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Abstract: This study assesses the analysis performance of a hybrid DEnKF-variational 

data assimilation (DA) method (DEnVar) for assimilating the MODIS snow cover fraction 

(SCF) into the Common Land Model (CoLM). Coupling a deterministic ensemble Kalman 

filter (DEnKF) with a one-dimensional variational DA method (1DVar), DEnVar without 

observation perturbations is a two-step DA method. That is, the analysis ensemble mean 

and analysis error covariance of DEnKF are introduced into the 1DVar hybrid cost 

function, and the analysis mean of DEnKF is replaced by the 1DVar analysis. The analysis 

performance of DEnVar was experimentally compared with DEnKF, 1DVar, and EnVar 

(hybrid ensemble-variational DA) at five sites in the Altay region of China from November 

2008 to March 2009. From our results, it is shown that the four DA experiments can 

improve snow simulations at most sites when the available MODIS SCF is assimilated. 

The DEnVar experiment using the hybrid error covariance shows the best analysis 

performance among the four DA experiments at most sites. Furthermore, sensitivity tests 

show that DEnVar is slightly sensitive to the weighting coefficient, which controls 

the respective weights of ensemble- and (National Meteorological Center) NMC-based 

error covariances, but is highly sensitive to the observation error. DEnVar obtains better 

analysis performance when using the ensemble-based analysis error covariance rather than 

the hybrid error covariance coupling ensemble-based analysis and static NMC-based 
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error covariances. The inaccurate distribution of observation error may invalidate the 

DEnVar method. 

Keywords: snow depth; snow water equivalent; deterministic ensemble Kalman filter; 

1DVar; DEnVar; snow cover fraction 

 

1. Introduction 

Seasonal snow cover plays a crucial role in the Earth’s hydrological processes, land surface energy 

balance, and climate [1–3] due to its high albedo and low thermal conductivity [4,5]. The snow cover 

fraction (SCF) is a key parameter in the studies of both hydrology and climatology [6]. Normally, SCF 

is derived from snowpack state such as snow depth (SD) or snow water equivalent (SWE). SD and SWE 

are important internal variables of hydrological and climatic models. SWE is the product of SD and snow 

density. They have significant impacts on climatic and hydrological simulations and snowmelt runoff 

predictions [7]. Substantial snow accumulation frequently causes severe snow disasters, such as 

frostbite, death for both animals and people, and traffic disruption [8]. Massive and rapid snowmelt may 

cause flooding. Therefore, the accurate estimates of SD and SWE are important for reduction, mitigation, 

and prevention of snow-related disasters [9].  

To improve the SD and SWE estimates, some substantial efforts have been made through data 

assimilation (DA) to explore optimal combinations of physical models and snow-related observations.  

Most studies have mainly used rule-based direct insertion (e.g., [10–13]), ensemble-based  

(e.g., ensemble Kalman filter (EnKF) [14–17], ensemble square root filter (EnSRF) [18], ensemble 

adjustment Kalman filter (EAKF) [19], and deterministic ensemble Kalman filter (DEnKF) [20]), or 

Bayesian (e.g., [21–23]) DA methods to assimilate SCF (e.g., [24,25]), SWE (e.g., [5,16,26]), SD [12], or 

passive microwave brightness temperature [27] observations into hydrological and land surface models to 

improve snow estimates. All existing studies show that these DA methods improve the SD and SWE 

estimates when available snow-related observations are assimilated into hydrological and land  

surface models. 

In recent decades, a hybrid DA method of utilizing advanced features of both ensemble-based and 

variational DA methods has been proposed (e.g., [28–32]) for numerical weather prediction (e.g., [33–36]). 

For the hybrid method, the ensemble covariance generated from the ensemble-based DA system is 

easily incorporated into the hybrid cost function of variational DA. The hybrid DA system can conform 

well to the existing variational framework and be more flexible than the conventional ensemble-based 

methods for exploring sampling errors and model errors [36]. Recent studies have also demonstrated 

the potential of the hybrid method as compared with the stand-alone EnKF and variational methods 

(e.g., [32,37,38]).  

Given that these hybrid DA methods have been successfully used for improving numerical weather 

prediction, we hypothesize that a hybrid DA method is certainly beneficial to snow simulations. The 

stochastic EnKFs refer to perturbing observations for exploring observation uncertainties [39], which 

may introduce sampling errors and lead to non-optimal DA, especially for small ensembles [40]. In 

the SCF assimilation, perturbing the full SCF observations may decrease the SCF observations, and 
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therefore systematically and substantially underestimate the SWE [15]. A feasible alternative to 

ensemble square root filter (EnSRF) [41] that has been developed is a relatively robust deterministic 

ensemble Kalman filter (DEnKF) without observation perturbations. As compared with the  

EnSRF [42], the DEnKF is easier to implement. The DEnKF method has been used to assimilate MODIS 

SCF into the Common Land Model (CoLM) for SD simulation improvements. However, the assimilated 

results have shown that the assimilation of MODIS SCF only using the DEnKF method  

(a sample ensemble size of 30) cannot effectively improve SD simulations [20]. To avoid underestimation 

of analysis ensemble mean and background error covariance of DEnKF with smaller ensembles, a hybrid 

method (DEnVar) of DEnKF-variational DA without observation perturbations that couples DEnKF and 

1DVar methods is proposed to assimilate MODIS SCF observations into the CoLM for improving SD and 

SWE simulations. As a comparison with the other three DA methods—DEnKF, 1DVar, and EnVar (hybrid 

ensemble-variational DA)—the DEnVar method was used at five sites in the Altay region of China from 

November 2008 to March 2009. The EnVar method is similar to the method of Zhang et al. [36]. We 

performed sensitivity tests on the hybrid error covariance weight and the observation errors.  

The CoLM and related data assimilation methods are described in Section 2. The experimental design 

and data sets are introduced in section 3. Section 4 presents a comparison of DEnVar and other DA 

methods and sensitivity tests on DEnVar. Concluding remarks are given in Section 5.  

