forecasting methods are employed to forecast
each component, respectively. Finally, the forecasts results of
each component can be aggregated into the final forecasting
results by means of the ensemble approaches [30].

In summary, different data decomposition methods,
intelligent optimization algorithms, forecasting models, and
ensemble approaches can formulate different decomposition
ensemble learning approaches. In this study, firstly, we
utilize ensemble empirical mode decomposition (EEMD) to
decompose original data of PM2.5 concentrations into a
specific amount of independent intrinsic mode functions
(IMFs) and a residual term. Secondly, artificial neutral
network (ANN) optimized by adaptive particle swarm op-
timization (APSO) is applied to forecast all IMFs and re-
sidual term, respectively. Finally, another APSO-ANN is
employed to aggregate the forecasting results of IMFs and
residual term into a collection as the final forecasting results.
+is is called EEMD-based APSO-ANN ensemble learning
approach. +e overall formulation process of our proposed
decomposition ensemble learning approach is as follows.

3.1. Ensemble Empirical Mode Decomposition. Empirical
model decomposition (EMD) was initially proposed by

Huang et al. [31]. In order to overcome the shortcoming of
the mode mixing problem in EMD, Wu and Huang pre-
sented the ensemble empirical mode decomposition
(EEMD) [32]. EMD and EEMD are self-adaptive algorithms
compared with other traditional decomposition methods,
such as wavelet decomposition and Fourier decomposition.
+e specific effect of local feature can identify all modes;
hence, EMD and EEMD decompose signals into several
intrinsic mode functions according to its characteristic of
time scale.

In recent years, EMD and EEMD have been widely
applied to decompose complex time series and some
complex system modeling [31, 33–35]. +is study chooses
EEMD as the data decomposition method. +e EMD and
EEMD method will be introduced as follows.

EMD method is a kind of adaptive time series decom-
position technique which is used to process nonlinear and
nonstationary signals and is based on Hilbert-Huang
transform (HHT) [36]. Because of the complexity of the
data, the method assumes that data may have different
modes of oscillations simultaneously. Tested signals are
decomposed into a number of intrinsic mode functions
(IMFs) by using local wave method, and time-frequency
spectrums of IMFs are acquired by means of Hilbert
transformation, which must meet the following require-
ments: (1) they function within the entire time domain, in
which the number of local extreme value points and zero
crossings must be equal, or at most by one; (2) the local
maximum envelope and the local minimum envelope must
be zero on average at any time point.

We can define meaningful IMFs through those two
conditions. According to the definition, we can decompose
any complicated data series xt(t � 1, 2, . . . , T); the process is
presented as follows.

(1) Find out all the local extrema of original data series
xt.

(2) Use cubic spline interpolation to create the upper
and lower envelopes xup,t and xlow,t, respectively, and
calculate the average of the upper and lower enve-
lope: mt � (xup,t+xlow,t)/2.

(3) Subtract the envelope mean from original time series
and define it as ct, ct � xt − mt. Inspect whether ct

meets the above two basic conditions of IMF; if ct is
not an IMF, replace xt with ct and repeat the above
two steps.

(4) Extract an IMF and replace xt with the residual
rt � xt − ct. Repeat Steps 1–3 until the stop criterion
is satisfied.

Using this screening process, the original data series xt

can finally be decomposed into a sum of IMFs and a residue
term:

xt � 􏽘
n

j�1
cj,t + rn,t, (1)

where n is the number of IMFs, rn,t is the final residue term,
and cj,t(j � 1, 2, . . . , n) is the jth IMF.
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Even though EMD is a fully data-driven and self-
adaptive data decomposition method, there is also an
obvious disadvantage, such as the mode mixing. In order
to address the mode mixing problem, EEMD technique
was proposed by Wu and Huang [32]. EEMD takes the
method of EMD as the basis and successfully solves the
mode mixing problem caused by intermittent noise by
adding white noise to the original time series before
decomposition. EEMD method can not only reserve the
information of the original data, but also overcome the
drawback of mode mixing. +e sifting steps of EEMD are
as follows:

(1) Add a group of white noise wt to the original data
series xt to acquire Xt: Xt � xt + wt.

(2) Employ EMD method to decompose Xt, and obtain
a series of IMFs: Xt � 􏽐

n
j�1 cj + rn.

(3) Add different white noise series to the original data,
repeat the above steps: Xi,t � xi,t + wi,t, and obtain
corresponding IMF components: Xi,t � 􏽐

n
j�1 ci,j + ri,n.

