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Abstract: The hand is an important part of the body used to express information through
gestures, and its movements can be used in dynamic gesture recognition systems based on
computer vision with practical applications, such as medical, games and sign language.
Although depth sensors have led to great progress in gesture recognition, hand gesture
recognition still is an open problem because of its complexity, which is due to the large
number of small articulations in a hand. This paper proposes a novel approach for hand
gesture recognition with depth maps generated by the Microsoft Kinect Sensor (Microsoft,
Redmond, WA, USA) using a variation of the CIPBR (convex invariant position based on
RANSAC) algorithm and a hybrid classifier composed of dynamic time warping (DTW)
and Hidden Markov models (HMM), called the hybrid approach for gesture recognition
with depth maps (HAGR-D). The experiments show that the proposed model overcomes
other algorithms presented in the literature in hand gesture recognition tasks, achieving
a classification rate of 97.49% in the MSRGesture3D dataset and 98.43% in the RPPDI
dynamic gesture dataset.
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1. Introduction

Gestures and hand postures have been used for a long time as a way to express feelings and to
communicate information between people. A gesture can represent a simple action, such as to allow
people to cross a street, or complex body expressions belonging to a specific population language. Sign
language uses both hand and body postures instead of sound patterns to establish communication. It is
a very important type of language due to the fact that nine million people present some kind of hearing
or speaking loss [1], while most people do not speak sign language, as most of the hearing impaired are
illiterate in their local language. Gesture recognition can work on this problematic by creating a bridge
between the languages, recognizing a given gesture and translating it into words in real time [2].

There are three types of gesture recognition systems: based on devices attached to the body [3],
based on gesture tracking [4] and based on computer vision techniques [5]. The first category uses
sensors, such as wearable devices with accelerometers and markers, to capture a gesture and its
corresponding movement. However, this invasive technology limits the normal execution of the gesture.

Gesture recognition systems based on tracking aim to follow the gesture trail, drawing a path through
its execution using a marker. The limitation comes from the fact that these systems use only the
traveled path, and they do not perform well with complex and very detailed movements, such as the
ones involving different hand postures.

The last category, systems based on computer vision techniques, uses a camera device to capture
the gesture and extract features, such as the speed, direction and intensity of a given gesture. Due to
variations in gesture execution, people executing them and the environment, the accuracy of such systems
can be degraded in specific scenarios, like reduced illumination, very fast movement or interference from
other people [6,7]. However, it is the least invasive category, allowing a more natural iteration between
the user and the system without impairing the gesture execution. Usually, some steps between the
image capture and the classification output are followed by these systems: image segmentation, feature
extraction and pattern classification [8]. In the first step, the image background is removed, and only the
body parts relevant to the gesture recognition are kept [9]. In this scenario, the Microsoft Kinect [10]
appeared as an interesting solution to gesture recognition, presenting an important contribution in image
segmentation for body detection. In the work of Tara et al. [11], the Microsoft Kinect is used to capture
depth maps and to recognize static gestures. The depth maps are used to detect the hand through the
definition of a distance threshold in which the hand is located. Lee et al. [12] proposed an approach with
k-means and the convexity hull to find the fingers and provide a more accurate analysis of the gesture.
The main proposition of Palacios et al. [13] consists of a segmentation algorithm where the user does
not need to execute the gesture in the front of the body and near the depth sensor.

In the second step of gesture recognition systems based on computer vision techniques, descriptors
are extracted in order to computationally represent the gesture pattern [14]. Thus, the images are reduced
to feature vectors by using mathematical models [15]. Oreifej and Liu [16] proposed a technique called
Histogram of Oriented 4D Normals (Hon4d) that uses a 4D histogram approach for feature extraction,
while Yang [17] proposed an algorithm for 2D and 3D spaces that extracts some features from the
executed gestures: the location of the left hand with respect to the signer’s face in 3D space; the angle
from the face to the left hand; the position of the left hand with respect to the shoulder center; the
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occlusion of both hands. Doliotis et al. [18] proposed a feature extraction method using images generated
by a Microsoft Kinect, retrieving a 3D pose orientation and full hand configuration parameters.

