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ABSTRACT 

A theory for the processing-induced fiber orientation and stress in fiber 

reinforced-polymer composites is presented. Short-fiber-reinforced polymer 

composites are represented by concentrated suspensions of rigid rods. In 

concentrated suspensions, fiber-fiber contact is likely and affects the fiber 

orientation state and suspension rheology. Fiber orientation is given as a 

function of the strain in the continuum and the probable effects of physical inter-

fiber contact. Continuum stress is calculated from the stress in the fluid and 

fibers, where fiber stress is a result of the local disturbance in the fluid velocity 

field and of the inter-fiber contact forces. Fiber orientation is described via 

probability density function whose transport equation has the form of a 

generalized advection-diffusion equation with a orientation dependent 

diffusion. This equation is solved using a finite difference scheme and the 

results are presented versus experiments with suspensions with planar 

orientation in planar stretching flow. Experiments and simulation agree that 

increasing concentrations result in increased interaction-based diffusion. 
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1. INTRODUCTION 

1.1 Polymer Composites and Concentrated Suspensions 

Composite materials created by adding short reinforcing fibers to a polymeric 

matrix have been one of the most important new classes of materials of the last 

twenty years. These materials are important because short fiber reinforcement adds 

stiffness and strength to a material that can still be easily processed. Processing of 

short-fiber-reinforced composites is generally defined by the matrix material. 

Polymers in an unfilled state can be formed through fluid deformation and solidified 

in the desired shape. Compression molding, extrusion, and injection molding are 

some of the processes often used, and the fibers travel with the matrix material. The 

fiber reinforcement is also subject to designer choice; spun glass, carbon fibers, 

drawn polymers or vegetable fibers are all in service. The addition of short fibers 

that can flow with the matrix creates a composite material with superior properties 

that can retain many of the processing characteristics of the unfilled matrix. 

The mechanical properties of composites reinforced by short fibers depend on 

the amount of reinforcing fibers and the orientation of the fibers. Fibers may add 

stiffness or strength to a compliant thermoplastic, or toughness to a brittle 

thermoset. The reinforcing qualities of a fiber are anisotropic; the strong, stiff fiber 

contributes more to mechanical properties (particularly strength and stiffness) in the 

axial direction than in the transverse directions. The orientation state of the finished 

composite is of crucial importance to the designer who expects optimum 

performance from a short-fiber reinforced polymer composite. 

The orientation state of a short fiber composite is determined by the rheology 

of the composite melt, the orientation of the fibers before processing and the 

kinematics of mold flow. The fibers in the melt can travel and strain with the matrix. 

This process-induced strain changes the spatial and orientation distributions of the 
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fibers in the material. Several useful theories exist for the orientation behavior of 

solid particles in dilute suspensions undergoing deformation. Other researchers 

have attempted to extend these theories to high concentration domains while 

ignoring the effects of particle interaction. 

In practice, fiber volume concentrations in short fiber reinforced composites 

exist in the range of 10-50%. This figure lies well above the dilute range for fibers 

with of aspect ratios 102-105. Therefore, physical fiber-fiber contact in these 

composite melts is likely. These contacts introduce inter-fiber interaction forces that 

affect the rheology and orientation behavior in the composite during flow. 

1.2 Goal of Research 

Short fiber reinforced composites in the processing stage can be modeled as 

concentrated suspensions of fibers. We seek to develop a model for the flow of such 

suspensions. This model will capture the essential physics of particle-particle 

interaction inherent in a concentrated suspension. We will examine the orientation 

behavior of the model in simple flows and compare its results against experimental 

results and numerical simulation. The result of this work will yield transport 

equations for suspension momentum, fiber dispersion and fiber orientation. 

1.3 Organization of Thesis 

The following chapter reviews the research pertinent to this study. Here we 

discuss general background of composites design emphasizing the need for an 

understanding of the orientation phenomena in the composite material. General 

results for suspension rheology and hydrodynamics are given in the latter part of 

Chapter Two. These results are the key to the fiber orientation during processing. 

Chapter Three details the new analytical theory of a concentrated suspension 

of rigid rods. "Concentrated" implies that the fibers experience several contacts 

from neighboring fibers. These contacts introduce a mechanical fiber-fiber 
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interaction force that affects the orientation development and the rheology of the 

suspension. Inclusion of this effect is the cornerstone of this work. A numerical 

solution to the theory is implemented in Chapter Four. Results of a finite-difference 

solution are also presented. 

Chapter Five examines orientation and fiber-fiber contact in concentrated 

suspensions undergoing planar stretching flow through a set of experiments.. 

Chapter Six shows a comparison of the experimental results with the 

numerical solution of Chapter Four. It also demonstrates a simplification of the 

theory of Chapter Three into an easily implemented diffusion function. Herein is a 

discussion of the theory in comparison to the existing stochastic and diffusive 

models of fiber orientation. 

The final chapter summarizes the work, briefly recaps the discussions of 

Chapters Six and Seven and offers recommendations future research. 
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2. COMPOSITE MATERIALS AND SUSPENSION RHEOLOGY 

Composite materials made of polymer reinforced with short stiff fibers have 

significant importance and growing potential as engineering materials. Yet 

processing these materials and controlling the reinforcement microstructure remains 

a complicated enterprise. Short fiber composites have been studied for several years 

and processing research has been linked to particle suspension rheology. This 

chapter reviews the research in these fields with an emphasis on the importance of 

the fiber orientation. 

2.1 Short-Fiber Reinforced Polymer Composites 

While composite materials posess great potential, the inherent inhomogeneity 

of the polymer/fiber combination requires more careful treatment than common 

materials. This section shows why the promise of short-fiber reinforced polymer 

composites presents a complicated challenge. 

2.1.1 Fiber Orientation Defines Mechanical Properties 

The mechanical properties of these materials are enhanced by the existence of 

short reinforcing fibers. Typically the fibers are spun from glass, but carbon fibers 

are also often used. In more exotic applications one may find boron or ceramic 

fibers. The diameter of the reinforcement is usually on the order of ten micrometers 

and the length may range from a fraction of a millimeter to two centimeters. 