(4) +e final results are the ensemble averages of cor-
responding IMFs: cj � 􏽐

n
j�1 ci,j/N.

Wu andHuang demonstrated that the effect of the added
noise is strictly controlled via the following statistical criteria
[32]:

εn �
ε
��
N

√ , (2)

where N is the total number, ε is the amplitude of the added
noise, and εn is the final standard deviation of error between
original data series and the corresponding IMFs. In practice,
the total number N is often set to 100 and εn of white noise
series is set to 0.1 or 0.2 [33].

3.2. Artificial Neural Networks. Artificial neural networks
(ANNs) are widely applied in air pollution forecasting,
which can build flexible model for various nonlinear
problems. Relative to other types of nonlinear models, ANNs
are universal approximators with a high reliability and ac-
curacy in estimating a large class of functions. Additionally,
ANNs are largely determined by the characteristics of data in
the model building process; hence these techniques do not
require prior assumption. +e neural network architecture
usually consists of the input layer, the hidden layer, and the
output layer [37]. +e input layer accepts the data imported
to the network, and the output layer realizes the output of
evaluation results. +e hidden layer, which is between the
input and output layer, consists of a number of neurons or
hidden units placed parallel to each other. From the view-
point of mathematics, the hidden neuron hj is described as
the following mathematical expressions [38]:

hj � φ zj􏼐 􏼑,

zj � 􏽘
l

i�1
wijxi + bj,

(3)

where φ(·) is the activation function that is usually chosen as
the logistic sigmoid function φ(x) � 1/(1 + e− x), wij is the

weight of input xi at neuron j, and bj is the bias of neuron j.
+e relationship between the output f(x) and the inputs
(xi, yi)

l
i�1 is presented as the following mathematical

expressions:

f(x) � w0 + 􏽘

q

j�1
wjhj, (4)

where wj(j � 0, 1, 2, . . . , q) is the connection weights, q is
the number of hidden nodes, and f(·) is a function de-
termined by the network structure and the connection
weights. In this study, the architecture of ANN selects
backpropagation neural network (BPNN) that is one of the
most popular and effective forecasting techniques. BPNN is
a three-layered feedforward architecture based on back-
propagation (BP) algorithm. +e details of BPNN can be
found in [38].

3.3. Adaptive Particle Swarm Optimization. Particle swarm
optimization (PSO) is a heuristic search algorithm based on
swarm intelligence and has been widely used to solve
various problems. +e principle of PSO is to simulate the
characteristics that the birds update location in searching
food. First of all, it initializes a group of particles in the
solution space, each of which denotes a potential optimal
solution. +e characteristics of the particles are measured
by three indicators: location, speed, and fitness. Particles
update timing position by tracking individual extremum
(Pbest) and global extremum (Gbest). PSO algorithm can
easily cause early maturing; in order to address this
problem, a novel adaptive particle swarm optimization
(APSO) algorithm has been proposed to solve the problem
of low precision and avoid premature phenomena of basic
PSO algorithm [39].

Supposing that there is a population in a D-dimensional
search space,which consists ofnparticlesX � (X1, X2, . . . , Xn).
Among them, Xi � [xi1, xi2, . . . , xiD]T denotes the position of
ith particle in theD-dimensional search space, also on behalf of a
potential solution of the problem. According to the objective
function, we can calculate the corresponding fitness value of each
particle. +e speed of the position change for particle is
Vi � [Vi1, Vi2, . . . , ViD]T,Pi � [Pi1, Pi2, . . . , PiD]T denotes the
best previous position which gives the best fitness value of the ith
particle, and Pg � [Pg1, Pg2, . . . , PgD]T denotes the best posi-
tion among all the particles of the population. +e specific
formula of adaptive adjustment is as follows:

V
t+1
id � w

t
V

t
id + c1r1 P

t
id − X

t
id􏼐 􏼑 + c2r2 P

t
gd − X

t
id􏼐 􏼑,

X
t+1
id � X

t
id + V

t+1
id ,

w
t

�

λ · wt− 1 + θ
f Pt

gd􏼒 􏼓 − f Xt
i( 􏼁

f Pt
gd􏼒 􏼓 − f Xt

min( 􏼁

, w
t ≥wmin,

wmin, wt <wmin,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)
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where wt is the adaptive inertia weight, c1 and c2 are
nonnegative constants, which are called acceleration factors,
and r1 and r2 are random numbers distributed in [0, 1]. λ
and θ are constraint factors in the range [0, 1]. wmin is the
minimum inertia weight. f(·) is the fitness function; it is
defined as follows in this study:

f �
1
N

􏽘

N

i�1
yi − 􏽢yi( 􏼁

2
, (6)

where yi and 􏽢yi are the actual value and the forecast value of
PM2.5 concentration, respectively [37].