It is also important to note that there is a common issue between many feature extraction methods
in gesture recognition: the curse of dimensionality [19]. Some approaches have been proposed to
solve this problem, like the reduction of the feature vectors [20,21] by selecting a smaller set of
features that adequately keeps the original representation in order to distinguish the different gestures.
Probabilistic models analyze the correlation between the features allowing their selection, like Principal
Component Analysis (PCA) or Independent Component Analysis (ICA) [22]. Moreover, optimization
function techniques can also be used to reduce the feature vectors, aiming to minimize the model error
rate, such as swarm methods [23], which are designed to optimize high dimensionality functions.

In the last step of gesture recognition of systems based on computer vision techniques, a classifier
is trained using the extracted descriptors in order to recognize the gestures [24]. Barros et al. [5,25]
presented a gesture recognition system that achieved higher classification rates in comparison to
other methods using dynamic time warping (DTW) [26] and hidden Markov model (HMM) [27]
classifiers. Kim et al. [28] also used DTW as a classifier to recognize gestures captured by a depth
sensor. Godoy et al. [29] proposed a gesture recognition method trained on a few samples with
HMM, achieving high classification rates. Neverova et al. [30] proposed a framework based on a
multi-scale and multi-modal deep learning architecture, which is able to detect, locate and recognize
a gesture. To complete this task, they used information obtained from different data channels of a depth
image, decomposing the gesture into multiple temporal and spatial scales. Wu et al. [31] proposed a
multilayered gesture recognition system, dividing the recognition phase into three layers: the first layer
for fast distinguishing types of gestures based on PCA; the second layer is a particle-based descriptor to
extract and identify dynamic information from gestures in each frame using DTW with adaptive weights;
and finally, the static hand shapes are recognized in the third layer. Their study achieved significant
results in a large dataset with 50,000 gestures [32].

In this paper, we propose a novel approach for dynamic gesture recognition with depth maps, called
the hybrid approach for gesture recognition with depth maps (HAGR-D). HAGR-D uses a version
of CIPBR (convex invariant position based on RANSAC) algorithm [33] for feature extraction, a
combination of the binary particle swarm optimization [34] and a selector algorithm to make the feature
selection and a hybridization between DTW and HMM classifiers for recognition. DTW is used to find
the most probable gestures, while HMM refines DTW output.

This paper is organized as follows. Section 2 describes the proposed model. In Section 3, experiments
with gesture images captured by the Microsoft Kinect are shown. Finally, in Section 4, we present some
concluding remarks.

2. Hybrid Approach for Gesture Recognition with a Depth Map

HAGR-D is an approach for gesture recognition that involves a method for feature extraction, a
method for feature vector reduction and a hybrid classifier. Figure 1 presents the training architecture
for the HAGR-D system, which starts with feature extraction using a variation of the CIPBR algorithm

for depth maps. These vectors are used to train the DTW classifier. The feature selection method uses
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a combination between binary particle swarm optimization [34] and a selector algorithm [25] to reduce
the feature vector that is used by the HMM to refine the DTW classification result. We present the depth
CIPBR algorithm in Section 2.1, the feature selection method in Section 2.2 and a description of DTW
and HMM hybridization in Section 2.3. Table 1 presents the notations and definitions used to describe
the HAGR-D.
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Figure 1. HAGR-D training architecture.

Table 1. Notations and definitions used to describe the HAGR-D.

Symbol Description

Hand contour center of mass

The hand contour highest point

The line segment between points P and C
Maximum circumcircle

Convex hull points of the hand contour
Contour point of the convex hull ¥

Point of the U set

Line segment calculated between the points w and C
Set of distances

Intersection between wC and ©

Distance from the D set

distance d normalized

Set of angles

Angle from the A set

Angle a normalized

Final feature vector returned by depth CIPBR
Set of position in a search dimension
Position in a search dimension

Set of velocities in a search dimension

F <8 X4 ae »%&@@%h?e@g‘wo

Velocity in a search dimension
PBest Best position found by a particle
JBest Best position found by the swarm
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Table 1. Cont.

Symbol Description

S Feature vector
S’ Reduced feature vector
k Number of gestures candidates returned by DTW in classification time

CM Cost matrix generated for DTW to compare two patterns
1 Size of A pattern feature vector and position in a cost matrix row

7 Size of B pattern feature vector and position in a cost matrix column

2.1. Depth CIPBR

The depth CIPBR algorithm is an approach composed of a sequence of tasks to reduce a depth map
of a hand posture into two signature sets proposed by Keogh et al. [35]. To complete these tasks, there
are four modules connected in cascade, as presented in Figure 2.

