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Abstract: A vision-based robot self-calibration method is proposed in this paper to 

evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its 

end-effector. This approach could be performed in the industrial field without external, 

expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in 

the structural model of a line-structured laser sensor, and aligned to a reference point fixed 

in the robot workspace. A mathematical model is established to formulate the misalignment 

errors with kinematic parameter errors and TCP position errors. Based on the fixed point 

constraints, the kinematic parameter errors and TCP position errors are identified with an 

iterative algorithm. Compared to the conventional methods, this proposed method 

eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error 

propagation chain, and makes the calibration process more accurate and convenient. A 

validation experiment is performed on an ABB IRB2400 robot. An optimal configuration 

on the number and distribution of fixed points in the robot workspace is obtained based  

on the experimental results. Comparative experiments reveal that there is a significant 

improvement of the measuring accuracy of the robotic visual inspection system. 
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1. Introduction 

In the modern manufacturing industry product quality control is of great significance to improve 

product quality, decrease rejection rates and for cost savings. Vision-based 3D (three-dimensional) 

inspection technology is widely applied in quality supervision for its advantages of non-contact 

operation, fast acquisition speed, low cost and good stability [1–3]. In order to meet the needs of efficient 

and accurate inspection, 3D visual inspection systems usually consist of two parts, the visual sensor and 

the orienting device. The orienting device is used to place the visual sensor in the position of the featured 

object. For industrial applications, it is preferable that the orienting device be flexible and controllable, 

so that the product quality inspection can be highly efficient and human-free. This leads to the idea of 

adopting an industrial robot as the orienting device [4]. The robotic visual inspection system is 

promising because it combines the industrial robot’s high flexibility and the visual sensor’s high 

accuracy. It has been extensively applied in the automotive industry and aircraft manufacturing  

industry [5,6]. 

Although robotic visual inspection systems have successfully completed repetitive tasks in assembly 

lines, there are still some critical challenges to be overcome before their application in advanced tasks 

such as robot off-line programming, precise robotic measurement and so on. One of the challenges is 

associated with the system accuracy. Although industrial robots generally have high repeatability, their 

accuracy is much worse [7,8]. The challenge, therefore, is how to improve and maintain the system’s 

accuracy in different manufacturing environments. According to [9], nearly 90% of robot errors are due 

to the mismatch between the nominal kinematic model and the accurate model. The mismatch is caused 

by the kinematic parameter variation in the robot manufacturing and assembly process. Robot 

calibration is a cost-effective way to improve robot position accuracy because it identifies a more 

accurate functional relationship between the joint transducer readings and the position of end-effectors. 

In general, robot calibration could be divided into four steps: Modeling, Measurement, Identification, 

and Verification and Correction [10]. Many researchers have devoted efforts to this field for more than 

two decades. Different kinematic models [11,12] and identification algorithms [13–15] have been 

developed. A variety of measurement techniques have been employed for calibration tasks ranging from 

coordinate measuring machines and laser tracking interferometer systems to economical ball-bar and 

customized fixtures [16–18]. Robot calibration is easier to implement with these convenient devices, 

however, the data acquisition process is relatively time consuming and the resolution of the identified 

parameters is limited by the external measuring devices. Moreover, for the robotic visual inspection 

system in the industrial field environment, it’s desirable that the system be capable of performing 

calibration without any expensive external apparatus or elaborate setups, which is the so-called  

system self-calibration. 