3.4. 8e Framework of Our Proposed Approach. Given that
xt(t � 1, 2, . . . , T) is a time series, we could purpose a
proactive mechanism to makem-step ahead forecasting, i.e.,
xt+m. In this study, it is worth reminding that we apply
iterative forecasting method, which can be represented as
follows:

􏽢xt+m � f xt, xt− 1, . . . , xt− (l− 1)􏼐 􏼑, (7)

where 􏽢xt+m is the forecast value, xt is the actual value, and l

denotes the lag orders. In ANN, the initial weights and
thresholds have significant meaning and play an important
role in learning and optimizing the neural network [40].
However, these parameters are randomly generated in the
beginning and then adjusted in the whole training process.
Hence, APSO algorithm is applied to determine the
threshold and weight values of artificial neural network, as
shown in Figure 1. Meanwhile, the time series data inevitably
adulterates some noise or worthless and meaningless in-
formation. +erefore, our proposed EEMD-based APSO-
ANN ensemble learning approach has been established to
forecast PM2.5 concentrations at Lanzhou city in China.

According to the framework in Figure 2 and the previous
research, this study will establish a novel decomposition
ensemble learning approach by integrating EEMD and
APSO-ANN for PM2.5 concentrations forecasting. As shown
in Figure 2, our proposed EEMD-APSO-ANN-APSO-ANN
decomposition ensemble learning approach is generally
composed of the following three main steps:

(1) +e original PM2.5 concentrations time series xt(t �

1, 2, . . . , T) is decomposed into n IMFs
cj,t(j � 1, 2, . . . , n) and one residual component rn,t

by EEMD method.
(2) APSO-ANN is regarded as a single forecasting

technique to model the decomposed IMF compo-
nents and the residue component, respectively. As a
result, all components can obtain the corresponding
forecasting results.

(3) Finally, the final forecasting 􏽢xt+m for the original
PM2.5 concentrations time series xt is obtained by
integrating the forecasting results of the IMFs and
residue components, using another APSO-ANN
technique as an ensemble approach.

In short, in view of the principle of “divide and conquer”,
our proposed EEMD-based APSO-ANN ensemble learning

approach can be described as a general framework of
“EEMD (decomposition)–APSO-ANN (single forecasting)–
APSO-ANN (ensemble forecasting)”. In order to verify the
effectiveness of our proposed EEMD-APSO-ANN-APSO-
ANN decomposition ensemble learning approach, PM2.5
concentrations data collected from Lanzhou city is used as
the test target. For more details, we will discuss in the next
section.

4. Empirical Study

In this study, the sample data are divided into two subsets:
training subset and testing subset. We treat data from
January 1, 2017, to September 30, 2019, as training subset
with 974 observations used for model training. Similarly,
data from October 1, 2019, to October 31, 2019, with 31
observations are treated as the testing subset to evaluate the
forecasting performance of the model. Additionally, data of
the past 1 day (lag order 1), 2 days (lag order 2), 3 days (lag
order 3), 4 days (lag order 4), and 5 days (lag order 5) are
utilized as initial input form to forecast the following daily
PM2.5 concentrations, respectively, and finally the input
form with minimum forecasting error is chosen as optimal
input structure.

4.1. Evaluation Criteria of Forecasting Performance. In this
study, two evaluation criteria are utilized to evaluate the
forecasting performance of our proposed decomposition
ensemble learning approach. +ey are mean square error
(MSE) and mean absolute percent error (MAPE). +e
smaller the index value is, the better the forecasting per-
formance will be. +e formulas of criteria are as follows [41]:

MSE �
1
N

􏽘

N

i�1
Yt − Yt

􏽢
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

MAPE �
1
N

􏽘

N

t�1

Yt − Yt
􏽢

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Yt

∗100%,

(8)

where N is the number of observation points, Yt represents
the value of actual PM2.5 concentrations for a time period t,
and Yt

􏽢 is the forecast value for the same period.
Additionally, we also consider the directional forecasting

accuracy; it can be expressed by

DStat �
1
N

􏽘

N

i�1
ai, (9)

where ai � 1 if (yi+1 − yi)(􏽢yi+1 − yi)≥ 0 or ai � 0 and 2
otherwise.