Radius

Calculation

Draw Maximum
Circumcircle

Calculate
Signature

Feature Vector
Normalization

Figure 2. Depth CIPBR architecture.

The first module, “radius calculation”, uses a hand posture image that is segmented from the depth
map generated by the Microsoft Kinect; Figure 3a. The hand posture contour is extracted from this
image, generating the contour (Figure 3b), and the center of mass (C') of the hand posture is calculated
from the image contour using the center moments [36]. Then, the point that has the lower Y coordinate
is found, P; Figure 3c. Finally, this module calculates the distance between the center of mass and point
P. Figure 3d presents an output example of the “radius calculation” module. The dark gray point is the
center of mass of the contour given by C; the red point is the highest point of the contour given by P;
and the line connecting these points is given by PC.

The second module of Depth CIPBR, “draw maximum circumcircle”, uses the line segment PC as
radius to draw a circle inside the hand contour. If this circle exceeds the hand contour boundary, a
triangle is calculated using the three most distant contour points from the point C, two of them being on
opposite sides of the contour. The biggest circle inside this triangle is the maximum circumcircle © of
the contour with the center at point C'.
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Figure 3. (a) The hand segmented using the Microsoft Kinect; (b) the hand posture contour;
(c¢) the mass center point drawn in the hand posture contour (dark gray point); (d) the convex
hull points with the maximum circumcircle © (red circle), the center mass point(dark gray
point), the highest point (red point) and the segment of line PC' (green line).

The third module of Depth CIPBR, “calculate signatures”, receives the maximum circumcircle © and
points P and C' as input. The hand contour points are substantially reduced using Andrew’s monotone
chain convex hull algorithm [37].

Andrew’s algorithm outputs a set ¥ = {py,ps,...,p,} from convex hull points, which is used to
generate two signature sets. The first signature set is composed of distances (D) calculated as follows:

e For each point w € W, the length of the line segment wC is calculated based on the Euclidean
distance from w to the point C';
e Then, this length is subtracted from the circumcircle radius, in order to obtain the w_Q length,

where point Qis the intersection between segment wC' and O.

Therefore, the first signature set is composed of each distance Dy, Vw € W, calculated using the
following Equation (1), where:

e (' is the center of mass of the hand posture contour;

e w,, C, are the x coordinates for points w and C, respectively;

e w,, C, are the y coordinates for points w and C, respectively;

e radius is the radius of O calculated by the “draw maximum circumcircle” module.

The second signature set consists of a vector of angles obtained by calculating the angle between
a line composed of each point w € ¥ of the convex hull hand shape point and the line segment PC.
Both signature sets are obtained in a clockwise direction, always starting with point P.

Finally, in the last module, “feature vector normalization”, the signature sets are normalized. The first

signature set is normalized dividing each distance by the radius calculated in the “draw maximum

circumcircle” module. The normalized distance vector is represented by D' = {d}, d,,...,d,}:
d:
dy = —= 1
' radius M)
The set of angles is normalized by dividing each angle by 360°:
/ a;
— 2
7 3600 @)

Angle and distance sets are concatenated in the following order: angles first and distances at the end
of the signature vector. Therefore, the final feature vector is F' = { a}, a}, ..., a, d}, dy, ..., d,}.
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2.2. Feature Selection Method

Some classifiers used for gesture recognition are more sensitive to the curse of dimensionality [19],
such as the HMM [38,39]. In order to overcome this obstacle, the feature selection method finds the
smallest size possible for the feature vector and assigns the same size for the feature vectors of all
gestures. This is also an important task, since many classifiers use inputs with the same predefined size.

In this study, binary particle swarm optimization (BPSO) [34] finds the target size of the reduced
feature vector, while the selector algorithm is used to resize the feature vectors. The objective that BPSO
seeks to optimize is the minimum distance between the particle composed of zeros and ones and the
gestures sequences. The number of ones in the particle denotes the size of the new feature vector.

The next subsections explain in detail how these algorithms work.