Robot self-calibration generally utilizes redundant sensors or imposes certain constraints, such as 

straight line paths or plane constraints on the end-effector. Based on the robot kinematic close-loop 

equations and the robot joint angle data, the kinematic parameters could be identified. Khalil and 

Besnard [19] installed two orthogonally allocated inclinometers on a robot end effector to calibrate the 

Stewart platform. However, some kinematic parameters were not observable and the transformation 

between the tool and the robot could not be determined. Bennett and Hollerbach [20] have successfully 

performed self-calibration with passive endpoint constraints, using only the inherent joint sensors in the 
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manipulator. This constrains the mobility of the platform and the errors of the locked passive joints 

could not be calibrated. The self-calibration concept has also been extended to calibrate robotic visual 

systems with a hand-mounted visual sensor. Gong [21] calibrated a robotic measurement system using 

its internal laser sensor based on distance measurements. This method avoids calibration of the robot 

base coordinates, shortens the error propagation chain and improves the robot accuracy significantly 

over a typical robot workspace. However, this approach has the following drawbacks: firstly, the method 

is based on the distance error measured by the visual sensor and the resolution of the identified 

parameters is restricted by the sensor accuracy; secondly, hand-to-eye calibration is needed before robot 

calibration, which still utilizes the robot nominal kinematic model, and errors in hand-to-eye 

transformation will inevitably be transferred to the identified parameters.  

In this paper, a novel robot self-calibration approach is proposed for a robotic visual inspection 

system. A visual sensor is mounted on the robot end-effector serving as a tool. Then a robot Tool Center 

Point (TCP) is defined and calibrated using the sensor model. In order to calibrate the system, the robot 

is controlled to align the TCP to a fixed reference point in the robot workspace at different robot poses. 

With fixed point constraints, a systematic technique is proposed to formulate the misalignment errors 

with robot parameter errors and TCP position errors. By changing the position of the fixed point, the 

robot will get adequate movements in its workspace and the self-calibration can be performed in the 

whole volume of the robot. Verification experiments show that the presented approach has improved the 

accuracy of the industrial robot significantly. The unique feature of this approach is that it eliminates the 

need of calibrating the transformation from the world coordinate system to the robot base frame as well 

as the hand-to-eye transformation, so this approach shortens the error propagation chain further and 

makes the calibration procedures more convenient to implement. Moreover, no external measuring 

device or elaborate setup is adopted in the self-calibration process. Therefore, it is well suited for the 

online inspection systems in the industrial field where autonomy is a major concern.  

The remainder of the paper is organized into the following four sections: Section 2 presents first an 

introduction to the robotic visual inspection system. Then it introduces the robot kinematic model and 

error model. Section 3 details the robot self-calibration algorithms, including robot TCP calibration and 

self-calibration based on fixed point constraints. Section 4 provides experimental results to illustrate the 

effectiveness and advantages of the proposed self-calibration method. A comparison between the robotic 

system before and after robot calibration is also performed in Section 4. Conclusions are given  

in Section 5. 

2. Mathematic Models of Robotic Visual Inspection System 

2.1. Measurement Principle of Robotic Visual Inspection System 

The robotic visual inspection system mainly consists of an industrial robot and a non-contact visual 

sensor. The industrial robot serves as the orienting device and locates the visual sensor to the designated 

featured points. As it has been extensively applied in the industrial field owing to its high-accuracy, 

high-speed and strong anti-interference, in the system of this work a line-structured laser sensor is 

adopted and mounted on the robot’s end-effector via a metal rod. The coordinate systems of the robotic 

visual inspection system consist of robot base frame (BF), end-effector frame (EF), laser sensor frame (SF) 

and workpiece frame (WF), as shown in Figure 1.  
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The measured result of the visual sensor is usually transformed to the workpiece frame. For a visual 

point P on the work piece, the mapping relationship between the coordinate Pw in the workpiece frame 

and Ps in the sensor frame is expressed as follows: 

w b e

w b e s sP T T T P     (1)  

where   
  denotes the transform matrix between the sensor frame and the robot end-effector frame, 

which is also called hand-to-eye relationship.   
  denotes the transform relationship between the robot 

end-effector frame and the robot base frame. It can be obtained from the robot forward kinematic 

model.   
  is the transformation matrix between the robot base frame and the workpiece frame.  

Figure 1. Schematic of robotic visual inspection system. 

