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Abstract: This paper presents relative orientation and position detection methods for jumping 

sensor nodes (JSNs) recycling. The methods are based on motion captures of the JSNs by an 

RGB-D sensor mounted on a carrier robot and the dynamic cooperation between the carrier and 

the JSNs. A disc-like label with two different colored sides is mounted on the top of the JSNs. 

The RGB-D sensor can detect the motion of the label to calculate the orientations and positions 

of the JSNs and the carrier relative to each other. After the orientations and positions have been 

detected, the JSNs jump into a cabin mounted on the carrier in dynamic cooperation with the 

carrier for recycling. The performances of the proposed methods are tested with a prototype 

system. The results show that the carrier can detect a JSN from up to 2 m away and sense its 

relative orientation and position successfully. The errors of the JSN’s orientation and position 

detections relative to the carrier could be reduced to the values smaller than 1° and  

1 cm, respectively, by using the dynamic cooperation strategies. The proposed methods in this 

paper could also be used for other kinds of mobile sensor nodes and multi-robot systems.  

Keywords: wireless sensor network; jumping robot; relative localization; relative 

orientation detection; Kinect; motion capture; dynamic cooperation; sensor node recycling; 

multi-robot docking 
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1. Introduction 

Wireless sensor networks (WSNs) can provide quick construction and easy utilization for 

measurement systems. WSNs also reduce the operation and maintenance costs of the systems. Wireless 

sensor nodes have been integrated into various application systems such as home automation [1], bridge 

health monitoring [2], forest fire monitoring [3], marine monitoring [4], volcano monitoring [5], 

agriculture [6], military [7], and space exploration [8], which cannot be built easily and conveniently in 

wired or the application environments are dangerous and inaccessible. Most of the sensor nodes in the 

systems are static sensor nodes without motion capability. However, if some sensor nodes in the network 

are not deployed well or their energy is exhausted, the whole WSN could lose functionality or even fail.  

In order to optimize the performance of a WSN, mobile robots are added into the WSN as mobile sink or 

sensor nodes [9], which form the mobile wireless sensor network (MWSN). The MWSN has some 

advantages compared to the WSN. Mobile sensor nodes (MSNs) can adjust their positions locally to 

dynamically optimize the network topology. This could contribute to improved coverage and overall network 

lifetime, reduced power consumption, superior channel capacity and better target tracking [9–11]. The MSNs 

are also able to move to the locations of damaged or energy exhausted sensor nodes to repair, recharge, or 

replace them, which could repair the interrupted network caused by the failed sensor nodes [12,13].  

The mobile robots in a MWSN are usually small sized [14–17]. They are intended to be deployed and 

applied in outdoor environments. Small obstacles in these environments will limit the mobility of small-sized 

mobile robots which is the so called “scale effects” found in locomotion of animals and insects [18]. Hence, 

the traditional small wheeled robotic sensor nodes may not be used in outdoor uneven terrain such as 

areas with dense grass. Tall obstacles or deep ditches will also restrict the usage of small tracked and 

legged robotic sensor nodes. Miniature jumping robots inspired by creatures such as locusts [19], 

froghoppers [20], and fleas [21] can be adopted as MSNs, which could overcome obstacles several times 

taller or wider than their bodies. Sensor nodes with this locomotion capability can jump over obstacles or 

jump up onto the top of obstacles to improve signal quality and network connection of the MWSN [12]. 

The jumping sensor nodes (JSNs) are even able to improve network coverage when they perform 

airborne communications with each other [22].  

Because the energy of the MSNs is usually supplied by batteries, they cannot traverse a very long 

distance for self-deployment. The sensor nodes in WSN and MWSN are usually transported and 

deployed by humans or by airplanes [23]. However, human deployment is not feasible for environments 

that humans cannot access. The MSNs could be carried by large wheeled or tracked carrier robots [24] 

for long-range transportation and deployment. In addition, the energy exhausted or damaged sensor 

nodes may result in waste and environment pollution if they are discarded [25]. The carrier robots can 

recycle the sensor nodes for recharging, damage repair, and redeploying. Being able to find the MSNs 

during recycling is very important for the carrier. Furthermore, the successful docking between the 

MSNs and the carrier is also crucial for MSNs recycling.  