Therefore, length-to-diameter ratios are typically large, 10-1000. The reinforcing 

qualities of the fiber parallel the geometric dimensions; they are a far more effective 

reinforcement in the axial direction than in the transverse direction. Furthermore, 

heat conduction will occur at different rates along the fiber length as opposed to 

across the fibers. Toughness is augmented by fibers that arrest cracks propagating 

in the transverse direction. Therefore, the orientation of each fiber is a critical 

quantity for many of the composite's mechanical and thermal properties. 
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Experimental evidence of the relationship between fiber orientation and 

mechanical properties can be found in the published research. Darlington, 

McGinley and Smith [1] tested discs of glass reinforced polypropylene from an edge-

gated injection mold. They found that regions of higher fiber alignment 

corresponded to increases in tensile strength and modulus. Other researchers 

[2,3,4,5] show many similar qualitative results for different matrix materials, fiber 

materials and geometries, and molding processes. Schwarz, Fischer, and Eyerer [6] 

have attempted to correlate measured mechanical properties against measured fiber 

orientation. In the following paragraphs, theoretical work relating fiber orientation 

and fiber volume fraction is reviewed. Theoretical studies are more abundant and 

more precise than the existing experimental work, and yet both indicate that 

materials of high fiber orientation will show high strength and stiffness in the fiber 

direction, and markedly lower values in the transverse directions. 

Overall mechanical behavior of the composite is dependent upon the 

aggregate orientation of all the fibers. There are several theories for calculation of 

composite material properties. All approach the problem in two steps. First, one 

calculates the properties for a completely aligned composite. This requires a 

knowledge of the volume fraction and the aspect ratios of the reinforcement. 

Second, the properties of the aligned composite are used to create a weighted 

average for all possible orientation directions. This step requires a knowledge of the 

orientation state of the finished composite. 

Hill [7] was among the first to calculate the properties of the aligned 

composite. He considered a cylinder of material comprised of continuous, perfectly-

aligned fibers embedded in another homogeneous material. The fibers were 

regularly spaced throughout the composite. The matrix was isotropic, the fibers 

were transversely isotropic, and consequently the resulting composite was 

transversely isotropic. That is, mechanical properties were uniform in all directions 
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Table 2.1 The Halpin-Tsai Equations for the moduli of a fibrous 
composite material. 

in the plane perpendicular to the fiber direction. The fibers and matrix then were 

assumed to strain equally and the Hooke's law was written for the composite. 

The Halpin-Tsai equations [8] are a refinement of Hill's method. They allow 

the composite designer a simple means of estimating the mechanical properties of an 

aligned composite from the properties of the matrix and fibers, the fiber aspect ratio 

and volume fraction. Table 2.1 recaps the Halpin-Tsai equations for stiffness. Pc 

represents a composite property, and Pm and Pf indicate the corresponding 

properties of the matrix and fiber, respectively. re is the aspect ratio of the fibers -7, 

and c is the volume fraction of the fibers. Inspection of these equations show that 

the fiber direction modulus En is dominated by the properties of the fibers, while 

the transverse directions are dominated by the properties of the matrix. 

Once the contribution of the aligned fibers is understood, the next step entails 

determination of the effects of a distribution of fiber orientation in the composite. 

Much of the original research in this area involved the "laminate analogy." The 

composite material was idealized as many layers of uniformly oriented fibers. 

Classical laminated plate theory would then be used to predict the properties of the 

idealized composite. The thickness and orientation of the each layer would be 

manipulated until the orientation state of the laminate matched that of the composite 

material. Halpin and Pagano [9] showed that the moduli of a composite with 
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random in-plane oriented short fiber reinforcement could be well predicted by a 

quasi-isotropic laminate of equal fiber volume fraction and fiber aspect ratio. 

More recently, the effect of fiber orientation distribution in composite 

materials has been accounted for by the use of orientation averaging techniques 

[10,11]. The method requires knowing the functional dependence of the mechanical 

property of interest upon the orientation. In this case the orientation must be a 

variable that can be quantitatively expressed. Next, the function is integrated over 

all possible values of the orientation and the integrand weighted by the fraction of 

fibers at that particular value of the orientation. Therefore, if the property of the 

composite is some function of a unit vector p indicating fiber orientation i.e. Pc(p), 

then for some distribution of orientation the composite property is found through an 

orientation average. 

(Pc) = f yKp)Pc(p)dp (2.1) 

ijip) in Eq. 2.1 is the orientation distribution function; it gives information about the 

fraction of fibers at every possible value of p. The angle brackets about Pc indicate 

that it is an ensemble average of the contributions from all possible fiber 

orientations, and it is no longer a function of a specific p, but a macroscopic average 

property of the composite. This method has been used successfully to predict 

composite elastic moduli, bending stiffness, thermal expansion, and thermal and 

electrical conductivity. 

This section has briefly shown that the mechanical properties of the short 

fiber reinforced materials are strongly influenced by the orientation of the 

reinforcing fibers. Furthermore, through the use of classical continuum mechanics 

principles, those mechanical properties can be predicted given a knowledge of the 
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matrix properties, the fiber properties and volume fraction present, and the 

orientation state of the reinforcement. 

2.1.2 Processing Induces Fiber Orientation 

The previous section has shown that the fiber orientation state is a critical 

consideration for sound design decisions. In a short fiber reinforced composite, the 

advantage of easy processing is accompanied by the disadvantage of a mutable 

orientation. The fibers in the composite melt travel and rotate with the liquid 

matrix. This process-induced motion changes the spatial and orientational 

distributions of the fibers in the material. 

The trends and details of fiber motion during processing have been 

investigated by many researchers. One of the most basic observations is that 

converging flows aligned fibers in the flow direction, while diverging flows align the 

fibers perpendicular to the streamlines [12,13,14]. The alignment grows with the 

intensity of the flow field, the duration of the flow, and the aspect ratio of the 

particles. Converging and diverging flows are stretching flows and the fibers align 

themselves in the direction of positive strain. Shearing flow also orients fibers; in 

this case the fibers are rotated into the plane of shear leaving most fibers axes 

pointed along the streamlines. It has been observed though that the orienting 

strength of a shear flow was not as strong as that of a stretching flow [13] 

Many researchers have observed a layered microstructure of fibers in 

injection molded engineering composites [14,15,16,17]. depending on the processing 

conditions and the researchers interpretation, these composites have been 

proclaimed to contain from three to seven layers. Consistently mentioned is a core' 

region whose fibers are oriented nearly random in-plane. In the case of a radial flow 

spreading from the gate or from a constriction in the part, the fibers in the core will 

be oriented perpendicular to the streamlines by the stretching flow in this region. 
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Also typically observed are two shell' layers found above and below the core 

wherein the fibers lie in the streamline direction. The fibers in the shell have been 

oriented by the stronger shear flow near the wall. Other observed layers include 

core-shell transition layers and a 'skin' layer at the surface of the part. The skin layer 

is made up of polymer and fibers that have traveled through and been oriented by 

the fountain flow at the flow front and then quickly frozen at the mold wall [16,18]. 

The presence of this complicated structure is due to the changing 

combinations of stretching and shearing flows found in even the simplest of molds. 