 

2.2. Robot Kinematic Model 

As shown in Figure 1, the robot kinematic model relates the outputs of the robot joint sensors to the 

position and orientation of the robot end-effector. The serial link manipulator consists of a sequence of 

links. A mathematic representation based on the Denavit-Hatenberg (DH) convention is chosen to model 

the relationship between two consecutive joints. For two consecutive link frames i-1th and i th, four link 

parameters, namely joint angle θi, link offset di, link twist αi and link length ai, are used to represent the 

geometric relationship. The homogeneous transformation matrix is expressed as: 

1
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where Sθi, Cθi, Sαi and Cαi represent sin θi,, cos θi,, sin αi and cos αi respectively. As the joints are 

rotational, only the θi is the joint variable, di, αi and ai are constants. 

As pointed out by Hayti [22], Equation (2) does not apply to those links with parallel or near parallel 

consecutive joint axes, because a small error in the alignment of the zi axis would cause a large error in 

parameters θi, di and ai. In order to overcome this problem, a small rotation of βi about yi axis is 

introduced while setting di to zero, as shown in Figure 2. As the joints 2 and 3 of the researched robot 

in this work are parallel, the homogeneous transformation matrix has been improved as follows: 
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(3)  

where Sθi, Cθi, Sαi, Cαi, Sβi and Cβi represent sin θi, cos θi, sin αi, cos αi, sin βi and cos βi.  

For the serial robotic manipulator with N degrees of freedom, the transformation matrix from the 

robot end-effector frame to the robot base frame can be represented by: 

1 2 1

1 2 3
0 1

Nb

e

Nb N

N

R T
T T T T T  
   

 
 (4)  

where RN and TN are the orientation and position of the robot end-effector in robot base frame 

described by the kinematic parameters. As reflected in Equation (3), errors in the kinematic parameters 

would result in deviation of the end-effector’s pose (position and orientation) from the prediction. 

Furthermore, calibration of the hand-to-eye relationship and the transformation between the robot base 

frame and workpiece frame (   
  and   

  in Equation (1) respectively) generally involve robot 

movements. Without accurate kinematic parameters, these relationships cannot be determined in a high 

degree of precision. So there is a great demand for kinematic parameter identification and subsequent 

error compensation, especially in the high-precision robotic applications. 

Figure 2. Model for two adjacent parallel joints. 

 

2.3. Error Model for Robot 

The error model of the robot is used to investigate the relationship between positional, orientational 

error of robot end-effecor and the kinematic parameters error of robot joints [23,24]. Supposing that 

there are errors in the kinematic parameters of every joint, the actual transformation of the end-effector 

with respect to the robot base frame can be expressed as: 

1 1

1
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N

n n

n

n

e n

b b
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    (5)  

If the parameter deviations are small, the differential transformation can be represented by a linear 

function of the individual kinematic parameter deviation as follows: 
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(6)  

where Δθi, Δαi, Δai, Δdi and Δβi are small variations of robot kinematic parameters.  

Expanding Equation (5) and neglecting the high order terms, the differential transformation of the 

robot end-effector with respected to robot base frame can be approximated as in Equation (7): 

1

N

i i i i

b b b b
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b
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     
  (7)  

where 
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 ( iq denotes the kinematic parameters , , , ,i i i i id a   ). 

Based on the robot differential kinematics equation    
        

 , we could rewrite the error 

model in matrix format as follows: 

0 0

d a
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 (8)  

where                    ,                    ,                       

                    and                         and    represent the positional and 

orientational errors.                             are     matrices of partial derivatives of 

the end-effector with respect to the kinematic errors. 

In an alternative way, the relationship between partial positional and orientational deviation with 

respect to the kinematic parameter errors can be written in a compact form: 

X J P    (9) 

where                         represents robot end-effector’s positional and orientational errors, 

                    depicts the robot kinematic parameter errors. J is the Jacobian matrix of 

identification defined in Equation (10). It outlines how each kinematic parameter error influences the 

robot positional and orientational accuracy.  

