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Abstract: Wireless Sensor Network (WSN) is leading to a new paradigm of Internet of 

Everything (IoE). WSNs have a wide range of applications but are usually deployed in a 

particular application. However, the future of WSNs lies in the aggregation and allocation 

of resources, serving diverse applications. WSN virtualization by the middleware is an 

emerging concept that enables aggregation of multiple independent heterogeneous devices, 

networks, radios and software platforms; and enhancing application development. WSN 

virtualization, middleware can further be categorized into sensor virtualization and network 

virtualization. Middleware for WSN virtualization poses several challenges like efficient 

decoupling of networks, devices and software. In this paper efforts have been put forward to 

bring an overview of the previous and current middleware designs for WSN virtualization, 

the design goals, software architectures, abstracted services, testbeds and programming 

techniques. Furthermore, the paper also presents the proposed model, challenges and future 

opportunities for further research in the middleware designs for WSN virtualization.  
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1. Introduction 

Virtualization creates an environment in embedded and sensor networks, by which efficient sharing 

of resources, services and networks is achieved. Virtualization combines different hardware and software 

on a platform along with the network functionalities to control and administrate all the network 

resources. The goal of virtualization is to provide users with seamless access to the sensor data and 

efficient utilization of the resources.  

One of the main objectives of the virtualization is to match the application needs in the best possible 

way, and to make sure that multiple heterogeneous sensor networks are managed in such a way that they 

ensure efficiency and quality. Virtualization hides all the physical details of the sensors and networks 

from the user application. User applications feel as if running directly on the hardware. It enables the 

users, services and applications to interact with each other. Virtualization enables sharing of resources 

in a secure and energy efficient manner [1]. Sensor networks are required to dynamically collaborate 

and facilitate different applications, on the air integrating sensor networks, forming clusters and 

supporting multiple radios. Virtualizations of networks and sensors have wide application  

areas that include health care, smart space, structural monitoring, telemedicine, vehicle monitoring, 

agriculture, industrial, military, environment, smart home, smart city and entertainment.  

Sensor networks have usually been explored in application specific areas. But for the Internet of 

Things (IoT) to be a reality and further, the idea of IoE to be practical research community has to  

come up with middleware designs that have the capabilities of integrating all the sensors having 

heterogeneous nature and specifications with respect to power consumption, processing time, memory 

and transmission range. 

Due to the owner’s strict control over the WSN domains, conflicting goals, different sensor node and 

vendors, with no standard in place it is difficult to introduce a large scale federated WSN [2]. 

Virtualization of sensor network can facilitate a number of infrastructure providers and service providers, 

enabling them to combine together and support each other’s interest and facilitate the user at the 

maximum. Virtualization also plays its part in the making sensor-as-a-service (SaaS) by facilitating both 

the infrastructure providers and the service providers. Virtualization decouples the functionalities in 

WSN. Furthermore, it opens new horizons for improvement by dividing of the traditional service 

providers into two infrastructure providers and service providers. Infrastructure providers are responsible 

for the management of the hardware or the physical infrastructure and Service providers responsible for 

the software, resource management and the service provisioning. The decoupling of the infrastructure 

from services is done by the middleware, where services are not concerned with the infrastructure and 

on the other hand infrastructure has nothing to do with the services. 

The network and sensor virtualization can be achieved by the middleware layer. Middleware sits 

between the application layer and the lower layers providing abstraction from the network details. 

Middleware is a software tool that helps in hiding the complexities of the underlying heterogeneous 

hardware, radio technologies, networks and low level software. Furthermore, Middleware provides ease 

of managing the network resources using the concept of virtualization of the network and the 

virtualization of the sensors. This paper is aimed at surveying the available middleware that support 

virtualization, both in terms of network and sensors. A number of design approaches have been bidden 

for the pooling and provisioning of sensed data satisfying different functionalities and applications. The 
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overall goal of making sensed data to be available, and to fulfill the concepts of SaaS regardless of what 

conditions are beaning faced at any time and place [3,4]. 

Even though middleware is a well-established study area, but virtualization passes up more challenges 

to the sphere of middleware research. The traditional middleware techniques cannot be directly applied 

to all the applications because of the application’s demands and heterogeneity in all respects such as 

devices, software and network protocols. However, virtual sensor environment can ensure the 

coexistence of heterogeneous WSN architectures that are unbounded from the confines of the existing 

multi sensor networks [5]. Figure 1 shows the general model of WSN virtualization, representing 

communication stack having multiple heterogeneous sensors and radio networks and network protocols. 

Furthermore, the slice under concentration, the middleware layer is composed of a number of modules 

facilitating the lower layers as well as higher layer. It acts like a bridge between the multiple sensor 

networks and multiple applications. 

Figure 1. General model for WSN virtualization middleware. 

 

The middleware should be lightweight for the tiny sensors and embedded devices as they have 

memory, processing and energy constraints like TelG Mote, UC Berkeley Motes, Mica, Rene, and 

SunSPOT, TelosB, iSense etc. and should accommodate diverse communication protocols (Zigbee, 

WiFi and Bluetooth). Eventually the requirement of WSN middleware is to be energy aware, utilize less 

memory and processing. 
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Therefore, the aid of an efficient middleware platform is required to tackle all these wide collection 

of issues regarding functionality, technology, heterogeneity of devices and services [6]. A complete 

system collapse may happen and can cause extreme or fatal sequels for the users, especially in the health 

care and military scenario. 

There have a been number of noteworthy reviews and surveys in the field of WSN focusing on 

challenges and characteristics of wireless sensor such as routing protocols [7,8], WSN [9], WSN  

security [10], devices in WSN [11,12], Major applications [13] and particularly in our field of interest 

the middleware of sensor networks has been reviewed in context of pervasive computing [14], context 

aware web services [7], service oriented middleware [15], context aware middleware [16], Internet of 

Thing (IoT) middleware [17], middleware for robotics [18], etc. according to the best of our knowledge, 

there is only one survey paper on virtualization of sensor networks [2] that only covers few of the projects 

and prominences on the business model and applications supported by virtualization of sensor networks. 

There is still a gap in the literature that is to be filled regarding the middleware capable of supporting 

virtualization in both respects: the sensor virtualization and the network virtualization. 

The current paper provides a comprehensive review of the design, characteristics, applications, 

testbeds and properties of the current middlewares. Middleware contributes significantly in the field of 

virtualization of sensors as well as the virtualization of networks. Furthermore, our classification model is 

based on the middleware providing sensor virtualization and network virtualization, multi radio support.  

The remainder of the paper is organized as follows: Section 2 presents the types of virtualization in 

WSN, while Section 3 categorizes the middleware for WSN virtualization. Section 4 shows the 

programming approaches for middleware virtualization, Section 5 elaborates the evaluation criteria and 

design goals. Section 6 discusses the abstracted services and the role of middleware virtualization. 

Section 7 explores the evaluation and testing of middleware based on virtualization support. Section 8 

takes up the challenges of the middleware design. The proposed model is followed by the conclusion in 

Sections 9 and 10 respectively. 

2. TYPES of Virtualization 

2.1. Sensor Virtualization  

Sensor virtualization is a technique that enables multiple applications to operate in a virtual 

environment, and isolate applications from the hardware. The isolation is made by the middleware 

creating multiple logical instances of the physical sensor node. Multiple instances of a sensor node are 

made according to the capabilities of the sensor node, i.e., the service provisioning, processing power, 

memory on board and radio support. WSN virtualization aims to accommodate multiple logical network 

instances over a single physical network infrastructure with the ultimate goal of supporting applications 

with different requirements both in terms of nodes and communication functionalities. Furthermore, the 

network resources are utilized in a cost effective and efficient way [19–24]. Physical or actual sensing 

is attained by the direct measurement of the physical phenomena. However, it is not necessary to gather 

information from a particular physical sensor it can also be an intimating contact sensor. This reduces 

the fault in the measurement and minimizes the errors [25]. 
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A virtual sensor emulates a physical sensor, or it could be expressed as a software sensor that hides 

the hardware sensor. Virtual sensors provide indirect measurements of data by combining data from 

different heterogeneous physical sensors in order to provide services to the user [3]. Figure 2 shows 

physical sensor and the virtual sensor layer. A physical sensor can have multiple virtual sensors; 

however, it depends on the physical parameters of the sensor node, like processing power, on board 

memory and sensing capability. Virtual sensors layer lies on top of the physical sensor nodes. 

Furthermore, it decouples applications from the physical sensors, by running the applications on the 

virtual sensors.  

Figure 2. Sensor virtualization and virtual sensors. 

 

Physical sensors and coupled hardware are costly; they are sometimes erratic and need to be 

maintained. Moreover, physical sensors cannot be deployed on every site that needs to be sensed. 

Furthermore, virtual sensors’ another advantage is that the sensed data at one location can be used to 

predict the current and future conditions of another location. The areas already deployed with the sensors 

can be monitored by the real time data monitoring, the same data when transmitted to the server is then 

processed to predict the situation in the areas not having sensors. The example in this regard is the flood 

and traffic monitoring systems. The sensor virtualization technique allows the user to obtain preferred 

and precise information in a more efficient manner from a limited number of sensors. Furthermore, this 

helps in reducing the energy consumption and cost of the overall network.  

Virtual sensors have a number of advantages in scenarios like replacing or maintaining a sensor node. 

Virtual sensor provides continuous data to the user, although the sensing mechanism of the node is 

discrete, and is at high time intervals in order to save the battery life. Furthermore, predicting  

output using techniques like artificial intelligence, in case of a physical sensor malfunctioning and  

failure. Moreover, virtual sensors provide significant advantages as they can facilitate multiple 

applications [26]. Using this approach, a better administration at node level and enhanced usability can 

be achieved by an increased number of different end users gaining access and control in sensors’ 

information according to their needs and goals. 
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The virtual sensor network formed may use any radio protocol. Virtualization brings flexibility in 

network administration, reconfiguration and scalability. Furthermore, virtualization of sensor network 

brings a high level of trust and security by logically separating different sensor and imposing security 

policies [27]. Figure 3 shows the multiple applications like application1 and application2 that can be 

facilitated by a number of services like S1, S2, S3, ……., Sn. Middleware facilitates applications by 

binding them with any of the required services. Moreover, the services’ tasks can run on multiple virtual 

sensors. For example, Task T1 belongs to S1 bound with application2 running on distinct virtual sensors. 

Figure 3. Sensor virtualization: multiple applications using multiple services. 

 

All these properties stated above facilitate multiple applications to run on the single sensor node or a 

group of sensing devices. Furthermore, Middleware separates the specification of the sensing task from 

the sensing behavior and allows the developer to program the behavior of virtual sensor. Moreover, 

providing ease of programming and without taking care of details of construction that are to be specified 

in the underlying layer. Middleware enables programming of virtual sensors in an error free, secure and 

energy efficient manner [28]. 

2.2. Network Virtualization 

Network virtualization is based on the virtual sensors and virtual links that allow multiple networks 

to coexist on the single physical platform. Sensor nodes can hardly perform any useful task if they are 

left isolated it is the overall collaboration between a number of devices that allows the system to 

accomplish a higher-level goal. Virtual networks can be formed by a subset of the physical  

network [27,29]. Virtualization of sensor network could be the collaboration of different WSN using 

multiple radios. It is formed by the subset of versatile sensor nodes of the sensor network, with the subset 

or group of sensors being committed to certain tasks or facilitating certain application at a given  

time [29]. Network virtualization allows a subset of sensor nodes to execute an application, while at the 

same time another subset of sensor nodes execute a different application [1]. These subsets vary in 

number, size and processing capabilities with heterogeneous PHY and MAC layer protocols according 

to the application requirements. Network virtualization either combines many networks to act as one or 

shows one network to act as many in order to meet the service requirements of the users. 
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Furthermore, as there are many stakeholders in WSNs with everyone aiming to achieve its goal thus 

heterogeneity has emerged as significant setback. However, on the other hand heterogeneity provides 

enhanced energy and communication capabilities [30,31]. Network virtualization promotes innovation 

and combination of heterogeneous node and radios. Moreover, sensor network virtualization opens new 

domains for business in this world of economic recession facilitating trading of sensor’s infrastructure 

and network resources among different service providers [32]. 