The difficulties during recycling include relative orientation and position detections between the 

MSNs and the carrier, and the docking method design. The compass can be used for the orientation 

detection [24]. However, this kind of magnetic sensor is easily influenced by the motors and other 

electronic components of the MSNs [26]. The magnetic field may also be sheltered or obstructed in some 

environments. Small bodies such as asteroids have only weak magnetic fields [27]. The relative 
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localization can be divided into long-distance localization and short-distance localization. For the  

long-distance localization, the GPS [28,29] and WSN [30–32] based localization methods could be 

utilized. However, these methods do not have high precision in short distance localization during MSNs 

recycling. Short-distance localization methods such as infrared [33], ultrasonic [34], RFID [35], and 

visual [36] based methods could be used to deal with this problem.  

The docking method design for MSNs recycling could adopt two main approaches. The first one is 

that the MSNs are grasped by the grasper of a manipulator mounted on the carrier [37]. The carrier needs 

a manipulator, which may be expensive. The other one is that the MSNs move into the recycling cabin 

of the carrier [38,39]. This method is simple and low cost, but needs dynamic cooperation between the 

MSNs and the carrier. Sensing and control between the two kinds of robots in some conditions are very 

tough things especially for JSNs [26]. The authors in [40–42] adopted visual detection methods based 

on static colored labels for wheeled robots docking. However, the static label is not suitable for the JSNs 

because they do not have the fine position adjustment capability like the wheeled robots.  

In this paper, we present JSNs recycling by a wheeled carrier robot, including short-distance 

orientation and position detection methods. The detection methods are based on an RGB-D sensor and 

dynamic cooperation strategies. The dynamic cooperation between the JSN and the carrier can improve 

orientation and position detection precisions and reduce the difficulties during docking. The rest of this 

paper is organized as follows. Section 2 introduces the components of the recycling system and its 

working procedure. Relative orientation and position detections based on the RGB-D sensor and 

dynamic cooperation strategies are investigated in Section 3. Prototype design and fabrication are 

described in Section 4. Experimental validations are conducted in Section 5. Conclusions and Future 

Work are given in Section 6.  

2. System Overview 

2.1. Components of the Recycling System 

The components of the proposed JSNs recycling system include a wheeled carrier and several 

miniature JSNs, as illustrated in Figure 1. The carrier and the JSNs form a mesh network in which the 

carrier is the coordinator and the JSNs are routers or end devices. The modeling, simulation, and system 

design of the JSN are presented in our previous work [43,44]. The JSN can jump about 1 m high and 

0.65 m far. The JSN also has continuous locomotion capability. In this paper, a disc-like label is added 

on the top of the JSN and is driven by a stepper motor to rotate around the vertical axis. The two sides 

of the surface of the label have different colors, which are easy to visually detect and distinguish.  

An RGB-D sensor Kinect from Microsoft (Redmond, WA, USA) is mounted at the head of the carrier 

with the same height as the label on the JSN. The Kinect can detect the orientation of the label relative 

to the carrier and the distance between the JSN and the carrier. The control processing unit processes the 

image frames and depth information from the Kinect to calculate the relative orientation and position. 

The cabin on the top of the carrier is used for recycling the JSN.  
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Figure 1. Components of the jumping sensor nodes recycling system.  

2.2. Assumptions and Working Procedure 

We assume that the carrier can detect the position and battery information of the JSNs periodically 

and save them in its database during long-distance localization. The carrier is able to move to a JSN for 

recycling it when its power is lower than a threshold, which is the most common problem that may 

happen to JSNs. The carrier can also navigate to a JSN using the latest position information of the JSN 

to replace it if it is damaged suddenly. Because we focus the short-distance relative orientation and 

position detections in this paper, we assume that the initial distance between the JSN and the carrier is 

within 2 m after the carrier moves to the JSN using long-distance localization and navigation methods.  

The working procedure of a JSN recycling is shown in Figure 2. The JSN recycling includes seven 

steps. Firstly, the carrier tries to find the JSN around it and decides the orientation of it relative to the 

JSN. Secondly, the carrier steers until it faces to the JSN, which means the heading of the carrier relative 

to the JSN is zero. Thirdly, the image frames from the Kinect will be processed by the carrier to calculate 

the orientation of the JSN relative to the carrier. Fourthly, the JSN steers to make itself face to the carrier. 

Fifthly, the carrier detects the distance between it and the JSN using depth sensor of the Kinect. Sixthly, 

the carrier adjusts the distance between it and the JSN to make sure that the JSN can jump into its cabin. 

Finally, the JSN jumps into the cabin.  