0 0

d aM M M M M
J

R R R

  

  

 
  
 

 (10)  

3. Principle of the Vision-Based Self-Calibration Method 

The robot self-calibration method presented in this paper is based on fixed-point constraints, in 

which the robot TCP is controlled to align to a reference point fixed in the robot workspace. The whole 

calibration process includes two procedures: robot TCP calibration and robot self-calibration. 

3.1. TCP Calibration  

Robot TCP is the center point of the tool ending defined in the robot program. It is a fixed point with 

respect to the robot end-effector and mainly used in the robot off-line programming. In the robotic visual 



Sensors 2013, 13 16571 

 

inspection system, the line structured light sensor serves as a tool and robot TCP is defined in the sensor. 

Robot off-line programming is performed based on the defined TCP and the visual sensor is driven by 

the robot to inspect the featured points along the programmed trajectory. 

The line-structured laser sensor works on the principle of triangulation and mainly consists of a laser 

stripe generator and a camera. When the laser stripe is projected on the surface of an object to be 

inspected, a contour line of laser is created and captured by the 2-D (2 Dimensional) Charge-coupled 

Device (CCD) camera. Then the shape is identified by extracting the laser stripe center and the point 

coordinate on the stripe can be calculated according to triangulation model. 

As shown in Figure 3, Osxsyszs is the laser sensor frame which is defined to be coincident with the 

camera coordinate and xnOnyn is image plane of the camera. In this paper, the TCP position is defined as 

the intersection point of the camera optical axis and the laser plane. When the laser sensor is mounted on 

the robot end-effector, the TCP is a fixed point with respect to the robot end-effector. 

Figure 3. Mathematical model of line structure-line sensor. 

 

In this paper, a vision-based TCP calibration method is proposed. In this method, the robot is 

controlled to align the TCP to a fixed point at several different robot poses, that is to say, making the 

robot TCP position coincident with the fixed point. Assuming that Xb is the coordinate of the fixed point 

P in the robot base frame, Ri and Ti are the orientation and position of robot end-effector. Line-structured 

laser sensor is fixed on the robot end-effector as a tool, assuming that Xt is the TCP position relative to 

the robot end-effector. When the robot is controlled to align the TCP to the fixed point, the coordinates 

of the fixed point, referred to “measured position”, could be determined. If the alignment is performed in 

several different robot poses, the following equation can be obtained with the fact that position of the 

fixed reference point in the robot base frame is invariable: 

1 1 2 2b t t n t nX R X T R X T R X T           (11)  

As TCP position is not determined, “measured position” cannot be obtained virtually. Subtracting 

each two adjacent equations in Equation (11), a matrix equation can be obtained in form of AX B : 
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light plane

π 

Os 
Q 

ys 

zs 

xs 

xn 

Os yn 

Qn 

Qi 



Sensors 2013, 13 16572 

 

As long as the coefficient matrix in Equation (12) is nonsingular, Xt can be solved by means of 

least-squares method, that is: 

1( )T T

tX A A A B    (13)  

where: 

2 1
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.  

The TCP calibration method presented here could also be formulated as minimizing the difference 

between any two of the “measured positions”. The calibration error of TCP position can be calculated as 

follows, which is also the least-squares fitting error: 

2 1 1 2 11
2

2
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1

1 1
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  (14)  

3.2. Formulation of Self-Calibration Algorithm Based on Fixed Point Constraints  

Based on the kinematic model in Equation (3) and the error model in Equation (9), a new robot 

self-calibration method can be formulated with the constraints of the fixed point. As the robot TCP is a 

fixed point with respect to the robot end-effector frame, if the robot is controlled to align the TCP to a 

fixed reference point in the robot volume from two different poses, the Cartesian positions of the fixed 

point in the robot base frame can be given as: 

,b b

e ei i t j j tX X X XT T     (15) 

where   
 

i and   
 

j are the transformations from robot end-effector to robot base frame which are 

calculated based on nominal kinematic model, Xt is the TCP position calculated in Section 3.1. In this 

paper, Xi and Xj are referred to “nominal positions” and they should be equivalent nominally. 