Network virtualization decouples both the Infrastructure provider from the traditional Service 

provider; thus virtualization provides flexibility and QoS opens new domains for business. The resources 

from the multiple infrastructure providers are aggregated on a single platform to facilitate the user with 

diverse application using a single service provider. 

Service providers can offer different services in a dynamic way on the virtual networks based  

the leased physical infrastructures, that is provided by the multiple infrastructure providers [27]. 

Furthermore, in the scenario of sensor networks the concept of sensor network virtualization is applied 

to separate service providers from the infrastructure providers to provide maximum flexibility, 

scalability and efficient utilization of resource. To achieve all this, research area for sensor network 

virtualization is still to be explored. Several challenges in the form of management and operations are 

being faced and the researchers round the globe are trying to solve these issues in an efficient way. 

Figure 4. Network Virtualization. 

 

Virtualization provides a platform upon which innovative sensor network architectures can be built, 

tested and assessed [21,27]. Network virtualization enables different multiple service providers to 

dynamically make multiple networks using multi radios that exist together, however separated from each 

other [27,33].  
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Figure 4 shows multiple virtual sensors forming clusters based on the application demands. Each 

sensor is equipped with multiple radios. The infrastructure providers are responsible for the sensors and 

communication hardware. The service provider’s job is to facilitate applications and user demands. The 

multiple infrastructure providers and service providers combine under SLA to facilitate users and 

applications. Furthermore, it shows multiple infrastructure providers and service providers running 

multiple applications and facilitating multiple users. 

Multi Radio Support 

The communication part is the one consuming maximum energy in a sensor network [34,35]. In order 

to achieve IoE low power transceiver and microprocessor system designs are critical [36]. Wireless radio 

choice is one of the most critical choices in the design parameters of WSN. The wireless radio is 

responsible for communicating among the nodes, and between the nodes, and the gateway. Traffic load in 

WSNs is usually low and therefore the radio does not need to be active all the time.  

Most of the time the sensor’s radio is in sleep mode. The radio includes idle listening mode and the 

actual data transmission/reception mode [35]. Radios are switched on only for a particular time when 

data transmission or reception is required otherwise they are kept off in order to save the energy. 

In network virtualization the choice of selecting the radio is dictated by the application types and 

needs. The data signal transmitted from one place can face many hazards like reflection, attenuation, 

path loss and fading that can cause errors in the sensor’s actual readings. Network virtualization  

allows multiple radios with different channels, bandwidth and properties to provide a wide range of 

options [37].  

The most commonly used frequency band in WSN is the industrial, scientific and medical [38,39] 

radio bands. In ISM band there are a number of channels and radio choices e.g., 802.15.4 and 802.11. 

Furthermore, 802.15.4 is a low power radio that can offer adequate data rate up to 250 Kbps. However, 

on the other hand 802.11b consumes more power, but provides high data rate up to 11 Mbps [40].  

There are a number of bottlenecks and tradeoffs in using more radios in a network. The difference 

between the energy consumption of two radios is that the energy per bit of 802.15.4 radio is 979 nJ/bit, 

and for 802.11b it is 112 nJ/bit, that is approximately 9 times higher than 802.11b, but when packets are 

formed and sent the energy consumption 802.15.4 radio is always less than the 802.11 radio [41,42]. 

Moreover, 802.11b have a long startup time as compared to 802.15.4 that further consumes more energy. 

It is an energy efficient approach to transmit a large number of bytes in a single packet so that the 

overhead of constructing the packet and then sending are minimized. The startup time for 802.11 is to 

be reduced, to take full advantages. One hop of 802.11b equals 2–3 hope range of 802.15.4. 

Radios supporting high bandwidth are energy efficient only if large numbers of bytes are to be 

transmitted. Processors of the sensors have to play their role in using multiple radios. WiFi nodes can 

operate for a longer period of time with a strict energy budgeting as in as 802.11g that can operate in a 

power saving mode, keeping the wireless node in sleep for the most of the operating time [43]. The low 

power processor can’t support the high bandwidth as the processor is slow. However, on the other hand, 

if more powerful processor is used, it consumes more energy even for the low power radio that can be 

operated on lower power processors [38,41]. Combination of radios and processors is vital for energy 

efficient, higher bandwidth transmissions [41].  
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Network virtualization, middleware ensures to take the maximum advantage from multiple radios, 

and provide QoS for the application and users.  

3. Middleware for WSN Virtualization 

Middleware is a software layer that helps in hiding the complexities of the underlying heterogeneous 

hardware, radio technologies, and networks from the applications as well as application developer. 

Furthermore, Middleware provides ease of managing the network resources using the concept of 

virtualization of the network and the virtualization of the sensors. One of the main objectives of the of 

the middleware supporting virtualization is to match the application needs in the best possible way, and 

to make sure that multiple heterogeneous sensor networks are managed in such a way that they ensure 

efficiency and quality.  

As there is no standard of middleware for WSN, every research group has derived its own definition 

of WSN virtualization. However, a number of design approaches in middleware have been attempted 

for the provisioning of the sensed data satisfying different functionalities and applications. 

Middleware provides an abstraction to the programmer by making a layer on top Operating System 

(OS). The abstraction layer provides ease of programming to the programmer. The abstraction layer 

defines how much low level details are to be shown to the programmer. Moreover, the more detailed 

programming elements if shown to the programmer the more difficult the programmer’s job becomes 

and the more efficient the network programmed. On the other hand, if less details are exposed less the 

programming overhead and less efficiency. Therefore, there should always be a balance on how much 

details are to be exposed. 

The resource and service discovery is an important and compulsory component of the recent 

middleware designs. Resources and services play anchor’s role in WSN, all the resources are to be used 

in such a way that they don’t exhaust early. By the resources we mean the number of particular sensing 

devices, the battery power left in the nodes, available radios, vacant channels, and the available memory. 

In WSN resources and services are dynamic; they may leave the network or join the network. Therefore, 

service and resources should be tracked and updated by the middleware. Furthermore, the middleware 

should dynamically allocate resources to users and applications so as to increase efficiency. There should 

be a threshold, for how long a particular resource will be reserved and serving the application. Static 

allocation may cause wastage of the resource and reduce the scalability of the network. However, static 

allocation ensures the QoS and reliability of the service provisioning.  

WSNs are becoming diverse day by day due to their diversity and advancement in technology. It is 

essential that the middleware software architectures should be modular in order to be updated and 

reprogrammed with ease and to cope with technology emergence. The modular middleware design is 

reconfigurable and the granularity decouples the tasks, services and applications as the bases of the SOA. 

There have been a number of projects based on middleware for WSN virtualization. This has been a 

popular topic among the research community. In this section we summarize a few of the middleware 

supporting sensor and network virtualization. 
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3.1. Middleware for Sensor Virtualization 

VITRO [44] aims to propose a service provisioning framework based on middleware that is scalable, 

flexible, easy to use and energy aware for the virtual sensor network platforms. VITRO is based on 

adaptable middleware that allows dynamic management of services and isolation between the 

applications and services. VITRO provides the holistic view of the network from the sensor to the user 

application involving gateway and core network. In the project efforts have made to stipulate a novel 

service provisioning framework and mechanisms for integrating heterogeneous sensors, and networks. 

Multiple WSN islands are formed by the sensor nodes. Different types of islands aggregate on a single 

point using the respective island gateway. The virtual sensor network (VSN) manager provides interfaces 

to the users, wireless sensor network islands (WSI) and service registry that is the database of the  

core framework.  

VITRO’s middleware layer resides on the sensor node and main modules of the middleware are: node 

virtualization manager, service discovery, resource discovery and energy manager. Middleware also has 

an interface with the node virtualization manager. Security manager also lies at the node that collaborates 

with the network and the MAC layer. VITRO defines the interfaces and components from sensor to 

virtual gateway and further, gateway connecting to virtual manager to the user applications. The session 

establishment sequence in VITRO shows the application negotiates with the VSN manager, VSN 

connects to the virtual cognitive gateway that finally connects to the sensor node. The virtualization 

manager uses publish/subscribe mechanism with the virtual gateway and sensor nodes.  

VITRO extends the concept of virtualization from user query down to the sensor node [45]. It 

combines different services provided by the sensors to serve applications that provide adaptability and 

flexibility. The software architecture of the middleware is based on the Service Oriented Architecture 

(SOA) and Resource Oriented Architecture (ROA). The hybrid design is taking the advantage of SOA 

on the application part and ROA on the sensor part. Further, it takes into realization both the network 

virtualization and sensor virtualization, VITRO opens new opportunities for business by providing its 

service provisioning business model according to the Service Level Agreement (SLA) with different 

WSIs and infrastructure providers. 

Requirements of a smart home are increasing, as the rapidly growing elderly population of the world 

is increasing. This problem is to be solved by the cost-effective network models and middleware designs. 

VSNware [32] is the middleware whose software architecture is based on Virtual Machine it extends the 

work of Mate [21] and Melete [46]. The VSNware middleware supports different applications to run on 

the sensor network. VSNware supports sensor virtualization it that helps in the reduction of the overall 

cost and complexity significantly by facilitating multiple applications. The software architecture consists 

of a virtualization layer based on Embedded Linux, it is a multitasking OS that hides the low level details 

of the hardware, software, and the sensor network. The middleware design depends on the system 

architecture that is divided into three main layers: application level user (ALU), sensor virtualization, 

network service provider (SVNSP) and physical sensors. The physical sensors are the sensor 

infrastructure provider (SINP), a number of infrastructure providers are aggregated on the platform of 

SVNSP this provides an abstraction layer between the ALU and the SINP. There could be multiple 

SINPs and a number of SVNSPs all collaborating to serve ALU queries.  
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VSNware proposes business model, sensor node architecture and a mathematical model based on 

graph theory and middleware for sensor virtualization. Furthermore, the key components of VSNware 

are network management, VSNware I/O, and application management. The core of the VSNware 

middleware resides at the gateway. Performance evaluation shows the design reduces the cost of 

network, execution time and CPU usage. However, the overhead caused by the multi applications on 

memory and, the lack of energy awareness of the design needs more attention.  

At the University of Cambridge the Federated Secure Sensor Network Laboratory (FRESNEL) 

carried a project that includes monitoring social events of users in real-time. Middleware facilitates 

sensor virtualization. Several sensors were deployed in the users’ working environment. These sensing 

devices monitor the behavior of the employee. The privacy issue was the main concern in social 

networking. SenShare under FRESNEL project at the Cambridge University takes into account the 

middleware running multi applications on different networks [20,47]; Instead of traditional fit for 

purpose sensor networks [48]. The SenShare middleware tackles few challenges regarding the 

management of the services, communication links of a single application running on different network 

nodes, and the isolation of applications within the network. SenShare decouples the applications from 

the network making virtual sensor network on top of the physical sensor network. Furthermore, SenShare 

middleware supports two applications: office occupancy and environmental monitoring in a building. 

An application running on SenShare can span across the whole network or selected subset of the physical 

network. Dynamic subsets of the sensor network are constructed through an overlay topology.  

The middleware is implemented on power sensor nodes. The main concentration of SenShare is 

sensor virtualization. Middleware is implemented on top of the embedded Linux (v.2.6.29) OS platform. 

SenShare uses cross-application Hardware Abstraction Layer (HAL) as a middleware instead of Virtual 

Machine, which defines set of interfaces for decoupling of the sensors from the applications. Middleware 

supports split-phase interrupt handling technique. Furthermore, SenShare supports TinyOS applications 

in the shared environment. The major components of the middleware are network and sensor interface, 

application control. Access to hardware is made asynchronously through Multitasking OS that acts a 

HAL. The key challenges for SenShare is to limit the overhead of sensor I/O which is caused by the 

additional layer of abstraction, and the race conditions caused by applications demanding high access 

rate to the same source.  