4.2. Empirical Results. In our proposed EEMD-APSO-
ANN-APSO-ANN decomposition ensemble learning ap-
proach, the first step is to apply EEMD method to de-
compose the original PM2.5 concentration data series into
several independent IMF components and one residue term.
In this study, the ensemble member is set to 100, and the
standard deviation of added white noise in each ensemble
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member is 0.2. All IMF components are sorted from the
highest to the lowest according to the frequency, and the last
one is the residue term. +e decomposition results of
original PM2.5 concentrations at Lanzhou city in China are
shown in Figure 3. It is easy to find that the original PM2.5
concentrations time series is decomposed into nine inde-
pendent components.

For comparison, we choose some other popular fore-
casting models as benchmarks to be compared with our
proposed EEMD-APSO-ANN-APSO-ANN decomposition
ensemble learning approach. According to previous litera-
ture, five single forecasting models, ANN, GA-ANN, PSO-
ANN, APSO-ANN, and ARIMA, and three groups of de-
composition ensemble learning approaches are chosen as
benchmark models. For the purpose of consistency, the
parameters of the decomposition ensemble learning ap-
proaches are the same as single forecasting models.

To clearly analyze data, the empirical results consisted of
two parts. In the first part, we will compare the results of five
single forecasting models and then choose the optimum
model as a single forecasting and ensemble model for de-
composition ensemble learning approach. In the second
part, the forecasting performance of our proposed EEMD-

APSO-ANN-APSO-ANN decomposition ensemble learning
approach is compared with the other three decomposition
ensemble learning approaches.

4.2.1. Performance Comparison of Single Models. In this
subsection, we compare five single forecastingmodels, ANN,
GA-AND, PSO-ANN, APSO-ANN, and ARIMA. For the
ANN techniques, the numbers of inputs and hidden layer
nodes are determined using the trial-and-error method, and
the active function of hidden layer is sigmoid function.
Table 2 shows the forecasting errors by means of MSE,
MAPE, and Dstat. +e forecasting results indicate that the
APSO-ANN has a high forecasting accuracy, followed by
PSO-ANN.

From Table 2, it is clearly seen that all of the ANN
techniques are superior to the traditional ARIMA model,
and the optimal lag order of inputs is 3. Compared with
ARIMA, ANN, GA-ANN, and PSO-ANN, the MAPE, MSE,
and Dstat of APSO-ANN are 25.22%, 0.1491, and 61.29%,
respectively. On the contrary, the MAPE, MSE, and Dstat of
ARIMA are 36.27%, 0.2231, and 51.61%. It is obvious that
ANN technique whose parameters are optimized by PSO or

Normalize
data

Update
the position

Calculate
weights

Stop criteria?

Initialize
parameters

Choose the
best position

Input layer

Hidden layer

Output layer

N

Y

Wij Wjk

Calculate
the fitness

Figure 1: +e flowchart of APSO-ANN.
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APSO algorithm is better than ANN without any opti-
mization scheme, so the optimized ANN technique is
regarded as the single forecasting and ensemble forecasting
method in our proposed decomposition ensemble learning
approach.

4.2.2. Performance Comparison of Decomposition Ensemble
Approaches. +is subsection focuses on the forecasting
performance comparison of three groups of decomposition
ensemble learning approaches. Some variants of decom-
position ensemble learning approaches with other decom-
position methods (e.g., EMD method) and other ensemble
approaches (e.g., simple addition (ADD)) are also employed
as decomposition ensemble learning benchmarks to be
compared with our proposed EEMD-APSO-ANN-APSO-
ANN decomposition ensemble learning approach. +ere-
fore, we select three groups of decomposition ensemble
learning approaches, i.e., [EMD-APSO-ANN-ADD, EMD-
APSO-ANN-PSOANN, EMD-APSO-ANN-APSO-ANN],
[EEMD-PSOANN-ADD, EEMD-PSOANN-PSOANN,
EEMD-PSOANN-APSO-ANN], and [EEMD-APSO-ANN-
ADD, EEMD-APSO-ANN-PSOANN, EEMD-APSO-ANN-
APSO-ANN]. Table 3 provides the forecasting results of
different decomposition ensemble learning approaches.