 

Figure 2. Working procedure of the jumping sensor node (JSN) recycling.  

3. Relative Orientation and Position Detection Methods 

The flow chart of the relative orientation and position detections is shown in Figure 3. The carrier 

steers and captures video images periodically using the Kinect. The images are processed using  

OpenCV (Open Source Computer Vision) to judge if the JSN is in the images. If the JSN is not in the 

images and its steering angle is smaller than 360°, the carrier will steer continuously. If the carrier steers 

more than 360° and still does not find the JSN, the JSN will steer a proper angle to help the carrier to 

find it. After finding that the JSN is in the field of view of the Kinect, the carrier calculates its orientation 
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(Ocj) relative to the JSN and judges if the JSN is in the center of the field of view. The carrier steers and 

calculates Ocj until the JSN is in the center of the field of view. Then the carrier stops steering and detects 

the orientation Ojc of the JSN relative to the carrier. The JSN steers if needed until it faces to the carrier. 

Next, the depth sensor is used to detect the distance between the carrier and the JSN. The carrier adjusts 

its location in order to make the cabin enter one jump range of the JSN. Finally, the JSN jumps into the 

cabin to finish the JSN recycling process.  

 

Figure 3. Flow chart of the relative orientations and position detections for JSN recycling.  

3.1. Orientation of Carrier Relative to JSN 

The color camera of the Kinect is used to record objects around the carrier. The pixel coordinate frame 

U-O-V (a) and image plane coordinate frame X-P-Y (b) are shown in Figure 4. The carrier tries to find the 

label on the JSN. In order to decide the orientation Ocj, we define the azimuth coefficient ζ as follows: 
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where u is the pixel coordinate of the center of the label in the horizontal direction, w is the total pixels 

of the image in the horizontal direction.  

 

Figure 4. Diagram showing the disc-like label in the coordinate frames: (a) the pixel 

coordinate frame U-O-V; (b) the image plane coordinate frame X-P-Y. 
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The diagram of the azimuth coefficient ζ and orientation Ocj calculations is shown in Figure 5. The 

orientation Ocj and pitch angle Pcj are as follows: 
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where d is the distance between the JSN and the carrier, which is detected by the Kinect. x and y are the 

coordinates of the center of the label in the image plane coordinate frame as follows: 
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(3) 

where v is the pixel coordinate of the center of the label in vertical direction; Rx and Ry are the resolutions 

of the images in U and V directions, respectively; and α and β are the angles of field of view of the Kinect 

in horizontal and vertical directions, respectively. ζ is used to decide the relative orientation roughly, 

while Ocj is adopted to determine the exact relative orientation. Before Ojc detecting, the carrier steers 

and calculates ζ and Ocj until ζ ≈ 0 and Ocj ≈ 0.  

 

Figure 5. Diagram showing calculations of the azimuth coefficient ζ and orientation Ocj of 

the carrier relative to the JSN.  

3.2. Orientation of JSN Relative to Carrier 

After the carrier has detected and adjusted its orientation, the JSN is in the center of the images of the 

Kinect. In order to decide the orientation Ojc of the JSN relative to the carrier, the two sides of the label 

are designed as red and green colors, respectively. In the beginning, the red side of the label faces to the 
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front of the JSN. There are eight conditions for the Ojc detection as illustrated in Figure 6. The algorithm 

for Ojc detection and adjustment is shown in Figure 7.  

The first step for orientation (Ojc) detecting is the color camera detects the horizontal pixels a, the 

vertical pixels b, and the color of the label which are the inputs of the algorithm. Then, the carrier judges 

the relationship between a and b, and the color to decide the conditions shown in Figure 6. If  

a ≈ b and the color is red, which is the condition shown in Figure 6a, the Ojc is 0° and the JSN does not 

need to adjust its orientation. If a ≈ b and the color is green, which is the condition illustrated in  

Figure 6b, the Ojc is 180° and the JSN needs to adjust its orientation 180° clockwise. If a ≈ 0, then the 

JSN controls its label to rotate 45° clockwise and the carrier judges the relationship between a and b, and 

the color of the label again. If a < b and the color is red, which is the condition shown in Figure 6c, the Ojc 

is −90°, and the JSN needs to steer 90° clockwise. If a < b and the color is green, which is the condition 

shown in Figure 6d, the Ojc is 90°, and the JSN has to steer 90° anticlockwise.  