2. Methods 

2.1. Common Land Model 

A column (1-D) model, the Common Land Model (CoLM), is the latest land surface model for climate 

studies [43]. The CoLM combines the advanced features of three outstanding and well-documented land 

surface models, including the Land Surface Model (LSM) [44], the Biosphere-Atmosphere Transfer 

Scheme (BATS) [45], and the 1994 version of the Chinese Academy of Science Institute of Atmospheric 

Physics LSM (IAP94) [46]. In the CoLM, SD and SWE are forecast variables. As a diagnostic variable, 

snow cover calculated by total SD directly affects energy fluxes and grid-averaged albedo in the CoLM. 

The CoLM has the five-layer snow scheme which accounts for layer-based liquid water retention, 

thawing-freezing, snow-melt, and heat energy. Snow compaction accounts for the destructive, pressure, 

and melt metamorphisms. At each time step, snow layers can be combined or divided in terms of the 

snow accumulation or melting conditions, like layer thicknesses. More details about snow processes in the 

CoLM can be found in the works of Dai et al. [47] and Dai et al. [43]. 

2.2. Variational Method 

In traditional variational assimilation, the analysis is performed by minimizing a cost function J [28]:  

 (1)

where x = [snowdp, swe] stands for the analysis state vector (e.g. snow depth and snow water 

equivalent in the CoLM), and xb for the background state vector. B stands for the static background 

error covariance matrix, yo for the MODIS SCF observation vector, R for the error variance of MODIS 

SCF observations, and H for the nonlinear observation operator mapping model variables to 
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observation variables. A snow cover depletion curve (SDC) that parameterizes the relationship 

between SD and SCF in the CoLM is considered as the observation operator of snow DA [45]: 

 (2)

where ܵܨܥᇱ stands for the predicted SCF observation, snowdp for the CoLM simulated snow depth, and 

z0g for the roughness length for bare soil with a default value of 0.01 m. 

By defining the analysis increment ݔߜ = ݔ − ௕ݔ  and linearizing H(x) about xb, Equation (1) is 

rewritten as follows [48]: 

 (3)

where ݀ = ௢ݕ − ܪ ௕ሻ stands for the innovation vector, andݔሺܪ = ܪ߲ ⁄ݔ߲  at xb for the Jacobian matrix 

of the nonlinear observation operator H.  

The gradient of the cost function from Equation (3) with respect to ݔߜ is given as follows: 

 (4)

Next, we convert a minimum function problem into a problem of finding the solution of ∇ܬሺݔߜሻ. The 

conjugate-gradient method, which offers a good tradeoff between convergence rates and computer 

memory requirements, is used to minimize the quadratic cost function in our work.  

2.3. Deterministic Ensemble Kalman Filter 

Without observation perturbations, a deterministic ensemble Kalman filter (DEnKF) has been 

proposed by Sakov and Oke [41]. The updated equations of the DEnKF are given as follows: 

 (5)

 (6)

 (7)

 (8)

where ̅ݔ௔ = ,തതതതതതതതതതത௔݌݀ݓ݋݊ݏൣ  ௕ stand for the analysis and background ensemble means of snowݔ̅  തതതതത௔൧ and݁ݓݏ

depth (snowdp) and snow water equivalent (swe) states, ݔ௜௕ = ,௜௕݌݀ݓ݋݊ݏൣ  ௜௕൧ for the CoLM simulated݁ݓݏ

snow state, i for the ensemble index, and N for the ensemble size. K stands for the Kalman gain matrix and 

y° for the MODIS SCF observation. Here the MODIS SCF observation is not perturbed. H stands for an 

observation operator as Equation (2). Pb stands for the background error covariance matrix and R for the error 
variance of MODIS SCF observations. ܣ௕ = ଵ௕ݔൣ − ,௕ݔ̅ ଶ௕ݔ − ⋯,௕ݔ̅ , ே௕ݔ −  ௕൧ stands for the backgroundݔ̅

ensemble perturbation. 

The DEnKF maintains the ensemble spread by halving the Kalman gain in the analysis perturbation 

update stage. That is, 
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 (9)

where Aa stands for the analysis ensemble perturbation. This formulation can be thought of as an inherent 

covariance inflation similar to the relaxation-to-prior algorithm of Zhang et al. [49]. The covariance inflation 

can avoid the collapse of ensemble spread and further reduce the risk of filter divergence [41,50]. 

Finally, the analysis ensemble is generated by adding perturbations to the analysis ensemble mean.  

It is denoted by 

.
 (10)

2.4. Coupled Method 

For snow data assimilation (DA), a two-way coupled DEnKF-1DVar hybrid method (DEnVar) 

patterned after Zhang et al. [36] is proposed. Two-way coupling re-centers the DEnKF analysis ensemble 

mean with the 1DVar analysis. Such re-centering may help to prevent the divergence of the DEnKF 

analyses so that the ensemble perturbations empirically represent the distribution of the forecast errors. 

Unlike the EnVar method (hybrid ensemble-variational DA) of Zhang et al. [36], the two-step DEnVar 

method without observation perturbations in Figure 1 includes three steps: (1) the DEnKF analysis is 

implemented to generate the analysis ensemble mean ̅ݔ௘௡௔  and the analysis error covariance ௘ܲ௡௔ , (2) the 

analysis ensemble mean ̅ݔ௘௡௔  is used as the first guess for the 1DVar and the analysis error covariance ௘ܲ௡௔  is introduced into the 1DVar hybrid cost function, and (3) the analysis ensemble mean ̅ݔ௘௡௔  of DEnKF 

is replaced with the 1DVar analysis for the next ensemble forecast. 

Figure 1. A hybrid analysis method of DEnVar which couples the DEnKF and the 1DVar. 