The thickness of each layer is strongly dependent on such processing parameters as 

the Graetz number, the Brinkman number and the Pearson number, which compare 

injection time scales, heat transfer, and temperature scales respectively. Layer 

thicknesses are also dependent upon the rheology of the suspension which in turn is 

generally a function of the fiber orientation. 

From the discussion in this subsection it is apparent that fiber orientations or 

thicknesses of layers in injection moldings are critically linked to the processing 

conditions of the composite, and cannot be known a priori. Tucker [19] discusses 

several regimes which delineate the degree of coupling of fiber orientation to flow 

kinematics. Rarely can one confidently completely neglect the fiber contribution to 

the flow. Rather, flow, extra stress, and fiber orientation typically are closely 

coupled. 

2.2.3 Composite Rheology 

The presence of solid reinforcing fibers in the composite creates a material 

that is difficult to characterize Theologically. During processing, the fibers and 

polymer will flow together. Fibers reorient in response to the rotational component 

of the strain, while at the same time the fibers resist the fluid straining along their 
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axes. The fiber-polymer suspension therefore shows rheological behaviors that are 

not typically seen in homogeneous fluids. 

The fibers affect fluid properties in the same fashion as they affect mechanical 

properties such as stiffness and strength. That is, the fibers increase the viscosity in 

the flowing composite because they resist stretching along their axes. When fibers 

lie down along the streamlines of a shear flow, their contribution to the viscosity is 

lessened. Dinh [20] showed this in experiments with randomly dispersed fibers that 

resulted in high shear viscosity in comparison to that of suspensions with fibers 

oriented only in the planes of shear. 

In series of experiments, Barone and Caulk [21] studied compression mold 

flow of fiber reinforced thermosets. They found that the composite material 

traveled in plug flow as it spread through the mold, the gapwise velocity gradients 

being nearly zero. They reasoned that the material was slipping at the mold surface 

or that the shearing was confined to a very small region near the mold wall. In 

either event, the mold fills in biaxial elongation which yields very different flow 

front shapes when compared to that of typical Hele-Shaw or shear-dominated flow. 

Flow front progression is a critical aspect of controlled polymer processing, and the 

rheological contribution of the fiber reinforcement cannot be neglected. 

The combination of orientation-dependent viscosity with the knowledge that 

fibers reorient within the processing flow indicates that polymer composites are 

complicated materials that require careful process modeling. The rheology of short 

fiber reinforced composites has been linked to the rheology of suspensions, and that 

body of research is surveyed in Section 2.4. 

2.2 Description of Orientation in Fibrous Composites 

The previous section asserts that fiber orientation is a critical factor in the 

rheological and mechanical properties of the short-fiber reinforced composite. Also 
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apparent is a lack in quantitative relations between orientation and rheology. 

Quantitative relations for rheology or mechanical calculations require precise and 

economical representation of the orientation state of the composite. This section 

discusses several methods for characterizing fiber orientation. 

2.2.2 Orientation of a Single Fiber 

Consider first a single fiber immersed in the composite. The orientation of 

that fiber is described by the unit vector p pointing along the axis of the fiber. 

Alternately, the orientation of the fiber can be described by a pair of Eulerian angles 

6 and #. Figure 2.1 shows the fiber with its orientation in terms of the unit vector 

and the Eulerian angles. The components of p are related to 0and 6. 

pi = cos#sin0 (2.2a) 

P2 = sin#sin0 (2.2b) 

P3 = cos0 (2.2c) 

Figure 2.1 A single reinforcing fiber with an orientation specified both by the 
unit vector p and by the Eulerian angles 6 and <p. 
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Furthermore, since pis a unit vector, 

p-p = 1 (2.3) 

In generalized terms, the orientation of fibers in the composite is a random 

variable. The integral over all possible orientations of the fiber describes a unit 

sphere. 

<5 dp= f" [2K sinfldftty = 4TT (2.4) 
J P Jo Jo 

In the composite, the orientation of a single fiber on the unit sphere is actually of no 

practical value. Hundreds of thousands of fibers will typically be found in a short-

fiber reinforced composite. Keeping track of all individual orientations would 

require far too many degrees of freedom for any modern computer. Therefore, a 

simpler description of fiber orientation state, one that conveys the statistical nature 

the orientation of a fiber, is given in the next sub-section. 

2.2.2 Probability Distribution Function 

The orientation of a single fiber can be expressed only as a probability of 

existence somewhere on the unit sphere. We use a probability distribution function 

t}ip) to describe the likelihood that a fiber can be found near some particular 

orientation (say pi or 9\ & <pi). This probability P can be expressed in terms of the 

probability distribution function (PDF) and a small orientation range (dp or sinfl 

ddd<p) as 
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P(pl g p 3 pi + dp) = v(pl) dp (2.5a) 

and alternately as 

P(01 s 0 <: 0i +0*0, ^ i < ^ ^ i + fl^) = ^(0,^) sin 0i d0fl> (2.6b) 

This is equivalent to saying that the PDF describes the fraction of the fibers in the 

composite near a particular orientation. 

There are a number of stipulations associated with the PDF. First, since the 

ends of a fiber are indiscernible, 

# p ) = V("P) (2.7) 

V<0,̂ ) = # [ - 0 , - # (2.8) 

Furthermore, the orientation of any fiber is certain to lie somewhere within the unit 

sphere. Therefore, the integral of the PDF over the entire domain is equal to unity. 

1 = <f # p ) dp = f" [2K rlid,<p) sind dddtf, (2.9) 
JP Jo Jo 

This is also considered as a normalization condition [11]. 

2.2.3 Orientation Tensors 

A more compact description of the orientation state of a composite (or of a 

suspension of elongated particles) can be given by a truncated set of moments of the 

distribution function. Advani and Tucker [11] call these moments the "orientation 
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tensors." The first moment ai of the orientation probability distribution function is 

the ensemble average of the fibers in the material 

ai = € pv(p) dp = (p) - 0 (2.10) 

This representation of the first order orientation tensor follows Gibbs notation; it is 

written in boldface and the order of the tensor is indicated by the numeral in the 

subscript. The average of the orientation of all the fibers in the composite is the 

"ensemble average" and is denoted by the angle brackets. Orientation tensors can be 

calculated at every order and the next three are as follows. 

@2 = f pprpip)dp = <pp) (2.11) 

a3 = f PPPV(P) dp = 0 (2.12) 

a4 = f PPPPV<P) dp = (pppp) (2.13) 

Since the PDF is even, only the even order tensors are non-zero, and there are 

infinitely many. Typically, only the lower order tensors are used (first, second, 

fourth). 