 

Figure 6. Eight conditions of the orientation of the JSN relative to the carrier: (a) JSN faces to 

the front side of the carrier; (b) JSN backs onto the front side of the carrier; (c) JSN faces to right 

side of the carrier; (d) JSN faces to left side of the carrier; (e) JSN faces to the front-right side of 

the carrier; (f) JSN faces to the front-left side of the carrier; (g) JSN backs onto the front-right 

side of the carrier; (h) JSN backs onto the front-left side of the carrier. 

If 0 < a < b, and the color is red, the orientation is: 

arccos( / )jcO a b  (4) 
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then the label rotates 45° clockwise and the carrier judges the change trend of a in the initial stages. If a 

increases, it means that the JSN faces to the front-right side of the carrier, which is the condition shown 

in Figure 6e, and the JSN has to steer angle Ojc clockwise. While if a decreases, it means that the JSN 

faces to the front-left side of the carrier, which is the condition shown in Figure 6f, and the JSN needs 

to steer angle Ojc anticlockwise. If 0 < a < b, and the color is green, the orientation is:  

arccos( / )jcO a b   (5) 

Then the label rotates 45° clockwise and the carrier judges the change trend of a in the initial stages. If 

a increases, it implies that the JSN backs onto the front-right side of the carrier, which is the condition 

shown in Figure 6g, and the JSN has to steer angle Ojc anticlockwise. While if a decreases, it indicates 

that the JSN backs onto the front-left side of the carrier, which is the condition shown in Figure 6h, and 

the JSN should steer angle Ojc clockwise. After the JSN steers angle Ojc, the front side of the JSN faces 

to the front side of the carrier.  

 

Figure 7. Algorithm for orientation Ojc detection and adjustment of the JSN relative to the carrier. 

3.3. Position of JSN Relative to Carrier 

The position of the JSN relative to the carrier can be decided when the carrier and the JSN face each 

other, as illustrated in Figure 8. The depth sensor of the Kinect detects the distance d between it and the 

label. Then the position of the JSN relative to the carrier is obtained. The carrier can move forward or 
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backward to adjust the distance d in order to make the cabin be in the jumping range of the JSN. The 

JSN will jump into the cabin to realize the recycling.  

 

Figure 8. Diagram showing the relative distance detection.  

3.4. Dynamic Cooperation Strategies 

Because the orientations and position detections may be influenced by some environment conditions 

and limited by the capability of the Kinect sensor, the dynamic cooperation between the JSN and the 

carrier is studied to improve the detection precisions. The dynamic cooperation includes three strategies.  

The first is that we assume the visual based orientations detection and the depth sensor based distance 

detection do not have very high precisions when the distance between the JSN and the carrier is too 

large. To deal with this problem, we can obtain the highest detection precisions at proper distances 

through experimental studies. The carrier is able to sense the JSN at a far distance such as  

2 m with a low precision and then dynamically adjust their distance to enable the headings and distance 

detections have higher precisions, which are helpful for JSN recycling.  

The second one is that we assume there are objects having the similar colors and shapes with the label 

of the JSN in its surrounding. The carrier cannot distinguish the JSN from the objects correctly. The idea 

of dynamic cooperation to overcome this difficulty is that the label rotates to change its color and shape 

in the video images captured by the color camera. The differences between the images recorded before 

and after the rotation of the label can provide the clue for the carrier to find the JSN correctly. The size 

of the JSN is far smaller than the distances between the deployed JSNs. So, there is a small possibility 

that multiple JSNs are present in the field of view of the camera in the practical applications. In fact, we 

can also use the dynamic cooperation strategy to distinguish the JSN needed to be recycled from other 

JSNs if multiple JSNs are present in the field of view of the camera. The methodology is described as 

follows. The MAC addresses and node numbers of the JSNs are saved in the database of the carrier. The 

carrier broadcasts stop motion command to all the JSNs firstly. Then, the carrier sends label rotation 

command to the JSN needed to be recycled through its MAC address. After receiving the command and 

rotating its label, the JSN sends a reply message to the carrier. The carrier identifies the JSN from other 

JSNs by using the same method as from the objects resembling the colored label in the background of 

the JSN. If the labels of several JSNs overlap each other in the images, which almost the hardest 

condition for the carrier to identify, the carrier sends “dispersion” command to the JSNs to control them 

to jump one step. This could deal with the overlap problem.  