However, as the actual kinematic parameters of the robot may deviate from their nominal values, 

which are referred in Equation (15), there are errors between the “nominal positions” and the actual 

positions of the fixed point. Moreover, the TCP calibration method presented in Section 3.1 utilizes the 

robot forward kinematic model, so deviations would also exist in the TCP position Xt. The actual 

position of the fixed point is given in Equation (16), and deviation between the actual position and the 

“nominal position” can be denoted as in Equation (17): 

( )( ), ( )( )b b b b

e e e e

R R

i i t t j j t tX T XTXT X X XT       (16) 

b b b

e e

R

i i t i t te iX X X XT T T X        (17) 

Subtracting the deviations at two different robot poses and neglecting the second order terms,  

we have: 
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In Equation (18), the deviations between the “nominal positions” of fixed point in two robot poses 

have been formulated with the TCP position errors and kinematic parameter errors. The deviation 

between the “nominal positions” is named “misaligned error” in this paper. According to the robot 

differential kinematics equation    
        

 , we have: 
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 is the differential transformation, 

1

2

3

1

b

eb t

b

b
X X

b
T

 
 
   
 
 
 

.  

In an alternative way, Equation (19) could be rearranged as follows: 
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With the differential relationship given in Equation (9), Equation (20) could be written as: 

t

b

e X Q X Q JT P        (21) 

Submitting Equation (21) into Equation (18) and rewriting Equation (18) in matrix form, we have: 
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 and suppose we have m  

(m > 4  N, N:robot degrees of freedom) TCP alignment operations, then we obtain the following 

matrix equation: 
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             
   
      

 (23) 
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In Equation (23), the kinematic parameter errors and TCP positional errors are the parameters to be 

identified. A Singular Value Decomposition (SVD) method, which is a rapid and computationally 

efficient algorithm, can be used to solve the matrix equation as: 

( )TY E S F V     (24)  

where E, F are the right and left singular matrix of U, and S
+
 is the singular value matrix. 

Updating the nominal kinematic parameters after the error identification, we can calculate the error 

for the robot self-calibration as follows: 

11

2

1 1

( ( ) ( ))
n n

T

j t i t j t i t

i j i

b b b b

e e e eX X XT XT T T


  

         (25)  

where   
 

i and   
 

j are the robot end-effector orientations and positions computed with the updated 

kinematic parameters. 

Figure 4. Flow chart of the robot self-calibration algorithm. 

START
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Validation
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END
 

The purpose of robot self-calibration is to identify a more accurate kinematic model for the robot, 

with which the position and orientation of the end-effector can be predicted more accurately. Based on 

the kinematic model, the calibration model and the parameter identification techniques proposed in the 

preceding sections, the errors for kinematic parameters can be determined. The procedures for robot 

self-calibration are outlined by the flow chart shown in Figure 4. It can be seen from the chart that the 

self-calibration process is an iterative process. Errors for robot TCP position are also included in the 
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system error model. Suitably small thresholds are selected for the TCP calibration error δ and kinematic 

parameter calibration error ε during the iterative computations. When the errors become less than the 

thresholds, the iteration will stop. As shown in the flow chart, the identified kinematic parameters are 

used to calibrate the TCP position again, so that the accuracy for the robot TCP position and kinematic 

parameters will improve step by step, which would be a virtuous promotion process.  