For the above different decomposition ensemble
learning approaches, we firstly discuss forecasting perfor-
mance of decomposition ensemble learning approaches with
different decomposition methods. We can clearly see that
the EEMD-based decomposition ensemble learning ap-
proaches can obtain better forecasting accuracy than the
corresponding EMD-based decomposition ensemble
learning approaches. +at is, the EEMD is much more ef-
ficient than EMD in data decomposition of PM2.5 con-
centrations. Secondly, the forecasting performance of
APSO-ANN-based decomposition ensemble learning ap-
proaches is mostly better than ADD-based decomposition
ensemble learning approaches in terms of MSE, MAPE, and
Dstat criteria. +is indicates that APSO-ANN is a powerful
ensemble learning method. +irdly, we compare single
forecasting models; it is clearly seen that the forecasting
accuracy of APSO-ANN is better than that of PSO-ANN and
GA-ANN.

In general, through the analysis above, we can obtain
some interesting findings as follows: (1) Decomposition
ensemble learning approaches are significantly better than
other single models, such as ARIMA, ANN, GA-ANN, PSO-
ANN, and APSO-ANN. +e main reason is that the strategy
of “divide and conquer” can effectively improve the per-
formance of PM2.5 concentrations forecasting. (2) It is

Step 1:
decomposition

Step 2:
single forecast

Step 3:
ensemble forecast

IMF 1 IMF 2 IMF m

APSO-ANN APSO-ANN APSO-ANN

APSO-ANN

APSO-ANN

IMF 2
prediction

IMF 1
prediction

IMF m
prediction

Residue
prediction

Residue

Original time series

EEMD

Final forecasting results

Figure 2: +e general framework of our proposed decomposition ensemble approach.
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clearly seen that the EEMD method performs much better
than the counterpart method with EMD in terms of both
level forecasting accuracy and directional forecasting ac-
curacy. (3) After decomposition, the second and third
steps of decomposition ensemble learning approach are
individual forecasting and ensemble forecasting by means of

APSO-ANN and PSO-ANN with optimal weights and
threshold values; empirical results show that these decom-
position ensemble learning approaches are better than the
other AI benchmark models. (4) Our proposed EEMD-
APSO-ANN-APSO-ANN decomposition ensemble learning
approach is superior to all the other benchmark models in

Table 2: +e forecasting results of single models.

Lag order Evaluation criteria
Single forecasting models

ARIMA ANN GA-ANN PAO-ANN APSO-ANN

1
MSE 0.2935 0.1593 0.16951 0.1549 0.1523

MAPE (%) 44.23 28.37 31.08 27.53 27.25
Dstat (%) 54.84 54.84 58.06 58.06 58.06

2
MSE 0.1984 0.2013 0.1649 0.1531 0.1548

MAPE (%) 35.68 28.36 29.17 27.85 27.34
Dstat (%) 48.37 54.84 54.84 61.29 54.84

3
MSE 0.2231 0.1658 0.1613 0.1512 0.1491

MAPE (%) 36.27 28.51 29.05 27.53 25.22
Dstat (%) 51.61 58.06 54.84 58.06 61.29

4
MSE 0.2015 0.1702 0.1649 0.1580 0.1543

MAPE (%) 36.87 30.32 29.41 28.19 26.94
Dstat (%) 51.61 51.61 58.06 58.06 54.84

5
MSE 0.1983 0.1688 0.1671 0.1553 0.1532

MAPE (%) 35.82 30.85 31.05 28.83 27.49
Dstat (%) 48.37 51.61 58.06 54.84 54.84
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Figure 3: +e IMFs and a residue term of PM2.5 concentration data in Lanzhou city via EEMD algorithm.
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terms of both level forecasting accuracy and directional
forecasting accuracy. +erefore, our proposed EEMD-
APSO-ANN-APSO-ANN decomposition ensemble learning
approach can be used as an effective forecasting framework
for forecasting PM2.5 concentrations.

Additionally, we have set the length of inputs for ANN as
lag order 1, 2, 3, 4, and 5, respectively, and while the input
form is lag order 5, our proposed EEMD-APSO-ANN-
APSO-ANN decomposition ensemble learning approach
has the highest forecasting accuracy. Figure 4 shows the best
forecasting results of PM2.5 concentrations at Lanzhou city
in China from October 1, 2019, to October 31, 2019.