In Cartesian tensor notation1, the orientation tensors look like, 

fl/jfc = f PjPkiKp) dp (2.14) 

*In Cartesian tensor notation, the number of indices indicate the order of the tensor. Following 

convention, a repeated index implies summation over all possible values of that index. 
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ajkht = € PjPkPiPmVip) dp (2.15) 

From their construction, one can see that the orientation tensors are completely 

symmetric. 

flyjt = flfcy (2.16) 

fl/Mn = Ijcml = akjnl = Ĵtm/ = *hnl) = -etc. (2.17) 

and that the higher order tensors contain all information about the lower order 

tensors. 

ajki = ap (2.18) 

ajkbinn = ajUm (2.19) 

The orientation tensors are functions of the probability distribution function and so 

it follows that the PDF can be reconstructed from the orientation tensors. 

^ P ) = iT+ 8̂  *%#*) + ^ tylmfjklAp) + - (2.20) 

In Eq. (2.20) the deviatoric versions of the orientation tensors are used. 

bjk = ayjfc - 3 fyfc 
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bjklm = ajUm ~ y(0)*4fm + fy <*km + dpi W + hiajm + SkmCljl + 6lmajk) 

+ 35 (5/Jt dtn + 6f 6hn + 6jm 6kl) (2.21) 

and the tensors fjk and fpm etc. are "tensor basis functions" defined as follows by 

Onat and Leckie [22] 

fjk = PjPk—§6jk 

fjkht = PjPkPPm - jityPPm + fyflfcpm + djmpipi + Ofc/pyftn 

+ dknfjPl + SlmPjPk) + 35(^8*1+df dhn + djm6kl) (2.22) 

The right-hand-side of Eq. (2.20) is the expansion of the PDF into its spherical 

harmonics. The use of a finite number of orientation tensors to represent ip is 

equivalent to truncating the harmonic series. Some information will be lost in the 

truncation, but the eccnomy of the orientation tensors is often an acceptable trade­

off for the accuracy and large size of the full PDF. 

2.2.4 Conservation of Orientation Probability 

The orientation will change due to motion in the suspension. The orientation 

in a suspension is a convected quantity which will change as the suspension flows. 

Thus, we need the material derivative to fully describe changes in the distribution 

function. 

D o o d 
Dt = Ft+v'V = di + vJdy < Z 2 3 > 
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In orientation space (a unit sphere), orientation is conserved. Therefore, the 

equation of conservation of orientation looks similar to that for conservation of mass. 

Dip 
-p- r=-V-(Vp) (2.24) 

On the surface of the unit sphere, the gradient operator reduces from generalized 

spherical coordinates to V = g r • The equation of change for the distribution 

function is simply 

Dip 3 
Df = - a p - ^ P > (2.25) 

The term in the parenthesis is an orientation flux. The time-rate-of-change of the 

orientation vector p is a function of the kinematics within the suspension. This is 

discussed in Section 2.4.3, and Chapter Three details a theory that involves a new 

expression for p. Equation (2.25) may be written in terms of the Eulerian angles by 

using the following relations. 

v • k ' ieTe + "Ŝ  (226) 

p = 6de- sin0 <f d* (2.27) 

This gives 
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^ = - & ( ^ > - ^ > o-*} 

Similar lengthy manipulations carried out by Advani [23] yield the 

conservation equation for the orientation tensors. The total derivative of the second 

order orientation tensor is shown here. 

Da2 1 1 • • 
] % - = - ^ (OJ -32 -32 - (o )+2 (Y -32-32 -Y - 2 y * 34) + 2Dr(6-/5a2) (2.29) 

Equation (2.29) is expressed as a function of the vorticity tensor to = (Vv-Vv1), the 

strain rate tensor y = (Vv+W1), an isotropic diffusivity D r , and j8, which equals 3 for 

three-dimensional orientation and 2 for planar orientation. Furthermore, the fourth 

rank orientation tensor 34 appears in the equation of change for the second rank 
D34 

tensor 32. Likewise, 36 appears in -^-and so on. Orientation tensors are moments 

of the probability distribution function and individually contain an incomplete 

amount of information about orientation state. The appearance of higher rank 

tensors in the equations of change is pervasive and presents a closure problem. This 

type of closure problem has been discussed by other researchers [11,24,25,26] and 

none could develop a closure that is suitable for all manifestations of the distribution 

function (i.e. nearly aligned vs. near random). The closure problem in the governing 

equation for the orientation tensors is the price that is paid for their economy. 

Suspensions of elongated particles such as short-fiber-reinforced composite 

materials include a structural variable such as the distribution function or a set of 

orientation tensors. Therefore, in addition to the standard conservation equations 

for mass, momentum, energy, etc., an equation is required that describes the 
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transport mechanism for the structure, the orientation state. Orientation probability 

must be conserved. 

2.3 Regimes of Suspension Concentration 

When discussing suspensions, the volumetric ratio of solid to fluid is a critical 

quantity whose magnitude dominates much of the fluid mechanics. Typically the 

concentration c is separated into three distinct regimes; dilute, semi-dilute or semi-

concentrated, and concentrated. We will consider these regimes for suspensions of 

rigid fibers of length L and diameter D. 

The dilute regime is characterized by particles whose motions affect no other 

particles in the suspension. The mean minimum separation distance between fibers 

is greater than L. A single fiber in suspension will be completely free to rotate 

without interference from other fibers. This single fiber must be insulated from 

neighboring particles by a sphere of fluid of minimum diameter L; if n is the number 
1 d2 

of fibers per unit volume, n<jj. This corresponds to a concentration c < JJ-

When fibers are on average separated by distances less than a fiber length yet 

more than a fiber diameter, one can expect non-negligible hydrodynamic interaction 

between particles. This is the semi-dilute regime. The disturbances to the flow field 

due to fluid motion around one particle affect the flow field around its neighbors, 
1 1 

and occasional close mechanical contact is possible. In this case JJ < n < -rrj and 
dl d 
L 2 < c < r . 

The concentrated regime is characterized by each fiber having numerous 

neighbors within a distance of d. Interactions between fibers become a significant 

factor in the force balance on each fiber. When the number volume fraction n > -rrj'-

and the concentration c> -r, the suspension is concentrated. For a suspension of 

fibers with a typical aspect ratio (say j = 100), the concentrated regime begins at 1% 
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volume fraction of fibers. Typical volume fractions in commercially viable short 

fiber reinforced composites lie in the range of 10-50%. 

2.4 Rheology of Suspensions 

The flowing composite material comprised of fibers and molten polymer may 

be considered a suspension. The behavior of solids immersed in fluids have been 

extensively studied and this section reviews those results. 

2.4.2 Single Particles in Dilute Suspension 

Einstein [27] was the first to apply the results of hydrodynamics the flow 

around a spherical solid. His calculations include the force on the particle surface 

and from that he derives the effective viscosity rj of the dilute suspension. 

rj = /i(l + 2.5c) (2.30) 

The right-hand-side of Eq. (2.30) requires fi, the viscosity of the Newtonian 

suspending fluid and c, the volume fraction of spheres in the dilute suspension. 