Moreover, the fixed-point constraints-based calibration method identifies the robot kinematic 

parameters, and makes neither robot base calibration nor hand-to-eye calibration necessary. This blocks 

the estimated errors propagating from base-frame and hand-to-eye calibrations to the robot 

self-calibration procedure, and makes the parameter error identification more accurate. Note that the 

laser sensor is not used for measurement in the calibration process, so the accuracy of the sensor will 

have no impact on the error identification. In fact, the vision-based self-calibration method presented in 

this work could be implemented even with an un-calibrated line-structured laser sensor or just a camera 

and a laser stripe emitter fixed on the robot end-effector. 

4. Experiments and Discussion 

4.1. Experimental Setup  

In order to verify the proposed self-calibration method, an experimental robotic visual inspection 

system is built. It consists of an ABB IRB2400 industrial robot, a line-structured laser sensor and a 

calibration target as shown in Figure 5. With high integration of state-of-art laser technology, electronic 

imaging and image processing technology, the laser sensor has an accuracy of 0.05 mm. The nominal 

value of the robot kinematic parameters is shown in Table 1. For the robot self-calibration setup, a 

sophisticated crosshair calibration target is positioned in the robot volume and its cross-center is referred 

to the fixed point constraint.  

Figure 5. Experimental setup for robot self-calibration. 

 
  

Fixed reference 
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Visual 

sensor 

Industrial 
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Table 1. Nominal value of kinematic parameters for IRB2400. 

Link No. αi/deg ai/mm di/mm θi/deg βi/deg 

1 −90 100 615 θ1 0 

2 0 705 0 θ2–90 0 

3 −90 135 0 θ3–θ2 0 

4 90 0 755 θ4 0 

5 90 0 0 θ5–180 0 

6 0 0 85 θ6 0 

During the calibration, the robot is controlled to align the robot TCP to the cross-center of the 

crosshair target at different robot poses. The purpose of the TCP alignment is to make the position of the 

robot TCP coincide with the fixed point. The TCP position in this paper is defined at the intersection 

point of camera optical axis and the laser plane. Based on the perspective projection principle of camera, 

all points on the optical axis will be imaged into the principle point on the image plane, which is 

determined in the camera intrinsic parameters calibration. When the image of the laser stripe also passes 

through the principle point, the principle point is the image position of TCP. If the fixed point is also 

projected at the principle point, TCP is aligned with the fixed point in the physical world. Hence the 

judging criteria of the alignment between the TCP and the fixed point are that the images of both the 

fixed-point and laser stripe will be coincident to the principle point on image plane. Picture captured by 

the camera of the laser sensor is shown in Figure 6. In practical operation, we write an interface program 

in Visual C++ (VC) to extract the centerline of the laser stripe in real-time and to align the laser stripe to 

the principle point on the image plane efficiently and instantly. The center of the laser stripe is extracted 

based on the Gaussian curve approximation method [25]. The joint angles are saved to identify the 

kinematic parameter errors via the identification method presented in Section 3.2. 

Figure 6. Alignment of the TCP with the fixed point. 

 

Due to limited field of view of the camera, only a small part of the robot volume can be tested at 

any given position of the calibration target. To cover more robot volume, the calibration target must be 

placed at different heights and the robot workspace is divided into three local regions, namely right, 

front and left regions. In our experiment, the calibration target is positioned at high and low positions 

in each region, which are numbered and shown in Figure 7. The robot TCP is controlled to align to the 

cross-center at 10 robot poses at each location.   
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Figure 7. Locations of the fixed point in robot workspace. 

 

Meanwhile, there are many restrictions for the installation of the robotic visual inspection station on 

the manufacturing floor. It is noted that the distribution of the fixed point is not arbitrary and a minimal 

number of fixed points is expected. However, the number of fixed point as well as their distribution in 

the robot workspace would have great impact on the efficiency of the self-calibration procedure and 

effectiveness of error compensation. Hence, it’s of great significance to learn the influence of the 

number and distribution of the fixed points prior to obtain an optimal configuration of the fixed points. 