 

The hybrid error covariance is included in the hybrid cost function by separating the Jb in Equation (1) 

into two parts [28,51]: 

 (11)

where Jb1 stands for the traditional 1DVar background term as in Equation (1) and Jb2 for the  

ensemble-based term. BNMC stands for the static background error covariance calculated by the NMC 

(National Meteorological Center) method [52], and ௘ܲ௡௔  for the analysis error covariance valid at the time 

of analysis. β stands for the weighting coefficient that is used to control the respective weights of static 
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NMC-based background and ensemble-based analysis error covariances. If β approaches 0, then the 

hybrid formulation is functionally equivalent to the standard 1DVar method. If β is 1, the hybrid error 

covariance only contains the ensemble-based analysis error covariance. If β is nonzero, then the hybrid 

method takes the mixed value of both static NMC and ensemble-based error covariances.  

2.5. Error Evaluation Methods 

To evaluate the analysis performance of these assimilation methods, we selected three indices of bias, 

root mean squared error (RMSE), and normalized error reduction percent (NERP) [53] as follows: 

 (12)

 (13)

 (14)

where ys,i and yo,i stand for the i-th simulated (simulation without assimilation or assimilation) and 

observed snow states, respectively, and n for the number of time points. The NERP index is used to 

measure the improved magnitudes of these assimilation methods. RMSEs and RMSEa are the root-mean 

square errors of simulated and analyzed snow states, respectively. NERP ranges from negative infinity 

to 100%, where 100% means that the assimilated results are identical to the observations. A negative 

NERP represents a percent of deterioration for the analyzed states as compared with the simulations 

without DA. 

3. Experimental Design and Data Sets 

3.1. Experimental Sites 

The snow DA methods were used at five sites in the Altay region of Northern Xinjiang, China  

(Figure 2). These five sites are located in a homogeneous land cover area. The geographic locations and 

elevations of five sites are given in Table 1. Influenced by the Siberian High, these five sites experience a 

long, cold and snowy winter. This leads to an approximate 120-day duration of snow cover from November 

to March of the next year [54]. Only the daily in situ SD and air temperature measurements were collected 

at all sites from January 2004 to March 2009. Huang et al. [54] and Xu and Shu [20] have pointed out that 

it is feasible to compare in situ SD observations with MODIS snow cover or the CoLM-simulated SD over 

a variety of environmental conditions. For example, it is possible to make a comparison between in situ 

SD observations and the CoLM-simulated SD with a 0.01° spatial resolution. In situ SD observations from 

November 2008 to March 2009 were considered as validation data sets for assessing the performance of 

snow DA methods. The mean SDs at five sites during this period are shown in Table 1. 
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Table 1. Characteristics of five sites in the Altay region of China. The mean SD is 

calculated from daily in situ SD observations from November 2008 to March 2009, and 

the mean SWE is calculated by daily AMSR-E retrieved SWE from November 2008 to 

March 2009. The term “Pairs” implies the valid pairs of 48-h and 24-h CoLM snow forecasts 

from November 2007 to March 2008. The number (Num) of nonzero snow observations was 

calculated during the period of January 2004 to October 2008. The observation standard error 

(σobs) is calculated by fitting MODIS SCF observations to AMSR-E SWE-based  

SCF observations. 

Site Lon Lat 
Elevation 

(m) 

Mean SD 

(cm) 

Mean SWE 

(mm) 
Pairs Num σobs (%)

Aletai 88.083 47.733 737 32.71 88.53 86 253 27.75 

Buerjin 86.867 47.400 456 15.41 26.84 80 125 27.78 

Fuyun 89.517 46.983 826 15.99 69.77 91 206 22.85 

Jimunai 85.867 47.433 984 22.80 36.68 83 248 28.56 

Qinghe 90.383 46.667 1 200 14.35 61.37 96 175 29.70 

Figure 2. The geographic locations of five sites in the Altay region of Northern Xinjiang, 

China on the land cover map of approximately 1 km spatial resolution [20].  

 

3.2. MODIS Snow Cover Fraction 

For snow DA experiments, the Terra MODIS daily snow cover fraction product at an approximately 

10:00 am local overpass time (MOD10A1; Daily L3 Global 500 m Grid, Collection 5) from 2004 to 

2009 was downloaded from the National Snow and Ice Data Center [55]. A previous study has shown 
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that the MODIS SCF product has a mean absolute error of less than 10% in the fractional snow cover of 

0% to 100% [56]. However, this SCF error of 10% may be underestimated in some areas of dense forests 

and slope-induced shadow [56,57], where incorrect MODIS SCF observation errors [25] exist. To be 

consistent with the CoLM’s spatial resolution, the daily 500 m SCF product is resampled to the daily 

0.01° SCF product by the nearest-neighbor resampling of the NASA’s MODIS Reprojection  

Tool (MRT).  

3.3. AMSR-E Snow Water Equivalent 

The AMSR-E, launched on the NASA Aqua platform in May 2002, is a multi-frequency, dual-polarized 

passive microwave radiometer with frequencies of 6.9 GHz to 89 GHz. The AMSR-E is aimed to provide 

spatially and temporally continuous SWE products for global change analyses. The daily AMSR-E SWE 

product with a spatial resolution of 25 km during the period of 2004 to 2009 was downloaded from  

NSIDC [58]. Due to homogeneous grassland land cover at five sites in the plain area of the Altay region, 

the AMSR-E-retrieved SWE is relatively accurate from November to February. The AMSR-E-retrieved 

SWE during the melting period of March may be less accurate for the reason of liquid water content [59], 

but overall it is relatively reliable. The AMSR-E-retrieved SWEs are downscaled to the spatial resolution 

of 0.01° in consistence with the resolution of the CoLM, using a nearest-neighbor resampling method in 

the snow DA system. The SWEs from November 2008 to March 2009 are considered as the “reference” 

values to assess the analysis performance of snow DA methods, and the SWEs from other times are used 

to calculate the MODIS SCF observation error. 