"Dilute" here signifies that the spheres remain so far separated in the suspension that 

hydrodynamic perturbations due to the presence of any one are felt by no other 

particle. 

The classical solution of the hydrodynamics around an ellipsoid was 

provided by Jeffery [28]. A neutrally buoyant ellipsoid immersed in a simple shear 

flow will exhibit a rotation caused by the fluid. His result for the rotation rate is 

typically referred to as a Jeffrey orbit. 

dd> . .(fl2-&2) 
W = * = Y (gl+az) (sin2fsin20) (2.31) 
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W = 0* = (gzl&2) (fl2cos2* + &*sin4) (2.32) 

0 and # are defined in Figure 2.1 and a and b are the major and minor axes of the 

ellipsoid. In a shear flow, the ellipsoid will rotate about an axis in the shear plane 

perpendicular to the streamlines. The rotation rate will be very high when the 

particle is oriented perpendicular to the plane of shear and very low when the 

particle lies in the plane of shear. The rotation rate expressions can be integrated 

twice with respect to time to yield the period of rotation Tr of a particle in a shear 

flow. This is the time required for one Jeffrey orbit. 

Tr - ^ i ^ (2J3) 
aby 

The work of Burgers [29] follows Jeffrey's result for a slender body,' an 

ellipsoid with an infinitely large aspect ratio, a/b » 1. In that case the orientation 

behavior is given as 

0 = y sin2^sin20 (2.34) 

0* = y* cos20 (2.35) 

Slender body theory will be covered more thoroughly in the first section of Chapter 

Three. 

2.4.2 Behavior of Interacting Particles 

The preceding results for motions and suspension viscosity are valid only for 

dilute suspensions of particles. When two or more particles approach one another 
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they will interact. The interactions studied in the literature include hydrodynamic 

interaction, mechanical interaction, and Brownian motion of larger rod-like 

macromolecules. 

Mason and coworkers have conducted an extensive research program on the 

behavior of interacting particles in suspension. Spheres, rods, and discs are included 

in their literature, which is concerned with the motions of individual particles, 

collision kinematics, steady state behavior, and reversibility and dispersion of 

particle interactions. 

Two- and three-body collisions of non-Brownian spherical particles have been 

studied by Karnis, Goldsmith, and Mason [30], and Anczurowski and Mason [31]. 

When two spheres approach, their paths curve about the other, and the particles will 

rotate as a rigid dumbbell in an mutual orbit. Eventually the pair will separate, and 

upon reversal the phenomenon will be repeated exactly backwards. Anczurowski, 

Cox, and Mason [32] have demonstrated reversibility in a small collection of rods in 

suspension. 

Studies of larger rod suspensions [32,33] have shown steady state orientation, 

losses in suspension memory (i.e. irreversibility) and permanent changes in the 

orbital constants. These effects result from long- and short-range particle 

interactions and Brownian disturbances in dilute suspension. Mason and Manley 

[34] have postulated that slender rods affect a suspension volume up to 100 times 

that of the particle volume. This large effective volume causes particle interaction to 

be more frequent as the aspect ratio grows and leads to a restriction of free rotation 

for rods in suspensions. 

Cox [35] has done an asymptotic analysis of the forces, moments, and 

resultant motions of suspension particles nearly in contact with each other and with 

walls. In a Newtonian fluid of viscosity n at a minimum separation distance h, 

forces and torques are of the order of 0( n ln(/z)). 
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In a dilute suspension, the interaction volume may be very large because the 

hydrodynamic disturbances decay slowly, proportional to the inverse of the 

separation distance. Shaqfeh and Koch [36] investigated hydrodynamic interactions 

of rigid rods in suspension with a fixed bed of spheres. They cite that particle 

shielding or "Brinkman screening" can significantly damp the long range 

hydrodynamic fluctuations, allowing a simplification in non-dilute suspensions that 

permits the researcher to consider only short range interactions. 

2.4.3 Experimental Suspension Rheology 

Short fiber reinforced composites are processed in a liquid state. Therefore, 

controlled mold filling is a rheological undertaking. This section discusses the 

kinematics, stress and viscosity characteristics observed in experiments with fiber 

suspensions particularly as related to polymer composites. 

Reviews of non-dilute suspension rheology have been completed by Kamal 

and Mutel [37], Dinh and Armstrong [38] and by Maschmeyer and Hill [39]. Among 

the first observations to be made in all of these reviews: the addition of elongated 

particles to a Newtonian suspending fluid creates a non-Newtonian suspension. 

Also, as one might expect, an increase in the fiber concentration or aspect ratio will 

increase the viscosity. 

Many different non-Newtonian characteristics are cited in the literature. 

Consistently cited is a shear thinning behavior. At low shear rates many 

suspensions show a Newtonian plateau. As the shear rate grows, viscosity 

decreases, and often another Newtonian plateau is established at high shear rates. 

This shear thinning behavior is more prominent as the volume fraction is increased. 

In the literature of liquid crystal rheology [40,41] this same shear thinning is also 

often noted. The reviews of non-dilute suspension rheology also cite numerous 

examples of yield stresses and normal stress effects like Weissenberg rod climbing. 
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Several experimental non-dilute suspensions have displayed plug flow 

behavior in shear. This is related to extensional viscosities measured to be orders of 

magnitude higher than the Newtonian result of 3ji. Though only a few phenomena 

are consistently reported for all suspensions, and results occasionally contradict one 

another, all researchers emphasize that fiber orientation is a critical quantity and that 

curious transient results were dependent upon the rotations of the fibers in the non-

dilute suspensions. 

The introduction of solid fibers will affect viscosity and stress while at the 

same time altering the flow kinematics. A study of a dilute suspension flow through 

a 4:1 contraction by Libscomb, Derm, Hur and Boger [42] shows a pronounced 

increase in the size of the recirculation zone ahead of the contraction. This is again 

related to the extensional flow in the contraction and the suspension's increased 

viscosity of extension. Furthermore, Libscomb et al. successfully modeled their 

experimental flow by incorporating the fiber orientation and the resistance to 

elongation in a finite element calculation. 

Theories like that of Jeffery [28] and Burgers [29] predict that fibers will 

always align in the direction of largest positive strain rate in elongational flow, or in 

the case of shearing flow, lie predominately in plane of shear rotating with periodic 

Jeffery orbits. These trends are qualitatively exhibited in all suspension orientation 

studies, but perfect alignment or perfect orbit behavior is never present. Stover, Koch 

and Cohen [43] and Folgar and Tucker [44] have observed a diffusive behavior in the 

orientation of fibers sheared in a Couette device. 

