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Abstract: This paper proposes an object-based segmentation/classification scheme for 

remotely sensed images, based on a novel variant of the recently proposed Genetic 

Sequential Image Segmentation (GeneSIS) algorithm. GeneSIS segments the image in an 

iterative manner, whereby at each iteration a single object is extracted via a genetic-based 

object extraction algorithm. Contrary to the previous pixel-based GeneSIS where the candidate 

objects to be extracted were evaluated through the fuzzy content of their included pixels, in 

the newly developed region-based GeneSIS algorithm, a watershed-driven fine segmentation 

map is initially obtained from the original image, which serves as the basis for the 

forthcoming GeneSIS segmentation. Furthermore, in order to enhance the spatial search 

capabilities, we introduce a more descriptive encoding scheme in the object extraction 

algorithm, where the structural search modules are represented by polygonal shapes. Our 

objectives in the new framework are posed as follows: enhance the flexibility of the 

algorithm in extracting more flexible object shapes, assure high level classification 

accuracies, and reduce the execution time of the segmentation, while at the same time 

preserving all the inherent attributes of the GeneSIS approach. Finally, exploiting the 
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inherent attribute of GeneSIS to produce multiple segmentations, we also propose two 

segmentation fusion schemes that operate on the ensemble of segmentations generated by 

GeneSIS. Our approaches are tested on an urban and two agricultural images. The results 

show that region-based GeneSIS has considerably lower computational demands compared 

to the pixel-based one. Furthermore, the suggested methods achieve higher classification 

accuracies and good segmentation maps compared to a series of existing algorithms.  

Keywords: image segmentation; object-based classification; watershed transform; genetic 

algorithms; marker selection; segmentation fusion 

 

1. Introduction 

In recent years, the growing development and availability of satellite imagery with high spectral and 

spatial resolution (HSSR), poses new challenges in the field of land cover classification. An attractive 

method recently receiving considerable attention is the incorporation of spatial information to improve 

the classification results obtained by traditional pixel-based classifiers. One way to achieve this goal is 

to extract contextual information from fixed-window neighborhoods around pixels and incorporate it 

into their feature vector of spectral values. The drawback of this method is that it raises the issue of scale 

selection, due to the existence of structures of different sizes within the image. A more effective 

alternative for integrating spatial information is to perform image segmentation. Segmentation is the 

partitioning of the image into disjointed regions so that each region is connected and homogeneous with 

respect to some homogeneity criterion of interest. 

Most of the existing image segmentation techniques can be distinguished into one of the following three 

categories [1]: clustering/feature thresholding, region growing, and edge detection. Clustering techniques 

operate in the spectral space, searching for significant modes in the pattern distribution [2,3]. The created 

clusters are then mapped back to the spatial domain to form the segmentation map. Important issues to 

be addressed with cluster methods are the determination of the proper number of clusters and the 

consideration of the spatial association of pixels, which is usually ignored. Region growing methods 

start usually from a pixel level and merge neighboring objects sequentially until a homogeneity criterion 

exceeds a user-defined threshold [4–6]. The selection of the termination conditions has always been a 

challenging task in these methods. Usually, a set of different scales are elaborated, giving rise to a 

hierarchy of coarser-to-finer segmentations. This multi-scale approach has been applied successfully in 

various remote sensing tasks [7–11]. Nevertheless, the problem of selecting the proper scale becomes of 

great importance, so that the map adequately represents all components of different classes. The 

approach relies on the hypothesis that ground objects of the same land-cover category exhibit similar 

spectral, textural, and scale characteristics throughout the image, an assumption that is not always true. 

Several methods now focus on the strategy of automatically finding the most suitable scales so as to 

avoid scale parameter selection [12,13].  

Edge-based methods search for discontinuities in the image by examining the existence of local edges. 

The extracted edges finally enclose the created objects. The watershed transformation is the most commonly 

used method of this category and has been employed in various segmentation applications [14–19].  
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A significant limitation of watershed is its sensitivity to local variations, which typically results in severe 

over-segmentation of the image. For this reason, watershed is often incorporated into more sophisticated 

methods as a preliminary segmentation step. For instance, in [19] the initially created watershed objects 

are subsequently merged through graph partitioning techniques. To overcome the oversegmentation 

problem, markers are used in [15,16], while the authors of [17] consider a genetic algorithm to tune the 

segmentation parameters of the watershed algorithm.  

Recently, the pixel-based Genetic Sequential Image Segmentation (GeneSIS) method has been 

suggested for the classification of remotely sensed images [20]. GeneSIS is a marker-driven iterative 

segmentation algorithm, whereby the global segmentation problem is broken down into a succession of 

simpler tasks, i.e., the extraction of a unique object at each iteration. GeneSIS exploits the searching 

capabilities of genetic algorithms (GAs) with the aim to locate spatially the proper objects to be extracted 

from the image. The method evaluates the fuzzy content of candidate regions, creating objects that 

exhibit an optimal balance locally between fuzzy coverage, consistency, and smoothness. GeneSIS 

exhibits a number of interesting properties such as reduced over-/under-segmentation, adaptive spatial 

search, and multi-scale search. Despite its high classification accuracies, two demerits of the pixel-based 

GeneSIS are the increased execution times required for the completion of segmentation and the fact that, 

under certain parameter settings, the created segments occasionally exhibit rough boundary shapes.  

In this paper, we propose a region-based GeneSIS variant of our approach with enhanced capabilities. 

With regard to the pixel-based GeneSIS, the modifications and extensions introduced here are outlined 

as follows:  

(1) The original image is initially fine segmented via the watershed transform method with the goal 

of reducing the noise effect corrupting single pixels. The created watershed objects are now regarded 

as the structural elements, instead of the single pixels considered in our previous framework. The 

watershed segmentation map serves as the basis for the operation of GeneSIS algorithm, while the 

generated segments are considered as a collection of connected watersheds.  

(2) In view of the region-based representation, significant parts of the algorithm are properly redesigned, 

such as the marker selection and the fitness function calculation, making extensive usage of the  

region-adjacency graph (RAG) of the initial map. In addition, we develop a fuzzy integral-based 

decision fusion scheme for the labeling of watershed objects to the various classes.  

(3) At each iteration, GeneSIS evolves a population of structuring elements placed on the image, 

called the basic search frames (BSFs), which are continuously relocated over the generations, trying 

to find the best object for extraction. In a preliminary view of the region-based GeneSIS proposed 

herein [21], the BSFs were represented by rotating rectangles of varying size. In the new proposal, 

we adopt a more flexible polygonal representation of the BSFs, which enables GeneSIS to extract 

irregularly shaped ground structures. A special tuning operator is also designed to enhance the 

evolutionary search process. 

(4) Finally, exploiting the inherent property of GeneSIS to produce multiple segmentations, we 

propose two segmentation fusion approaches, namely, the fuzzy majority voting and a minimum 

spanning forest based scheme. The fusion methods combine the results of an ensemble of different 

segmentation maps to obtain a final single classification map. 
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The new algorithm, along with the two segmentation fusion schemes, is tested on two image datasets. 

The results show that region-based GeneSIS produces better and more robust results compared to the 

pixel-based GeneSIS, improving the average, the standard deviation, and the best overall classification 

accuracies. Moreover, the fusion methods achieve similar or higher accuracies compared to the best results 

obtained from an ensemble of segmentations by GeneSIS. Finally, a significant asset of the region-based 

GeneSIS is that, owing to the watershed representation and the RAG-based redesign, it has considerably 

lower computational demands with regard to pixel-based GeneSIS. 

The rest of the paper is organized as follows. In Section 2, we provide a general description of the 

proposed scheme, whereas Section 3 focuses on the GA part of GeneSIS, the object extraction algorithm 

(OEA). The description of the two segmentation fusion methods follows in Section 4. Experimental 

results on the classification of two remotely sensed images are presented in Section 5, and the paper 

concludes in Section 6 with some final remarks. 

2. General Configuration 

The architecture of the proposed scheme is depicted in Figure 1. Initially, the watershed algorithm is 

applied in order to create a preliminary fine segmentation map. In addition, supervised pixel-wise 

classification is performed by applying the fuzzy output SVM (FO-SVM) [22]. As a result, fuzzy 

classification provides a set of fuzzy membership maps (FMMs), which contain the membership values 

of image pixels to every class. In the next stage, the fuzzy degrees of pixels contained in each watershed 

object are combined through the fuzzy integral fusion method with two goals: compute the fuzzy values of 

the watershed to the different classes, and then assign a specific class label to this object. The class-labeled 

connected components of watershed objects, along with their membership values, serve as inputs to the 

GeneSIS segmentation algorithm. The segmentation result produced by GeneSIS provides the final 

classification map.  

 

Figure 1. Flowchart of the proposed scheme. 

2.1. Watershed Segmentation 

Watershed transform is a morphological approach widely used in image segmentation. The image, 

considered as a topographic surface, is flooded from its minima and dams are built in order to prevent 

merging of water from different sources. Dams represent the watershed lines, enclosing the catchment 
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basins. Watershed transformation is usually applied to a gradient image, so that catchment basins 

delineate the homogeneous regions of the image. Among the different approaches investigated in [14] 

to obtain gradient images from hyperspectral data, we use the Robust Color Morphological Gradient 

(RCMG) method [23]. To reduce the oversegmentation resulting from watershed, we perform an initial 

filtering using a 3 × 3 median filter to smooth the surface, while at the same time preserving the 

significant edges. 

The watershed implementation presented in [24] is used in this work. As a result of the segmentation, 

a set 𝒲 = {𝑊𝑖/𝑖 = 1, … , Ω(𝑊)} of watershed objects is obtained, along with the set of watershed pixels 

representing the edges between regions (Ω(∙) denotes the crisp cardinality operator). The assignment of 

the watershed pixels to the neighboring objects is carried out as described in [14]. For each Wi, the 

standard vector median is computed: 

1
arg min

i j i

i

VM j
x W x W

x x x
 

  
  

  
  (1) 

Every watershed pixel is then assigned to its neighboring object with the “closest median”, i.e., the 

object exhibiting the minimal distance between the vector median of this region and the watershed pixel 

vector. It should be noted that the watershed transform creates an over-segmented map, containing 

mostly small and compact regions that enclose a few pixels.  

2.2. Pixelwise SVM Classification 

Support vector machines (SVM) is a valuable classifier from machine learning that has recently 

attracted considerable interest in the analysis of remote sensing images. Further, it is well recognized 

that the availability of fuzzy degrees of pixels to the various classes provides a better description of the 

image context. In this work, we perform a pixel-based classification using the fuzzy output SVM 

approach [22]. Following the one-versus-all (OVA) decomposition strategy, we first construct an 

ensemble of M binary SVMs {𝑓1(𝑥), … , 𝑓𝑗(𝑥), … , 𝑓𝑀(𝑥)}, where M is the number of classes and denotes 

the decision function of the jth classifier, trained independently to discriminate class j from the rest of 

the classes. Then, the method manipulates the SVM decision values, providing for each pixel 𝑥 ∈ ℐ a 

membership vector: 

       1 ,..., ,...,j Mx x x x        (2) 

As a result, M fuzzy membership maps (FMMs) are created, each one corresponding to a particular 

class. These maps contain all the important information required for the different stages of our method. 