2.2.1. Particle Swarm Optimization

Particle swarm optimization [40] solves an optimization problem with a swarm of simple
computational elements, called particles, exploring a solution space to find an optimal solution.
The position from each particle represents a candidate solution in n-dimensional search space (D)
defined as X = {1, 29, 23,...,x,}, where each x,, is a position in the n-dimension, and the particle
velocity is represented by V' = {vq, v2,v3, ..., 0, }.

The fitness function evaluates how well each particle presents itself in each iteration. When a particle
moves and its new position has a better fitness value than the previous one, this value is saved in a
variable called py.s;. To guide the swarm to the best solution, the position, where a single particle found
the best solution until the current execution, is stored in a variable called g.s;. Therefore, to update the
particle velocity and position, the following equations are used:

vi(t + 1) = kui(t) + cir[pipest — Ti(t)] + cora[grest — i(t)] 3)
it + 1) =2;(t) + v (t + 1) 4)
where ¢ = (1,2,3,..., N), N is the size of the swarm, ¢; represents the private experience or “cognitive

experience” and ¢, represents the ”social experience” interaction, usually used with a value of 2.05 [40].
Variables r; and r, are random numbers between zero and one and represent how much pj.s; and
Jrest Will influence the particle movement. The inertia factor « is used to control the balance of the
search algorithm between exploration and exploitation. The x; represents the particle position in the i-th

dimension. The recursive algorithm runs until the maximum number of iterations is reached.
2.2.2. Binary PSO

The binary PSO is a variation of the traditional PSO in discrete spaces. The major difference between
this algorithm and its canonical version is the interpretation of velocity and position. In the binary
version, the particle’s position and velocity are represented by zeros and ones only. This change requires
a reformulation in how velocity is calculated, according to the following equation:
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Ifrand < m then

ri(t+1)=1; elsex;(t+1)=0 (35)

where rand is a random number between zero and one.

Finally, to binarize all of the feature vectors, a threshold calculated through the mean of all of the
feature vectors is used. BPSO calculates a distance from each x;; binary particle’s position to the same
J position in all binary vectors for the same gesture. After each iteration, all distances are added up to
generate the fitness function output. Particles are improved as soon as the fitness values become smaller

in comparison with the fitness obtained by the previous iteration. The particle fitness function is:

fitness; = Z[ Z(x’k — Fj)?] (6)
j=1 \ k=1
where (2;1, T, ..., Ti,) is the particle’s i-th position and (Fj1, Fja, ..., Fj,) is the j-th features in

all vectors.
2.2.3. Selector Algorithm

BPSO chooses the target size for the reduced feature vector S’. Then, the selector algorithm [25]
reduces the CIPBR feature vector S to S’, producing the final vectors of the proposed approach. In this
process, some rules must be respected. First, if any vector has fewer points than the target size of 5,
zeros are added to the feature vector until it matches the desired length. Second, feature vectors larger
than the target size of S’ are redefined using a selection algorithm. This algorithm consists of calculating
a window W through the division of the current vector length by the target size of S’. The current vector
S is parsed, and each value in the W position is included in the new feature vector. If the new output
vector S’ is even smaller than the desired length, the remaining positions are randomly visited in .S and

used to compose the new output vector S’ until the desired length is reached.

2.3. DTW and HMM Hybridization

In order to classify the depth CIPBR feature vectors, a hybridization between two classifiers that
generated good results in the literature of dynamic gesture classification is proposed: DTW and
HMM [5,28,29].

DTW gives the distance between two patterns that represents the degree of similarity between them
using a cost matrix (C'M). Given two patterns A = {aq, as,...,ay} and B = {b1,bs, ..., by}, the cost
matrix cell C'M, ; is the distance calculated between the element x; and y;. The similarity degree will be
the sum of the lowest cost path in the matrix, which starts at C'M; ; and finishes at C'M; ;.

DTW works well in classifying grouped patterns, but it is not very sensitive to very close patterns and
might commit some mistakes. We observed that in most DTW misclassifications, the right output was
near the compared gesture of the training dataset. Thus, we propose to refine DTW output with HMM
to reduce the number of mistakes.
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A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is
assumed to be a Markov process with unobserved (hidden) states. A simple way of observing an HMM
is imagining it as a finite automaton deterministic with two alphabets, that is in every state, it will tell
the likelihood of a hand posture change to another depending on the executed gesture. The HMM has
the quality of being fast in training and running, but it can be very fragile in assertiveness, because all
training depends on how likely matrices are initiated. Thus, with a higher initial matrix, or amount of
the class involved, the HMM will loses some of its power.