The third one is that the detection of Ojc has different precisions at different real orientations of the 

label. From Equation (4) we can obtain the detection error Eojc of Ojc in the range of (0°, 90°) when there 

is one pixel detection error of the label in the images: 

arccos( / ) arccos( / )ojc xE a b p b   (6) 
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where 1 ≤ px < (b − 1) is the real horizontal pixel of the label in the images, a = px + 1 or a = px − 1. 

Because a and px decrease with the increase of Ojc, as illustrated in Figure 6e, and the absolute value of 

Eojc increases with the increase of px as shown in Figure 9, the absolute value of Eojc decreases with the 

increase of Ojc. This means that Ojc detection has higher precision when it is closer to 90°. The dynamic 

cooperation strategy is that the label rotates to a proper angle that is easier for the Kinect to detect the 

Ojc. This will improve the precision of the orientation detection. The rotational angle of the label is 

recorded. The label rotates to its initial orientation after detecting Ojc.  

 

Figure 9. The relationship between Ojc detection error and real horizontal pixels px.  

4. Prototype Design and Fabrication 

The 3D model and prototype of the JSN are shown in Figure 10. The size of the new prototype is 

about 10 cm × 7 cm × 17 cm. The JSN in this paper has the new steering mechanism and the disc-like 

label mechanism compared to our previous jumping robot [43,44]. The steering mechanism includes a 

steering wheel and a DC motor. The JSN can steer continuously when the wheel rotates driven by the 

motor. The step of the stepper motor is 2.4°. The control unit and the ZigBee wireless communication 

module can control the motions of the JSN, send data to the carrier and receive commands from it. The 

power of the JSN is supplied by a 3.7 V 200 mAh lithium battery. The total energy use of one jump of the 

JSN is about 1.53 mAh [44]. The energy use of the stepper motor in 360° rotation is about  

0.053 mAh. So, the JSN could dock with the carrier using a little energy when its power is lower than 

the threshold.  

 

Figure 10. 3D model and prototype of the JSN.  
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The 3D model and prototype of the carrier are shown in Figure 11. The four-wheeled base is driven 

by four servomotors. The Kinect mounted at the front side of the base has a color camera with selectable 

resolutions of 640 × 480 and 1280 × 960 and a depth camera with distance detection range about 0.6 m 

to 3.6 m. The field of view of the Kinect is 57° in horizontal direction and 43° in vertical direction. The 

43 cm × 40 cm × 20 cm sized cabin for JSN recycling is installed on the top of the base. The angle Aj is 

about 39.6° if the distance d is 0.5 m as shown in Figure 8. The control processing unit is mounted at the 

bottom of the cabin. The control unit is composed of a laptop and a four-axis control board. The laptop 

connects with the Kinect and runs the orientations and distance detection algorithm. The laptop also 

connects with the control board to control motions of the carrier. A ZigBee module on the front of the 

base is the coordinator forming the network with the JSN.  

 

Figure 11. 3D model and prototype of the carrier.  

5. Experimental Validations 

The fundamental performances and influence factors on the detection precisions of the proposed 

relative orientation and position detection methods were tested firstly. The influence factors are shown 

in Table 1. The dynamic cooperation strategies were evaluated secondly. The JSN automatic detection 

of the prototype system was tested finally.  

Table 1. The influence factors in the experimental tests. 

Symbol Description 

d Distance between the carrier and JSN 

D Diameter of the label 

C Surface color to the label  

R Resolution of the color camera  

A Ambient illumination 

5.1. Orientation Detection of Carrier Relative to JSN 

The orientation detection of the carrier was tested at different distances d, different real orientations of 

Ocj, and different orientations of Ojc with a diameter D = 5 cm and surface color C = red label when ambient 

illumination A = 42 lux, resolution of the color camera R = 640 × 480, and the background was a white board.  
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5.1.1. ζ and Ocj Detections at Different Distances d 

d increased from 0.5 m to 1.0 m at the step of 0.1 m. The recorded images and calculated ζ and Ocj 

are shown in Figure 12. The ζ increases slightly from 0.553 to 0.569. The ζ is larger than 0 and smaller 

than 1, which indicates that the label is in the right side of the images. The detected orientation Ocjd 

increases from 17.1° to 17.6°. The results show that the highest detection precision can be obtained at 

distance of 1.0 m and the detection error is within 2.9°.  

  

(a) (b) 

Figure 12. Azimuth coefficient and orientation detection results of the carrier at different 

distances when the real orientation Ocjr is 20°: (a) recorded images; (b) calculated ζ and Ocj.  