4.2. Result and Discussion  

As shown in Figure 4, robot self-calibration method presented in this paper is an iterative  

process. Before the robot calibrating itself, initial values of the TCP position must be pre-determined.  

We align the robot TCP to the fixed point at NO.1 location at 4 different poses with the  

method presented in Section 3.1, and identify the TCP position relative to the robot end-effector: 

_ [279.667 2.015 362.650]T

t initialX    

After initial TCP calibration, the robot self-calibration is performed based on the calibration method 

in Section 3.2 and the data acquisition strategy in Section 4.1. In order to demonstrate how the number 

and distribution of the fixed points in the robot volume will influence the self-calibration, we identify the 

errors of kinematic parameters based on data from different locations (regions) and then compare the 

error compensation results. Since many of the experiments have similar results, only four sets of 

experimental data, with calibration and testing, are presented here for brevity, which are data from NO.1 

location, data from NO.1 and NO.2 locations, data from NO.2, NO.3 and NO.6 locations and data from 

all the six locations. Note that there are total 33 parameter errors (30 kinematic parameters plus 3 TCP 

position parameters) in Equation (23) to be identified. According to Equation (18), TCP alignments at 

each two robot postures will provide one misalignment error, and each misalignment error has three 

components. Therefore, at least 11 misaligned errors, from at least six TCP alignments, are required for 

a unique solution to the 33 parameter errors. In this paper, the robot has been moved in 10 different poses 

at each location, so there are 45 misaligned errors at each location. Based on the misaligned errors from 

the four data sources, we could identify four sets of kinematic parameter errors. Comparison among 

them is shown in Figure 8. 

In Figure 8, the 30 parameters are α1 to α6, a1 to a6, d1 to d6, θ1 to θ6, β1 to β6. From Figure 8, we could 

find that there is divergence among the four parameter sets, especially for the parameter sets identified 

with data from one location and two locations. This is because the robot moves in a relatively limited 

workspace and the joint data is acquired in a concentrated area. With more TCP alignments in more 

locations, the estimation error gradually decreases. This could be seen from the parameter set identified 
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based on the joint data from three locations, one fixed point distributed in each region. The  

minor divergence between the parameter sets identified with data from three locations and six  

locations also hints that the parameter identification algorithm can be further convergent and  

effective with more appropriate data samples. The identified kinematic parameter errors based on  

the data from three locations are given in Table 2 and the updated TCP position after one iteration is:

_ [280.215 2.377 361.319]T

t updatedX   . 

Figure 8. Comparison among the parameter sets from four different data sources. 

 

Table 2. Identified values for kinematic parameters errors. 

Link No. Δαi/deg Δai/mm Δdi/mm Δθi/deg Δβi/deg 

1 0.035 −0.279 −0.017 −0.067 0.228 

2 −0.060 0.482 0.026 0.071 0.024 

3 0.075 0.114 0.654 −0.136 0.278 

4 0.229 −0.202 0.032 −0.111 −0.082 

5 0.237 −0.016 −0.025 0.045 −0.094 

6 −0.047 0.027 0.091 −0.028 0.146 

In order to verify the self-calibration approach and compare the effectiveness of the identified 

parameter sets, we use four sets of identified parameters to compensate for the misaligned errors from all 

the six locations. From the comparative result in Figure 9, we can see that with all the four parameter 

sets, the misaligned errors at the locations, whose data has been used to identify that parameter set, have 

all been compensated significantly. But the parameter sets estimated by one and two location are not so 

effective when they are used to compensate for the misaligned errors in the unoccupied regions. We note 

that the third parameter set estimated by data from Locations 2,3,6 has compensated for the misaligned 

errors at all the locations effectively. This is because all the robot joints have had adequate movements. 