DTW has no training phase, but retains a certain number of examples, so it can make the comparison
between the kept examples and some input pattern, returning the class belonging to the closest example
to the input pattern. Because of this proximity, DTW often confuses a class of a gesture with its closest
neighboring class. The canonical DTW [26], being the only classifier, faces the problem of proximity
between classes of feature vectors generated by the CIPBR algorithm. Because of this proximity between
classes, DTW has a greater tendency to return a foreign class present in the training set among the
supposedly correct class examples.

To work around this problem, DTW is used in the hybrid classifier in order to return no longer a class,
but the closest sequences to the input pattern belonging to training set. Thus, the correct class is more
likely to be among the returned sequences. At this stage, the trained HMM has a higher probability of
returning the correct class, avoiding the transition matrices outliers, since HMM only needs to classify
between the sequences returned by DTW.

Figure 4 presents the sequence performed by the HAGR-D for gesture recognition. First, DTW
classifies the gesture using the CIPBR algorithm for feature extraction and returns the £ nearest gestures
of the input sequence as candidates. The input sequence is then resized by the selector algorithm using
the best size found by the BPSO in training time, and HMM decides the classification of the input
sequence between the k candidate gestures returned by DTW.

Gesture
Sequence
Query

Feature Classification
Selection Output

Figure 4. HAGR-D classification architecture.

Algorithm 1 presents a pseudo-code for DTW and HMM hybridization. The model starts receiving a
set with images from a gesture at Line 1. The Depth CIPBR algorithm extracts the features of the hand
postures in Line 2, and DTW classifies this feature vector and outputs another vector with the £ nearest
gestures from the training dataset, Line 3. Then, the input gesture and the outputs of DTW are resized
by the selector algorithm using the size that the BPSO decided in the training time, Line 6. Finally, the
HMM classifies each resized vector, and the hybrid classifier outputs the most incident class as returned
by the HMM, Lines 7-9.
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Algorithm 1 Pseudo-Code from DTW and HMM Hybridization.

Images < gesture images of Image

features <— depthCIPBR .extracts(Images)

dtwOutputs < dtw.classify (features)

hmmOutpts

for each gesture in dtwOutputs do
resizedSequence < selectorAlgorithm.resize(gesture, size)
hmmOutpts <— hmm.classify(resizedSequence)

classification <— mostIncidence(hmmOutputs)

D A AN~ >

return classification

3. Experimental Results

In order to evaluate the HAGR-D, two experiments are performed with public benchmarks: the
MSRGesture3D dataset [41] and the RPPDI dynamic gesture dataset [5]. The next subsections explain
these experiments in detail.

3.1. MSRGesture3D

The MSRGesture3D is a dynamic hand gesture dataset captured by the Kinect RGB-D camera.
There are 12 dynamic hand gestures defined by American Sign Language (ASL) in MSRGesture3D,
and each dynamic gesture was performed two or three times by each one of 10 subjects. The gestures
presented in the dataset are: “bathroom”, “blue”, “finish”, “green”, “hungry”, “milk”, “past”, “pig”,
“store”, “where”, “J” and “Z’.” The dataset contains only depth data images and is considered challenging
mainly because of self-occlusion issues. We used the leave-one-subject-out cross-validation to evaluate
the dataset as proposed in [41].

The following parameters are used for training the HAGR-D:

e DTW: k = 5;
e BPSO:

— 15 particles;

— 20 dimensions;

— 30 simulations;

— 200 iterations;

—cl =¢c2=2.05;

— 1inertia factor of w = 0.9 — 0.4;
- rl =72 =rand(0...1);

e HMM:

— three states;

— 100 iterations.
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To find the initial states of HMM, we use a k-means clustering [42] technique, avoiding the
random initial matrices, while the BPSO uses few dimensions in its particles to guarantee small final
vectors. The works in [43,44] use similar approaches to determine the final size of the vectors in their
studies.