The addition of solid rod-like particles to a Newtonian fluid creates a 

suspension that shows many curious phenomena. All of these rheological behaviors 

are a result of the interplay between straining fluid and solid particles moving and 

rotating in the mixture. The following section reviews the research into the 
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theoretical examinations of suspension rheology and the physics that govern their 

behavior. 

2.4.4 Theoretical Suspension Rheology 

Theoretical treatment of suspension begins with the work of Einstein [27] and 

Jeffery [28] and has recently seen a growth in research interest. Work aimed at 

extending the viscosity expression from a dilute suspension of spheroids has been 

reviewed by Frish and Simha [45]. Within their findings one sees that as the 

concentration is increased, hydrodynamic interactions and two-body collisions must 

be accounted for. This approach yields a viscosity that takes the form of an 

asymptotic expansion in concentration. 

r\ = n (1 + cq (c)c + az(c2) c2- + 0(c3)) (2.36) 

The a terms are basis functions all of O(l) in magnitude. Recall that for a dilute 

suspension with no interactions, a\ = 2.5 and all others equal zero. There is little 

agreement over the form of the basis functions. 

Similarly, continued analysis of the behavior of suspensions of ellipsoidal 

particles have produced corrections to the viscosity worked out by Jeffrey. His 

expression for dilute suspension viscosity parallels that for spheroids (spheroids are 

simply a special case of ellipsoids). The expressions are again dependent on the 

Newtonian viscosity of the suspending medium and the aspect ratio and volume 

fraction of ellipsoids. The basis functions in this case are a function of concentration 

and of the ratio of major to minor axes of the ellipse. Mutel [46] reviews much of 

the research aimed at these basis functions for ellipsoids, which are affected by not 

only the flow fields but also Brownian motion and hydrodynamic disturbances from 

neighboring fibers. 
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An increase in the number density of the suspended fibers complicates the 

motion of the particles in the semi-concentrated suspension. Flow field disruptions 

and mechanical interactions begin to affect neighboring particles. Multi-body 

interactions will affect the orientation of all involved fibers; often this is irreversible. 

This has been shown through many of the experiments discussed in Sections 2.4.2-3. 

Where physics is uncertain, a phenomenological approach can prove useful. 

The particles in suspension create a material with an internal structure. The first 

objective description of a generalized fluid with a built-in direction is the 

Transversely Isotropic Fluid developed by Ericksen [47]. A suspension of elongated 

particles has a directional nature by virtue of the presence of the particles. By 

including only the first order functions of the fluid director, p, the orientation vector 

in the instance of ellipsoidal suspensions, he derived the following equation for extra 

stress T. 

T = \iy + m + j//2Y :pp + W * *PP + P P ' Y) (2.37) 

The constants m are viscosities which can be calculated from theories such as 

Jeffrey's equations or may be left to the experimentalist to determine. Barthes-Biesel 

and Acrivos [48] have shown that nearly all constitutive equations derived for 

spheres, ellipsoids, and droplets conform to this empirical form. 

Theoretical approaches to rheology of non-dilute suspensions of long fibers 

have only recently seen much interest in the literature. Among the first, Batchelor 

[49] extended early work on these systems and calculated bulk rheological 

properties of suspensions of fully aligned ellipsoids in a Newtonian fluid. The extra 

stress in a suspension of ellipsoids is given as 
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T = jUY*+c2op (2.38) 

Op is the stress in a single particle calculated via integration of the fluid forces over 

the ellipsoid surface. The summation is performed over all the particles in the 

suspension. In his theory Batchelor assumes an elongational flow and the uniform 

stretching direction orientation that would accompany such a flow. This theory uses 

a cell model approach, reducing the suspension problem to that of a single particle in 

an effective continuum comprised of fluid and fibers. Once the stress on the single 

fiber in the cell is derived, the sum is carried out over all particles in the suspension. 

Dinh and Armstrong [50] followed Batchelor's work and developed a 

rheological model for semi-concentrated fiber suspensions. Their model is created 

by focusing again on a test fiber' in the suspension. Dinh and Armstrong use 

slender-body theory established by Burgers [28] to describe the fluid forces on a rigid 

cylinder in a moving fluid. The surrounding Newtonian fluid and fibers make up 

an effective medium that influences the hydrodynamics of the test fiber. The fiber in 

this effective medium will travel and rotate affinely with the bulk excepting that it 

cannot stretch. The presence of the fibers produce an extra term in the stress after 

that of Batchelor. 

r2 

T = A*Y +-I2"&K:<PPPP> (2.39) 

Here K = (Vv)T = -—• is the velocity gradient tensor and (pppp) is the ensemble 

average of the fourth order dyadic product of the unit orientation vector p. C is the 

fluid drag coefficient tensor and has the form 
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C = rppp + Ct(o-pp) (2.40) 

where >̂ and ft are the coefficients describing the drag on the cylinder from axial 

and transverse fluid motion respectively. For a dilute suspension of cylinders in a 

Newtonian fluid, Cp = Ct/2 * pL. Dinh and Armstrong give an estimate for the 

axial drag coefficient as a function of lateral fiber spacing h in a non-dilute 

suspension. 

2%jwL 
CP = h(2///D) (2 '41) 

Orientation behavior from Dinh and Armstrong's theory is equivalent to 

Burger's [28] and to Jeffrey's equation [27] with an infinite axis ratio for the rigid 

rods. 

p = K'p-K:ppp (2.42) 

Equation (2.42) shows that the rods will follow the straining fluid ( e p ) but will not 

stretch ( - K:ppp ). Dinh and Armstrong's theory predicts perfect alignment of the 

fibers in steady shear and in elongation. Experiments with typical extrusion and 

injection molding materials, and laboratory suspensions, show this qualitative 

relationship between flow and orientation. Fibers will lie down in the plane of shear 

or will rotate into the direction of stretching. But, contrary to theory, perfect 

alignment is rare. Dinh and Armstrong's theory also predicts no fiber contribution 

to suspension viscosity in steady shear flow. A small amount of out-of-plane tilt in 

orientation can significantly affect resistance to steady shear. 
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Hinch and Leal [51] have studied the diffusive effect of Brownian 

disturbances on the orientation state of small elongated particles. Brownian motion 

affects the stress in the suspension both through orientation perturbations and 

through added stresses in the particles from the collisions. Doi and Edwards [52] 

have also developed a rheological theory for Brownian rod-like particles in 

suspension (liquid crystals). They include an observation that the rods are caged or 

entangled' by neighboring rods, and from a calculation of the average interparticle 

spacing, they can write an expression for diffusivities of the particle. Doi and 

Edwards surmise that axial diffusion is unaffected by caging and that transverse and 

rotational diffusion will be restricted by interparticle spacing. 