The Figures 9c,d show that the third parameter set has similar effect with the parameter set estimated by 

data from all the locations. The mean values of the misaligned errors are 0.168 mm and 0.105 mm 

respectively. When applied on the manufacturing floor, three fixed points with a middle-low-high 

configuration distributed in the robot right, front and left regions would be effective and rational.  
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Figure 9. Misaligned errors compensation with four identified parameter sets.  

Error compensation with parameter identified based on data from: (a) location NO. 1,  

(b) locations NO. 1,2, (c) locations NO. 2,3,6, (d) all locations.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

4.3. Verification 

In order to verify the effectiveness of the calibrated kinematic parameters, an experimental system 

is setup to compare the measurement accuracy of the robotic inspection system with a laser tracker 

(Leica AT901 Laser Tracker with accuracy of ±15 m + 6 m/m). A sophisticated magnetic nest for the 

38.1 mm spherically-mounted reflector (SMR) of the laser tracker is mounted on a scaffold which can 

move up and down freely. The scaffold has been placed at five different positions with different heights 
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in each of the three regions of the robot workspace depicted in Section 4.1. At each scaffold position, 

the 38.1 mm SMR is mounted on the magnetic nest first and the center of the SMR is measured by the 

laser tracker. Then the SMR is replaced by a standard sphere with a diameter of 38.1 mm. Controlling 

the robotic system to scan the standard sphere and the sphere center could be found from the scan data. 

For further accuracy, bearing steel ball (G20 according to ISO 3290-2001) painted with white color is 

used as the standard sphere. The standard sphere was been first inspected on a CMM by sampling 20 

points on the sphere surface and the sphericity (the maximum deviation of the points from the 

least-squares fitted sphere) of the spheres is found to be about 15 m.  

The robotic visual inspection system scans the standard sphere according to the measuring model 

described in Section 2.1. According to Equation (1), hand-to-eye transformation   
  must be initially 

determined before the robotic system is applied for measurement. In this paper, we perform the 

hand-to-eye calibration based on the approach presented in [26]. With the nominal and the calibrated 

kinematic parameters in Table 2, two hand-to-eye transformations can be estimated. Likewise, the 

point cloud of a standard sphere can be transformed to the robot base frame based on the nominal and 

calibrated kinematic models. Then two groups of errors for sphere center distance are obtained from 

these two point clouds, which are distance errors before and after robot calibration. The comparison of 

the distance errors is shown in Figure 10. The maximum error has been reduced from 2.839 mm to 

0.387 mm and the mean error has been reduced from 0.721 mm to 0.069 mm. Note that the mean value 

for the distance error is almost the same as the measurement accuracy of the laser sensor, which is  

0.05 mm. The result of the verification confirms that the vision-based self-calibration method has 

significantly enhanced the overall performance of the robotic visual inspection system. 

Figure 10. Distance error before calibration and after calibration. 

 

5. Conclusions 

In this paper, a novel robot self-calibration approach is proposed to calibrate the kinematic 

parameter errors of a robotic visual inspection system based on fixed point constraints. Robot TCP is 

defined and calibrated based on the model of line-structured laser sensor, and then the robot TCP is 

controlled to align to points fixed in the robot workspace. There is no need to calibrate the 

transformation from the world coordinate system to the robot base frame as well as hand-to-eye 

transformation, which shortens the error propagation chain and increases the accuracy of the identified 

parameters. The effectiveness, correctness and reliability of the proposed method are proved via the 

experimental calibration and validation results with an ABB IRB2400 robot. The maximum value of 
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the distance measuring error has been reduced from 2.839 mm to 0.387 mm. The comparison of 

compensation effectiveness of calibrated kinematic parameters from different number and distribution 

of the fixed points has indicated that the self-calibration approach is very effective. Moreover, the 

proposed method is well suited for robotic online inspection systems in the industrial field because no 

external measuring device or elaborate setup is needed in the whole self-calibration process. In the 

future, we will focus on improving the efficiency of the calibration procedures and promoting this 

robot self-calibration method in the industrial field. 
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