We compared the HAGR-D with a model using the same feature extraction approach, but with DTW
or HMM alone as classifiers, “called depth CIPBR + DTW” and “depth CIPBR + HMM”. Therefore,
we are able to evaluate the performance of the proposed model with DTW before HMM and solely with
HMM. The inputs for DTW are the raw sequences generated by depth CIPBR, and the inputs for the
HMM are the output sequences of the feature selection method. Figure 5 presents the boxplot for each
method. It is easy to see that the hybridization between DTW and HMM significantly improved the
proposed model. Furthermore, in several iterations, the HAGR-D classification rate was very close to
100%, and only two sequences were misclassified, corresponding to the gesture “green” being classified
as “store” and the gesture “blue” being classified as “where”. Another point to be made is that outliers
presented using solely HMM as a classifier no longer exist with HAGR-D. The size of the boxplot
generated by the results of each classifier also elucidate a low variation between the results of each
classifier, providing a certainty about the consistency of the results.

095 —

|

085 —

Classificaticn rate

08~ —

+

HGR-D Depth CIPBR + DTW Depth CIPBR + HMM

Figure 5. Comparison between HAGR-D, depth CIPBR with DTW and depth CIPBR with
HMM for hand gesture recognition.

Tables 2 and 3 present the confusion matrices of HAGR-D and “depth CIPBR + DTW”, respectively,
applied to the MSRGesture3D dataset. As can be seen, the hybridization of the “depth CIPBR + DTW”
with HMM generating HAGR-D improved the classification rates, and most of the HAGR-D mistakes
happened between the gestures “green” and “store”, with 7% of the “green” being classified as “store”.
Figure 6 shows an example of each of these gesture sequences and how close their hand postures are.

Figure 7 shows a representation of the two gesture vectors most confused by HAGR-D and how

close they are. To represent this gesture in a 2D space, they are normalized in size using the “selector
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algorithm” with only two features as the final length. It is easy to see that sometimes, a few examples
cross the division between classes, making classification more difficult.

Table 2. Confusion matrix of the MSRGesture3D database results classified by HAGR-D.

Z J Milk Where Store Pig Past Green Finish Bathroom Hungry Blue

Z 100% - - - - - - - - - - -

J - 95% - - - - - - - - - 5%
Milk - - 100% - - - - - - - - -
Where - 2% - 94% - - 4% - - - - -
Store - 5% - - 95% - - - - - - -
Pig - - - - - 100% - - - - - -
Past - - - - 3% - 92% - 4% - 1% -
Green - - - - 7% - - 93% - - - -
Finish - - - - - - - - 100% - - -
Bathroom - - - - - - - - - 100% - -
Hungry - - - - - - - - - - 100% -

Blue - - - 2% - - - - - - - 98%

Table 3. Confusion matrix of the MSRGesture3D database results classified by the
CIPBR + DTW combination.

V/ J Milk Where Store Pig Past Green Finish Bathroom Hungry Blue

Z 92% - - 4% - - - - 2%

J - 90% - - - - 4% 1% -
Milk - - 98% 2% - - -
Where - 4% 91% - - 5% - - - - -
Store - 10% - 90% - - - - - - -
Pig - - - - 9% 3% - - - - -
Past - - - 3% - 89% - 7% 1% - -
Green - -
Finish - -
Bathroom 2% -
Hungry - -
Blue - -

2%
5%

1

1

1

1

1
=)
[*))
N

SISI SIS =] 8 Sc | & &) op
OO0 |ole o loldldir|e je B

Figure 6. Examples of sequences of the gestures store and green.
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Figure 7. Example of two generated classes by the CIPBR algorithm.

Finally, Table 4 presents the results obtained for the MSGesture3D dataset using the
leave-one-subject-out cross-validation as a testing procedure in comparison with other methods in the
literature. As presented, HAGR-D achieved the best classification result of 97.49%.

Table 4. Comparison between the results for MSRGesture3D with the leave-one-subject-out

cross-validation as the classification process.

Method Classification Rate (%)
HAGR-D 97.49
Depth CIPBR + DTW 91.53
Depth CIPBR + HMM 88.98
Actionlet [45] 95.29
HON4D + Dy, [16] 92.45
HON4D [16] 87.29
ROP, Wang et al. [41] 88.50
Depth motion maps, Yang et al. [46] 89.20
Kurakin et al. [47] 87.70
Klaser et al. [48] 85.23

Venkateswara et al. [49] use the same dataset in their study, but modifying the experiment using
five subjects for training and five for testing their methods, achieving 94.6% as their best result, which is

still above ours.