SenShare runtime adds application packet with an application routing header of 6 bytes. The overhead 

is likely to increase with the number of applications increasing. The virtualization layer causes linear 

overhead that grows gradually and slowly. The virtualization generated traffic is also the overhead on 

the network, but it gradually becomes low as the network life increases. The application cannot change 

the transmission radio of the interface, thus limits the access to the communication modules.  

Servilla middleware is aimed to tackle the heterogeneity of different sensor nodes, and facilitate them 

to run different applications over heterogeneous nodes. Using Servilla developers can develop platform 

independent applications. It supports the discovery and use of local and remote services in a 

heterogeneous environment. Moreover, its bases lie in the modular SOA. Servilla address decoupling of 

the application from the hardware while considering energy saving as one of its key attributes. Servilla 

encourages different types of nodes in a single WSN (e.g., Imote2 and TelosB). Several devices with 

different hardware specifications like processing capabilities, storage and communication range should 

execute the task according to their strengths and weaknesses [49]. This would result in an efficient 
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utilization of the WSN resources. Furthermore, servilla provides a platform to build applications that are 

long lived, wide-range and based on different tasks with respect to their scale, power consumption and 

complexity for both resource rich and resource poor devices in a single network. Servilla allows 

application logic to execute inside the network that provides high level of efficiency and in network 

coordination. The services are platform specific, but the tasks are platform independent. Servilla is 

implemented in TinyOS using NesC that provides two programming languages ‘ServillaSpec’ and 

‘ServillaScript’. They provide a high level of abstraction like JavaScript. 

Servilla consists of virtual machine that enables execution of application tasks on heterogeneous 

devices, tasks communicate via local tuple spaces like in Agilla. The other main module is the service 

provisioning framework that is further divided into consumers and services providers. Furthermore, the 

consumers consist of service finder, service scheduler and binding table: and the provider part contains 

service registry, remote invocator and the service discovery. They are responsible for updating the 

available services both at the consumer and service provider’s part. In Servilla services are platform 

specific but the tasks are platform independent. Services are responsible for binding and invocation. To 

increase flexibility, the tasks having fewer matches are even bind to the services. Service discovery and 

binding are made energy efficient. 

Servilla believes that the services that require high computation cost should be executed on resource 

rich devices. High computing services should only be invoked when required, for example, in structural 

monitoring application; damage localization service should be invoked when cracks are sensed. On the 

other hand normal cyclic monitoring services should be carried out by the resource poor devices like 

sensing the cracks. Furthermore, results shared by servilla show that increase in sensing frequency of 

the resource poor devices and invoking heavy services of resource rich devices only when needed 

resulting in an overall energy efficient network.  

PRESTO [50] middleware is based on predictive proxy centric technique. It is based on the storage 

architecture for large scale sensor networks. The novelty lies in the middleware predictive technique. 

The database approach used ensures that the data should be processed, filtered, interpreted and cached 

in an efficient manner, the proposed technique is inspired by the primary work of COUGAR [51] and 

TinyDB [52]. 

There are two main data acquisition models first where the query is pushed directly to the sensor, this 

is more energy efficient [53] however, provides high latency, low reliability and low availability. The 

second method is where potentially useful data is pushed from the sensors to the sink, powerful device 

(gateway) or a database server [54]. The second model is adopted by PRESTO. The cleaning of the data 

is performed at the database server, thus providing lower latency, better interaction and reliability. The 

drawback of the model is that it is less energy efficient as unwanted data is always coming in at the 

database, therefore PRESTO varies the duty-cycling parameters to decrease the energy usage. 

PRESTO middleware caches the current and the past data from the sensor nodes and use predictive 

techniques on the cached data. Therefore, provides complete support for the real time systems. PRESTO 

middleware also extrapolates the lost data, this helps in more cache hits. In case of a cache miss there is 

a significant processing involved in answering the query, this could lead to significant delay. PRESTO 

middleware rather than sending the raw data sends only the information or summary the data cache, 

which can further be refined on the proxy this leads to minimize the delay of the query processing. 

Albeit, PRESTO is effective in a number of applications, but the predictive sensing model could be 
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inadequate while dealing with the sensitive applications like health monitoring or chemical  

plant monitoring. 

Mate middleware [21] is a middleware designed based on Virtual Machine that support the  

non-expert programmers like civil engineers and biologists to program a sensor network efficiently 

without worrying about the timings, synchrony, interrupts, race conditions and memory constraints of 

TinyOS [21]. It hides the low level details of the hardware by providing higher level interfaces to the 

programmer. Mate is based on a virtual machine that shortens the complex programs and enables 

programmers to write the code in less than 100 bytes. Furthermore, the code is broken down into small 

chunks of 24 instructions; these instructions vary from basic instructions of sense like, ‘copy’ and ‘get’ 

to the complex instructions like ‘blez’, ‘rand’ and ‘branch’. Mate provides kernel boundaries that protect 

programmer to from making huge errors like disabling interrupts and memory overflow. Mate network 

is forced to be passive i.e., one job at a time. 

Moreover, Mate believes in the more processing at the node rather than transmitting, it is based on 

event driven programming. Huge tasks are divided into small chunks so as to avoid the stack overflow. 

Moreover, Mate hides the race condition from the programmer and provides support for heterogeneity 

of the sensors. The software architecture based on TinyOS, the tasks are queued and processed on FIFO 

bases in a pipelined fashion. Mate supports split-phase programming style and non-blocking execution. 

On the run programming can be efficiently done in Mate as it provides a concise representation of the 

program. Mate is preferable for small sensor nodes due to its less reprogramming overhead. Furthermore, 

the overhead of Mate execution grows with the passage of time and gets higher than the cost of 

installation. 

Melete [46] is based on Mate [21] by adopting tiny script language. Melete is based on Virtual 

Machine, its goal is to support concurrent multiple applications on the nodes as well as on the network 

with efficiency, flexibility and reliability over wireless sensor networks. Melete is the enhanced version 

of Mate, it supports event driven high level programming and couples it with Trickle [55] that enables 

well-organized code decimation across the sensor network and the subset of sensor networks. Moreover, 

the network is divided into groups and subgroups that work in collaboration to carry out applications’ 

tasks concurrently, rather than activating whole network, only a group of sensor nodes are assigned to 

tasks. Melete supports selective distribution of code by limiting the, i.e., code is sent only within the 

region of interest, which covers the desired application code update [46]. Proactive distribution of code 

is infeasible due to the memory constraints, so Melete proposed group keyed method to decimate the 

code that is stored on the gateway. A dynamic grouping technique is used to support various applications 

along with the decoupling of the application from the sensor nodes.  

In order to avoid the redundancy in the transmission of the code and to make sure the request is 

coming from the neighboring nodes lazy forwarding approach is used. The lazy forwarding approach 

provides the maximum time to the neighbors to make sure that they respond to the request posed by 

requesting node which has not yet been fulfilled by any other neighboring node. The more the requests 

the better it is to make sure where to send data. Melete uses a group key method instead of multicast 

method; the newly joined node can request code from the nearest group. The Progressive flooding 

technique is used to send different codes to different groups forming concentric circles, n-ring technique 

is used to search the interested group of nodes [56]. Furthermore, the drawback of the n-ring model is 

with every next attempt the whole previously searched nodes are re-searched so Melete propose a 
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progressive flooding strategy which reduces the redundant search. Melete avoids the use of shared 

variables as the application object after the execution may drop the data. It also employs the 

programming of the sensor nodes to support concurrent applications. 

Hourglass [57] is a middleware based on the SOA, supporting multiple applications. Hourglass 

considers naming, discovering, filtering, routing and aggregation of the data. It uses different circuits 

(connected networks) according to the services demanded by the consumer. Hourglass considers 

mobility of the data producer and make sure the data is delivered in a reliable manner. In case of 

disconnection it keeps the flow by using large buffer size, it stores data and then transmits when the 

connection is reestablished. This is very helpful in poorly connected entities and intermittent 

environment. Furthermore, it partially decouples the applications from the networks and provides a 

platform for different service providers to aggregate. Hourglass Circuit Description Language (HCDL) 

provides interfaces which are based on the XML to program the sensor network circuits based on TCP 

connections. The sensor networks use proxies to connect to hourglass infrastructure that is an overhead 

of the design. 

At University of Massachusetts research group of Storage-centric Networked Embedded Systems 

(STONE) is working on the efficient storage and aggregation of data for multi-application sensor 

networks using NAND flash memories [50,58]. The role of the middleware is to facilitate the low power 

storage in an efficient manner.  

In [59] the middleware is based on RESTful style, using Sensor Web Enablement (SWE). The 

middleware provides the extension of SWE by using a lightweight JSON data format instead of XML. 

Furthermore, it overcomes the deficiencies of data format and the architectural style of SWE. This 

extension helps in the development of virtual sensor network based on RESTful architecture using SWE. 

The results show that there is a significant reduction in the communication time. 

Wendi takes the work of MiLAN middleware forward in [60], and allows multiple applications run 

on a single network. It provides policies and management tools for handling the networks and sensor 

nodes. It offers control policy for the sensor virtualization, and a group of sensors contributing to achieve 

the desired QoS. In MiLAN application and the network are unified in a single middleware system. 

Furthermore, it also provides flexibility to a number of network protocols like PAMAS, SMAC. MiLAN 

Middleware couples applications tightly with the network without affecting the control policies. 

Furthermore, it changes the network functionality according to the application needs. 

Mires [61] is a message oriented middleware facilitating application to communicate in a 

publish/subscribe manner, where each node adversities its sensing capabilities. Mires concentrates on 

the environment-monitoring application, Mires middleware resides on top of the TinyOS and provides 

high level APIs supporting multiple applications. The middleware collects data from sensor nodes, 

aggregates it and then transmits it, in order to reduce the number of transmissions. In Mires middleware 

the session is divided into the following parts: establishment, announcement, subscription and publication. 

MAMA Multi Application Middleware [62] is middleware providing sensor virtualization support, 

based on middleware abstraction layer that creates a virtual environment using grid computing. The 

middleware allows running of several TinyOS applications concurrently. Furthermore, thread based 

model is used for the middleware design. The cost of multiple application support is significant on the 

memory footprint of RAM and ROM. The delay and power awareness are also considered in the MAMA 

middleware design. Furthermore, overall energy consumption of the network is significantly reduced as 
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fewer devices are deployed. Moreover the system can be made more energy efficient by treating different 

applications according to their QoS requirements.  

In another work in [63] energy harvesting network and device simulator, based on TinyOS is made. 

It Integrates state-of-the-art simulators and provides an accurate measurement of the power aware WSN 

design. The design can be traced, tested and varied using the power state model of the design. 

WISeMid middleware in [64] supports virtualization by providing services to the internet users it 

connects the sensors to the internet. It aggregates different sensor networks and concentrates on the 

energy consumption of the network. Middleware is based on SOA the nodes are programmed in nesC 

and the internet host is programmed in Java. The results show that stateless, Fire and Forget interaction 

model is the most energy efficient as it stops the process the instant the invocation is sent. 

SenSer in [65] is a generic middleware framework proposed to support remote access to the sensor 

data. SenSer virtualizes the functionalities by considering them as services. Programming language and 

WSN development platform are made independent of each other. SenSer middleware framework is 

divided into three layers: presentation layer where WSN admin services reside, second layer is composed 

of filter, stream and query manager. Third and final layer contacts directly with the sensors and 

comprises of a network and the repository manager. SenSer framework is based on the Web Service 

Technology providing solution to client end heterogeneity. 

At University of Virginia SenQ middleware [66] is a multi-layer embedded query system, based on 

declarative model. The middleware supports virtual sensors that can be dynamically discovered and 

shared. The algorithm reduces the network load and energy consumption, supporting lightweight 

network protocols. The middleware tackles the challenges of heterogeneity, dynamic deployment and 

in-network monitoring. 