5.1.2. ζ and Ocj Detections at Different Ocjr 

The ζ and Ocj were detected when the real orientation Ocjr increased from ‒24° to 24° at the step of 

6°. The results are shown in Figure 13. The ζ increases linearly with Ocj. The ζ is utilized to decide the 

relative orientation roughly at different Ocjr. The largest error of Ocj detection is only about 2.22° when 

|Ocjr| = 24°. The results show that the proposed method can detect the orientation Ocj with a high precision 

for JSNs recycling.  

  

(a) (b) 

Figure 13. Azimuth coefficient and orientations detection results of the carrier at different real 

orientations when the distance d is 0.6 m: (a) recorded images; (b) calculated ζ and Ocj.  

5.1.3. ζ and Ocj Detections at Different Ojc 

In this test, orientation Ojcr of the JSN relative to the carrier increased from 0° to 76.8° at the step of 

9.6° when the real orientation Ocjr was set as 0°. The results are shown in Figure 14. The Ocj detection 
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has highest precision when Ojcr is 0° and 9.6°. The precision decreases with the increase of the Ojcr. The 

largest error is ‒0.19°. The carrier cannot detect the JSN when the Ojcr is close to 90°.  

  

(a) (b) 

Figure 14. Azimuth coefficient and orientation detection results of the carrier when the 

orientation of the JSN is set as different values: (a) recorded images; (b) calculated ζ and Ocj. 

5.2. Orientation Detection of JSN Relative to Carrier 

Because the orientation detection of the JSN was based on the horizontal and vertical pixels 

sensing of the label in the images, the influence factors shown in Table 1 were tested in this section. 

The detection results at different d, D, C, A and R are shown in Figure 15. The label rotated from 0° 

to 86.4° at the step of 9.6°.  

The real orientation Ojcr and the detected orientation Ojcd at different d are shown in Figure 15a–j. The 

largest errors at different d mainly happen when the real orientation is near 9.6°. The results show that the 

proposed method can detect the orientation of the label with an acceptable precision at different distances. 

The detection precision is higher at smaller distance and when the real orientation Ojcr is close to 90°.  

The largest errors are −2.6° and 2.69° when the diameters D of the labels are 5 cm and 10 cm as 

shown in Figure 15e,k, respectively. The results indicate that the detection error of larger label is not 

smaller than the error of the smaller label. The 5 cm label will be installed into the JSN for recycling test 

because the size of the JSN should be as small as possible.  

The red and green labels were tested. The largest errors for the orientation detections of the red and 

green labels are −2.6° and 3.5° as shown in Figure 15e,i, respectively. The results indicate that both the 

red and green labels are easier to be detected for the JSN sensing.  

The ambient illumination was changed with different number of lights in the indoor environment. 

The tests were performed at A = 42 lux and A = 333 lux as detected by a light sensor TSL2550. The 

results are shown in Figure 15e,m. The largest errors are ‒2.6° and −9.6°, respectively. The results 

indicate that too strong light of the environment has influences on the detection precision.  

The resolution of the camera was set as 640 × 480 and 1280 × 960 for influence factor R tests. The 

results are shown in Figure 15e,n. The largest errors are −2.6° and 2.0°, respectively. The results indicate 

that higher detection precision can be obtained at higher resolution of the camera.  
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Figure 15. Ojc detection results at different distances d, diameters of the label D, and colors 

of the label C, ambient illuminations A and resolutions of the color camera R.  

5.3. Position Detection of JSN Relative to Carrier 

The position of the JSN relative to the carrier could be decided after the orientations and distance 

between the JSN and carrier are detected. The distance detection tests were conducted at different real 

distances, sizes and colors of the label, and ambient illuminations when the Kinect faced to the JSN.  
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The test results at different real distances Dr are shown in Table 2. The detected distances Dd are zeros 

when the Dr are 40 cm and 50 cm. This indicates that the depth sensor of the Kinect cannot detect too 

small distances. The largest error is −3.1 cm when the Dr is 200 cm. The test results at different D, C, 

and A when the real distance Dr = 70 cm are shown in Table 3.  

The results of distance detection show that the maximum error is only about 3 cm within 200 cm 

detection range, and the detection precision is higher when the real distance is smaller. The size and 

color of the label and the ambient illumination do not have serious influences on the distance detection 

precision. The errors are within 1 cm.  

Table 2. Distance between the JSN and the carrier detection results when the real distance 

increases from 40 cm to 200 cm. 