Hence, the fuzzy classification process can be regarded as an image transformation from spectral space 

to the space of membership values. Based on the above values, each pixel is assigned to a class label, 

following the max argument principle: 

1,...,

( ) arg max{ ( )}j
j M

x x


  
(3) 

where ℒ(∙) is the class label assignment function. 
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2.3. Assignment of Fuzzy Degrees to Watershed Objects 

In the proposed classification scheme, we consider watershed objects as structural units, instead of 

pixels. Therefore, before proceeding to the image segmentation by GeneSIS, we need to determine the 

fuzzy content of each watershed object at the various class labels. To accomplish this task, we employ 

the decision fusion approach of fuzzy integral, which is defined with respect to a fuzzy measure, usually 

a gλ-fuzzy measure. Fuzzy integral has been used in previous works to combine the results of multiple 

classifiers [25]. Here, all pixels contained in a watershed object are regarded as different and equivalent 

sources of fuzzy information. Then, the fuzzy degrees conveyed by pixels are combined via decision 

aggregation to produce the membership values of watershed objects. 

Let us consider an arbitrary watershed object 𝑊𝑖 = {𝑥𝑗
𝑖/ 𝑗 = 1, … , Ω(𝑊)} , where each pixel 𝑥𝑗

𝑖 

retains a vector 𝜇(𝑥𝑗
𝑖) of fuzzy degrees. To compute the membership degree of Wi to label 𝑘 ∈ {1, … , 𝑀}, 

we proceed along the following steps: 

(1) The fuzzy densities 𝑔𝑘
𝑗
 represent the degree of importance of 𝜇𝑘(𝑥𝑗

𝑖) toward the final evaluation. 

In our case, these densities are determined locally by considering a 3x3 neighborhood 𝑁(𝑥𝑗
𝑖) of each 

pixel. Specifically, 𝑔𝑘
𝑗
 is defined as the fuzzy coverage of label k in  𝑁(𝑥𝑗

𝑖) of the examined pixel:  

( )

( )

( )
i
j

k

j
kk

x N x

x L

g x




   
(4) 

These densities are then normalized so that 

 

∑ ∑ 𝑔𝑘
𝑗

= 1𝑀
𝑘=1

Ω(𝑊𝑖)
𝑗=1 . 

(2) Calculate the unique root 𝜆 > −1of the equation: 

 
( )

1

1 1
iW

j

k

j

g 




    (5) 

(3) Sort the elements of {𝜇𝑘(𝑥𝑗
𝑖)}in descending order:𝜇𝑘(𝑥𝑗1

𝑖 ), … , 𝜇𝑘(𝑥𝑗Ω(𝑊𝑖)
𝑖 ) with 𝜇𝑘(𝑥𝑗1

𝑖 )denoting 

the highest membership value. 

(4) Sort the densities correspondingly, i.e., 𝑔𝑘
𝑗1

, … , 𝑔𝑘
𝑗Ω(𝑊𝑖)

. 

(5) Set 𝑔(1) = 𝑔𝑘
𝑗1

 and calculate the rest of the fuzzy measures according to the following recursion: 

( ) ( 1) ( 1), 2 ( )jl jl

k k ig l g g l g g l l W        (6) 

(6) Finally, the membership value of Wi to label k is computed as: 

  
( )

1
( ) max min ( ), ( )

iW
i

k i k jl
l

W x g l 



  (7) 

2.4. Connected Component Labeling  

Based on the above values, each watershed object is assigned to its dominant class label, following 

the max argument principle: 

1,...,

( ) arg max{ ( )}j
j M

W W


  
(8) 

Adjacent watershed objects of the same label can now be connected to a single hyper object. This is 

achieved by applying a connected-component (CC) labeling algorithm. As a result, we obtain an initial 
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segmentation map containing the set of CCs: 𝒞 = {𝐶𝑗/𝑗 = 1, … , Ω(𝒞)}. Each CC shares the same label 

with its watershed objects: ℒ(𝐶𝑗) ∈ {𝐿1, . . , 𝐿𝑗 , . . , 𝐿𝑀}. Figure 2a illustrates the result of this stage, where 

three CCs containing watersheds of similar label are formed after CC labeling. The set 𝒞 of labeled CCs 

obtained at the output of this stage might be considered as the final classification map of the image; 

therefore, it is examined as a separate classification approach in the simulation results. This map exhibits 

considerably lower over-segmentation compared to the pixel-wise SVM classification. Nevertheless, the 

result still suffers from adequate over-segmentation, mainly due to the appearance of incorrectly labeled 

small CCs lying in the interior of broader CCs of different label. The proposed segmentation algorithm 

aims at removing the above demerit, producing more homogeneous objects with reduced  

over-segmentation. 

  

(a) (b) 

 

Figure 2. (a) An example of initial map of labeled CCs with illustration of marked 

watersheds, (b) Possible segmentation of the same area after GeneSIS. 

2.5. Marker Selection 

After the formation of the initial CCs, we proceed to the marker selection step. Markers are confident 

regions of the image that should retain their label after the whole procedure. Contrary to [20], marking is 

now performed on watershed objects instead of pixels. The CCs to be marked are selected according to 

their size and their attributed fuzzy degrees. As a first step, we choose those CCs from  𝒞 with area larger 

than a specified threshold Ω𝑚𝑖𝑛
𝐶 , which approximately represents the area of the smallest region of 

interest we want to recognize. Next, the most reliable watershed components contained in the selected 

CCs should be determined. For this reason, for each of these watersheds, we consider the difference  

Δ𝜇(𝑊) = 𝜇𝑑𝑜𝑚(𝑊) − 𝜇𝑐𝑜𝑚𝑝(𝑊), where 𝜇𝑑𝑜𝑚(𝑊) is the highest fuzzy degree in the dominant class, 

while 𝜇𝑐𝑜𝑚𝑝(𝑊) denotes the highest degree associated with the most competing class. Since these two 

membership values are tight by FO-SVM to unity, Δ𝜇  is an indication of the confidence of the  

examined watershed. 

Watershed components, inside large CCs, with degree difference above a defined fuzziness threshold 

Δ𝜇(𝑊) > Δ𝜇𝑡ℎ are selected as markers. The value of Δ𝜇𝑡ℎ depends on the level of image uncertainty, 

described by the fuzzy classification output. Here, it is defined as the 𝑚𝑒𝑑𝑖𝑎𝑛(Δ𝐶), where Δ𝐶  denotes 

the image map of differences between the dominant and the most competing class degrees for every 

Class 1 Class 2 Class 3
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watershed object. Highly mixed images need lower values, while those partitioned confidently take a 

higher one.  

Concluding, highly reliable watersheds are marked, and hence they retain their label after 

segmentation by GeneSIS. An initial CC containing marked watersheds will be denoted in the sequel as 

𝐶𝑗
(𝑚)

. On the other hand, mixed watersheds with small difference of degrees between the dominant and 

its most competing class remain unmarked, being considered as ambiguous objects. As a result, despite 

the original labeling obtained by the fuzzy integral stage, their label might change after GeneSIS.  

Figure 2a shows that some confident watersheds within the two connected components are marked 

(indicated with a colored circle), while the third component remained unmarked. The set of CCs is used 

by GeneSIS segmentation to estimate the size of components appearing in the uncovered area of the 

image and delineate the active areas of the population chromosomes to be extracted as objects. 

2.6. Segmentation by GeneSIS  

In this stage the GeneSIS algorithm is performed, adapted to operate on a region-based image 

representation obtained by watershed transform. Each object extracted by GeneSIS is now considered 

as an aggregation of connected watershed objects existing in the terrain. In this context, GeneSIS aims 

at fulfilling the following two objectives simultaneously. First, partition the image into larger, more 

homogeneous and well-shaped segments, including primarily highly confident watersheds of a specific 

label. Secondly, properly apportion the ambiguous (unmarked) watersheds to the neighboring segments 

according to spectral similarity, measured here in terms of fuzzy degrees to the various classes. This 

latter objective refers also to the small unmarked CCs of the initial map 𝒞, the watersheds of which are 

necessarily shared with the adjacent segments. As an illustration, Figure 2b shows that two segments are 

finally created upon the initial map of three CCs, shown in Figure 2a. 

GeneSIS Algorithm  

1: Input: The membership values of watersheds  

                The initial CCs 

                The set of markers of different labels  

2: Initialize the sets of segmented and uncovered regions: 𝒮(0) = ∅, 𝑅𝐶(0) = 𝒞 

3: Set 𝑡 = 1 

4: Repeat 

5:    Estimate the size of the remaining objects {𝐴𝑎𝑣𝑔(𝑡), 𝐴𝑠𝑡𝑑(𝑡)} 

6:    Search for a new object 𝑆𝑡 via OEA:  𝑆𝑡 ⟵ 𝑂𝐸𝐴 (𝑅𝐶(𝑡 − 1), 𝐴𝑎𝑣𝑔(𝑡), 𝐴𝑠𝑡𝑑(𝑡)) 

7:    Adjust the covered / uncovered areas 𝒮(𝑡),𝑅𝐶(𝑡) 

8:    𝑡 ⟵ 𝑡 + 1 

9: Until the 𝑃% of the image has been covered 

10: Merge small remaining components via region growing 

11: Output: The final segmentation map of the image 

Figure 3. Outline of GeneSIS procedure. 

An outline of the proposed segmentation algorithm is shown in Figure 3. In the following, we describe 

the different parts of GeneSIS. Notice that owing to the initial segmentation into watershed objects, the 
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image is now represented by the respective RAG. Accordingly, we have considerably redesigned our 

algorithm to comply with this new framework. Specifically, many parts of GeneSIS make full 

exploitation of the node and adjacency information provided by RAG, especially those pertaining to the 

object extraction algorithm.  

2.6.1. Iterative Object Extraction 

After initialization, GeneSIS enters a sequential procedure of repeated extractions, where at each 

iteration t, a unique object 𝑆𝑡 is extracted. Due to the iterative nature of GeneSIS, the covered part of the 

image gradually increases after each iteration. Henceforth, the set of extracted segments up to iteration 

t will be denoted as 𝒮(𝑡), with the initial condition 𝒮(0) = ∅. On the other hand, the uncovered part of 

the image is constantly decreasing. So we need to define the set of uncovered initial CCs after iteration t, 

which is denoted as 𝑅𝐶(𝑡) and is initialized to the initial CCs, 𝑅𝐶(0) = 𝒞. 