SENSIE [67] is one of the mega projects, taking the real world information to facilitate business. The 

middleware design of SENSIE consists of three main modules resource manager, service manager and 

community manager. Furthermore, application layer contains the application management module. The 

main concept of the design is based on sensor virtualization. SOA based architecture of SENSIE 

connecting to the cloud allows multiple services to facilitate multi applications. SENSI uses RESTful 

design. The resource directory, entity directory and semantic query resolver help user to run multi 

applications ensuring QoS.  

3.2. Middleware for Network Virtualization 

SensEye is a multitier network based on the heterogeneous camera and sensor nodes. SensEye  

uses the technique of multitier sensor network to overcome the problems of latency and energy  

efficiency [68]. The middleware ensures that each tier in the model consists of the homogeneous sensor 

nodes. Multiple heterogeneous camera sensor nodes having different capabilities are part of the  

multi-tier network. Therefore, in order to take the maximum benefits from the network, low power and 

less capable elements are assigned simpler application tasks to perform. The need for motion detection 

can be performed by a low resolution sensor and if the intruder is detected, then the high power camera 

could be woken up to carry the high definition recording. Using low cost sensors results in the increase 

of their number, but at the cost of reliability, similarly high cost sensors provide less coverage as they 

will be less in number but provide high functionality. Therefore, multitier allows low cost, high coverage, 
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reliability and functionality by the combination of high and low power devices in an energy efficient 

manner [68].  

Design principles of SensEye middleware include: To map the task to the less power consuming 

nodes having more resources, maximum use of the wakeup on demand to reduce the use of radio and 

processor, no wasteful wakeups of high power consuming sensor nodes, reduce delay and last one is to 

exploit redundancy and reduce the flow of redundant data.  

I-Living is a project targeting medical assistance to the patients at home. The main focus of the project 

is the reliability, usability and security. Middleware playing a key role in the project enables independent 

parties to work together in a dependable and secure fashion, providing QoS for the critical applications. 

The software architecture of the middleware can handle multiple applications and communication 

protocols. Furthermore, middleware provides Java APIs for the application developer to use multiple 

services and multiple radios. Security and privacy are ensured in the middleware design, as every device 

in the home is authenticated using a token. 

SenseWrap [69] architecture provides a virtual sensor for any type of physical sensor. The client is 

able to seamlessly discover the services using a standardized interface to the devices provided by the 

middleware. The interfaces are based on the UDP/TCP sockets. TCP/IP provides simplified application 

development. The full IP stack is very efficient, but due to the limited capabilities of the sensor nodes it 

is unfeasible. SenseWrap software architecture supports publish/subscribe interaction style. Its 

middleware is based on light weight SOA. SenseWrap abstracts the common functionalities of most 

sensor models from the application developer. Middleware decouples the sensors from the services, thus 

enabling multiple services per sensor node and further taking the benefits of multiple applications per 

sensor node. The SenseWrap middleware is based on Zeroconf, the networks and the sensor devices will 

be registered through the Zeroconf that is based on the services offered by each network and further each 

device keeps updated record of its own services offered. Zeroconf communicating with SOAP and XML 

over HTTP is rather light weight for the sensor nodes, as compared with the UPnP. Middleware is based 

on Java with sensor discovery, services discovery and client handler as the main components.  

Aberer in [70] GSN middleware takes the virtual sensor approach and defines a virtual sensor as a 

data producer, it could be a real sensor, a camera, or any combination of real sensors. GSN is a  

container-based architecture that hosts virtual sensors based on declarative programming model in 

TinyOS. GSN targets to provide minimum or zero-programming for large sensor networks. The 

middleware components include virtual sensor manager which is responsible to manage the resources 

provided by a virtual sensor and interactions between the virtual sensors. Furthermore, the virtual sensor 

is coded in XML and SQL. GSN can support and integrate continuous and historical data. One of the 

main advantages of GSN is heterogeneity support in terms of devices as well as radio protocols. 

Hui Dai and Richard Han in [71] proposed an overlay IP based network using ROA. It unifies the 

sensor network with the cloud instead to decoupling the resources and applications. Shu Lei in [72] 

provides uniform API for the heterogeneous devices. Bridge based approach is used to integrate different 

sensor networks over IP into one virtual sensor network. This virtual network facilitates the user to query 

data directly from a specific sensor node using overlay gateway based approach.  

Philippe Bonnet in [53] provides a database approach to avoid the redundancy of the data in WNS. 

The query dictates which data is to be fetched from the sensor node. In Research Laboratory at Berkeley, 

Alan Mainwaring in [73] uses application driven architecture to monitor the habitat of an island. The 
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design is application specific. Furthermore, the network is implemented using 802.11b and nodes with 

an embedded Linux. 

The research presented D-uMiddle [74] middleware that provides solution for the problem in sharing 

sensor nodes among geological smart space. Furthermore, it works as a bridge that enables smooth 

interaction among heterogeneous devices and middleware platforms. A health care application providing 

data to the remote caregiver, the middleware provides an abstraction to the heterogeneity of the sensor 

nodes and provides interoperability with less overhead. The middleware is designed in the XML-based 

language, Universal Service Description Language (USDL) that provides high level API hiding the 

heterogeneous devices. 

MiLAN [75] is a middleware platform with the features to continuously change and control the 

network functionality according to the application demands. MiLAN is an application oriented 

middleware. MiLAN makes feasible subsets of the sensor nodes, and optimizes the tradeoff between the 

application demands and the network resources. MiLAN takes into account multiple radios over the 

medical monitoring application. The reliability matrix is used to choose the set of sensors. 

ROA based middleware is proposed in [76], it focuses on the devices and sensors rather than services. 

ROA is an ideal candidate for building universal APIs [26] for such middleware designs. It provides user 

with the direct access to the resources in an energy efficient way, whereas SOA based design is capable 

of providing more options to run multi applications. ROA uses REST architectural style tiny web 

services that are embedded into smart thing and are tightly coupled. In this model the resource can be 

directly accessed by the URI from HTTP browser. 

In the paradigm of M2M communication, that is an extension of WSN, there has been significant 

work on the integration of networks and the development of standards in [77–80]. The importance of 

middleware in M2M is elaborated in [81–83]. To deal with multiple applications in M2M Riker in [81] 

proposes a middleware that supports network virtualization. Communication Manager Component 

(CMC) a M2M middleware component is proposed that manages data in up and down link, sleep 

schedule, energy of the network and device management [81]. The CMC block dynamically manages 

the base station overload, links and the machine devices. It also uses a common set of services that reduce 

the cost of development. Middleware allows applications to communicate with each other while 

accessing common communication mechanism. Applications are run over distributed devices and 

provided with high abstraction so as to hide the lower communication and device details. The 

communication and device management are performed at the middleware layer. In [84] work has been 

done regarding smart home ambient assisted living middleware framework that integrates multiple 

radios by utilizing both SOA and ROA in the design. Cluster tree based approach for the network 

virtualization is proposed in [85]. 

The Multi-set architecture in [86] is based on the integration of two concepts the switching 

mechanism of sensors sets within one network and middleware which is based on light weight mobile 

agents. The middleware is designed to manage the mobile agents triggering different applications and 

the switching mechanism. It switches between the applications using time division mode. It avoids the 

reprogramming of sensor node for each application, as it relies on transmitting long monolithic codes 

that result in huge power consumption. In the Multi-Set architecture the numbers of applications depend 

on the number of sensor subsets. All multiple applications run on a predefined logical sequence that is 
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to be improved to meet the upcoming challenges of IoE. The moving agents always possess the overhead 

of the more energy consumption.  

MagnetOS [87] an Operating System based on Virtual Machine. It provides a single system image 

on each node. The core of the middleware lies in migrating application components from node to node 

in order to reduce the communication cost and shorten the mean path length of the data packet. 

MagnetOS uses two techniques: NetPull and NetCenter moving the component single hop and multi hop 

in the network, respectively. Above mentioned techniques improve system longevity by reducing energy 

utilization. Using Java VM contains overhead of utilizing large memory due to unavailability of 

heterogeneity support. 

The SENSIE middleware also provides the software architecture for integrating the real world with 

the internet. The architecture is based on the heterogeneous sensor nodes that integrate different devices 

and networks having 6LoWPAN and Zigbee. The dynamic resource creator provides virtual sensors. 

Furthermore, the interaction model is based on a RESTful architecture [67]. 

A multilayer architecture for network virtualization is proposed in [88,89], based on overlay network. 

The signaling and the data have different paths and the more complex operations are to be performed by 

the stronger nodes. The overlay architecture is designed in such a way that it can combine different 

physical sensor network as a single virtual network. The virtual sensor layer provides abstraction from 

heterogeneous OS. The design is based on CoAP for the underlying protocol. 

Middleware for Multi Radio Support 

MiLAN presents well defined APIs through which the application tells its desire to use high or low 

data rate protocol. It also has an abstraction layer that decouples the application layer from the network 

that issues orders to discover the available components and configure the network. The network specific 

interfaces convert Milan commands to specific network protocols. MiLAN supports Bluetooth and WiFi.  

VITRO provides a framework that integrates multiple sensor networks of any type, using 

heterogeneous radios. Virtualization techniques in the middleware are used to virtualize the whole 

network such that it hides the low level details and different networks look like a single network. 

SensEye is a multi-tier sensor network of cameras using heterogeneous camera devices in each layer. 

All tier 2 nodes are equipped with multi radios, i.e., 802.11 and 900 MHz to communicate with other 

tier devices. The project concentrates more on bringing efficiency using heterogeneous sensors rather 

than the utilization of radios. 

I-living provides a middleware framework on a cloud based concept of utilizing all the radios used 

in the home environment. The small devices using Bluetooth and Zigbee, and smart devices connected 

through the 802.11. Middleware API provides standard application services. An assisted living hub is a 

specialized device capable of connecting to 802.11, 802.15.4, Bluetooth, UWB, infrared independent 

devices. Supports TCP/IP stack at the hub. 

GSN [28,70] also deals with the heterogeneity of the nodes and provides virtual sensor that hides the 

differences and details of the nodes by the use of a wrapper developed in TinyOS on every sensor node. 

It could hide any kind of data generator including 802.11b.  

MEMOSEN [90] architecture takes into account the heterogeneous and mobile sensor and sinks into 

account. Furthermore, the architecture is composed of three layers that combine the cellular network 
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terminals with wireless sensor networks, thus modeling the sensors and mobility. It is a hybrid model 

with mobile terminals using dual radios.  

The framework of the middleware supporting multiple radios in the Machine to Machine  

(M2M) communication and managing multiple applications is presented in [81,84,91]. M2M framework 

in [81] works by creating an overlay network on top of the physical network to achieve high network 

performance. The overlay network is managed by the home gateway that collects the data and transmits 

it to the base station. Furthermore, Middleware based on virtual machines for M2M is developed using 

Linux platform in [92] to provide ease of programming to the developer in energy efficient way; the 

radio used is 802.15.4. The system architecture proposed by Starsinic in [91] is a home gateway based 

architecture supporting 802.15.4, 802.11, Bluetooth and Ethernet managing all the home devices on a 

single platform.  

Table 1 provides the summary of the software architecture designs used in the middleware for WSN 

virtualization. Furthermore, it shows whether the middleware design supports the main components  

of WSN virtualization, i.e., sensor virtualization, network virtualization, multi radio support and 

heterogeneity of sensor nodes. 

Table 1. Middleware architecture design and WSN virtualization support.  