5. Conclusions

+e ascension of PM2.5 concentration will lead to serious
health, climate, and environment problems and cause respi-
ratory and cardiovascular diseases. As a result, it is important
and urgent to establish an early warning system based on the
accurate PM2.5 concentration forecasting. In order to address
this hard issue, based on the principle of “divide and conquer”,
this study proposes a new decomposition ensemble learning
approach by integrating ensemble empirical mode decompo-
sition (EEMD), artificial neural networks (ANNs), and adap-
tive particle swarm optimization (APSO) in order to improve
the performance of PM2.5 concentration forecasting.+e PM2.5
concentration data used in this study covers the period from
January 1, 2017, to October 31, 2019, at Lanzhou city in China.
Our proposed decomposition ensemble learning approach
takes advantage of multiple methods, such as the effective self-
adaptive data decomposition of EEMD and end-to-end pa-
rameters optimization of APSO, to improve the performance of
PM2.5 concentration forecasting. To verify performance of our
proposed approach, three groups of decomposition ensemble
learning approaches were chosen as benchmarks to be com-
pared with our proposed EEMD-APSO-ANN-APSO-ANN
decomposition ensemble learning approach. Empirical re-
sults show that our proposed EEMD-APSO-ANN-APSO-
ANN decomposition ensemble learning approach significantly

improves the forecasting performance and outperforms some
other benchmarks in terms of of level forecasting accuracy and
directional forecasting accuracy. +is indicates that our pro-
posed decomposition ensemble learning approach with ef-
fective decomposition, as well as nonlinear single and ensemble
forecasting, can be used as a very promising framework to solve
other complex time series forecasting problems, especially for
the data characterized by high volatility and irregularity.

Additionally, our proposed EEMD-APSO-ANN-APSO-
ANN decomposition ensemble learning approach can be
applied to other applications such as finance forecasting and
energy forecasting. Furthermore, this study mainly con-
siders the univariate time series forecasting, while other
factors affecting PM2.5 concentrations were not taken into
consideration. If those factors were incorporated into our
proposed EEMD-APSO-ANN-APSO-ANN decomposition
ensemble learning approach, the forecasting performance
may still improve. +ese limitations will hopefully be
addressed in future research.

Table 3: +e forecasting results of different decomposition ensemble approaches.

Lag order Evaluation criteria
EMD-APSO-ANN EEMD-PSOANN EEMD-APSO-ANN

ADD PSOANN APSO-ANN ADD PSOANN APSO-ANN ADD PSOANN APSO-ANN

1
MSE 0.1215 0.1143 0.1126 0.1214 0.1212 0.1206 0.1211 0.1015 0.0926

MAPE (%) 24.13 23.14 22.72 23.83 23.79 23.62 23.85 20.51 18.79
Dstat (%) 70.97 74.19 77.42 67.74 70.97 77.42 70.97 74.19 80.65

2
MSE 0.0835 0.0862 0.0751 0.0782 0.0746 0.0741 0.0745 0.0756 0.0702

MAPE (%) 16.45 16.91 15.71 16.19 15.51 15.12 15.88 15.60 14.65
Dstat (%) 67.74 70.97 77.42 70.97 70.97 80.65 74.19 77.42 83.87

3
MSE 0.0774 0.0821 0.0763 0.0692 0.0663 0.0652 0.0668 0.0652 0.0611

MAPE (%) 16.15 15.89 15.81 13.59 13.05 12.73 13.35 12.84 12.12
Dstat (%) 70.91 74.19 80.65 70.97 74.19 83.87 80.65 80.65 87.10

4
MSE 0.0909 0.0883 0.0825 0.0677 0.0645 0.0639 0.0581 0.0605 0.0568

MAPE (%) 17.68 18.16 16.57 12.95 12.71 12.40 11.59 11.48 11.33
Dstat (%) 70.97 70.97 80.65 74.19 77.42 80.65 77.42 80.65 83.87

5
MSE 0.0895 0.0823 0.0853 0.0598 0.0611 0.0583 0.0591 0.0571 0.0562

MAPE (%) 17.76 16.82 17.64 12.13 11.75 11.22 11.95 11.97 10.82
Dstat (%) 70.97 74.19 83.87 77.42 80.65 83.87 80.65 87.10 90.32
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Figure 4: +e best forecasting results of PM2.5 concentrations at
Lanzhou city in China.
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