2.6.2. Size Estimation of Uncovered Area 

Given 𝑅𝐶(𝑡 − 1) and prior to the object search at iteration t, we compute the mean 𝐴𝑎𝑣𝑔(𝑡) and 

standard deviation 𝐴𝑠𝑡𝑑(𝑡) of the area of all spatial structures existing in the uncovered part of the image. 

These quantities give an approximate view of the distribution of the remaining structures’ area, thus 

providing an estimation of the spatial scale to be searched in the sequel. They will be used by the Object 

Extraction Algorithm (OEA), in order to adjust the region growing capabilities of the GA individuals 

and adapt the object search to the spatial characteristics of the currently uncovered area. In their 

calculation, we exclude insignificant CCs with area smaller thanΩ𝑚𝑖𝑛
𝐶 . Finally, 𝐴𝑎𝑣𝑔(𝑡) and 𝐴𝑠𝑡𝑑(𝑡) are 

updated after a fixed number of iterations (e.g., 20), in order to reduce computational demands.  

2.6.3. Object Extraction Algorithm 

The object extraction algorithm (OEA) is the fundamental part at each iteration, being implemented 

by a GA. Each individual in the population of GA represents a different object. The evolutionary process 

then tries to find the best possible object, by minimizing a specially designed fitness function. At the end 

of the GA, the elite individual contains the extracted object 𝑆𝑡 , tagged along its own class label.  

A detailed description of OEA is provided in Section 3. 

2.6.4. Adaptation of Covered and Uncovered Areas 

After the extraction of 𝑆𝑡, the set of extracted segments is updated as: 

( ) ( 1) tt t S   (9) 

At the same time, we need to update the remaining part of the image. So, the watershed components 

of 𝑆𝑡 are removed from the set 𝑅𝐶(𝑡 − 1) and each 𝐶𝑗 ∈ 𝑅𝐶(𝑡 − 1) is rearranged as follows: 

 j j j tC C C S  (10) 

where 𝐴\𝐵 = {𝑥 | 𝑥 ∈ 𝐴, 𝑥 ∉ 𝐵}, in order to create the 𝑅𝐶(𝑡). The iterative process terminates when a 

specified percentage p of the whole image has been covered (e.g., 𝑝 = 90%). 
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2.6.5. Assignment of Remaining Parts 

The remaining part is mainly composed of small regions of uncertain class, dispersed around the 

image. These regions are finally apportioned to the already extracted objects via M-HSEG [26], a 

marker-based region growing method. The already extracted objects are considered as markers, with the 

same label assigned to them after GeneSIS. In addition, the markers set contains the initially marked 

watersheds that have not been extracted after completion of GeneSIS segmentation. During the iterative 

region growing, mergers between markers of different labels are prevented. The merging process 

terminates when all unmarked watersheds are absorbed. The decision upon which pair of objects should 

be merged each time is made using a dissimilarity criterion. Since our algorithm operates on the fuzzy 

space of membership values instead of the spectral space, we employ the fuzzy region dissimilarity 

measure proposed in [19]. 

3. Object Extraction Algorithm 

As mentioned earlier, OEA is a GA-based routine, each time searching for the best possible object to 

be extracted from the uncovered area of the image. Over the next subsections, we describe the main 

issues involved in GA, such as the individual’s encoding, the population initialization, the fitness 

function and the genetic operators used. 

3.1. Chromosome Encoding 

Each individual represents a candidate object for extraction and is associated with a so-called basic 

search frame (BSF). In previous versions of GeneSIS, the BSFs were represented by rotating rectangles 

of varying size and orientation. Here, we enhance the flexibility of the chromosomes by considering the 

more descriptive polygonal shape (Figure 4a). A simpler polygon representation was preferred, by 

applying the following constraint on the angles 𝐴𝑖𝐶̂𝐴𝑖+1 = 2𝜋/𝑛, 𝑖 = 1, … , 𝑛, where n is the number of 

the polygon’s vertices 𝐴𝑖. Since the directions of the vertices are predetermined, the only parameters left 

for setting are the center of the polygon and the radians 𝑟𝑖 of the vertices. As a result, an individual of 

the population is encoded as a sequence of (n+2) real-coded genes: 

 ( ) ( ) ( ) ( ) ( )

1 2, , , ,...,k k k k k

k x y nO c c r R R  (11) 

The above encoding enables a better representation of the polygon’s three basic properties, i.e., 

location, size, and shape. (𝑐𝑥
(𝑘)

, 𝑐𝑦
(𝑘)

)  is the polygon’s center, representing the location of the 

chromosome. The 𝑟1
(𝑘)

 is the radius of the first vertex, which operates as a scale factor. Its value is 

restricted by an upper limit Rmax, which denotes the maximum allowable radius. The remaining vertices 

are coded in relation to the scale, through the ratio 𝑅𝑖
(𝑘)

= 𝑟𝑖
(𝑘)

/𝑟1
(𝑘)

, 𝑘 = 1, … , 𝑛.  

The vector 𝑅(𝑘) = [1, 𝑅2
(𝑘)

, … , 𝑅𝑛
(𝑘)

] determines the shape of the polygon, being independent of the 

scale. In order to prevent the formation of highly irregular polygons, these ratios are restricted to take 

values in the range [0.5, 2]. Any change in the first two genes leads to spatial relocation of the polygon, 

with its shape and size remaining intact. When changing the scale factor 𝑟1
(𝑘)

, the polygon’s size is 

decreased or increased, while retaining its shape and location. Finally, changes in any of the rest of genes 

modify the polygon’s shape only, leaving its scale and location unaffected. 
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Figure 4. Polygon representation of BSFs. (a) Typical polygonal BSF with n = 8 vertices, 

and (b) illustration of watersheds inclusion by the previous BSF. 

In the current version of GeneSIS (watershed representation), it is not straightforward to define which 

objects should be contained in the BSF. We choose to consider as internal those objects whose geometric 

centroid is included within the borders delineated by BSF. In that respect, a BSF can be viewed as a 

spatial loop placed somewhere over the image, which embraces a collection of adjacent watershed 

regions. The above procedure is facilitated by using the connectivity information provided by RAG. An 

illustrative example is presented in Figure 4b. The polygonal BSF of Figure 4a is now placed upon a set 

of watershed objects, whose centers are marked with blue color. The border line of the area composed 

by the internal objects is indicated in red. As can be seen, the blue-lined polygon (genotype) is different 

from the actual content of the chromosome (phenotype). 

3.2. Population Initialization 

Exploiting the information contained in 𝑅𝐶(𝑡 − 1), the individuals of the initial population are placed 

at spatial regions covered by large and marked CCs. Particularly, in order to create 𝑂𝑘, we randomly 

select a marked component 𝐶𝑘 ∈ 𝑅𝐶(𝑡 − 1) with a probability proportional to its area. Next, we find its 

bounding box 𝐵𝐵(𝐶𝑘) aligned orthogonally to the image axis. The center of the bounding box is chosen 

as the polygon’s center while the scale factor 𝑟1
(𝑘)

 is set to half the vertical height of 𝐵𝐵(𝐶𝑘). The ratios 

𝑅𝑖
(𝑘)

, 𝑘 = 2, … , 𝑛 are initialized randomly in the range [0.8, 1.2]. The above initialization assures that the 

evolutionary search will be focused mostly on large and uncovered areas. 

3.3. Active Region Determination 

When evaluating candidate solutions, we are particularly interested in obtaining an object the major 

part of which is homogeneous, i.e., it contains watersheds with high fuzzy degrees in the same class. 

Nevertheless, owing to the genetic evolution, an object may be located spatially in such a way that some 

watersheds included in the BSF are already extracted at previous invocations of the OEA, while some 

others are marked with a different label. To cope with this situation, an object 𝑂𝑘 is evaluated in terms 

of the so-called active area, denoted as 𝐴𝑅(𝑂𝑘). 

 ,x yC c c
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The determination of the active area is accomplished as follows. In the first step, we remove from 𝑂𝑘 

watersheds extracted from previous calls of OEA, since our main objective is to segment currently 

uncovered regions of the image. Let us define the overlapping region between 𝑂𝑘  and the already 

extracted segments 𝑆𝑡: 

  ( 1)k kOVE O O t   (12) 

The remaining area 𝑂𝑘
′ , obtained by excluding 𝑂𝑉𝐸(𝑂𝑘) from 𝑂𝑘 is determined by: 

 \k k kO O OVE O   (13) 

Next, we determine the dominant class label of the individual. This is decided on the basis of the 

fuzzy coverage of 𝑂𝑘
′  for the different classes: 

 
'

( )

( ) ( )

k

j

j k j

W O
W L

O W W




    
(14) 

Ω̃𝑗(𝑂𝑘) indicates the fuzzy degree to which watersheds of class j exist in 𝑂𝑘
′ . Finally, the dominant 

label of 𝑂𝑘 is derived via the max argument rule: 

    
1,...,

arg max jk k
j M

O O


   
(15) 

Generally, the sub-area 𝑂𝑘
′  includes watersheds of the object’s class, as well as watersheds assigned 

to different labels. The former are regarded as positive examples (PEs), whereas the latter ones are 

considered as negative examples (NEs). The homogeneity property of a region dictates that 𝑂𝑘
′  should 

contain as many PEs as possible with strong fuzzy degrees, and a smaller portion of NEs, preferably 

with lower degrees to other labels. A special occasion of interest occurs when 𝑂𝑘
′  includes sections of 

NEs with marked watersheds inside. Let us define these sections as a set comprising the marked 

overlapping regions of 𝑂𝑘
′  with the uncovered CCs of different labels: 

   
 ( 1)

( )
'

1
( ) ( )j k

RC t
m

k k j

j
C O

OVM O O C

 




  
(16) 

In the following, 𝑂𝑉𝑀(𝑂𝑘) is excluded from 𝑂𝑘
′ . This is explained by noticing that, based on the 

marker selection scheme, marked image parts are considered as large and confident regions. Thus, it 

seems reasonable to allow them to be absorbed by a different object at a subsequent invocation of OEA. 