Name Software Architecture Design 
Sensor 

Virtualization 

Network 

Virtualization 

Multi Radio 

Support 

Heterogeneity 

Support 

Servilla [93] 

• Virtual Machine 

• Service Oriented Architecture 

• Platform independent applications 

execution 

YES NO NO YES 

Melete [46] 

• Virtual machine 

• Provides instruction set for sensors 

programming 

• Modular system update mechanism 

• Group-keyed programming model 

YES NO NO NO 

Mate [21] 

• Virtual machine 

• Provides instruction set for sensors 

programming 

• 24 Byte instruction-long Instructions 

• Split Phase non-blocking execution 

YES NO NO NO 

SenShare 

[20] 

• Overlay Layer 

• Hardware Abstraction Layer at 

Node 

• Embedded Linux 

• Multi-Task OS 

• Split-Phase access 

YES YES NO NO 

VITRO [44] 

• Component based Architecture 

• Software Oriented Architecture 

• Resource Oriented Architecture 

• Virtualized modular mechanism 

YES YES NO NO 
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Table 1. Cont. 

Name Software Architecture Design 
Sensor 

Virtualization 

Network 

Virtualization 

Multi Radio 

Support 

Heterogeneity 

Support 

I-Living [94] 

• Application Driven architecture 

• JAVA - API, 

• SOAP based design 

• TCP/IP 

NO YES YES NO 

ROA based MW 

Framework [76] 

• ROA following 

• SWE and modeled 

• Sensor ML 

YES NO YES NO 

MiLAN [75] 

• Adaptive System 

• TCP/IP 

• Graph based Model 

• Application Centric Design 

NO YES YES NO 

Smart Home 

Virtualization 

model [32] 

• Hardware Abstraction Layer at 

Gateway 

• Embedded Linux 

• Multi-Task OS 

• Service Oriented Architecture 

YES YES NO NO 

PRESTO [50] 

• Data Base approach 

• Predictive Storage Architecture 

• Caching mechanism 

YES NO NO YES 

SenseWrap [69] 

• SOA 

• UDP/TCP Zeroconf plugin 

• Protocol Adapters 

YES YES NO YES 

GSN [28] 

• Data Base Approach 

• Data Oriented Approach 

• SQL Based Query 

• Declarative programming Model 

• Container-based architecture 

NO YES NO YES 

Hourglass [57] 

• SOA 

• Circuit Description Language 

• TCP/IP 

• Publish Subscribe Approach 

YES YES NO NO 

SENSEI [67] 

• Service Oriented Architecture 

• Modular approach 

• RESTful Design 

• Layered approach 

• Dynamic service composition 

YES YES NO 

 

 

NO 

 

 

In the literature most of the traditional middleware designs are targeting some specific problems along 

with the objective to support a particular aspect of WSN. Furthermore, most of the middleware 

architectures consider only single application. For example, middleware designed for health care 

application, i.e., I-Living [94] cannot be efficiently used in vehicular networks as each domain and 

application have their own requirements and limitations. 
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Middleware is designed for different goals, like some provide high level of QoS, ease of 

programming, better management of resources, mobility support, reprogramming of nodes, 

heterogeneity, virtualization, handling large volume of data and multi radio support. Middleware uses 

different approaches in the architectural designs to achieve these goals. Furthermore, middleware 

provides different abstraction levels to the developer, according to the requirements of the application 

and programming expertise. 

The middleware designed for handling large amount of sensed data, takes the database approaches 

like PRESTO [50] and middleware in references [53,58]. The middleware designed for health care 

services demand high QoS and has to ensure the transmission and data integrity as proposed by  

MiLAN [75] and [79,94]. For the mobility support and applications like fire monitoring middleware 

employs the mobile agent techniques using tuple space that has the ability to enter or leave the networks 

as used in Agilla [95]. Moreover, the middleware for a single application and multiple applications have 

different attributes. 

From the developers’ point of view, if we intend to go for ease of programming, then, declarative 

programming model based middlewares are selected. Declarative programming technique provides a 

high level of abstraction from the low level programming details. On the other hand, middlewares based 

on imperative programming models provide higher efficiency although are more difficult to program. 

However, for the heterogeneity support over the hardware and software, middlewares are focused on 

supporting multiple platforms like GSN [27]. The middleware aimed at the reprogramming of the WSN 

on the air, use small piece of codes for updating or changing the behavior of the sensor network. 

Middleware based on VM are introduced by Mate [21] and Melete [46] for the reprogramming WSN. In 

general, there is a need for a middleware design that is holistic, that provides high flexibility and covers 

the maximum attributes mentioned above. Table 2 provides the list of devices that are used and supported 

by the middleware for virtualization. 

Table 2. Middleware and devices used for implementation. 

Middleware 
Servilla 

[93] 

Melete 

[46] 

SenShare 

[20] 

ROA 

Middleware 

[76] 

Smart 

Home 

[32] 

SenseWrap 

[69] 
GSN [28] SensEye [68] 

MAMA 

[62] 

Devices 
• Imote2 

• TelosB 
• TelosB • Imote2 • JN51XX • Imote2 • Sun Spot • MIica2 

• Cyclops 

• Crossbow 

Motes 

• mini-ITX 

• Mica2 

4. Programming Approaches for Middleware 

The research in the field of efficient software development, management and deployment is still under 

investigation. Furthermore, there is a need to reduce computational, deployment and development 

overheads [42,96]. The main focus of attention is WSNs are the mW device/node with a balance 

computing and communications. Therefore, software designs and programming approaches for the 

middleware design should facilitate the tiny devices according to their computation capabilities. Ease of 

programming is the most important aspect of the software design and is directly related to the 

programming models [97]. There is always a tradeoff between developer’s ease of programming and 
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efficient network resources utilization of the network. Energy awareness, routing, efficient resource 

utilization and data delivery have always been the key parameters for an efficient programming model 

for WSN.  

In network programming, whole sensor network is treated as a single abstract machine that provides 

a high level of abstraction. In the database inspired models, network programming approach this best 

suited. On the other hand it also limits the range of applications. Programming paradigms for WSN 

middleware can be categorized into the following programming models [97,98]. Sensor and network 

virtualization can be achieved using the following programming models. 

4.1. Agent-Oriented Programming 

The term Agent-Oriented Programming (AOP) was coined in 1989 by Yoav Shoham in [99]. This 

paradigm is helpful in programming the decentralized systems and solving their problems. It is defined 

by Nicholas R. as “an agent is an encapsulated computer system that is situated in some environment, 

and that is capable of flexible, autonomous action in that environment in order to meet its design 

objectives” [100]. Such paradigm fits well for WSNs due to their decentralized nature. In the  

agent-oriented programming model, agents are self-governed, problem-solving entities that interact with 

each other through a high-level communication model. The basic units of AOP are beliefs, commitments, 

capabilities and choices. AOP is extremely unpredictable as it deals with the dynamic environment. The 

communication in AOP could be successful or unsuccessful.  

Agent oriented approach for the middleware designs is used in [101,102]. Agilla middleware in [95] 

uses mobile agents that have the capability to migrate from one node to another node in a network. Weak 

migration only migrates the code not the state information. On the other hand, strong migration transfers 

both the code and state information allowing the agent to resume execution at the destination.  

4.2. Component-Based Programming 

Component-Based Software Engineering (CBSE) [103] proposed by Szyperski in 2002 is accepted 

as a well-structured programming model to develop software systems. CBSE provides interface-based 

interactions between system components or modules and avoids all hidden interaction between the 

components that is via direct function calls between the components, variable access, or inheritance. 

This provides a high-level programming abstraction and provides capabilities to integrate modules in 

order to simplify configuration and maintenance of software systems [104].  

One of the major advantages of component-based software development is module reusability and 

standard API provision. In WSN there have been some very noteworthy efforts to involve CBSE in WSN 

applications. There have been very few successful efforts, and are being used for developing many  

WSN applications. 

nesC is the most popular programming language in WSN based on CBSE and certainly the most 

successful one [105]. nesC is an event-driven programming language for WSNs derived from the C 

language. It is originally proposed to develop the TinyOS operating system—the one of the most popular 

system software for sensor nodes. nesC is a structured component-based design for building embedded 

systems. Few examples of component based programming models are OpenCom [104], Think and 



Sensors 2014, 14 24068 

 

 

LooCI. Spatial programming is a space aware programming model, which keeps track of the sensor 

node’s location. Message passing like mobile agents is used to communicate between the nodes [106]. 

4.3. Event Driven Programming 

The event-driven model is the most popular programming model for WSN today. In WSN 

programming, event based programming is a programming paradigm in which the flow of the program 

is determined by events. For example, the sensor outputs, threshold level cross user actions or messages 

from other programs or threads. Programming sequence is divided into two portions: the first one is to 

detect an event, and the second is how to handle the event. Event based programming makes systems to 

provide the quickest possible response to the events of interest. 

Event driven supports more flexible and extensible architectures, as it allows components to be 

removed and added without consequence to the rest of the system. Event based systems Increases 

complexity and reduces control over the interactions of devices. On the one hand, improved flexibility 

and scalability is achieved. According to Chandy and Schulte, an Event-Driven Architecture stands by 

to the following principles [107]. Event driven coding can be done in any language, although the task is 

stress-free in languages that provide high level abstractions [107]. Few event driven models, include 

TinyOS, nesC, Contiki, ProtoThreads, DS-Ware and Agilla [95]. 

4.4. Imperative Programming 

Imperative programming model computation is described in terms of a program state and the 

statements that change the states. The program while execution generates many states. The  

transition from one state to the next is controlled by data assignment operations and the sequencing 

commands [107]. The imperative programming model forces the programmer to write code that provides 

the details of the exact steps that are to be followed by the sensor nodes in order to achieve the goal of 

the application. This model is used in contrast to declarative programming paradigm, which is only 

concerned with the program output without knowing how to achieve the task. Examples in the imperative 

programming models for WSN are Abstract Task Graph (ATaG) [108]. 

4.5. Functional Programming 

Functional programming is a programming paradigm in which the main method of computation is 

the application composed of functions. Functional programming involves making and manipulating 

functions to build up larger programs. These functions can be of different types depending upon the 

application’s need and the situation. Functions can take input and return data, the data values or variables 

could be taken from the ongoing sequence of the program or from the other functions. 

One of the main advantages of using a functional programming is it hides the direct interaction of 

program starts from the programmers. Furthermore, the functional programming in WSN is that it 

extracts parallelism from the manipulation of data. For instance, a function can handle streams from 

multiple sensor nodes and can be compiled efficiently within the network. Examples of functional 

programming for WSN include the Regiment middleware [109] its goal is to reduce the programming 

efforts for complex sensor network applications development.  
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4.6. Object-Oriented Programming 

This programming paradigm is based on maintaining a unique mapping between objects of the classes 

the relationship between corresponding environmental elements. Object Oriented Programming (OOP) 

model for WSNs encapsulate data, computation, communication, sensing and actuation dynamically. 

Object instances are created dynamically by the model when the sensor elements are detected and are 

destroyed when these elements leave the environment. This also leads to the execution of program code 

at the location of the physical entity which is ideal for sensing and actuation tasks. EnviroSuite [110] is 

based on OOP model provides an abstraction layer to avoid low level details while programming WSN. 

4.7. Message-Oriented Programming 

Message Oriented programming (MOP) model exists in SOA. MOP is based on writing a program 

section that is generating messages and replying to the messages just as events happening like interrupts. 

In WSN MOP uses publish subscribe mechanism between the gateway and the sensor node. This model 

provides a loose coupling between the transmitter and the receiver [98]. One of the major benefits of 

MOP in WSN communications is that it has the ability to store, route, and manage messages while 

transmitting them from source to destination. 

4.8. Set-Based Programming 

The set based programming model is based on the theory of sets, borrowed from the mathematical 

field of study. Set based programming model in WSN is driven by the fact that sets provide in depth 

knowledge of the data and resources it is a natural way to think about efficient resource management in 

a WSN. In which, a node or union of nodes combined to carry a particular task. Programs based on set 

theory perform various set operations such as union, intersection and iterating over the elements of the 

sets. μSETL is a programming model for sensor networks based on set theory [101]. 

5. Design Goals and Evaluation Criteria of Middleware of WSN Virtualization 

The designing goals of a middleware for WSN virtualization are as follows. The middleware design 

should meet the application demands. 