Name Real and Detected Distances (cm) Conditions 

Dr (cm) 
40 50 60 70 80 90 100 110 120 

D = 5 cm, 

C = red, 

A = 42 lux 

130 140 150 160 170 180 190 200 

Dd (cm) 
0 0 60.3 70.1 80.2 90.1 100 109.5 119.3 

128.7 139 149.2 158.9 169 178.6 188.3 196.9 

Table 3. Distance detection results at different diameters of the label D, colors of the label C, 

and ambient illuminations A when the real distance Dr = 70 cm. 

Detected Distance Dd (cm) Conditions 

70.1 D = 5 cm, C = red, A = 42 lux 

70.5 D = 10 cm, C = red, A = 42 lux 

70.1 D = 5 cm, C = green, A = 42 lux 

70.3 D = 5 cm, C = red, A = 121 lux 

70.3 D = 5 cm, C = red, A = 286 lux 

5.4. Dynamic Cooperation between JSN and Carrier 

5.4.1. Dynamic Cooperation for Detection of Distance d 

The initial distance between the JSN and the carrier was set as 200 cm. The carrier moved to the JSN 

at a step of 10 cm and detected the label periodically. The carrier recorded the distance between it and 

the JSN at every step. The real displacement of the carrier was measured. The depth images at different 

controlled displacements Dc are shown in Figure 16. The black background is the board behind the JSN. 

The recognized JSN is circled by orange circles. The carrier stopped moving to the JSN at Dc of 140 cm.  

The controlled displacement Dc, the real displacement Dr, and the displacement control error Edc are 

shown in Figure 17a. The error Edc has the trend of increase with the displacement of the carrier. The 

maximum error is about 1.7 cm. The detected distance Dd and the detection error Edd are shown in  

Figure 17b. The absolute value of Edd decreases with displacement of the carrier. The absolute value of 

Edd is reduced from 1.9 cm to about 0.1 cm. This indicates that the distance detection precision could be 

improved by using the dynamic cooperation strategy.  
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Figure 16. Depth images at different controlled displacements in the dynamic cooperative 

distance detection.  

 

Figure 17. Results of dynamic cooperation for distance detection. 

5.4.2. Dynamic Cooperation for JSN Detecting 

Several circle and ellipse like labels with the similar size and same color of the label of the JSN were 

stuck on the white board to imitate the situation that there were objects or other JSNs in the background 

of the JSN needed to be recycled. The board was put behind the JSN. The carrier steered to detect the 

labels. The carrier stopped steering and recorded all the sizes, shapes, and colors of the labels when it 

found the labels. Then it sent a control command to the JSN. The label on the JSN rotated a proper angle to 

adjust its shape on the images of the Kinect. The carrier detected the labels again and calculated the 

differences between the images recorded before and after the rotation of the label to distinguish the label of 

JSN from other labels. The recorded and processed images are shown in Figure 18. The results show that the 

carrier is able to distinguish the JSN from the interferences successfully when d is 100 cm and 200 cm. This 

capability improves the JSN detection success rate for recycling.  
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Figure 18. Test results of the carrier detecting the JSN when there are similar shaped and same 

colored interferences in the surrounding of the label. (a,d) are the images before detection;  

(b,e) are the images when all the red and green circles and ellipses are detected; (c,f) are the 

images after the label rotates a proper angle and the JSN is distinguished from the interferences.  

5.4.3. Dynamic Cooperation for Detection of Orientation Ojc 

The real orientation of the JSN was controlled to increase from 2.4° to 64.8° at the step of 2.4°. The carrier 

detected the orientation of the JSN at every step and calculated the detection error. The real orientation Ojcr, 

the detected orientation Ojcd, and the orientation detection error Eojc are shown in Figure 19a. The error 

decreases from 6.6° to 0.83°. The variation trend agrees with the simulation results shown in Figure 9. This 

verifies that we are able to obtain higher detection precision using the dynamic cooperation strategy. The real 

orientation was also controlled to decrease from 78.8° to 2.4° at the step of 2.4°. The error shown in Figure 

19b also gives validation of the proposed dynamic cooperation strategy.  

 

Figure 19. Results of dynamic cooperation for detection of Ojc.  

5.5. JSN Automatic Detection Test 

The performance of the prototype system for JSN automatic detection was tested finally. In the 

beginning of the test, the JSN was put behind the carrier on the right 1.6 m far, and the headings of the 

carrier and JSN were east. The carrier ran the detection algorithm and dynamic cooperated with the JSN. 