Moreover, with this removal we avoid under-segmentation, since the object is prevented from expanding 

into regions that possibly have different labels. The active area of a candidate solution is now formulated 

as follows:  

   ( ) ( )k k k kAR O O OVE O OVM O  (17) 

Finally, an important requirement of our method is that the active area should be a connected 

component of watersheds. This constraint is imposed in order to avoid the extraction of spatially 

disjointed segments from a single call to the OEA. In cases where the active area is not connected, we 

find the component with the largest area 𝐴𝑅𝐶𝑚𝑎𝑥
(𝑘)

, and consider this component as the new active region, 

i.e., 𝐴𝑅(𝑂𝑘) = 𝐴𝑅𝐶𝑚𝑎𝑥
(𝑘)

. 
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After the previous readjustments, 𝐴𝑅(𝑂𝑘) is a subset of 𝑂𝑘 and its location may differ significantly 

from the corresponding area of BSF. For this reason, a chromosome is repaired so as to include only the 

active region. Henceforth, we will consider that chromosomes have been repaired and that their active 

region is connected. The active area represents the useful region of an individual. Its fuzzy content is 

consistently employed in the computation of fitness function components, as discussed in the following.  

 

 

 

(a) (b) (c) 

 

Figure 5. Illustration of an object extraction (iteration t): (a) set of uncovered connected 

components 𝑅𝐶(𝑡 − 1), (b) internal of the elite chromosome, (c) modified set of uncovered 

connected components 𝑅𝐶(𝑡). 

An illustration of the chromosome evaluation process and clarification of the relevant notation is given 

in Figure 5 through an artificial example. Suppose we are in the t iteration of GeneSIS and the set  

𝑅𝐶(𝑡 − 1) of the uncovered connected components after the first (t-1) iterations is presented in Figure 5a, 

including three CCs from the initial map. The centers of the marked watersheds are depicted with colored 

circles in the various class colors, while the centers of unmarked watersheds are denoted with the symbol (*). 

Assume that the polygon appearing in the same figure represents the best chromosome attained after 

termination of genetic evolution. Following the rationale described in Section 3.1, the internal area of 

this chromosome is enclosed by the red polygonal line, demonstrated in more detail in Figure 5b. As a 

first step, the sections OVE (overlap with the previous extracted segments) are excluded. Next, the 

remaining part is used to determine the dominant class of the object. The resulting label is Class 2, as 

assumed from Figure 5b. In the following, we check if the chromosome is intersected with marked 

regions of other labels. Indeed, the section OVM is such a case and, as discussed previously, this 

undesirable region is excluded. The remaining part of the chromosome constitutes the active region (AR). 

This is the part of the chromosome that is evaluated by the fitness function and is finally extracted as 

segment 𝑆𝑡. After the extraction of 𝑆𝑡, the uncovered part of the image is rearranged and the new set 

𝑅𝐶(𝑡) of remaining CCs is shown in Figure 5c. Portions of the connected components of Class 2 and 3 

were removed, while components of Class 1 remained intact. 

Class 1 Class 2 Class 3 Extracted
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3.4. Fitness Function 

The determination of fitness function is of particular importance for the GA and hence the OEA. The 

suggested fitness function design aims at fulfilling three goals simultaneously: the extracted objects 

should be large, homogeneous (that is, they should not contain mixed regions of different labels), and 

smoothly shaped. The first two objectives are attained by means of the coverage and consistency criteria, 

while for the third one we devise a suitable smoothness criterion. All fitness components are computed 

in a fuzzy manner by manipulating the fuzzy degrees of watersheds to the various classes. Given the 

dominant class of 𝑂𝑘, we define the fuzzy coverage of the PEs and NEs, respectively, covered by the 

active area of 𝑂𝑘: 

 
 

     ,

( ) ( )
k

j k

p k j
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  

 
(19) 

The coverage criterion promotes the extraction of large objects by maximizing the fuzzy coverage of 

PEs. The notion of a large object is strongly related to the size of existing components in the uncovered 

part of the image, and therefore differs along the various extractions of GeneSIS. In order to match the 

GA search to the currently available components size, we define a threshold value 𝐴𝑡ℎ𝑟(𝑡) that is 

considered as an estimate of a large object’s area: 

( ) ( ) ( )thr avg stdA t A t A t   (20) 

The coverage fitness 𝑓𝐶𝑂𝑉 ∈ [0, 1]  is then defined by passing Ω̃𝑝(𝑂𝑘)  through the following 

monotonically increasing sigmoid function: 

  ( )

1

1
p k avg

COV b O A t
f

e
  




 (21) 

Parameter b controls the slope of the sigmoid; it is defined so that for the threshold value𝐴𝑡ℎ𝑟(𝑡) we 

obtain a large coverage value d (for example, 𝑑 = 0.99). Notice that objects with Ω̃𝑝(𝑂𝑘) = 𝐴𝑎𝑣𝑔(𝑡) 

are assigned a fitness value 𝑓𝐶𝑂𝑉 = 0.5, thereby being regarded as solutions of moderate quality. In 

addition, highly qualified solutions with 𝑓𝐶𝑂𝑉 ≅ 1.0 are obtained for objects whose active areas fulfill 

the condition Ω̃𝑝(𝑂𝑘) ≥ 𝐴𝑡ℎ𝑟(𝑡). As a result, GA search is properly adapted to the scale of the uncovered 

area of the image, while at the same time promoting the extraction of large objects, thus avoiding 

oversegmentation.  

Consistency serves as a measure of the region’s homogeneity, acting along an opposite direction to 

the coverage criterion. It prevents the continuous growth of an object and its expansion into highly mixed 

regions, thereby avoiding under-segmentation. Let G̃𝑝(𝑂𝑘) denote the cumulative degrees of NEs to the 

object’s label: 

 
 
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This term represents the penetration of the dominant class in NEs and is an indication of their 

ambiguity. NEs with higher values of G̃𝑝 are more consistent than those with low values of G̃𝑝. Finally, 

the consistency fitness 𝑓𝐶𝑂𝑁𝑆 ∈ [0, 1] is defined as follows: 

 
 

0,

, .

p np

p np
CONS

p p

G

Gf
otherwise

G

    

    


 

 (23) 

A zero consistency value is assigned to those objects that cover more NEs than PEs. The fitness value 

then increases linearly to 1 when the number of NEs diminishes. Thereby, consistency encourages the 

formation of objects covering a large number of confident PEs and fewer NEs. 

The third fitness component quantifies the smoothness of the object by evaluating the shape of its 

external borders. Objects with strongly irregular shape are penalized, to avoid the simultaneous 

extraction of spatially distant regions of the same label. Initially, we compute the following ratio: 

   

 
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( )

k k

k
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

 



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where 𝐶𝐻𝑘  is the convex hull of 𝐴𝑅(𝑂𝑘), i.e., the smallest convex set that contains 𝐴𝑅(𝑂𝑘). This 

quantity measures the matching degree of an object with a prototype convex shape. Objects with small 

λ are nearly convex (𝜆 = 0 for ideally convex) which is considered as the ideal shape of an object. To 

obtain normalized fitness values in the range [01], the smoothness fitness is defined as follows: 

1

1
SMOf

a



 (25) 

Parameter α controls the slope of the function. It is defined so that the smoothness fitness takes a large 

value (e.g., 𝑓𝑆𝑀𝑂(𝜆𝑎𝑐𝑐) = 0.9) for an acceptable value 𝜆𝑎𝑐𝑐 (e.g., 𝜆𝑎𝑐𝑐 = 0.1). Objects with nearly convex 

shapes receive high 𝑓𝑆𝑀𝑂 values close to unity, while those with highly irregular shapes are penalized. 

The overall fitness function is obtained by combining the above three criteria: 

COV CONS SMOf f f f    (26) 

During the initial iterations where the image is mostly uncovered, the OEA extracts large and pure objects, 

which fulfill both coverage and consistency criteria to a high degree. As the image is progressively 

segmented, the OEA spatially achieves an optimal balance between coverage (region growing) and 

consistency (homogeneity), while maintaining the shape of the object into acceptable limits. 

3.5. Genetic Operators 

We apply the BLX-α [27] crossover operator, suitable for real-coded GAs with a probability 𝑝𝑐. As 

regards mutation, each gene is chosen with a probability 𝑝𝑚 and assigned a random value within its 

domain. The mutation rate is defined as the inverse of the number of genes in the solution encoding (e.g., 

for 𝑛 = 16 , we have 𝑝𝑚 ≅ 0.05 ). Tournament selection is used for selecting individuals to be 

recombined for the next generation, while elitism ensures that the fittest solution is retained during 

evolution. Starting from the initial population of polygons and through crossover and mutation operators, 
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new polygons are created at each generation of the GA. Thus the search space is globally explored and 

via the survival of the fittest individuals, GA is led to a desirable solution. The algorithm terminates after 

a maximum number of iterations or when the fitness value of the best individual does not increase after 

a fixed number of generations. 

Input: elite chromosome 𝑂𝑒  

Find the adjacent watersheds to𝐴𝑅(𝑂𝑒) of the same label𝑃 = {𝑃1, … , 𝑃𝑟} , ℒ(𝑃𝑖) = ℒ(𝑂𝑒) 

Find the adjacent watersheds to 𝐴𝑅(𝑂𝑒) of other label 𝑁 = {𝑁1, … , 𝑁𝑠}, ℒ(𝑁𝑖) ≠ ℒ(𝑂𝑒) 

For 𝑖 = 1 to r 

     If 𝑓(𝐴𝑅(𝑂𝑒) ∪ 𝑃𝑖) > 𝑓(𝐴𝑅(𝑂𝑒))  

          𝐴𝑅(𝑂𝑒) ≔ 𝐴𝑅(𝑂𝑒) ∪ 𝑃𝑖  

     Endif 

Endfor 

Find the most ambiguous component of N, 𝑁𝑎𝑚𝑏 = 𝑎𝑟𝑔𝑚𝑖𝑛{Δ𝜇(𝑁𝑖)}, 𝑗 = 1, … , 𝑠 

If 𝑓(𝐴𝑅(𝑂𝑒) ∪ 𝑁𝑎𝑚𝑏) > 𝑓(𝐴𝑅(𝑂𝑒))  

    𝐴𝑅(𝑂𝑒) ≔ 𝐴𝑅(𝑂𝑒) ∪ 𝑁𝑎𝑚𝑏 

Endif 

Repair 𝑂𝑒 

Output: modified elite chromosome 𝑂𝑒
 

Figure 6. Description of the elite tuning operator. 

In addition to the standard genetic operators, we also apply a specially designed RAG-based local 

tuning operator on the elite individual at each generation to improve its fitness (Figure 6). This operator 

is activated when, for a specific number of generations (e.g., 10), the fitness has been increased by less 

than 1%. Our objective with this tuning process is to assist the elite chromosome in improving its fitness 

value by expanding to its fruitful neighboring regions. This can be achieved mainly by considering the 

possible mergers with its adjacent neighbors of the same class (PEs). In this case, both the coverage and 

consistency criteria are increased and, therefore, it is most likely that the overall fitness will also increase. 