3.2. RPPDI Dynamic Gesture Dataset

The RPPDI dynamic gesture dataset is a set of images of seven dynamic hand gestures performed in
front of a smartphone camera. Figure 8 illustrates one sequence example for each gesture in the dataset.
Each gesture is performed several times, and Table 5 presents the number of sequences in each gesture.
We used the same test configuration as proposed by Barros et al. [5,25] with 2/3 of the dataset for
training the model and 1/3 for testing.
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Figure 8. Example for each of the gestures performed on the RPPDI dynamic gesture dataset.

Table 5. Number of sequences captured by each gesture in the RPPDI dynamic dataset.

Gesture Number of Sequences

Gesture 1 24
Gesture 2 24
Gesture 3 31
Gesture 4 18
Gesture 5 26
Gesture 6 33
Gesture 7 32

The experiments in the RPPDI dataset used the same configuration for BPSO and HMM as presented
in Section 3.1, and the results are compared to Barros et al.’s previous works. The CIPBR uses the Otsu
threshold [50] as a binarization method in the first module to segment hand posture. Table 6 presents
the results obtained, and Table 7 presents the confusion matrix of the HAGR-D system. The proposed
method committed a few mistakes, misclassifying only one gesture, while achieving 100% accuracy in
some iterations.

Table 6. Comparison between the results in RPPDI dynamic gesture dataset.

Method Classification Rate (%)
HAGR-D 98.43
Speed Up Robust Features (SURF) + HMM [25] 75.00
Local Contour Sequence (LCS) + HMM [25] 77.00
Convex SURF (CSURF) + HMM [25] 91.00
Convex LCS (CLCS) + HMM [25] 91.00
SURF + DTW [25] 38.00
LCS + DTW [25] 78.00
CSURF + DTW [25] 93.00

CLCS + DTW [25] 97.00
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Table 7. Confusion matrix of RPPDI dynamic gesture database classified by the HAGR-D system.

Gesture 1 2 3 4 5 6 7
1 100% - - - - - -
2 - 100% - - - - -
3 - - 89% - - 11% -
4 - - - 100% - - -
5 - - - - 100% - -
6 - - - - - 100% -
7 - - - - - - 100%

3.3. Remarks

The proposed approach, HAGR-D, achieved the best results in two different datasets due to the
combination of depth CIBPR for feature extraction and the hybrid classifier with DTW and HMM.
The classifiers compensated the failures of each other by reducing misclassifications between different
gestures with DTW and refining the classification output through validation of the most similar sequences
using the HMM. The hybrid classifier improved the results in comparison with DTW and HMM
applied individually.

One of the limitations of HAGR-D is the definition of the number of sequences returned by DTW, k.
In this study, such a parameter was empirically defined. Another limitation is the computation cost of
DTW that might impair real-time application of the proposed model.

Another point to be made is that the few mistakes committed by HAGR-D were due to very similar
sequences. Nevertheless, many conditions must be fulfilled in order for HAGR-D to misclassify a given
gesture: the number of similar postures, the distance from the hand to the sensor, the speed of gesture
execution and occlusion.

4. Conclusions and Future Works

Hand gesture recognition for real-life applications is very challenging because of its requirements of
robustness, accuracy and efficiency. In this paper, we proposed both a variation of the CIPBR algorithm
for depth maps and a hybrid classifier for gesture recognition using DTW and HMM. The proposed
approach, HAGR-D, presents better results than the ones in the literature, achieving a classification
rate of 97.49% in the MSRGesture3D dataset and 98.43% in the RPPDI dynamic gesture dataset. The
application of depth CIPBR for feature extraction showed good results, while the hybridization between
the DTW and HMM classifiers significantly improved classification accuracy.

Although the focus of classification in this paper relies on the task of hand gesture recognition, in
future research, we intend to extend the application of the HAGR-D to other types of gestures, such
as human body movements. Furthermore, the DTW has a high computational cost, which makes the
HAGR-D execution slow; however, the FastDTW [51] is a variation of the traditional form of the
DTW that promises to exponentially reduce the computational cost, and it will be addressed in our
next experiments.
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