The video sequences of the orientations and position detection process are shown in Figure 20. The 

carrier stared to steer anticlockwise and tried to find if the JSN is in the video images. After finding the 

JSN in the images, the carrier calculated and recorded the azimuth coefficient ζ and the orientation Ocj 

step by step. When the ζ and Ocj were close to zero, the carrier stopped to steer and began to move to the 

JSN. The carrier stopped in front of the JSN at the distance about 30 cm and began to detect the 
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orientation Ojc of the JSN. The detected Ojc was about 20.2°. The carrier sent the Ojc to the JSN. The 

JSN steered angle Ojc when it faced to the carrier. The carrier moved to the JSN again and stopped when 

the distance d was about 20 cm. Then the JSN could jump into the cabin for recycling.  

 

Figure 20. Video sequences of the orientations and position automatic detection process:  

(a) initial condition; (b) carrier steers anticlockwise about 80°; (c) carrier steers 

continuously; (d) carrier finds the JSN is in the video images; (e) carrier steers and calculates 

ζ and Ocj step by step until they are close to zero; (f) carrier moves to the JSN; (g) carrier 

moves to the JSN continuously; (h) carrier moves to the JSN continuously; (i) carrier stops 

in front of the JSN; (j) carrier detects orientation Ojc; (k) JSN steers angle Ojc; (l) carrier 

moves to the JSN again.  

6. Conclusions and Future Work 

We propose short-distance relative orientation and position detection methods between a carrier robot 

and jumping sensor nodes during JSNs recycling. The methods are based on the RGB-D sensor and the 

dynamic cooperation strategies. The system components, the recycling procedure, and the detection 

methods are introduced, respectively. A prototype system including a carrier and a JSN are designed and 

fabricated for validating the proposed methods. The orientations and position of the carrier and the JSN 

relative each other are tested at different situations. The results show that the orientation detection of the 

carrier relative to the JSN has largest errors about 3° at different test distances, different real headings, 

and different orientation of the JSN. The orientation detection tests of the JSN show that higher precision 

can be obtained at smaller distance. The size and color of the label do not have serious influences on the 

detection precision. But the precision decreases when the ambient illumination increases. This is because 

the preset thresholds of the RGB values are static during the tests while the ambient illumination has 

effects on the RGB values of the images. The higher detection precision of this orientation could be 

obtained when the Kinect is set at higher resolution. The distance detection results show that the 

maximum error is only about 3 cm within 200 cm detection range, and the detection precision is higher 

when the real distance is smaller. The dynamic cooperation strategies test results show that the distance 

detection error could be reduced from several centimeters to several millimeters. This error is far smaller 

than the jumping range of the JSN. The carrier is able to distinguish the JSN from the interferences 
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successfully when the distance between them is as far as 2 m, which improves the success rate of the 

JSN detection for recycling. The results also show that the orientation detection of the JSN has higher 

precision when the real orientation is close to 90°. The detection error could be reduced from 6.6° to 

about 1°, which is far smaller than angle Aj (39.6°), so the JSN could jump into the cabin easily. The 

JSN automatic detection test results show that the carrier can detect and move to the JSN successfully 

and the JSN could be recycled after it jumps into the cabin.  

The proposed detection methods combined with the dynamic cooperation strategies have high 

detection precisions for JSNs recycling. The proposed methods in this paper could not only be used for 

JSNs, but also be adopted for other kinds of mobile sensor nodes and multi-robot systems. The 

limitations include that the visual based detection methods could be affected by the ambient illumination 

and the performance of the infrared-based depth sensor of the Kinect could significantly be affected by 

the sunlight in outdoor application environment.  

Future work includes four main aspects. Firstly, the factors that influence visual based orientation 

detection method will be dynamically compensated using light sensor to improve the detection precision. 

Furthermore, the ultrasonic sensor or laser sensor could be combined with infrared distance sensor for 

application in outdoor environment with strong sunlight. Secondly, the long-distance localization 

methods and multisensor data fusion will be investigated for the JSNs recycling. Thirdly, we will try to 

design docking method for the suddenly damaged JSNs, which cannot jump into the cabin of the carrier. 

A simple and low cost manipulator combined with the visual detection method could be a solution for 

this problem. Finally, the universality of the proposed methods for JSNs recycling will be tested on other 

kinds of miniature robotic mobile sensor nodes.  
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