In addition, we examine the expansion to regions of NEs by considering the most ambiguous adjacent 

neighbor, i.e. the one with the smallest difference Δ𝜇. In this case, the consistency criterion is decreased 

while the coverage one is increased. Hence, the balance between these two contradicting criteria will 

finally decide whether this merger is valuable or not. After the first generations, the population usually 

converges to a specific region, so this operator assists in quickly finding a better solution. In that respect, 

the local tuning operator serves as a means to boost the spatial search capabilities of OEA. 

4. Segmentation Fusion 

Owing to the stochastic nature of the object extraction mechanism, GeneSIS is able to produce 

multiple segmentations of the same image, emanating from different initializations of OEA. Exploiting 

this inherent property of GeneSIS, we propose two segmentation fusion schemes, where different 

segmentation maps are combined to decide the final class assignment for each watershed object. 

Thereby, we can eliminate the stochastic effect of our algorithm, since a single classification map is 

obtained after fusion. In addition, the effective combination of multiple segmentations can improve the 
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classification accuracies compared to the ones provided by the individual segmentations participating in 

the ensemble of segmentations. 

Initially, we have an ensemble of Q segmentations of the image 𝒮ℳ = {𝑆𝑀(1), … , 𝑆𝑀(𝑄)} after 

repeated runs of GeneSIS. These maps share all the properties underlying GeneSIS. Nevertheless, due 

to random initializations, they provide different classification results, especially for the ambiguous 

regions of the image. Each segmentation map 𝑆𝑀(𝑙) = {𝑉𝑞
(𝑙)

, 𝑞 = 1, … , 𝑁𝑙}  is considered as the 

collection of objects 𝑉𝑞
(𝑙)

, which denote the union of connected components of all spatially adjacent 

watersheds of the same class label in this segmentation map.  

4.1. Fuzzy Majority Voting 

The configuration of the fuzzy majority voting (FMV) scheme is depicted in Figure 7a. Decision 

fusion in this approach is performed across the different segmentations of the ensemble on a per 

watershed basis, i.e., the primitive structural elements appearing in all segmentations. For each 

watershed, the final label assigned by FMV is determined by combining the certainty degrees of the 

extracted segments in the different segmentations, which enclose this watershed.  

Specifically, for every 𝑆𝑀(𝑙), 𝑙 = 1, … , 𝑄, we compute the degree of certainty of 𝑉𝑞
(𝑙)

 to the various 

class labels 𝑅𝑗(𝑉𝑞
(𝑙)

) ∈ [0, 1], 𝑗 = 1, … , 𝑀 . This is achieved by considering the fuzzy degrees of the 

watershed objects: 
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(27) 

Ω̃𝑗(𝑉𝑞
(𝑙)

) are computed by Equation (14) using the watersheds contained in 𝑉𝑞
(𝑙)

. 𝑅𝑗(𝑉𝑞
(𝑙)

) indicates 

the degree of certainty to which class j exists in 𝑉𝑞
(𝑙)

 (as delineated by GeneSIS), according to the 

information offered by SVM classifier. Highly confident objects take large certainty values in the 

dominant class and lower ones in the other classes. On the other hand, weakly segmented regions receive 

comparable certainties among the various classes. Consequently, the certainty degrees reflect the quality 

of a segmentation map, locally.  
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(b) 

Figure 7. (a) Fuzzy Majority Voting Fusion; (b) MSF-based Fusion. 

Next, we assume that for every 𝑆𝑀(𝑙), a particular watershed W in the image shares the same certainty 

degrees as the ones apportioned to the segment 𝑉𝑞
(𝑙)

 
that contains it. FMV operates on a watershed basis, 

using the following rule: 
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The class label of a watershed W is defined as the one exhibiting the largest cumulative certainty degree, 

across the different segmentations of the ensemble. Towards the final decision, each segmentation 𝑆𝑀(𝑙) 

votes for the various classes according to the certainties of the segments including W.  

4.2. MSF-Based Fusion 

The configuration of the second fusion scheme examined in this work is shown in Figure 7b. It relies 

on a region growing segmentation method, the minimum spanning forest (MSF) rooted from markers [28]. 

A similar approach has been previously applied in [29] for the pixel-based fusion of different 

classification maps, obtained by various segmentation algorithms.  

This fusion strategy is a two-stage procedure, operating again on a watershed basis. In the first stage, 

the classification results obtained by the different segmentations in the ensemble are combined to select 

a set of confident region markers. Specifically, we select as markers those watersheds that are assigned 

to the same class by all segmentations 𝑆𝑀(𝑙), 𝑙 = 1, … , 𝑄, i.e. there is a full consensus between all 

segmentation maps on the assignment of these watershed class labels. These markers delineate the 

reliably classified regions of the image, each one receiving the corresponding class label.  

The second stage entails the construction of a region-based MSF, rooted from the above markers. This 

step now undertakes the task of defining the final label assignments to the unmarked objects. Accordingly, 

markers start growing iteratively by absorbing at each time the most similar neighbor, according to a 
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similarity criterion. This process continues until the entire image is covered. Upon completion of the 

expansion, the class of each marker is assigned to all watersheds grown from this marker.  

5. Experimental Results 

The proposed methodology is tested on the land cover classification of two agricultural areas (the 

Indiana and Koronia datasets), and an urban area (the Pavia image). The images are acquired by different 

sensors, with varying spatial resolution and number of bands. Because of the stochastic nature of 

GeneSIS, we performed 30 independent runs (segmentations) with different initializations, to obtain a 

robust assessment of our methodology. Table 1 shows the GeneSIS parameters commonly used in all 

experiments. The remaining parameters are defined below for each dataset individually. GeneSIS was 

coded in C++ and all experiments were conducted on an Intel Core i5-4670 at 3.4 GHz. 

Table 1. Parameters used in GeneSIS.  

Parameter Value 

Number of polygon nodes (n) 16 

Maximum allowed radius (Rmax)  50 

Image coverage for termination of GeneSIS (%) 90 

Maximum number of generations (Nmax) 1000 

Number of generations allowed without change (ng) 80 

Population size (Np) 20 

Tournament size 2 

Crossover parameter α 0.5 

Crossover probability (pc) 0.8 

Mutation probability (pm) 0.05 

Smoothing factor λacc 0.1 

In the comparative analysis, we consider the pixel-based SVM classification and the results given by 

the initial segmentation map 𝒞, after CC labeling of labeled watersheds (Section 2.4). We also consider 

the results from SVM classification after spatial postregularization (PR) to reduce the noise. The SVM 

map is filtered using an 8-neighborohood pixel mask and majority voting. Particularly, if more than five 

pixel neighbors have a class label different from the one of the considered pixel, then the pixel is 

reclassified to this label. The filtering is repeatedly applied until stability is reached. In addition, we test 

the results produced by other recently proposed segmentation-based methods from remote sensing. 

Specifically, we examine the CaHO[30], HSwC[31], and marker-based M-HSEGop [26] methods. All 

these algorithms are extensions of HSEG [6], automatically providing a unique segmentation map from 

the hierarchy of multi-scale maps generated by HSEG. We choose 𝑆𝑤𝑔ℎ𝑡 = 0 in order to avoid the 

merging of non-adjacent regions. In that case, HSEG is equivalent to the HSWO algorithm [4]. Finally, we 

consider the marker-based MSF [28], which operates on a set of labeled markers. For fair comparison, in all 

algorithms we used the same supervised SVM map obtained from a dataset of training instances. The markers 

set utilized in MSF and M-HSEGop is the same as that employed in [20]. The dissimilarity criteria SAM, L1 

used by the different methods for region merging are described in the aforementioned original works. 
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5.1. Indiana Image 

The Indiana image is a vegetation area acquired by AVIRIS sensor over the Indian Pines site, Northern 

Indiana. The image has spatial dimensions of 145 × 145 pixels, a spectral range of 220 channels, and a 

spatial resolution of 20 m/pixel. Twenty water absorption bands have been removed [32], and the 

remaining 200 bands were used in the experiments. A three-band false-color composite and the reference 

sites are shown in Figure 8a,b, respectively. The 16 classes of interest existing in this image (mostly 

different types of crop) are described in Table 3. The training set is randomly selected from reference 

data, including 15 samples from the three smaller classes (alfalfa, grass/pasture-mowed, and oats), and 

50 samples for the remaining classes. The remaining reference data comprised the test set.  

Initially, watershed segmentation is performed as described in Section 2.1. The resulting map is shown 

in Figure 8c, where each watershed is represented by its mean spectral value on an arbitrarily chosen band 

(Band 120). As expected, the image is highly oversegmented, containing small, well-shaped, and compact 

watershed regions. This fine segmentation result forms the initial map of structural elements used as the 

basis for the GeneSIS operation. After the assignment of the watershed pixels to their neighboring 

objects, a segmentation map with 1109 initial watersheds is created. 

Pixel-based classification is next performed by fuzzy output SVM using the entire space of 200 

spectral bands. The RBF kernel was considered, while the optimal parameters were chosen by 5-fold 

cross validation: 𝐶 = 512 and 𝛾 = 2−9. After hardening of fuzzy degrees, we obtain the supervised 

classification map shown in Figure 8d. As can be seen, the majority of the fields are correctly classified. 

Nevertheless, there exists a strong confusion between the spectrally similar corn and soybean types, 

which produces many misclassifications within certain fields of the corresponding classes. Apparently, 

the absence of contextual information leads to a highly fragmented SVM map. 

Next, we compute the membership degrees of watershed objects via decision fusion by fuzzy integral. 

After CC labeling we obtain map 𝒞, shown in Figure 8e. As can be seen, although the salt and pepper 

effect is considerably reduced, adequate misclassifications between the spectrally mixed classes still 

remain. In the marker selection stage, we set Ω𝑚𝑖𝑛
𝐶 = 20 as the size of structures to be marked, in order 

to enable GeneSIS to recognize the smallest reference field (oats). The global threshold of fuzziness 

Δ𝜇𝑡ℎ is set to a low value, specifically Δ𝜇𝑡ℎ = 0.2, due to the aforementioned spectral mixings. As a 

result, 714 watersheds are selected for marking.  

In the following, we proceed to image segmentation by GeneSIS. A typical segmentation map 

obtained by GeneSIS is displayed in Figure 8f. We can notice that the extracted segments cover mostly 

the large and homogeneous areas of the image, achieving also a good match with the respective reference 

fields. It is also remarkable that GeneSIS is now able to cover a whole reference field with a single 

extraction, without splitting it in more segments. In addition, it should be stressed that the extracted 

objects appear with varying shapes and irregular boundaries. Particularly, their shapes are delineated 

from the boundaries of watershed objects included in the BSFs, while the polygonal representation of 

the chromosome facilitates the extraction of non-convex objects. These are some major differences to 

the pixel-based version of GeneSIS, where the delineated boundaries and the shape of the objects were 

strongly constrained by the rectangular shape of the BSF. Finally, an interesting property of the GeneSIS 

approach is that it is a marker-driven but scale-free segmentation algorithm. Specifically, for each local 

region, OEA automatically achieves the best compromise between coverage and consistency, according 
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to its size and homogeneity, i.e., it adapts the segment to be extracted to the existing local scale. Hence, 

GeneSIS does not necessitate the prior determination of a scale parameter to control the segmentation 

results, contrary to other segmentation methods.  