3.4. Experimental Design 

The China Meteorological Forcing Dataset (CMFD), with a 0.1° spatial resolution and 3-h temporal 

resolution provided by the Environmental and Ecological Science Data Center for West China (WestDC), 

includes downward short-wave solar and long-wave radiation, precipitation rate, air temperature, wind 

speed, specific humidity, and surface pressure (Pa). The atmospheric forcing dataset is used to drive the 

CoLM, which is a physically based land surface model. The CoLM can be used to forecast the energy and 

water balance. The transfer between energy and water of the soil-vegetation-snow-atmosphere is 

formalized to be a function of atmospheric forcing data, terrain elevation, and vegetation and soil 

characteristics. Simulated and assimilated experiments are implemented at a single grid point with a 0.01° 

(~1 km) spatial resolution at five sites.  

A simulation in the CoLM from January 2004 to March 2009 was implemented in a continuous mode. 

The simulation of the first four and half years served as a spin-up of the model so that SD and SWE could 

reach a steady state. The previous year’s simulation, without assimilation, from November 2008 to March 

2009 was considered as a benchmark in testing the analysis results of different DA experiments.  

We performed four snow DA experiments denoted 1DVar, DEnKF, EnVar-Beta 0.5, and  

DEnVar-Beta 0.5 in Table 2. In the four snow DA experiments, if the daily SCF and simulated snow 

states (SD and SWE) take positive values, then the Terra MODIS SCF observations are assimilated into 

the CoLM at the local satellite overpass time of about 10:00 am using different DA methods. Using the 

method of Arsenault et al. [25], the MODIS SCF observation errors (σobs) are calculated as the difference 

between MODIS SCF observations and SCF validation “truth”. The SD data is calculated by AMSR-E 
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SWE with a bulk snow density of 250 kg/m3 (SWE = SD × snow density), then the SCF validation “truth” 

is calculated with the SD data with the observation operator, SCF = snowdp / (snowdp + 0.1). The MODIS 

SCF observation errors are characterized with the observation error standard deviation in the DA system. 

Nonzero snow observation values of AMSR-E SWE and MODIS SCF from January 2004 to October 

2008 were used to calculate the MODIS SCF observation errors, and the number (Num) of nonzero snow 

observations is given in Table 1. The period of November 2008 to March 2009 was selected as the 

experimental time for assimilation and validation. The final SCF observation errors at five sites are given 

in Table 1. In Table 1, the observation standard errors (σobs) at five sites are approximately 23%–30%, 

which may be jointly caused by the uncertainty of the AMSR-E-retrieved SWE, observation operator, and 

snow density (e.g. a bulk snow density of 250 kg/m3). Particularly in the snow melting stage, the  

AMSR-E-retrieved SWE may have errors introduced by liquid water content. 

In the 1DVar experiment, the traditional 1DVar method of Equation (3) and (4) is used. Using the 

NMC method [52], the differences between 48 h and 24 h CoLM snow forecasts starting from the same 

time at 0900 UTC from November 2007 to March 2008 were used to estimate the static background 

error covariance B through the following Equation (15): 

 (15)

where xt stands for the true state of CoLM SD and SWE and εb for the background error. The overbar 

denotes an average over time. The valid pairs (Pairs) in calculations of B during this period at five sites 

are given in Table 1. The cross covariance between SD and SWE is also considered in B. 

In the DEnKF experiment, an ensemble size of 25 is selected as in previous studies [15,17,25]. During 

the assimilation, the perturbations are introduced into the atmospheric forcing dataset and the snow state 

variables (SD and SWE) in a continuous cycle mode to represent distribution of these model input errors 

empirically. Following the method of De Lannoy et al. [15] and Reichle et al. [60], multiplicative 

perturbations with the mean of 1 and standard deviations of 0.5 and 0.1 are imposed on precipitation (P) 

and downward shortwave radiation (SW), respectively. Additive perturbations with the mean of 0 and 

standard deviations of 0.5 K and 15 W m−2 are imposed on air temperature (T) and downward longwave 

radiation (LW), respectively. The SD and SWE state variables are subject to multiplicative perturbations 

with the mean 1 and standard deviation 0.01. Moreover, the cross correlations between perturbations to 

state variable and forcing dataset are also calculated by using the methods of De Lannoy et al. [15] and 

Reichle et al. [60]. These perturbations do not have spatial correlation because all DA experiments are 

implemented at a single grid point with a 0.01° (~1 km) spatial resolution. 

To remove sampling errors that resulted from MODIS SCF observation perturbations, the  

EnVar-Beta 0.5 experiment, adapted from the method of Zhang et al. [36], was implemented by coupling 

the 1DVar and DEnKF methods. The DEnKF provides the forecast ensemble mean (̅ݔ௘௡௕ ) and background 

error covariance ( ௘ܲ௡௕ ) for 1DVar. The analysis ensemble mean in the DEnKF is replaced by the 1DVar 

analysis. The analysis perturbation in the DEnKF is updated by Equation (9) for the next ensemble forecast. 

In the EnVar-Beta 0.5 experiment, the static NMC-based background error covariance (BNMC, Equation (15)) 

and the ensemble-based background error covariance ( ௘ܲ௡௕ , Equation (8)) are equally weighted, that is,  

β = 0.5.  

( )( )
( ) ( ) ( ) ( )48 24 48 24

Tb t b t T
b b
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B x x x x
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Unlike the EnVar-Beta 0.5 experiment, the DEnVar-Beta 0.5 experiment with the weighting 

coefficient of 0.5 needs a two-step process. That is, the analysis ensemble mean (̅ݔ௘௡௔ ) and analysis error 

covariance ( ௘ܲ௡௔ ) calculated in DEnKF are introduced into 1DVar, and the 1DVar analysis is used to 

update the analysis ensemble mean in DEnKF. 