5.1. Network Heterogeneity 

Middleware design should tackle the heterogeneity in terms of hardware devices, OS, Network 

models and capabilities. It must provide freedom for any type of network using any PHY or MAC layer 

protocol to be a part of the virtual network. The middleware should allow different infrastructure 

providers deploying heterogeneous devices to be integrated. The hardware abstraction layer or wrapping 

techniques are used to address the heterogeneity issues. References [20,31,44,45,70] provide solutions 

for heterogeneity of networks, devices and platforms. 
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5.2. Flexibility 

The middleware design for WSN virtualization should accommodate and absorb internal and external 

changes in the sensor networks. The service providers and the infrastructure providers should be 

independent of each other, such that they make changes in their policies, add/remove the software or 

hardware independently. The middleware design should be flexible along with the resource discovery 

and the service discovery modules essential for virtualization of WSN.  

5.3. Decoupling  

Decoupling of components is the key for virtualization and future IoE. Decoupling of the hardware 

devices, communication radios, services, networks, software modules and applications from each other 

is essential. These components should be addressed in the middleware design for WSN virtualization. 

The middleware should support the overlay networks to provide logical isolation of the hardware and 

software. The service discovery and the resource discovery are the modules responsible for decoupling 

of application from the network. There are many benefits of decoupling. However, the decoupling 

demands more memory and processing power.  

5.4. Network Management 

In WSN virtualization every aspect of the network is made independent and isolated. Different 

applications need to run on the network using multiple services and further, the services invoking a 

number of tasks. Moreover, multiple radios providing more flexibility to the application and adding more 

complexity to the network and middleware design. All the operations stated above are to be managed in 

an efficient manner. Furthermore, network management will improve the QoS for the applications 

running on heterogeneous network. The node virtualization manager and the network virtualization 

manager are the key modules that interact with the other components such as energy manager, resource 

manager, service manager to manage all the activities of the virtual sensor network [2,44]. 

5.5. Scalability 

Middleware for virtualization must provide scalability, in terms of number of nodes, and also in term 

of number of users and services. Furthermore, the virtualization, middleware must be able to cope with 

more transmission load and service demand from applications and users. The middleware design must 

be scalable so as to provide room for large scale networks to be deployed and integrated. Multiple service 

and infrastructure providers should collaborate in such a way that the system becomes highly scalable.  

5.6. Abstraction Level 

The abstraction level is directly related to the ease of programming approach. The virtualization, 

middleware controlling the major components of the networks, each and every aspect should not be 

exposed to the programmer and should provide high level APIs to program the network. However, this 

technique has a drawback that programmers can’t achieve the desired network efficiency. The 

middleware abstraction plays vital role in providing efficient, high abstraction for the programmer. 
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5.7. Robustness 

The middleware should be robust and particularly for the sensitive applications like health care, which 

demands robust middleware design. This style of middleware design prevents the abnormal termination 

and software failure. Virtualization middleware should handle the errors during session establishment 

and the execution of the applications’ tasks. It should provide backup for the smooth sensing operations 

in case of failure or system crash. Robust programming style and algorithms can result in a robust 

middleware. However, this is achieved at the cost of more processing and memory utilization. 

5.8. Energy Aware 

One of the major factors to care of beside the memory constraints is the energy constraint. In a 

virtualization environment where multiple communication radios and protocols are used, the middleware 

is to make sure the energy efficient radio selection is done. To achieve energy efficiency the middleware 

has to make virtual grouping of the services and devices such that the network longevity increases. 

Furthermore, the high power consuming nodes and protocols should be used when there is no other 

choice to meet the application demands. The energy manager module and the sensor virtualization 

modules collaborate with each other to minimize the energy consumption and possibly without 

comprising on the QoS. 

5.9. Security 

The middleware should play its part in securing the data and make sure the data is securely transmitted 

to a particular application. The middleware should make sure that applications like health care and the 

military that contain sensitive data should be accessed by the authenticated users only. The authorized 

access to the sensor data is the responsibility of the authentication manager module, residing  

at the middleware.  

5.10. Fault Tolerant  

Fault tolerance is the attribute of virtualization middleware. The middleware design should be fault 

tolerant, if any sensor or group of sensor dies, the dynamic regrouping capability of virtual sensor 

network overcomes the faults. The device manager module keeps the device parameters updated, that 

helps in reducing the faulty readings. The middleware should be programmed in such a way that the 

program is easy to debug. There should also be some recovery mechanisms to bring the network back 

running in case of problem. 

5.11. QoS  

Many applications demand QoS, therefore the requirements of the application must be satisfied. In 

virtualization specifically, processing latency, choice of service, virtual links, nodes, transmission power 

and radio selection are very critical all these decisions must be made in such a way that it meets the QoS 

requirements along with the minimum use of power. The applications like personal health monitoring, 
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fire detection and disaster monitoring require high QoS. Virtualization of sensor networks enhances the 

QoS by virtual links and QoS manager a vital module in all middleware frameworks.  

5.12. Memory Utilization 

The memory of the sensor node is one of the most precious things on board. The middleware has to 

find an optimal point in providing all the above stated properties and the memory usage. The more code 

the better the performance. However, the programming techniques like modular and component based 

allow programmers to use memory efficiently by reusing the code and using pointers effectively. The 

middleware architecture should allow the programmer to control the memory regions. EEPROM should 

be used as a program memory. This helps in reduction of the memory footprint.  

5.13. Processing  

Processing is another constraint of sensor nodes. Usually, the sensor node’s 8 bit microcontroller has 

less processing capabilities. Therefore, the code should be made such that it avoids the infinite loops; 

uses shift instead of multiplications, power and division. Use ‘unsigned int’ if possible instead of signed 

numbers so as to reduce the processing.  

6. Abstracted Services and Middleware of WSN Virtualization 

In order to fulfill the requirements and design goals mentioned in Section 5, the role of abstracted 

services is non-trivial. The middleware design for virtualization should offer these services in order to 

fulfill the users, services providers and infrastructure providers’ demands. These services include: 

clustering, real-time, data aggregation, localization, security, delay tolerance and load balancing which 

are discussed as under. 

6.1. Clustering 

Cluster-based middleware architecture localizes the collaboration among the group of sensor nodes 

providing services to a single or multiple applications [111]. Middleware must be designed in such a 

way that coordination and control between the virtual clusters is seamless. The major clustering 

techniques are based on identifiers, position of node, weight of node, Residual energy of node, channel 

and frequency. 

A geographical forwarding technique based on the virtual creation of clusters is provided in [112]. 

The overhead in management of the virtual clusters, excess of control signals in the network and data 

aggregation of the sensor nodes are the key challenges in middleware for network virtualization. From 

the prospective of the service provider a virtual network should be able to discover the presence and 

topologies of other coexisting virtual clusters for better coordination. Moreover, virtualization demands 

on the fly auto-configuring of clusters and inter-cluster synchronization according to applications’ 

demand. To tackle these challenges middleware has to go deep in the cross-layers design of network and 

MAC layer. 
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6.2. Real-Time  

For the real time scenario, a system must be dependable with respect to timing errors. Middleware 

needs to have the attributes of availability, reliability, safety, confidentiality, integrity and 

maintainability in order to fulfill the requirements of the real rime applications such as disasters and 

emergency surveillance [113].  

The middleware for virtualization has to look into the application execution, resource management 

and allocation, and has to provide services to facilitate all the real time applications. Furthermore, in 

order to achieve real time response from the virtual sensor network, middleware has to be light weight 

and the algorithm must be based on multi-threading and if possible use multi-processing techniques. 

Middleware must apply delay as the metric to facilitate real-time applications.  

A big challenge is how a middleware is going to accommodate all these properties of real-time 

systems, keeping in view all the constraints of the sensor network environment. It is still an open area 

for the research. The efficient switching between radios like 802.15.4 and 802.11, selecting the sensor 

nodes near to the gateway/sink, dynamically changing the response of the network for real-time 

applications and forming clusters based on fast processing speed could be a few solutions. 

Considerable R&D efforts have been put forward on developing real-time middleware in the past by 

RT-STEAM [114] is a middleware supporting real time applications in vehicular Ad Hoc Networks. 

RAP [115] provides base for a real-time architecture for large-scale sensor networks. CORBA [116], 

CORBA Component Model in [117]. 

6.3. Data Aggregation  

In organizing a distributed virtual network, the nodes middleware not only just pass the data or 

provide the services to the applications running on top; they are also involved in aggregation of the data 

from the sensor nodes. This technique increases the power gain of the network [118]. A number of 

middlewares in the literature support the data aggregation those include [51,61,119–122]. In 

virtualization of sensor networks the importance of the aggregation data increase as the middleware is 

dealing with multiple services and applications, so researches need to find new efficient techniques of 

data management and aggregation. The data aggregation policy should try to use a single service data 

for multiple applications rather than fetching the data every time from the sensor nodes. This technique 

is very useful for non-critical applications. However, the algorithm for data aggregation should try to 

minimize the error probability while aggregating the data for multiple applications. 

6.4. Localization  

In order to support multiple applications, a number of applications need to know where the services 

are. Localized middleware benefits by knowing the location of the sensor node, services offered by the 

sensor node, and power parameters of each network, cluster and their respective nodes. Therefore, by 

knowing all these parameters, it reduces the data transmission delay, forms cluster efficiency and reduces 

power consumption. There are a number of techniques used in localization one of them is a  

Graph algorithmic technique that is also helpful in localizing the WSN. This technique includes: 

polynomial-time [123], Euclidean positions and inter-sensor distances used in [124], Graph rigidity 
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theory by applying grounded graphs in [125]. These techniques can be incorporated in middleware 

designs to traverse the network and get the location of the nodes and the networks. 

The localization problem is quite challenging, and need considerable attention while designing a 

middleware framework for sensor network virtualization. Miro [126] is an object-oriented middleware 

designed for robots addressing the localization problem. RT-STEAM [114] is a middleware for real time 

applications like vehicular networks. RT-STEAM is based on the concept of localization. Furthermore, 

it has location identification service that uses sensor current geographical location and allows the 

middleware to compute the power of the signal to be transmitted efficiently. Few common algorithmic 

techniques used in WSN localization are Triangulation [127], Ad-hoc positioning [128,129], N-hop 

Multilateration [130] and GPS-free node localization [131,132]. 

6.5. Security 

Federated virtual networks offer several services and multiple applications use these services on 

virtual sensor networks, with a number of service providers and infrastructure providers all collaborating 

with each other to serve the users seamlessly seems quite adorable. Future of sensor network is IoE 

which states that everything is connected: from personal home sensor nodes to the sensor nodes in public 

places like streets and shopping malls. Middlewares currently concentrate more on the resource 

allocations, efficient communication and management of the sensor networks. However, the security of 

the services, resources and data is a huge challenge. 

With multiple networks collaborating, security should be a vital part of the future middleware design. 

The developer of the network should have more options to increase and customize security mechanisms. 

The flexibility, scalability and extensibility of the architecture are reduced when more security 

mechanisms are implemented. Therefore, to cope with these challenges, new algorithms and techniques 

are to be introduced with minimal effect on the flexibility and scalability of the federated virtual networks. 

There are a number of middlewares ensuring the security like: Proactive Code Verification [133], SMEPP 

Light [134] which is based on cluster management, and provides group-level security algorithm. 

Furthermore, it provides mechanisms for query injection and data aggregation based on 

publish/subscribe mechanism. Furthermore, middleware for securing mobile agents based WSN is 

proposed in [135]. Security mechanism based on a link-layer remote procedure call is presented in 

SpartanRPC [136]. A security framework for federated sensor networks is provided in [137].  

6.6. Delay Tolerance  

Delay Tolerant Network (DTN) is aimed at enabling reliable communication over links that do not 

offer high quality transmission. Therefore, these links provide packet loss and long delays. DTN provides 

a solution to these problems by applying buffers at each hop and using feedback from the destination 

node. Buffers keep the messages in memory when link quality is unsatisfactory, and transmit when link 

quality is good.  