  
 

(a) (b)   

    

(c) (d) (e) (f) 

    

(g) (h) (i) (j) 

Figure 8. Indiana image: (a) three-band false color composite, (b) reference sites, (c) watershed 

segmentation map, (d) classification map by SVM, (e) initial segmentation via CC labeling,  

(f) segmentation map after GeneSIS (black areas denote the yet uncovered small regions of the 

image), (g) final classification map, (h) total agreement map after 30 runs, (i) classification map 

after FMV-fusion, and (j) classification map after MSF-based fusion. 

As a last step, the remaining components are merged to the previously extracted objects via region 

growing, thus obtaining the final map in Figure 8g. This map is clearly more homogeneous compared to the 

initial map of CCs (Figure 8e), since many of the previous misclassifications have been resolved. This can 

also be deduced by considering the number of connected components in the two maps. GeneSIS generated 

on average 70 CCs, considerably fewer than the 217 components appearing in the initial map of Figure 8e. 

The maps resulting after the fusion of the 30 independent segmentations, using the proposed FMV 

and the MSF-based fusion methods, are depicted in Figure 8i,j, respectively. Further, Figure 8h shows 

the set of objects (colored areas) that are assigned to the same class by all segmentations, which are used 
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as markers for the MSF-based fusion method. As can be noticed, these objects cover a large portion of 

the image, comprising mainly the large and homogeneous regions. Hence, the fusion methods operate 

mostly on the mixed and uncertain parts of the image (white areas in Figure 8h). 

In Table 2 we compare the two GeneSIS-based approaches, i.e., the previous pixel-based GeneSIS [20] 

and the currently proposed region-based approach, in terms of overall accuracy (OA) and execution time. 

The new scheme attains better maximum and average overall accuracy, while at the same time indicating 

enhanced robustness, by reducing the variance of the produced accuracies. However, the main impact of 

the region-based representation is reflected in the execution time, since the new scheme is 62% faster 

than the previous one. Particularly, pixel-based GeneSIS requires 15.52 s while the region-based one 

needs 5.87 s, on average. 

Table 2. Average OA, standard deviation of OA, maximum OA, and execution time for the 

two GeneSIS versions in Indiana Image. 

 Average 
Standard 

Deviation 
Max Time (s) 

Pixel-based GeneSIS 93.61 0.39 94.51 15.2 

Region-based GeneSIS 94.30 0.34 95.03 5.87 

Table 3 hosts the classification results given by the fusion methods and the competing segmentation 

algorithms of the literature for the Indiana image. The results are evaluated by means of overall accuracy 

(OA), average accuracy (AA), kappa coefficient k, and class-specific accuracies. In regard to the above 

results, the following comments are in order. (1) First, the pixel-wise SVM classification offers by far 

the worst accuracy compared to the other segmentation-based classification approaches. This finding 

justifies the need to formulate meaningful objects to be classified, instead of handling single pixels.  

(2) Both pixel-based and especially the new region-based GeneSIS outperform the accuracy of the initial 

segmentation map 𝒞 by 2%–3%. This improvement implies that GeneSIS further homogenizes the input 

map 𝒞  by creating a smaller number of segments. On the other hand, it correctly assigns the ambiguous 

areas of the image, which leads to higher classification accuracies. (3) Both fusion methods achieve 

better results than an average GeneSIS run, since their OAs are higher than the average OA obtained 

from the ensemble of segmentations. Especially, the MSF-based fusion method performs slightly higher 

than the best accuracy attained from the ensemble of 30 segmentations by GeneSIS. This indicates that, 

through fusion, a significant number of the disagreements existing between the different segmentations 

is effectively resolved. (4) The spatial PR considerably improves the accuracy of the pixel-based SVM 

classification. However, both region-based GeneSIS and the two fusion schemes significantly 

outperform the filtered SVM results by over 5%. This is due to the fact that filtering refines the image 

components locally, while GeneSIS evaluates much larger areas to formulate the optimal segments.  

(5) Compared to the other segmentation algorithms, we observe that GeneSIS achieves higher classification 

performance even in terms of average OA. Moreover, using the MSF-based fusion, GeneSIS offers the 

highest AA, which shows its ability to sufficiently handle all the classes without underestimating any of them. 
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Table 3. Classification accuracies for the Indiana Image. 

 
SVM 

FMV-

Fusion 

MSF-Fusion SVM + 

PR 

Initial 

Map C 

CaHO HSwC M-HSEG°p MSF 

DC SAM SAM SAM SAM L1 

OA 76.22 94.51 95.08 89.99 91.71 93.48 92.56 93.18 93.27 

AA 84.03 94.20 96.52 93.81 92.96 96.05 95.71 89.24 89.20 

k 73.09 93.73 94.36 88.59 90.54 92.55 91.49 92.17 92.28 

Alfalfa 87.18 92.31 92.31 100 92.31 89.74 89.74 89.74 89.74 

Corn-notill 72.62 95.09 96.17 88.95 93.28 93.21 88.95 93.64 92.85 

Corn-min 67.35 88.14 83.93 80.23 81.76 85.08 85.59 88.90 90.18 

Corn 76.09 97.28 97.83 98.91 97.28 100 100 100 100 

Grass/Pasture 92.39 96.20 96.20 95.30 96.20 96.42 96.20 96.20 94.18 

Grass/Trees 95.41 99 97.99 99.43 98.71 99 99.14 96.84 100 

Grass/ 

pasture-mowed 
100 100 100 100 100 100 100 100 100 

Hay-windrowed 97.04 99.77 99.77 98.86 99.77 99.77 99.77 99.77 99.77 

Oats 80 60 100 80 60 100 100 0 0 

Soybeans-notill 77.12 99.24 95.10 93.03 96.41 98.80 99.02 82.03 82.24 

Soybeans-min 58.35 88.30 93.05 80.73 82.13 90.28 88.75 94.38 94.25 

Soybean-clean 84.40 97.16 97.16 95.39 96.81 95.21 95.74 96.28 96.45 

Wheat 99.38 99.38 99.38 99.38 99.38 100 99.38 99.38 100 

Woods 88.91 97.91 97.91 95.66 96.78 90.84 90.84 91 91 

Bldg-Grass-

Tree-Drives 
72.73 99.70 99.70 95.15 98.79 98.48 98.18 99.70 98.79 

Stone-steel 

towers 
95.56 97.78 97.78 100 97.78 100 100 100 97.78 

5.2. Koronia Image 

Koronia image is an IKONOS bundle image acquired over a cultivated area around Lake Koronia, 

northern Greece. The image has four spectral channels (three visible and one near-infrared) with a spatial 

resolution of 4 m/pixel. Our experiments were conducted on a sub-image of 1000 × 1000  pixels, 

extracted from the agricultural zone nearby the lake. Five classes of interest were identified: alfalfa, 

cereals, maize, orchards, and urban areas, with the first three being the major ones. The reference sites 

are collected after extensive field survey and photo-interpretation by the experts, in combination with 

high-resolution orthophotos. The training set was selected randomly from the reference data and 

comprises 300 samples for the first three classes and 150 for the remaining two. The rest of the reference 

data comprised the test set, as detailed in Table 5.  

Pixel-wise SVM classification in this image is performed using an advanced space of 53 features 

overall, including the original four bands of the image, transformed spectral features (TSF), and textural 

features. Particularly, we consider the intensity (I) and hue (H) from the HIS color space, and the three 

data structures from Tasseled Cap transformation, suitable for vegetation representation. Furthermore, 

we examine 16 features from Gray-Level Co-occurrence Matrix (GLCM) and 28 wavelet features. 

Textural features are computed from fixed local windows around pixels of appropriate size. A detailed 

discussion on the derivation of the above features can be found in [33].  
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Figure 9. Koronia image: (a) three-band false color composite, (b) reference sites,  

(c) watershed segmentation map, (d) initial segmentation map after CC labeling,  

(e) segmentation map after GeneSIS (black areas denote the yet uncovered regions of the 

image), and (f) classification map after FMV-fusion. 

For clarity in presentation, the obtained results will be depicted on a portion of 450 × 450 pixels of 

the whole study area. The three-band false color image and the reference data of this portion are shown 

in Figure 9a,b, respectively. The initially oversegmented map is shown in Figure 9c, where the watershed 

objects are depicted on Band 4. After the assignment of watershed pixels to their neighboring objects, 

the set of the initial structural elements comprises 43,565 watersheds. For the pixel-wise SVM 

classification, the optimal parameters C and γ were chosen through five-fold cross validation: 𝐶 = 512 

and 𝛾 = 2−11. After derivation of the watershed fuzzy degrees, we obtain the map shown in Figure 9d. 

The visual assessment of the map shows that the majority of fields are correctly classified. However, 

within some large physical structures, i.e., crop fields, there exist small patches being classified 

erroneously. For instance, some components within certain maize fields are wrongly assigned to the 

alfalfa class. By observing the size of the fields existing in the study area, the marking threshold is set 

to Ω𝑚𝑖𝑛
𝐶 = 100. In this case, the global threshold of fuzziness Δ𝜇𝑡ℎ is set to a higher value compared to 

the Indiana image, specificallyΔ𝜇𝑡ℎ = 0.6, since the classification results are more precise here. As a 

result, 21,945 watersheds are selected for marking. 

A typical segmentation after GeneSIS is shown in Figure 9e. The extracted objects follow the size 

and orientation of ground truth structures, especially avoiding oversegmentation of large ground 

Alfalfa Cereals Maize Orchards Urban
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components. GeneSIS generated on average 475.5 CCs, considerably smaller than the 4178 connected 

components existing in the initial map 𝒞, shown in Figure 9d. Finally, the obtained map after FMV-fusion 

is depicted in Figure 9f. 

In Table 4, we present the comparative results of the two GeneSIS variants. Similar conclusions to 

the Indiana image can also be drawn for this case study. For the region-based GeneSIS, we notice a small 

increase in average and maximum OA, while the standard deviation of the results is slightly decreased. 

As in the previous image, the critical asset of the region-based representation lies in the substantial 

reduction of the average execution time, in this case by a percentage of 57%. Table 5 summarizes the 

results from GeneSIS after fusion and the comparative methods. It can be seen that the proposed 

segmentation fusion methods exhibit similar or higher OA than the best one in the ensemble of 

segmentations. Both fusion methods outperform the competing methods in terms of OA and AA in the 

majority of the different classes. Finally, the three GeneSIS-based methods improve the results of the 

initial segmentation map 𝒞 and the filtered SVM+PR results by a percentage of 2%. 