Other researchers have developed theories that result in a diffusivity in the 

particle translation and rotation. Dilute polymer solutions have been studied for 

many years using Hookean dumbbells. Wedgewood and Ottinger [53] have shown 

that even in dilute solution, flow about one dumbbell can cause a hydrodynamic 

interaction that effects the neighboring particles. Furthermore, they have shown that 

preaveraging the configuration-dependent terms in the hydrodynamic drag tensor 

nullifies the effects of interactions between particles. That is, the interaction-induced 

diffusion is only present when the hydrodynamic fluctuations are included in the 

flow field around each particle. 

Hydrodynamic interactions have also been studied in suspensions of rigid 

rods. Shaqfeh and Koch [36] use "multiple reflection expansions" of hydrodynamic 

interactions and neglect longer range interactions on the basis of what they cite as 

hydrodynamic screening". This makes the orientation averaging techniques 

tractable and is essentially an extended use of Batchelor's cell model approach that 

includes several fibers in the cell. They found that the orientational diffusivity for 

the rods would increase due to interactions as concentration grew within the dilute 

regime, and then diffusivity would begin to decrease in the semi-concentrated 
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regime due to hydrodynamic screening. The hydrodynamic screening essentially 

reduces the relative variance of interaction effects between fibers. 

One of the earliest and most basic theories for fiber suspensions that include 

an orientational diffusivity was proposed by Folgar and Tucker [44]. This theory 

includes an empirical diffusion term that is derived from no particular mechanism. 

The rationale behind including a diffusion term was to model mechanical interaction 

effects in the suspension. This gives an expression for fiber orientation behavior that 

looks like that of Dinh and Armstrong [51] with one addition. 

Ci y oip 
p = K-p-K:ppp - — ^ (2.43) 

The third term of the right-hand-side of Eq. (2.43) is a phenomenological diffusion 

term. Q is the interaction coefficient, and y is the scalar magnitude of the strain rate. 

This combination simulates a strain rate dependent diffusion, appropriate for 

particles whose motion is driven by the suspension strain. Otherwise, this term acts 

in a fashion similar to rotary Brownian diffusion, disorienting fibers aligned by the 

motion of the fluid. Numerical and experimental work by Bay, Tucker and Davis 

[54] using this interaction coefficient with injection molding flows show that 

inclusion of interaction effects in Eq. (2.43) captures more of the physics of fiber 

orientation, but procedures for choosing an appropriate Q are not well established. 

2.5 Stochastic Geometry and Statistics 

The fibers within a composite form a network whose geometry is crucial to 

the rheology of the suspension. Yet this geometry cannot be specified explicitly. The 

orientation of a particular fiber or the aggregate orientation in a particular position 
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can only be expressed as a probability. Often the fibers are small and numerous 

enough and the scale of the flow sufficiently large to provide small variances in 

statistical quantities that rely on the orientation. If this is true, the material may be 

modeled with a continuum theory with orientation as a state variable. If a 

suspension property P is reliant upon the fiber orientation p, the bulk property is 

calculated from an average of the quantity over orientation space which is weighted 

by the probability distribution function. 

E(P) = <P> = £ ip{p) P(p) dp (2.44) 

In statistical terms this is the expected value of P created from the ensemble average 

of the contributions of the fibers. This is the method of determining the stiffness 

properties of fiber-reinforced composites discussed in Section 2.1.3. The actual result 

of P may often not be exactly the expected value. Variance gives an indication of the 

size of the deviation possible. The variance of this property is the squared expected 

deviation from the mean. 

VanT) = <(P-<P»2) = £ #p) (P(p) -E(P))2 dp (2.45) 

As time advances, the orientation state will change. Therefore, the value of P 

is a function of time as well as the random variable p. The correlation function 

measures the degree to which P(ti) is related to P(t2), (t2 a ti). 

<*-« • mttZ(-Z-m 
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This function is identically equal to one (1) when 12 = ti- As 12 - ti goes to infinity, 

the correlation function goes to zero. The two terms in the numerator will become 

uncorrelated. 

The time scale over which orientation states are uncorrelated is the correlation 

time. This quantity is essentially the area under the curve of correlation as a 

function of time difference. 

e = r°°C(t2-ti)dt2 (2.47) 
Jti 

Fiber networks have long been studied in the paper-making industry, and 

Kalmes and Corte have published a series of work on the stochastic geometry of 

fiber networks [55,56]. Crucial to the strength of paper sheets is the number of 

crossings experienced by each fiber in the material. Fiber crossing will also serve to 

generate interaction forces in wet suspensions of polymer composites. Kalmes and 

Corte calculate the average number of crossings Nj experienced by a fiber of length L 

in a 2 dimensional sheet having n& fibers per unit area to be 

N, = ^ ^ (2.48) 
Jt 

If the orientations of fibers in a polymer composite are nearly all in-plane as often 

seen in compression molding and thin injection molds, n& can be approximated as 

n& = nd. This results in an equation for the number of fiber crossings or number of 

fibers that pass within a* of a particular fiber. 
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2cL 
Ni = —j (2.49) 

For a typical composite with a fiber volume fraction of 10% and a fiber aspect ratio 

of 100, the expected number of crossings will be 6.4. This suggests that interactions 

due to fiber crossings are not a negligible factor in composite material suspensions. 

2.6 Summary and Conclusions 

The mechanical performance of short fiber reinforced composites are heavily 

dependent upon the orientation of the reinforcing fibers. Generally, each fibers acts 

only as reinforcement along the axis direction. Processing of these materials creates 

the orientation in the final part, while simultaneously the orientation influences 

rheology and mold filling. 

Most polymer composite materials may be considered concentrated 

suspensions of fibers in polymer melt or pre-polymer. Theoretical and experimental 

studies of fiber suspensions have made progress towards describing the 

concentrated regime. The behavior of a single fiber in a straining fluid is well 

established and researchers have calculated the orientation dependent rheological 

properties of these suspensions. As concentration is increased, fiber-fiber collisions 

become a factor in the both the orientation behavior of the fibers and in the 

rheological properties of the flowing material. Interactions have been accounted for 

in phenomenological and hydrodynamic models, and the results of these suggests 

that dispersion due to interactions is important for many industrial applications 

involving fiber-laden flows. 