Furthermore, additional sensitivity tests of DEnVar to weighting coefficients and MODIS SCF 

observation errors (Table 2) were performed. We wrote the computer programs of these DA algorithms 

in FORTRAN and integrated related modules into the CoLM. 

Table 2. Summary of snow DA experiments. Note that the SCF observation standard errors 

of these DA experiments except for the DEnVar-Beta 1.0–2 experiment are given in Table 1. 

Experiments Description 

Simulation No snow DA 

1DVar Snow DA using 1DVar with static covariance from NMC method 

DEnKF Snow DA using DEnKF with ensemble size of 25 

EnVar-Beta 0.5 Snow DA using a hybrid method like Zhang, Zhang and Poterjoy [36] with 
ensemble size of 25, weighting coefficient of 0.5 

DEnVar-Beta 0.5 Snow DA using the proposed hybrid method with ensemble size of 25, 
weighting coefficient of 0.5 in Equation (11) 

DEnVar-Beta 0.8 Sensitivity DEnVar with ensemble size of 25, weighting coefficient of 0.8 in 
Equation (11) 

DEnVar-Beta 1.0 Sensitivity DEnVar with ensemble size of 25, weighting coefficient of 1.0 in 
Equation (11) 

DEnVar-Beta 1.0–2 Same as DEnVar-Beta1.0 with MODIS SCF observation error of 10% 

4. Results 

4.1. Snow Data Assimilation Using Different Methods 

4.1.1. Comparison with In situ SD Observations 

In Figure 3, the CoLM running at most sites produces late snow accumulations and early snowpack 

melt-offs as compared with in situ SD observations, except at the Fuyun site, partly due to 

underestimation of albedo and SCF in the CoLM [20]. At the Fuyun site, the CoLM simulation shows 

time series trends consistent with in situ SD observations during the snow accumulation period. 

However, there is still a large discrepancy between the CoLM-simulated SD and in situ observations 

during the melting period. Figure 3 shows that the four DA experiments have similar time series trends. 

In the experiments of DEnVar-Beta 0.5, DEnKF, and EnVar-Beta 0.5, the analyzed SD values during 

the snow accumulation and melting periods are elevated to a value that is very close to in situ 

observations at the Aletai, Buerjin, and Qinghe sites. In contrast to 1DVar experiment  

(see Figure 3A,B,E), these three DA experiments obtain better analysis performance. However, the 

opposite happened at the Fuyun site. At the Fuyun site, these three DA experiments showed 

overestimated peak and melting snowpack as compared with the 1DVar experiment; the 1DVar analysis 
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tended to be similar to the in situ SD time series trend as compared with other experiments in Figure 3C. 

The overestimation is caused by the large positive innovation	ݕ௢ −  ௕ሻ, which may be related to theݔሺܪ

predicted SCF observation underestimated by the simplified observation operator [20]. It is expected to 

alleviate the overestimation by improving the simplified observation operator in a method similar to the 

SCF parameterization scheme [10,61]. At the Jimunai site, the DEnVar-Beta0.5 experiment obtained the 

best analysis performance, but it tends to melt the snowpack too early and rapidly in Figure 3D. This is 

due to the presence of cloud cover, which accounts for the missing SCF observations in snow DA during 

this period [20].  

Figure 3. Comparison of SD time series from in situ observations and the assimilated results 

from different DA experiments at the (A) Aletai, (B) Buerjin, (C) Fuyun, (D) Jimunai, 

and (E) Qinghe sites. 

 

To compare the overall difference of the four DA experiments, these results were evaluated with the 

indices of bias, RMSE, and temporal correlation coefficient (Correlation) in Table 3. The DEnVar-Beta 0.5 

experiment with the lowest bias and RMSE and the highest correlation coefficient outperformed other DA 

experiments at the Buerjin, Jimunai, and Qinghe sites. Among these three sites, Qinghe tended to have the 

lowest errors (the bias of 0.28 cm and the RMSE of 3.91 cm) and the highest correlation coefficient of 0.95 

in the DEnVar-Beta0.5 experiment. The error of the analyzed SD in the DEnVar-Beta 0.5 experiment was 

reduced by 57.82% (NERP of 57.82%, see Figure 4) as compared with the CoLM simulations at the 

Qinghe site, and the errors in other DA experiments were also reduced by 18.12%, 51.13%, and 

41.42%, respectively, in Figure 4. At the Aletai site, the DEnKF experiment with a bias of −0.71 cm 

obtained a slightly better agreement with in situ SD observations against the DEnVar-Beta 0.5 experiment 

with a bias of 1.85 cm in Table 3. The improved magnitude of the DEnKF and DEnVar-Beta 0.5 

experiments at the Aletai site is extended upwards to 67.93%and 66.29% respectively in Figure 4. At 

the Fuyun site, the correlation coefficient between the 1DVar analyzed SD and in situ SD reached 0.98, 

with a bias of −1.41 cm and a RMSE of 3.36 cm in Table 3. These values imply that the 1DVar experiment 

obtains a better agreement and smaller differences with in situ SD observations as compared with other 

experiments. The large positive bias in Table 3 and negative NERP values in Figure 4 show 
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overestimation of SD during the snow accumulation and melting periods in the experiments of DEnKF, 

EnVar-Beta 0.5, and DEnVar-Beta 0.5, especially in the DEnVar-Beta 0.5 experiments, with the 

largest positive bias of 8.97 cm and negative NERP of −83.36% at the Fuyun site in Figure 4.  

The bias, RMSE, correlation coefficient, and NERP values significantly improved after the 

assimilation of available MODIS SCF observations. On average, the four DA experiments can improve 

SD simulations. In particular, the DEnVar-Beta 0.5 experiment obtains the best analysis performance 

while the 1DVar experiment obtains the worst analysis performance. The DEnKF analysis performs 

as well as the analysis of DEnVar-Beta 0.5 experiment and better than that of the EnVar-Beta 0.5 

experiment. Since the DEnVar-Beta 0.5 experiment integrates the analysis of DEnKF and 1DVar, the 

DEnVar-Beta 0.5 experiment produces more snow accumulations than the DEnKF and 1DVar 

experiments. This is to say, the DEnVar-Beta 0.5 experiment makes significant improvements on SD 

simulations, especially in the case of underestimated SD simulations. 