Table 4. Average OA, standard deviation of OA, maximum OA, and execution time for the 

two GeneSIS versions in Koronia Image. 

 Average Standard Deviation Max Time (m) 

Pixel-based GeneSIS 82.93 0.19 83.26 17.07 

Region-based GeneSIS 83.53 0.12 83.74 7.40 

Table 5. Classification accuracies for the Koronia image. 

- 
SVM 

FMV-

Fusion 

MSF-Fusion SVM + 

PR 

Initial 

Map C 

CaHO HSwC M-HSEG°p MSF 

DC L1 SAM SAM SAM L1 

OA 77.37 83.87 83.59 81.48 81.28 82.30 82.49 80.52 81.44 

AA 78.94 85.84 85.93 83.75 83.05 82.71 81.57 84.00 78.54 

k 64.19 73.71 73.21 70.29 69.83 71.31 71.36 68.43 69.78 

Alfalfa 64.78 70.01 69.40 69.49 67.18 68.58 66.09 63.95 66.47 

Cereals 81.17 85.43 85.12 83.77 83.78 85.07 85.88 84.78 83.40 

Maize 81.94 89.82 89.69 86.25 87.09 88.00 89.38 86.76 87.96 

Orchards 80.61 93.40 94.42 88.24 92.14 93.40 91.82 92.93 65.09 

Urban 86.19 90.53 91 90.99 85.03 78.47 74.69 91.58 89.80 

5.3. University of Pavia Image 

The University of Pavia image is a hyperspectral image acquired by the ROSIS-03 sensor over the 

University of Pavia, northern Italy. The spatial dimension of the image is 610 × 340 and its spatial 

resolution is 1.3 m/pixel. The full spectral range of the initially recorded image contains 115 bands 

(ranging from 0.43 to 0.86 μm). The 12 most noisy channels were removed and the remaining 103 

spectral bands were used in our experiments. The comparison of the two GeneSIS approaches are shown 

in Table 6. The nine classes of interest existing in the terrain are detailed in Table 7. For the exact number 

of training and test samples per class, the reader can refer to [20]. A three band true color composite and 

the reference sites are shown in Figure 10a,b, respectively.  
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Figure 10. University of Pavia image: (a) three-band false color composite, (b) reference 

sites, (c) watershed segmentation map, (d) initial segmentation map after CC labeling,  

(e) segmentation map after GeneSIS, and (f) classification map after FMV-fusion. 

Table 6. Average OA, standard deviation of OA, maximum OA, and execution time for the 

two GeneSIS versions in University of Pavia Image. 

 Average Standard Deviation Max Time (m)  

Pixel-based GeneSIS 88.41 0.22 88.96 3.92 

Region-based GeneSIS 89.86 0.65 90.95 1.07 
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Table 7. Classification accuracies for the University of Pavia image. 

 
SVM 

FMV-

Fusion 

MSF-Fusion SVM + 

PR 

Initial 

Map C 

CaHO HSwC M-HSEG°p MSF 

DC SAM SAM SAM SAM SAM 

OA 81 90.49 89.56 87.19 86.55 88.45 87.51 89.96 88.48 

AA 88.15 94.95 95.01 92.73 93.41 94.45 93.21 95.39 93.30 

k 75.74 87.59 86.43 83.46 82.70 85.07 83.87 86.97 85.11 

Asphalt 76.51 94.91 93.78 89.58 90.40 93.51 90.75 97.73 97.26 

Meadows 73.59 83.42 81.53 79.03 76.91 79.22 78.81 80.80 78.76 

Gravel 71.35 85.51 89.20 75.37 81.10 86.39 85.40 92.29 89.48 

Trees 98.70 96.46 96.09 99.52 98.21 98.73 98.52 96.91 95.54 

Metal sheets 99.01 99.91 99.91 100 99.46 99.82 99.82 99.91 99.91 

Bare soil 91.80 98.88 98.47 98.08 97.22 98.21 97.05 97.88 97.73 

Bitumen 91.54 99.59 100 94.90 98.78 97.35 98.17 98.88 99.18 

Bricks 91.14 99.26 99.11 98.19 98.72 99.20 98.81 99.79 99.85 

Shadows 99.75 96.60 96.98 99.87 99.87 97.61 91.57 94.34 82.01 

The initially obtained watershed segmentation map is depicted upon Band 80 in Figure 10c. After the 

assignment of watershed pixels to their neighboring objects, the set of the initial structural elements 

comprises 9152 watersheds. The optimal parameters C and γ of the pixel-based SVM classification were 

chosen through five-fold cross validation: 𝐶 = 8 and 𝛾 = 2−5. The obtained SVM map is next combined 

with the watershed segmentation via the fuzzy integral approach, and the initial map 𝒞 is obtained, as 

shown in Figure 10d. As can be seen, most of the class areas are correctly classified, except mainly from 

the large meadows region in the lower part of the image, which is confused with the trees and bare soil. 

This can be interpreted by observing Figure 10a, where it can easily be seen that this region is spectrally 

heterogeneous although it belongs to the same class. In order for GeneSIS to be able to recognize some 

small components of trees and shadows, the marking threshold parameter was set here to Ω𝑚𝑖𝑛
𝐶 = 20. 

The global threshold of fuzziness Δ𝜇𝑡ℎ  is set to a medium valueΔ𝜇𝑡ℎ = 0.4, since the classification 

results are of moderate precision compared to the previous two paradigms. As a result, 4735 watersheds 

are selected for marking. Finally, in Figure 10e,f, we can see a typical segmentation after GeneSIS and 

the final map obtained after FMV fusion, respectively. Although most of the extracted segments follow 

the orientation and shape of the ground truth objects, there are still some misclassifications at the lower 

part of the image. This can be attributed to the erroneous marking of some initial objects, which were 

initially misclassified by the SVM. 

The comparison of the two GeneSIS approaches, through Table 6, leads to conclusions similar to 

those in the previous case studies. The region-based GeneSIS exhibits higher average and maximum 

accuracies of about 1.5%–2%, although the standard deviation of the results is increased. The most 

obvious effect of the region-based representation lies again in the execution time, which is on average 

decreased by a percentage of 73%. Table 7 summarizes the results from GeneSIS after fusion and the 

comparative methods. It can be seen that the GeneSIS-based methods clearly outperform both the initial 

segmentation map 𝒞 and the SVM+PR results. Noticeably, this latter method achieves high AAs for the 

small classes, while on the other hand it is unable to correctly classify the larger ones. Finally, the  

FMV-fusion method performs better than the competing methods in terms of OA and k, with the 

exception of M-HSEGop, which is superior in terms of AA. 
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6. Discussions  

The purpose of the region-based GeneSIS and the two decision fusion schemes presented in this paper 

is to improve the performance qualities of the previously developed pixel-based GeneSIS. The striking 

difference between the different algorithms lies in the decisions made on two critical issues, namely, the 

selection of the structural element in combination with the shape of the BSFs used by OEA. In our 

original proposal, we considered single pixels as the structural elements, while BSFs were represented 

by rectangles of varying size and orientation. As a consequence of these settings, the pixel-based 

GeneSIS suffers from increased computational cost and, potentially, rough description of the ambiguous 

areas of the image. The increased execution time is attributed to the fact that each pixel is repeatedly 

used for the evaluation of the fuzzy content of BSFs, i.e., the computation of the cover, the consistency, 

and smoothness fitness components. Hence, in view of the global search strategy followed by OEA, for 

larger image sizes the computational burden is considerably aggravated. Furthermore, the active areas 

are considered as connected components of pixels appearing within a BSF, and therefore the segments 

extracted by OEA are close to the rectangular shape of the BSFs. As a result, for lower values of the 

smoothness controlling parameter 𝜆𝑎𝑐𝑐 , the segments covering the boundary regions between the 

different classes occasionally appear with irregular shapes, especially for more complicated landscapes. 

In the newly developed schemes, we provide a different design for the handling of the critical issues. On 

the one hand, the watershed objects generated by a fine segmentation of the initial map are regarded as 

the structural elements in the new framework, while on the other hand we incorporate a more 

constructive representation of the BSFs in the form of polygonal shapes. The above settings enhance the 

performance of the resulting algorithms, as summarized in the following. 

6.1. Computational Cost Reduction 

The initial map, which serves as the basis for the GeneSIS operation, comprises a reduced number of 

watershed structural units, each one carrying out their own fuzzy degrees for the various classes. For 

instance, the initial map of Koronia Image contains 43,565 watersheds, much smaller compared to the 

106 pixels of the original image. This results in a substantial saving of computational cost, reducing the 

execution times spent by the region-based GeneSIS by 56%–73% compared to the pixel-based variant 

for the images considered in our experiments. The required segmentation time may be of less attention 

for smaller images, but it is of particular importance when dealing with large size images. Generally, the 

execution time spent by region-based GeneSIS depends on the number of watersheds generated in the 

initial map, which in turn is related to the image size and content. Particularly, the Indiana image is a small 

image with 1109 watersheds requiring 5.87 s on average, while the Koronia image with 43,565 watersheds 

needs a much larger time of 7.40 m for the segmentation task.  

6.2. Classification Accuracy 

While accomplishing considerable algorithmic cost savings, the region-based GeneSIS achieves also 

better classification accuracies compared to the pixel-based algorithm. Specifically, it improves both the 

average OA and the best OA attained from an ensemble of different segmentations, by a factor of 

approximately 1%, for all images elaborated. In addition, the new algorithm is proved to be more robust, 
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since it reduces to some extent the standard deviation of OAs with the exception of Pavia Image. It 

should be noticed that GeneSIS is an evolutionary segmentation algorithm, producing different 

segmentation results for different population initializations. The measures cited in Tables 2, 4, 6 show 

that a sample map obtained by a single GeneSIS trial statistically achieves the average OAs, while all 

trials appear with small deviations around these values.  

In order to alleviate the stochastic effect of GeneSIS, we also introduce in this paper two segmentation 

fusion schemes (Section 4), both operating on the watershed basis. In the former configuration, an 

ensemble of different segmentations is aggregated through a fuzzy majority voting rule, while in the 

latter the segmentation ensemble is combined to create a map of reliable region markers, which is 

subsequently used by MSF to complete the final classification map. Given a segmentation ensemble by 

GeneSIS, the above fusion schemes provide a single classification map. The results in Tables 3, 5 and 7 

reveal that the fusion methods produce similar or higher classification accuracies compared to the best 

accuracies attained by GeneSIS in the segmentation ensemble.  