Middleware for virtualization provides the solution due to its dynamic nature. Furthermore, 

middleware for DTN can provide virtual links and buffers on the overlay network to improve high 

latency/low data rate. Furthermore, it provides solution for disconnection and transmission errors due to 

the knowledge of the whole network. VITRO middleware framework provides solution the DTN [44,45] 
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by virtualization of the network. DSAM [138] is a middleware that provides a communication layer 

between the service and different applications for DTN. Middleware proposed in [139] dynamically 

adapts the connections. Moreover, it switches between the connections according to the network 

applications and conditions. 

6.7. Load Balancing 

The basic idea of load balancing is to share traffic load among the nodes in order to reduce the 

probability of error, due to queue overflow at some nodes. Load balancing middleware services improve 

the scalability and overall system throughput of the sensor network. However, most of the solutions are 

meant only for a specific application and environment. There is a need for a generic model for load 

balancing in network virtualization, as load balancing service doesn’t work other than the application it 

was designed for [140]. 

Network virtualization allows sharing of traffic inside the virtual clusters. That is quite effective, 

because nodes in the same cluster have a similar goal or similar application to serve. Load balancing can 

be done at different levels in network virtualization environment, it could be network based, inter-cluster 

based, intra-cluster based, sensor based and applications based. GSN [28,31,70] for high performance 

tries to achieve load balancing among the different sensor nodes using default polices of the middleware. 

7. Testbeds and Experimental Resources 

In the paradigm of wireless sensor networks, testbeds and experimentation, play a significant role in 

the successful deployment of the sensing network. Furthermore, testbeds allow testing of all the sensing 

and communicating aspects of the sensor networks in a realistic setup [141,142]. Testbeds are crucial 

for debugging and evaluating middleware for wireless sensor networks. Testbeds play vital role in testing 

the behavior of embedded systems e.g., effect of temperature on sensor nodes is tested in [143]. 

There are number of tools that support testbed composition [142], like hardware devices provide the 

real evaluation of the system. However, the hardware costs and heterogeneity of testbeds formed are 

usually limited and provide less flexibility due to static configurations and small size. Moreover, for the 

IoE to be a reality we require large scale federated networks to be formed and tested. The hardware 

approach is usually limited to a single network and don’t allow large federated networks to be tested and 

evaluated. The research community is working on the testbeds that allow large federated heterogeneous 

networks to be evaluated and tested.  

The easiest technique for evaluation of middleware for sensor network is a simulation; it speeds up 

the development process. Simulation provides flexibility in terms of radios, sensor nodes, heterogeneity, 

scalability, mobility, debugging facility, OS. Furthermore, it supports large scale federated networks to 

be easily tested. However, it lacks the conviction due to its inaccuracy and unrealistic approach. 

Therefore, this technique is limitedly used for planning and deployment middleware for WSNs  

and systems.  

There are two extremes in testing so WISEBED [141] came up with the concept of combining  

both the testing techniques: simulation and the hardware testbeds by virtualization of the testbeds. 

Furthermore, this concept provides flexibility and accuracy at the same time. Testbed virtualization can 

provide high efficiency in testing without hampering the realism of experiments. There are a number of 
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testbeds for WSN that include SensLAB, moteLab, CitySense, Sensei and Wisebed having different 

approaches [144]. Few of the testbeds that allow evaluation of middleware based on virtualization are 

discussed as under. 

WISEBED [141] uses the concept of virtual testbed (VTB) that combines the physical and simulated 

sensor testbeds using overlay network technology that could be used to support different physical and 

simulated testbeds. VTB allows large federated networks to be tested with a fair amount of accuracy. 

VTB provides flexibility in connectivity between any physical, simulated or emulated sensor nodes 

through virtual links and virtual radios, it also supports virtual mobility [145]. 

WISEBED has come up with the middleware based on the web service called iWSN. Middleware 

supports multiple OS, simulators and provides a high level API for the application development. 

Furthermore, it also provides the software development kit (SDK) for the researchers around the globe 

to design, implement, develop and synthesize the algorithms on top of the VTB. Moreover, it supports 

multiple OS like TinyOS [146], iSense and Lorien [147]. VTB is specified through WiseML based on 

XML and WiseLib algorithm library for networked embedded devices. WISEBED contain a number of 

heterogeneous nodes that includes Pacemate, iSense, TelosB, Tmote, MicaZ, SunSPOT, TNode, Tmote 

Sk, MSB-A2 distributed around the globe [144,148]. There are a total of 9 geographical sites with  

550 nodes [149]. 

FlockLab [150] testbed based on the physical sensor nodes, it overcomes this limitation of the 

previous test beds by allowing several services to run simultaneously on all nodes. Furthermore, 

FlockLab provides timing information in the low microsecond range that enables events to be correlated 

with power samples. FlockLab also achieves a better synchronization, allowing for a better alignment of 

power traces recorded at nodes. FlockLab’s middleware services synchronously collect huge  

amounts of logged data from the scattered sensor nodes. It also extracts the radio state and support 

network virtualization. 

SmartSantander [151] is a unique large scale experimental research facility for the provision of 

smart city application. It envisions the deployment of 20,000 sensors around the city, currently there are 

3000 IEEE 802.15.4 nodes, 200 GPRS modules and 2000 RFID tag/QR, and they are static as well as 

mobile. One of the major purposes of SmartSantander facilitates experimentation for the research 

community, infrastructure providers and the service providers to speed up the proof of concept,  

and IoE to be a reality. Furthermore, Assessment of how society responds to the IoE technologies and  

services [152]. SmartSantander middleware and software supports both the testing of sensor 

virtualization and network virtualization. 

FIRE (Future Internet Research and Experimentation) [153] project provides a research platform 

which facilitates a number of the researchers and developers for the Future IoE concepts. FIRE provides 

large-scale experimentation facility that supports both medium and long term research plans. FIRE based 

on virtualization provides the tools that are needed to conduct large-scale experimentation on innovative 

paradigms of WSNs. Furthermore, a variety of network experimentation can be conducted on the given 

platform. FIRE facilitates testing infrastructure supporting multiple technologies like having diverse 

characteristics like mobility, scalability, security and privacy. Furthermore, it allows testing and 

evaluating the middleware based on sensor and network virtualization. Fire projects focusing on testbeds 

are EULER, FIBRE, RELYonIT, OFERTIE, STEER, SOCIAL&SMART, IRATI, 3D-LIVE, 
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CLOMMUNITY, EAR-IT, ECO2Clouds, ALIEN, EVARILOS, Cityflow, IoTLAB, FORGE, 

TRESCIMO, MOSAIC 2B, SMARTFIRE [154]. 

OneLab [155] is the pioneer of the federation concept for the testbeds. OneLab is also a part of the 

FIRE project based on the heterogeneous testbeds to federate their computation, database and network 

resources. PanLab (Pan-European Laboratory) [156] is also part of FIRE project and takes the work of 

the OneLab forward by developing the framework for the federation of testbeds on a wide scale. PanLab 

Combines all the emerging testbeds and experimental resources together in such a way that tests and 

experiments are executed according to the demands of the emerging concepts in WSN. It is based on the 

VTB concept and forms Virtual Customer Testbed (VCT). VCT fulfills the requirements of the 

federation and customer view. Moreover, manages the underlying infrastructure elements participating 

in the testing/experiment execution. Teagle [157] framework provides interfaces of the Panlab federation 

resources, and interacts with Panlab testbed manager and manages the customers’ request and the 

heterogeneous testbed devices. Furthermore, Panlab also provides the concept of resource adaptors that 

abstract the testbed manager from the offerings, and provide a single API to Teagle Web portal for the 

setup and configuration of VCTs.  

BonFIRE [158,159] is a free, open access scheme that facilitates researchers for a faster, cheaper and 

more flexible tests on new business models. BonFIRE has developed a cost effective business model. 

Researchers can test a wide range of cloud experiments, such as cloud bursting and hybrid clouds, across 

five European sites. Furthermore, provides a federated, distributed cloud testbed based on virtual 

machine. VMs are located at different Clouds that federate different sites and enable seamless 

experimentation. The BonFIRE middleware has been designed to provide experimental support over 

multiple heterogeneous devices evaluating infrastructure and virtual machine level. The middleware 

consists of multiple layers where each layer exposes its functionality via a set of APIs. 

TWIST [160] is an open access test bed having 204 nodes, middleware support heterogeneous 

devices and allows integration with Cooja Simulator. TWIST testbed provides indoor experimentation 

facility and consist of TelosB and eyesIFX nodes. 

IoT Lab [161] provides a very large scale open source facility for testing and evaluating wireless 

sensor heterogeneous devices and software architectures. It consists of 2700 wireless sensor nodes 

spread across 6 different cities. IoT Lab’s middleware supports virtualization and provides high level 

APIs for drivers, OS and libraries for programming and testing algorithms and protocols. Furthermore, 

IoT Lab testbed allows development of the applications and middlewares on top the infrastructure 

provided. Moreover, it can be testbed with or without the OS support. Table 3 shows the testbeds that 

support virtualization; it also shows the devices that are used by the testbed. Furthermore, the number of 

devices that are part of the testbed and the services offered by the testbed. 

Table 3. Testbeds for evaluation of middleware designs. 

Testbed Device Used 
Number of 

Sensor Nodes 
Services Offered 

Virtualization 

Support 

University of Lübeck  

Smart Stender [141] 

• iSense 

• TelosB 

• Pacemate 

200 

• Environment 

• Light 

• Security 

• Accelerometer 

Yes 
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Table 3. Cont. 

Testbed Device Used 
Number of 

Sensor Nodes 
Services Offered 

Virtualization 

Support 

Freie Universität Berlin [162] 

• DES-WSN 

• DES-Mesh 

• DES-WMN 

DEC-Mobile 

110 
• Temperature 

Humidity 
Yes 

Braunschweig Institute of 

Technology [163] 
iSense 

30 Nodes 

120 Sensors 

• Load Sensors 

Weight 
Yes 

Research Academic Computer 

Technology Institute [164] 

iSense 

TelosB 
154 

• Environment 

• Security 

Light Control 

Yes 

Universitat Politecnica de 

Catalunya [165] 
iSense 10 

• Solar module 

• Temperature 

Light 

Yes 

Universität Bern [166] 
• TelosB 

MSB-430 
47 

• Temperature 

• Humidity 

• Light 

Accelerometer 

Yes 

University of Geneva 

[167,168] 

• Atom-Based 

• Servers 

• iSense 

25 
• Security 

• Target Tracking 
Yes 

Delft University of 

Technology [169,170] 

• SOWNet  

T-Node 

• SOWNet  

G-Node 

• Tmote Sky 

• TelobsB 

• Octopus I-II 

• MICAz 

140 
• Temperature 

• Humidity 
Yes 

Lancaster University [171] • TelosB 16 
• Temperature 

• Humidity 
Yes 

University of Cyprus [172] 
• MICAz 

• Camera 
14 

• Environment 

• Chemical 

• Mobility 

No 

University of Thessaly 

OneLab/Open Lab [173–175] 

• GNU-MIMO 

• Diskless 
80 

• Cameras 

• Temperature 

• Humidity 

Yes 

KAIST University 

SmartFIRE [161] 

• MTS300 

• MTS420 

• MPR2400 

• MIB600 

50 
• Temperature 

• Acoustic 
Yes 

Washington University [176] • TelosB 79 

• Light Radiation 

• Temperature 

• Humidity 

No 
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Table 3. Cont. 