Figure 4. The normalized error reduction percent (NEPR) of the analyzed SD in 1DVar, 

DEnKF, EnVar-Beta 0.5, and DEnVar-Beta 0.5 experiments. Higher NEPRs indicate an 

obvious improvement of snow DA. 

 

Table 3. Summary of the analyzed SD simulation statistics in 1DVar, DEnKF,  

EnVar-Beta 0.5, and DEnVar-Beta 0.5 DA experiments at five sites from November 2008 

to March 2009. 

Index Experiment Aletai Buerjin Fuyun Jimunai Qinghe 

Bias (m) Simulation −0.1759 −0.0529 −0.0398 −0.1887 −0.0811

 1DVar −0.1221 −0.0385 −0.0141 −0.1670 −0.0630
 DEnKF −0.0071 −0.0301 0.0714 −0.1311 −0.0218
 EnVar-Beta 0.5 −0.0453 −0.0295 0.0459 −0.1549 −0.0369
 DEnVar-Beta 0.5 0.0185 −0.0290 0.0897 −0.1011 0.0028 
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Table 3. Cont. 

Index Experiment Aletai Buerjin Fuyun Jimunai Qinghe 

RMSE (m) Simulation 0.2011 0.0689 0.0577 0.2070 0.0927 

 1DVar 0.1476 0.0618 0.0336 0.1860 0.0759 
 DEnKF 0.0645 0.0569 0.0878 0.1456 0.0453 
 EnVar-Beta 0.5 0.0851 0.0563 0.0637 0.1696 0.0543 
 DEnVar-Beta 0.5 0.0678 0.0550 0.1058 0.1192 0.0391 

Correlation Simulation 0.8391 0.8582 0.9617 0.5808 0.8560 

 1DVar 0.8966 0.8599 0.9782 0.6281 0.8809 
 DEnKF 0.9450 0.8820 0.9259 0.8162 0.9304 
 EnVar-Beta 0.5 0.9273 0.8828 0.9422 0.7807 0.9169 
 DEnVar-Beta 0.5 0.9434 0.8885 0.9146 0.8183 0.9463 

4.1.2. Comparison with AMSR-E SWE Observations 

The SWE state is updated with the error covariance between the SD and SWE states using a similar 

algorithm of the SD update. 

In Figure 5, the four DA experiments significantly improve the SWE simulations at all sites, and all 

DA experiments show similar SWE time series trends. However, the analyzed SWEs in these DA 

experiments are still underestimated during the snow accumulation and melting periods in Figure 5. 

From November to late February, when perhaps the snow is dry, the AMSR-E-retrieved SWE has fewer 

errors introduced by liquid water content [62]. These snow DA experiments show better agreement with 

the AMSR-E SWE observations during this period than during the melting period of March in Figure 5.  

On the whole, the DEnVar-Beta 0.5 experiment obtained better analysis performance than other DA 

experiments at the Aletai, Fuyun, Jimunai, and Qinghe sites in Figure 5, with the lowest bias and RMSE 

and highest correlation coefficient values in Table 4. At the Aletai site, the bias between the analyzed 

SWE in the DEnVar-Beta 0.5 experiment and the AMSR-E SWE was reduced from −60.69 mm (the 

bias of the CoLM simulations) to −30.74 mm, and the RMSE was reduced from 72.17 mm to 44.78 mm. 

The DEnVar-Beta 0.5 experiment tended to have the largest improved magnitude of SWE at the Aletai site 

and the improved magnitude reached 37.95% in Figure 6. As compared with the EnVar-Beta 0.5 experiment, 

the DEnKF experiment showed analysis results similar to that of the DEnVar-Beta 0.5 experiment, and 

achieved a slightly better agreement with the AMSR-E SWE observations. The EnVar-Beta 0.5 

experiment with a NERP of 21% outperformed the 1DVar experiment with a NERP of 8.45% in 

Figure 6, conversely, at the Buerjin site. At the Buerjin site, the 1DVar experiment offered better 

improvement than other DA experiments. As compared with the CoLM simulations, the SWE 

simulations of the 1DVar has obtained an 11.6% improved magnitude, while the largest improved 

magnitude among the DEnKF, EnVar-Beta0.5, and DEnVar-Beta 0.5 experiments was only 2.92%, in 

the EnVar-Beta 0.5 experiment in Figure 6. 
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Figure 5. Comparison of the SWE time series from AMSR-E retrieved SWE and the 

assimilated results from different DA experiments at the (A) Aletai, (B) Buerjin, (C) Fuyun, 

(D) Jimunai, and (E) Qinghe sites. 

 

Figure 6. Analysis of SWE state. Cf. Figure 4. 

 

Table 4. Summary of the analyzed SWE statistics. Cf. Table 3. 

Index Experiment Aletai Buerjin Fuyun Jimunai Qinghe 

Bias (mm) Simulation −60.6890 −10.7972 −51.1207 −30.8255 −51.9142

 1DVar −54.1836 −6.5794 −49.6650 −26.8484 −50.5498
 DEnKF −36.1520 −9.1861 −38.9930 −21.8406 −46.2824
 EnVar-Beta 0.5 −43.9760 −8.9642 −43.0146 −26.2549 −48.6462
 DEnVar-Beta 0.5 −30.7429 −8.9699 −36.0278 −16.3484 −42.4852
 Simulation 72.1651 19.5319 59.9968 34.2670 60.4474 

RMSE (mm) 1DVar 66.0648 17.2661 58.9658 30.9795 59.0669 
 DEnKF 49.4169 18.9730 49.2967 27.0125 54.2969 
 EnVar-Beta 0.5 57.0112 18.9613 52.9896 30.3120 56.7938 
 DEnVar-Beta 0.5 44.7758 18.9999 46.4075 23.9441 50.1661 
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Table 4. Cont. 