The results offered by our methods are favorably compared with the ones given by the initial map 𝒞  

after CC labeling of watersheds. Specifically, the aforementioned Tables indicate that both GeneSIS and 

the fusion approaches outperform the accuracies of the initial maps by 2%–4%. This implies that 

GeneSIS reduces considerably the oversegmentation effect appearing in 𝒞, thus generating larger and 

more homogenous segments. Finally, our methods outperform the pixel-based SVM classifications, 

without or after applying spatial filtering. According to the spatial mask being used, filtering 

homogenizes the objects locally, reassigning the erroneously classified pixels in the maps. Using 

filtering with 8-neighborhood of pixels actually produces similar results to the ones given by the initial 

map 𝒞. As expected, the improvement over the SVM classifications alone is prominent, an observation 

advocating the usage of object-based classification. Nevertheless, the proposed approaches also 

outperform the filtered maps by 2%–5% for the different images examined. This is attributed to the fact 

that, contrary to the limited observation scale of filtering, GeneSIS evaluates broader areas of the image, 

namely, all watershed objects contained in the BSFs, and thus is able to formulate more compact 

segments fitting to the ground truth structures.  

Table 8. Summary of pair-wise classification comparisons using the McNemar test. Our 

region-based GeneSIS and the two fusion schemes (rows) are compared to the pixel-based 

GeneSIS and six other methods (columns). One-sided tests are performed with 5% level  

of significance.  

- Methods 
Pixel-Based 

GeneSIS 

SVM + 

PR 

Initial 

Map C 
CaHO HSwC M-HSEG°p MSF 

Indiana 

Region-based GeneSIS 2.24 17.46 16.10 6.48 9.57 6.86 6.61 

FMV-fusion 0.00 15.44 13.91 4.34 7.39 5.06 4.78 

MSF-fusion 2.58 17.04 13.76 6.89 9.85 7.77 7.41 

Koronia 

Region-based GeneSIS 27.03 69.25 88.89 49.54 42.77 86.27 64.41 

FMV-fusion 30.98 73.89 98.92 32.67 46.95 90.63 68.31 

MSF-fusion 22.63 63.03 74.45 24.61 41.51 85.37 62.70 

Pavia 

Region-based GeneSIS 15.61 26.59 32.37 18.58 24.86 7.86 17.91 

FMV-fusion 12.53 24.38 31.74 16.11 22.67 4.56 15.39 

MSF-fusion 4.96 17.84 23.01 8.66 15.63 −3.40 8.61 
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Finally, Table 8 summarizes the statistical significance of the results reported in Section 5. For this 

purpose, we use the directional (one sided) McNemar test with 5% level of significance. The table hosts 

the values of the z statistic, comparing in a pair-wise basis the three suggested methods against all 

competing algorithms. It can be seen that for all datasets and for all comparisons, the statistic takes much 

larger values compared to the critical value 𝑧 > 𝑧0.05 = 1.65, which verifies the superiority of our 

approaches. An exception appears for the Pavia Image, where M-HSEG method dominates the  

MSF-based fusion scheme.  

6.3. Classification Map Quality 

The properties of the segmentation/classification maps resulting from the new methods emanate from 

the following four factors. First, the preliminary watershed segmentation into small and well-shaped 

objects eliminates the corrupting noise usually pertaining to pixel-wise representations. Watersheds 

retain their own boundaries along with their fuzzy degrees assigned to them by Fuzzy integral 

aggregation (Section 2.3). Secondly, the polygonal representation of chromosomes allows the BSFs to 

take a great variety of flexible forms with different locations, scales, and shapes. Third, our choice to 

define a watershed as containing a BSF as soon as its geometric centroid falls within the area delineated 

by the BSF provides additional flexibility to the OEA since it decouples the polygon shape (genotype) 

from the shape of the actual solution of the chromosome (phenotype). The shapes of the extracted objects 

are now defined by the borders of the watersheds contained in a BSF, and hence, they do not necessarily 

comply with the BSF shape. The synergetic effect of the above tools renders region-based GeneSIS 

capable of generating arbitrary shaped and homogeneous segments with a good fit to the reference sites. 

This is demonstrated, for instance, by comparing the map created by GeneSIS (Figure 8g) to the 

reference map (Figure 8b) for the Indiana Image. The soybean no-till and soybean min-till segments in 

the middle of the image are, among others, indicative cases showing the creation of large and smooth 

segments of varying shapes and good matching. Notice that the creation of large segments covering the 

whole reference field by one OEA extraction is due to the effect of the fourth contributing factor, namely 

the incorporation of the tuning operator (Section 3.5), which adjusts the elite solutions by merging 

adjacent watersheds of the same class. Finally, observing the map of Figure 8j, it can be seen that the 

already good results attained by GeneSIS are improved when using the best performing MSF-based 

fusion scheme, further improving the degree of matching. Similar conclusions can also be drawn for the 

rest of the images examined. Generally, the level of accuracy is closely reflected in the quality of the 

resulting classification maps. 

6.4. Parametric Robustness 

The parameter set used by GeneSIS can be distinguished into four groups. The first group includes 

the GA parameters (𝑁𝑚𝑎𝑥, 𝑛𝑔, 𝑁𝑝, 𝑎, 𝑝𝑐 , 𝑝𝑚) used to control the population evolution for each invocation 

of OEA. The second group includes the parameters involved in the chromosome encoding, namely, the 

number of polygon nodes (n) and the max allowable radius (𝑅𝑚𝑎𝑥 ). The third group contains the 

parameter 𝜆𝑎𝑐𝑐 used in the calculation of the smoothness component 𝑓𝑆𝑀𝑂. Finally, the fourth group 

includes parameters Ω𝑚𝑖𝑛
𝐶  and Δ𝜇𝑡ℎ  pertaining to the marker selection module. The majority of 
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parameters receive common values for all test cases considered (Table 1), with the exception of Ω𝑚𝑖𝑛
𝐶  

and Δ𝜇𝑡ℎ, which are adapted to each image individually. 

The parameters of the first group take typical values from GA literature, taking into consideration the 

search requirements of the optimization task undertaken by OEA. Preliminary experimentation with 

different settings shows that they have negligible impact on the results. In the following we examine the 

influence of n and 𝑅𝑚𝑎𝑥 in the second group. Specifically, Table 9 shows the results for different values 

of polygon nodes, considering the smaller Indiana image and the larger Koronia image. For the 

evaluation of different choices, we also incorporate the corresponding average execution times required 

by GeneSIS. It can be seen that all accuracy measures remain practically intact for different number of 

nodes and for both images. Nevertheless, increasing n has a reasonably adverse effect on the 

computational cost. Specifically, larger values of nodes require considerably higher execution times, this 

being more prominent for the Koronia image. The proposed rule is that n should take a suitable value 

according to the image demands, compromising between the search flexibility and the computational 

resource savings. On the one hand, n should be adequately high so that OEA is able to locate irregularly 

shaped components in the terrain, thus providing acceptable classification accuracies. On the other hand, 

for larger image sizes, n should take a relatively moderate value when the segmentation times are an issue. 

Table 9. Classification accuracies and execution times obtained by region-based GeneSIS for 

varying values of the number of polygon nodes. The experiments refer to the Indiana and 

Koronia images. The results corresponding to the selected parameter values are shown in bold. 

- Indiana Koronia 

Polygon Nodes (n) 8 16 24 32 8 16 24 32 

OAavg 93.88 94.30 94.95 94.82 83.31 83.53 83.55 83.65 

OAbest 94.62 95.03 96.10 95.53 83.48 83.74 83.73 83.84 

AAavg 93.75 94.13 94.25 94.22 85.32 85.57 85.64 85.68 

AAbest 94.31 96.39 94.90 94.69 85.65 86.13 85.92 85.99 

Time 5.71 (s) 5.87 (s) 5.70 (s) 5.69(s) 4.62 (m) 7.40 (m) 9.45 (m) 11.05 (m) 

In Table 10, we can see the results for varying values of 𝑅𝑚𝑎𝑥 around the typical value (𝑅𝑚𝑎𝑥 = 50) 

selected in the experiments for the Indiana image. The results are evaluated in terms of OAs and AAs, 

considering both the average and the best records in the ensemble of 30 segmentations. In this way, we 

are able to assess the behavior of GeneSIS more robustly. The results show that 𝑅𝑚𝑎𝑥 has insignificant 

influence on all accuracy measures. Table 10 also shows the results for the parameter𝜆𝑎𝑐𝑐, which affects 

the smoothness of the extracted segments by evaluating the shape of their external borders. It can be 

noticed that different values of this parameter around the typical 𝜆𝑎𝑐𝑐 = 0.1 again have no significant 

influence on the obtained accuracies. Finally, the parameters of the fourth group are selected according 

to the image content. Ω𝑚𝑖𝑛
𝐶  is taken as the smallest reference components to be recognized, while Δ𝜇𝑡ℎ is 

set as the median of the map, comprising the differences of fuzzy degrees in the dominant and the most 

competing classes, respectively. Concluding, the previous analysis indicates that, with the exception of 

number of nodes, the proposed region-based GeneSIS is mostly insensitive to parameter settings.  
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Table 10. Classification accuracies by region-based GeneSIS for varying values of 𝑅𝑚𝑎𝑥 

and 𝜆𝑎𝑐𝑐 in the Indiana dataset. The results corresponding to the selected parameter values 

are shown in bold.  

  
𝜆𝑎𝑐𝑐 𝑅𝑚𝑎𝑥 

0.1 0.3 0.5 0.7 30 40 50 60 70 

OAavg 94.30 94.37 94.38 94.38 94.30 94.39 94.30 94.36 94.40 

OAbest 95.05 95.02 95.70 95.11 95.05 95.21 95.03 94.91 95.50 

AAavg 94.13 94.07 94.01 94.03 94.04 94.11 94.13 94.07 94.13 

AAbest 96.39 94.56 94.73 94.40 94.32 94.63 96.39 94.26 94.69 

7. Conclusions 

A novel version of the GeneSIS algorithm is presented in this paper, where the main segmentation is 

performed on an initial region-based map of the image acquired via watershed transform. The 

evolutionary part of GeneSIS is also enhanced by considering the more descriptive polygonal shape in 

the chromosomes’ encoding. As a final step, two fusion schemes are applied so as to overcome the 

stochasticity effect of our algorithm. The effectiveness of the proposed scheme is validated on the 

classification of three remote sensing images. Comparing to the pixel-based version, the execution time 

of region-based GeneSIS is considerably reduced in all test cases. At the same time, higher average 

accuracies are exhibited, indicating enhancement of the method’s robustness. Moreover, more arbitrarily 

shaped objects are obtained, since their shapes are now formed by the boundaries of the watershed 

objects included in the BSFs. The incorporation of the polygon in chromosomes’ representation also 

enables the extraction of more irregular and non-convex structures. Finally, both fusion methods attain 

accuracies similar to the best from the ensemble of different segmentations. 
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