Testbed Device Used 
Number of 

Sensor Nodes 
Services Offered 

Virtualization 

Support 

National University of 

Singapore [177,178] 
• TelosB 139 

• Light 

• Temperature 
No 

TARWIS [166,179] • TelosB 200 • Environment No 

NetEye [180] • TelosB 130 
• Light 

• Environment 
No 

SmartSantander 
• TelosB  

• RFID 
20,000 

• Temperature  

• CO 

• Light 

Yes 

Technische Universitat Berlin 

TWIST [160] 

•  TelosB  

• eyesIFX 
204 

• Light 

• Temperature 
No 

HOBNET  

UNIGE [181] 

• TelosB 

• iSense 
20 

• Temperature 

• Humidity  

• Electric Device 

• Monitoring 

Yes 

IoT-LAB [161] 

• WSN-430 

• M3 

• A8 

2700 

• Temperature 

• Light 

• Environment 

Yes 

University of Cambridge 

SenShare [20] 
• iMote 2 35 

• Temperature 

• Light 

• Humidity  

• Acceleration 

Yes 

8. Challenges and Future Work 

In WSN virtualization there are many open problems, open issues and questions still to be answered. 

Middleware design for the virtual sensor network has to deal with the challenges like: guaranteeing 

connectivity, choosing the optimal frequency, localization, data aggregation, security, load balancing, 

radio selection, clustering and inter cluster coordination. To achieve all the mentioned properties we 

need a comprehensive middleware design for WSN virtualization. To achieve this goal middleware 

architecture has to face several non-trivial algorithmic challenges. 

In WSN virtualization, multiple applications need to run; each application has its own requirements 

as reliability, robustness, fault tolerance, high throughput and QoS level. The applications like elderly 

care, military, smart home, smart city and traffic controlling are the examples of the applications that 

need more reliable, stable and robust networks. Due to the limited resources of the sensor nodes and the 

networks, it is highly probable that the performance of multiple running applications cannot be  

satisfied simultaneously. 

For network virtualization, middleware should provide a general runtime environment to the 

application developer. Furthermore, it should also guarantee the correct functionality of concurrent 

applications running on the multiple networks consisting of resource constrained devices. Therefore, the 

middleware should manage multithreads efficiently to reduce the probability of error and failure. 
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Middleware is required to efficiently tradeoff among the several QoS dimensions of a particular 

application as well as multiple applications. Therefore, a mechanism is to be derived such that it adopts 

the policy of tradeoffs between different QoS parameters and available resources. Software design for 

network virtualization should collectively fulfill the application needs. 

One of the key challenges of middleware design is to make energy-aware protocols and policies that 

should gather the power information from the multiple physical networks and make virtual networks 

according to the power parameters. However, contrary to the power awareness QoS need not to be 

compromised. Therefore, an optimized metric for QoS parameters, applications running and available 

resources must be part of the middleware design. Furthermore, mobility of sensing devices imposes extra 

challenges to the network virtualization. It poses a number of challenges like QoS provision, clustering 

and localization.  

There must be a standard to be followed while dealing with service and resource discovery module. 

The service provider should get the parametric values of the resources and services from distinct 

heterogeneous networks in a standard format. This would lead to efficient resource and service 

allocation. Moreover, the role of multi radios is quite significant in the future network designs. The 

research work carried out on using multiple radios is very limited, and this area is still open for the 

researchers and need significant improvement. Another important issue in the middleware design is data 

aggregation; middleware for network virtualization should provide mechanisms to merge and synthesize 

the data.  

Network virtualization creates virtual links between nodes. The speed of the virtual link should not 

be too slow as compared to that of a native link. The programming model for virtualization middleware 

should be based on multi-threading techniques so as to speed up the process. In order to meet the 

demands of each application the middleware should be able to fulfill application requirements and 

provide services in a seamless manner. On the other hand the complexities of networks, devices and 

platforms are also to be managed in such a way that the network longevity is increased and the resources 

do not exhaust early. 

• There are different types of sensors with diverse physical layer protocols, there is a need of a 

middleware platform on which they can combine, and coordinate to achieve the goals. 

• Sensor nodes as they are tiny devices with small battery, processing power, and memory. They 

are prone to different failures of hardware and software, the software errors are to be minimized 

by the middleware software architecture. 

• Ease of programming provided by the middleware to the developer should not affect the  

network performance. 

• Middleware based on virtualization demands more memory, so the middleware design should be 

light weight. 

• Middleware for virtualization need to discover services demanded by the user and applications 

in an efficient manner, so as decoupling between applications and network should be at  

optimum level.  

• Service and resource discovery algorithms need significant improvement for virtualization 

middleware. 



Sensors 2014, 14 24081 

 

 

• Security of sensed data is a major challenge where multiple applications accessing different 

services and the sense data where as simple middleware has only one application to serve.  

• The middleware design for virtualization should support cost effective business models as it 

opens new horizons for investments and business opportunities. 

• Unlike conventional middleware, virtualization middleware design must support both the service 

providers and infrastructure providers to meet fluctuating and impulsive services and  

resource demands. 

• Processing limitations of the sensor node, and high computational requirements for middleware 

supporting virtualization is an immense challenge. 

• Lack of standardization is another key challenge there is still no consensus on the software and 

hardware platforms and heterogeneity keeps on growing. 

• The middleware for virtualization should support widespread networks of wireless sensors using 

distinct radios and deal with the integration problem of the heterogeneous WSN.  

• The virtualization middleware should be fault tolerant and adaptable to multiple network 

requirements. 

• Virtualization middleware design should separate application dependent services from the 

network dependent services.  

• Redundancy in virtualization has to be eliminated for efficient network operations. 

• Efficient localization and clustering techniques in middleware for virtualization are required so 

as to reduce processing overhead.  

• Middleware must incorporate new efficient algorithms for delay tolerance, load balancing  

and errors minimization, the conventional techniques will not work in the virtualized 

environment efficiently. 

Heterogeneity, reliability, adaptability, re-usability, scalability, QoS and context awareness 

techniques for the virtualized environment need significant improvement and are the other key issues of 

a middleware design for WSN virtualization. Therefore, demand of lightweight design of a middleware 

that address the fundamental challenges identified above for virtualization of sensor network and IoE to 

be a reality. Even though numerous constraints make these problems computationally intractable, in the 

presence of multiple networks, topologies, links, services and applications provide opportunities to exploit 

and leave enough room for researchers to modify solutions, techniques and algorithms. All of the above 

mentioned challenges need to be addressed by the research community as they are the key to the future 

WSN virtualization and building blocks of IoE.  

9. Major Components of Proposed Virtualization Model 

When application directly communicates with the hardware without management of the services and 

the hardware, it usually results in wastage of the resources. Middleware is responsible for all the 

management of process between the application and the hardware. Virtualization middleware consist of 

a number of components few of the major components of the proposed middleware are discussed in this 

section. The services offered by the proposed middleware at the gateway and the node are of two types, 

the application dependent services and the network dependent services. 
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First of all, in middleware design, programming models are to be taken under consideration. 

Consequently, none of programming models alone seem to promise a generic programming solution and 

non can efficiently support and manage the sensor network. This investigation has motivated us to 

consider a hybrid programming model that is event based and utilizes modules that can be invoked 

whenever they are required according to the context. Virtualization middleware requirements match well 

with the publish/subscribe communication mode, as WSN are an event-based system. The middleware 

design utilizing the hybrid programming model will be more concerned with the resources of the  

sensor network. 

The proposed programming model is based on the macro programming approach, providing a high 

level abstraction of the low level details. The modular approach is one of the key driving force, in the 

making the virtualization of networks successful. The component based model is used that supports 

SOA. Furthermore, an event based modular approach is used that also supports the asynchronous 

execution models. Thread abstraction is more expensive at the sensor node level as we have to dedicate 

a stack per thread that consumes a lot of memory. However, for real time applications and federated 

WSN multi-threading technique reduces the processing time quite significantly and the gateway being a 

powerful node with less memory constraints uses multi-threading model in the proposed middleware.  

Figure 5. Proposed middleware design. 

 

Middleware manages all the service provisioning stages between the user/application and the WSN 

nodes. Albeit, the data is managed well by virtualization, but checking all the parameters, delay the 

process, so the middleware components should be invoked in such a way that the latency is reduced as 

much as possible. Software model of the proposed middleware is based on Non-blocking and split phase 
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techniques. Moreover, imperative programming components ensure the QoS. However, proposed 

middleware also provides few components supporting declarative commands to provide high level 

abstraction and ease of programming for the developer. 

The event driven model is more suitable for microcontrollers as of their sleep nature, and can also 

achieve energy-efficiency. Figure 5 shows that the major components of application and network 

dependent services and their interaction. The proposed middleware design, resides at the gateway as well 

as the sensor node.  

Service discovery is one of the key modules of the middleware design. It resides both on the gateway 

and the sensor node in order to efficiently provide and keep a record of all the services offered by the 

WSN. Service discovery module at the sensor node keeps the record of the one hop neighboring services 

and also updates the gateway about the services offered. 

Resource discovery is more related to the hardware components and their capabilities such as how 

much battery life is left, the number of radios a node can support and the memory available, all these 

parameters are taken into consideration before forming a virtual network. It is more related to the 

infrastructure providers. Furthermore, this module keeps the record updated; it also resides at the node 

as well as the gateway. The device manager and the energy manager are the supporting components of 

the resource discovery module. The components like service discovery and resource discovery decouple 

the infrastructure from the services and applications. 

Where services and infrastructure are shared, authentication plays a vital role. Similarly, in virtualized 

federated sensor networks, authentication manager makes sure the services and infrastructure provided 

should be accessed by the authenticated users and applications. The sensor device at home and the health 

care data in particular, should not be accessed by the unauthenticated user. 

The virtualization manager is the brain of the middleware. It collaborates with energy manager, 

communication manager, resource discovery module, service discovery module and the registry to serve 

the user queries and application demands. Furthermore, it makes sure the application demands are met 

in an energy efficient manner. It resides at both the node and the gateway. The energy manager module 

takes the power parameters from different sensor nodes and manages the power of the network; it 

collaborates with the virtualization manager such that the nodes with more power are to be utilized 

intermittently, so as to increase the network longevity.  

Communication manager is responsible for selecting the radios and the channels for communication 

among the nodes and the gateway. Application based radio selection makes sure that the application 

demands are fulfilled. The flexibility of switching between different radios provides high flexibility in 

terms of data rate and communication range. However, an eye has to be kept on the power consumption 

of transmission. 

The middleware part that resides at the node consists of neighbor service discovery that keeps the 

record of the single hop neighbors’ location, services they offer and the resources they have. Device 

manager module manages the sensor node hardware. It updates the virtualization manager about the 

malfunctioning, damage or tempering of any sensor attached to the node. The device manager and the 

energy manager modules enable nodes to update the gateway with their current state of power, radios 

and services. The node virtualization manager is connected to device manger, registry, energy manager 

and communication manager that allow virtual manager to manage all the node operations. 
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The gateway’s virtualization manager along with its interfaces with the communication manager and 

registry tries to compute the best possible combination of clusters that satisfy the QoS demanded by the 

application. Furthermore, it also tries to accommodate the error and the delay in transmission of the data. 

Moreover, it tries to balance the load of traffic on the links and sensor nodes. The service discovery 

module along with the registry aggregates the data. 

10. Conclusions 

Middleware for virtualization presents a new potential research area. The importance of WSN 

virtualization is increasing day by day due to its capability of integrating heterogeneous devices, 

networks, radios and platforms. The study presented provides an overview of the middleware designs 

supporting sensor virtualization and network virtualization. The taxonomy of middleware presented is 

based on the support for the sensor virtualization, network virtualization and multi radio. The paper 

elaborates different programming paradigms and how they can be used for the middleware design based 

on virtualization of WSN. The research presents abstracted services and role in middleware designs. 

Furthermore, testbeds for middleware design evaluation and several future directions and challenges for 

designing the middleware. Major components of the proposed model are also presented that provide a 

general middleware design capable of handling both the sensor and network virtualization. Virtualization 

will gain massive popularity in the near future because of the upcoming trends of separation of sensor 

service providers from sensor infrastructure providers. The middleware will be the key in making the 

business successful by lowering costs for the end users, managing and decoupling the infrastructure and 

service providers. 
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