Index Experiment Aletai Buerjin Fuyun Jimunai Qinghe

Correlation Simulation 0.5940 0.4602 0.5499 0.1439 0.3393

 1DVar 0.6361 0.5819 0.5339 0.2447 0.3715
 DEnKF 0.7420 0.4782 0.6021 0.3305 0.5072
 EnVar-Beta 0.5 0.6809 0.4769 0.5712 0.2767 0.4538
 DEnVar-Beta 0.5 0.7657 0.4740 0.6339 0.3495 0.5936

Although the analyzed SWE values during the snow accumulation and melting periods were 

improved, a large discrepancy still exists between the analyzed SWE and the AMSR-E SWE. That 

resulted partially from the imprecise covariance between SD and SWE states. An improved extent of the 

SWE state is determined by innovation ݀ = ௢ݕ −  ௕ሻ and Kalman gain concerning the covarianceݔሺܪ

between SD and SWE states. The covariance is underestimated with an inaccurate covariance. The 

underestimated covariance may decrease the Kalman gain, and further lead to a sub-optimal assimilation. 

4.2. Sensitivity to Weighting Coefficients 

Here we performed the sensitivity test of the weighting coefficient β to the proposed DEnVar method. 

The weighting coefficient β, as given in Equation (11), controls the respective weights of the static NMC 

and ensemble-based analysis error covariances. The weighting coefficient is set to 0.8 in the DEnVar. 

This explains that 20% of the covariance comes from the static NMC estimate and 80% from the 

ensemble error statistic, as described in the DEnVar-Beta 0.8 experiment. The weighting coefficient was 

set to 1. This explains that the hybrid error covariance only contains the ensemble-based analysis error 

covariance (as in the DEnVar-Beta 1.0 experiment).  

Figure 7 shows the time series of the CoLM snow states from the DEnVar experiment, with β of 0.5 in 

the DEnVar-Beta 0.5 experiment, 0.8 in the DEnVar-Beta 0.8 experiment, and 1.0 in the DEnVar-Beta 1.0 

experiment at the Aletai and Jimunai sites. The time series graphics at other sites are not shown given 

their similar analysis performance. In Figure 7, the three DA experiments show similar time series trends; 

the DEnVar-Beta 1.0 experiment obtained a slightly closer fit to snow observations than the DEnVar-

Beta 0.5 and DEnVar-Beta 0.8 experiments. For the SD state, the three DA experiments have similar 

NERP values in Figure 8A, while the DEnVar-Beta 1.0 experiment has lower NERP values at the Aletai, 

Buerjin, and Fuyun sites, and higher NERP values at the Jimunai and Qinghe sites than in the other DA 

experiments. In addition, for the SWE state, the DEnVar-Beta 1.0 experiment with slightly higher NERP 

values achieved a slightly better analysis performance than the DEnVar-Beta 0.5 and DEnVar-Beta 0.8 

experiments at all sites (Figure 8B). Therefore, it is concluded that the proposed DEnVar method is not 

highly sensitive to the weighting coefficient β. However, it prefers to give greater weight to the 

ensemble-based analysis error covariance since the DEnVar experiment with a greater weighting 

coefficient produces more snow accumulations and achieves better correlation with snow observations, 

especially in the case of SD- and SWE-underestimated simulations.  
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Figure 7. The time series comparison of CoLM snow states (Left: SD, Right: SWE) from 

snow observations and the assimilated results in DEnVar-Beta 0.5, DEnVar-Beta 0.8, and 

DEnVar-Beta 1.0 sensitivity tests at the Aletai (A,B) and Jimunai sites (C,D). 

 

Figure 8. The NEPR of the analyzed SD (A) and SWE (B) in the DEnVar-Beta 0.5,  

DEnVar-Beta 0.8, and DEnVar-Beta 1.0 sensitivity tests. 

(A) (B) 

4.3. Sensitivity to Observation Error 

Given that MODIS SCF products have approximately 10% error [54,63], some previous studies have 

assigned a 10% SCF observation error to MODIS SCF DA [16,17]. To identify the influence of this 10% 

SCF observation error on the proposed DEnVar DA method, a sensitivity test extending the DEnVar-Beta 

1.0 experiment, a DEnVar-Beta 1.0–2 experiment, was performed.  

In Figure 9, the DEnVar-Beta 1.0–2 experiment showed an overestimated peak snowpack as 

compared with the DEnVar-Beta 1.0 experiment, which produced early snow accumulations and late 

snowpack melt-offs at all sites except for Buerjin. The DEnVar-Beta 1.0–2 experiment tended to 

overestimate the SD simulations at all sites, leading to large bias and RMSE values in Figure 10A. The 
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Fuyun site has the largest bias of 20.06 cm and the largest RMSE of 22.10 cm. The lowest bias of 1.33 cm 

and RMSE of 5.19 cm occurred at the Buerjin site (Figure 10A).  

Figure 9. The SD time series of in situ SD observations and the analyzed SD in the  

DEnVar-Beta 1.0 and DEnVar-Beta 1.0–2 sensitivity tests at the (A) Aletai, (B) Buerjin,  

(C) Fuyun, (D) Jimunai, and (E) Qinghe sites. The observation standard errors (σobs) at five 

sites in the DEnVar-Beta 1.0 experiment are given in Table 1. The DEnVar-Beta 1.0–2 

experiment is the same as the DEnVar-Beta 1.0 experiment, but the MODIS SCF observation 

error is set to 10%.  

 

Figure 10. The bias and RMSE of the analyzed SD (A) and SWE (B) in DEnVar-Beta 1.0–2 

experiment with the MODIS SCF observation error of 10%. 

(A) (B) 

Figure 11 shows that the analyzed SWE values in the peak and melting stages were greatly increased. 

This led to overestimation of the SWE simulations at the Aletai and Jimunai sites, with positive biases 

of 11.39 mm and 18.99 mm, respectively (Figure 10B). Although the analyzed SWE is still 

underestimated at the Fuyun and Qinghe sites (as seen in the negative bias in Figure 10B), the time series 

trend from the DEnVar-Beta 1.0–2 experiment was closer to that of the AMSR-E-retrieved SWE 

observations than that from the DEnVar-Beta 1.0 experiment in Figure 11.  
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Figure 11. Graphical representation of the SWE state. Cf. Figure 9. 

 

On the whole, large changes in the SD and SWE states were produced by the DEnVar-Beta 1.0–2 

experiment, with a 10% SCF observation error. In sum, the proposed DEnVar method is highly sensitive to 

observation error. Moreover, a reasonable MODIS SCF observation error is quite important for snow DA.  

A triple collocation technique [64] may be used to estimate the MODIS SCF observation error under the 

assumption that the three snow-related datasets are independent of each other. 

5. Conclusions 

In this study, four different data assimilation (DA) experiments assimilating MODIS SCF 

observations into the CoLM were performed using ensemble-based, variational, and hybrid methods, 

DEnKF, 1DVar, EnVar (a hybrid ensemble-variational DA system), and DEnVar (DEnKF-1DVar). 

EnVar and DEnVar are coupled DA methods, which are comparable to the method of Zhang et al. [36] 

and couple 1DVar and DEnKF methods. Unlike EnVar, the DEnVar method needs a two-step process. 

That is, the analysis ensemble mean and the analysis error covariance of DEnKF are introduced into the 

1DVar hybrid cost function, and the analysis mean of DEnKF is replaced by the 1DVar analysis.  

DA experiments were performed at five sites in the Altay region of China from November 2008 to March 

2009. The analyzed SD and SWE were validated against in situ SD and AMSR-E SWE observations. Our 

results indicate that some improvements in the four DA experiments occurred at most sites when the 

available MODIS SCF is assimilated. It was shown that, with the same observation errors, the 1DVar of 

static NMC-based background error covariance performed worse than other DA methods of ensemble-based 

background error covariance. This indicates that the static NMC-based background error covariance 

magnitude from 1DVar is less than the ensemble-based background error covariance from the DEnKF. 
A possible reason is that a larger analysis error covariance ௘ܲ௡௔ = ሺܫ − ሻܪܭ ௘ܲ௡௕ + 1 4ൗ ܪܭ ௘ܲ௡௕  of the ்ܭ்ܪ

DEnKF method is calculated by the equations 
 ௘ܲ௡௔ = ௔ܣ ௔ሻ்തതതതതതതതതതത andܣ௔ሺܣ = ௕ܣ − 1 2ൗ  ௕. This analysisܣܪܭ

error covariance explains that the DEnKF can avoid underestimating the analysis error covariance [41]. 
As compared with the stochastic EnKF, an additional term 1 4ൗ ܪܭ ௘ܲ௡௕  in the DEnKF is interpreted ்ܭ்ܪ

as an inherent covariance inflation, which can effectively maintain the ensemble spread and avoid filter 
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divergence. Furthermore, the DEnKF without observation perturbations does not introduce extra 

observation perturbation errors, which may render the filter sub-optimal [40]. The analysis error 

covariance ௘ܲ௡௔  and ensemble mean ̅ݔ௘௡௔  of DEnKF are used in the hybrid 1DVar cost function  

(DEnVar-Beta 0.5). The 1DVar analysis in DEnVar-Beta 0.5 experiment is better than that in the  

EnVar-Beta 0.5 experiment, which uses the forecast error covariance ௘ܲ௡௕  and ensemble mean ̅ݔ௘௡௕ . As a 

result, our hybrid DEnVar method obtains better analysis performance than the EnVar method of 

Zhang et al. [36]. The analysis performance of the two-step DEnVar method is better than that of the 

DEnKF method. 

Although our hybrid DA method can improve the simulations of SD and SWE to some extent, large 

errors can still be found in snow simulations of the CoLM. The large errors may be partly due to the 

scale mismatch between the CoLM model and input datasets. In practice, the atmospheric forcing data 

with a 0.1° spatial resolution is effectively implemented to drive the CoLM with a 0.01° spatial resolution 

in simulations and assimilations of SD and SWE. However, this atmospheric forcing data at a larger 

scale may introduce some errors leading to a bias in simulations of SD and SWE. It is due to this that 

atmospheric forcing data may not satisfy the requirements of simulations and assimilations on the 

CoLM’s scale, as well as the assimilated MODIS SCF with a 500 m spatial resolution. Furthermore, to 

be consistent with the CoLM’s scale, the AMSR-E SWE data is downscaled to a spatial resolution of 

0.01° using a nearest neighbor resampling. The value of the scaled SWE data does not differ from the original 

SWE data value with a 25 km spatial resolution. Thus, the scaled SWE data used to estimate the observation 

errors and validate the assimilated results may also have introduced some errors into our DA experiments.  

Lastly, we tested the sensitivity of the weighting coefficient of hybrid background error covariance 

and the SCF observation error to the DEnVar method, respectively. It is found that the proposed DEnVar 

method is slightly sensitive to the weighting coefficient and is highly sensitive to observation errors. The 

DEnVar-Beta 1.0 experiment with the ensemble-based analysis error covariance ௘ܲ௡௔  obtains better 

analysis performance than the DEnVar-Beta 0.5 and DEnVar-Beta 0.8 experiments with the hybrid error 

covariance, because the element values of background error covariance calculated with the hybrid error 

covariance are decreased in the 1DVar cost function. It is thus feasible to use only the ensemble-based 

error covariance from the DEnKF in the hybrid DA system.  
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