In suspensions of fibers representative of short-fiber reinforced composites, 

direct fiber-fiber contact is highly probable. Theories that include hydrodynamic 

and Brownian interactions show an orientational dispersion. A theory that includes 

mechanical particle-particle interaction in concentrated suspensions is needed to 
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model the coupled elements of orientation and rheology in commercially viable 

short-fiber reinforced composite materials. 
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3. A THEORY FOR MODELING CONCENTRATED FIBER SUSPENSIONS 

The preceding chapter has demonstrated the need for a model of 

concentrated fiber suspensions that can be used to model the processing behavior 

of short-fiber reinforced polymer composites. This chapter details the 

development of an analytical model that will serve that need by including the 

probability that fibers in the suspension will be subject to mechanical interaction 

with neighboring fibers. This rheological model combines ideas from slender 

body theory [29] with a statistical description of the mechanical interactions that 

occur during processing of short-fiber-reinforced polymer composites. 

3.1 Definitions 

The continuum theory is built by considering a single fiber immersed in 

the suspension. This single fiber will be called the test fiber.' The surrounding 

fluid and fiber suspension will be considered an homogenous entity, referred to 

as the effective medium. 

Figure 3.1 shows the test fiber and its geometry in the suspension. The 

Figure 3.1 The test fiber of length L and diameter d at position rc with 
orientation p. The coordinate s is measured along the axis in the p 
direction. 
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position of the centroid of the fiber is given by a vector rc measured from a fixed 

Cartesian coordinate frame X\, X2, X3. The orientation of the fiber is described by 

the unit vector p pointing along the axis of the fiber. The orientation can also be 

described by a pair of Eulerian angles ^ and 0. The components of p are related to 

<f> and 0. These relations are given in Eq. (2.2a-c). The orientation of the test fiber 

in the suspension is a random variable which can be described with a probability 

distribution function ip(p) = ip((p,6). The probability of finding a fiber oriented in a 

range p to p+dp is given by the product VKp)dp. 

The test fiber is likely to experience several contacts from neighboring 

fibers in the suspension. The number and position of these contacts and the 

orientations of the "interacting fibers" are all random variables. Figure 3.2 

shows the test fiber and the i t h of N possible interacting fibers. The contact point 

lies at position s, along the test fiber and position $i' along the interacting fiber. 

The exact location of the contact point within the suspension can be specified by 

the position and orientation vectors of either fiber in conjunction with its axial 

coordinate. 

rcontact = rc + Sjp = rcj" + Sj'pj' (3.1) 

interacting fiber 

x 1 / x 2 / / ^ t e s t fiber 

Figure 3.2 Test fiber and the i th interacting fiber. 

contact point 
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The test fiber serves as a representative of all fibers in the suspension. It 

will rotate and translate and contribute to suspension stress in response to the 

stress applied by the effective medium and whatever interaction forces are 

present. 

3.2 Assumptions 

Several assumptions are used to create a model for the non-dilute 

suspension of rigid rods. 

• The suspending medium is a Newtonian fluid 

• Inertia and gravity effects are negligible. 

• Suspended particles are slender, rigid rods of uniform length and 
diameter 

• The bulk flow field is homogeneous. 

v = K • r where Kjk = •Q-^-

• Particle-particle interaction force is linear in relative velocity 

(hydrodynamic friction) 

• Fibers are shielded from all but nearest-neighbor interactions 

3.3 Slender Body Results for a Single Fiber in a Straining Fluid 

The stress in the test fiber is partly due to the strain in the effective 

medium surrounding the fiber. The differential hydrodynamic force dFn on an 

infinitesimal segment of the fiber ds is, according to slender body theory, 

proportional to the velocity difference between the effective medium and the 

fiber segment. 

dFh = £ C' [v m e d i u m - vsegment] ds (3.2) 
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The factor of proportionality C is the hydrodynamic drag tensor, and has the 

following form 

C=Ca(25-pp) (3.3) 

Ca is the scalar axial drag coefficient that depends on the fiber dimensions and the 

viscosity of the liquid. Equation (3.3) describes a transversely isotropic 

hydrodynamic drag. The drag is twice as strong in the transverse direction as in 

the axial direction. 

The velocity of the effective medium v m e d i u m at a position r in a 

continuum experiencing a homogeneous deformation is 

v = K • r (3.4) 

neglecting any solid body translation or choosing an appropriate origin for r. 

Replacing r in Eq. (3.4) with the position of ds on the fiber will give the effective 

velocity of the continuum at the segment. The differential force of Eq. (3.2) can 

be expressed in terms of the vectors rc and p, their timewise derivatives, and the 

coordinate s. 

2 
dFh = [-C [x (rc + sp)-(rc +sp))ds (3.5) 

Total hydrodynamic force on the fiber results from integrating Eq. (3.5) 

over the entire fiber length, -L /2 <; $ <J +L/2. 
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Fh = C - [ K T c - r c ] (3.6) 

Equation (3.6) indicates that the force of the straining medium on the fiber 

is independent of p, the rotation of the fiber. In the absence of inertia effects and 

fiber-fiber interactions, fiber centroid motion is found by setting F n = 0. 

rc = x • rc (3.6) 

The fiber centroid will travel affinely with the effective medium in the absence 

of any other forces besides those imparted by the suspending fluid. 

The moments exerted on the fiber due to the fluid motion can be 

determined by again considering a small element of the fiber at a distance s from 

the centroid. The force at that point is dFh, and the differential moment on the 

segment is 

dMh = sp x dFh (3.7) 

Integrating as before yields the moment on the rigid fiber from the straining 

fluid. 

L2 

M h = p x j2 | C - [ K - p - p ] } (3.8) 
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The hydrodynamic moment exerted on the fiber is independent of the 

translation of the fiber. 

The motion of the orientation vector in the absence of other moments can 

be calculated now by setting the hydrodynamic moment on the fiber equal to 

zero. 

L2 

p x To ( C - [ K . p - p ] } = 0 (3.9) 

This equation implies that p is collinear with the vector on the right of the cross-

product symbol. The collinear relationship between the terms in the cross 

product can be expressed in another fashion. 

L2 

g(t)p = T2 U - [ K * P - P ] } (3.10) 

The orientation vector multiplied by some unknown scalar function of time is 

equal to the vector on the right. To solve for the unknown scalar function g(t) it 

is useful to substitute the expression for the tensor drag coefficient in Eq. (3.3) 

L2 

g(t)p = |2 { Ca [ 25-K-p-pp-K-p-26-p+ pp-p ]} (3.11) 

Since the orientation vector is a unit vector (i.e. p is inextensible), the derivative 

p must be normal to p. Use of this fact and rearrangement yields 
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g(t)p = 12 { Ca [ 2K.P - Kippp - 2p ]} (3.12) 

Taking the dot product of both sides with p will yield an expression for g(t) will 

eliminate the p dependence on the left hand side and the p on the right hand 

side. 

ilr 
g ( t ) = ^ [ K : p p ] (3.13) 

Substitution of this relation back into Eq. (3.12) and rearrangement will give an 

expression for slender-body-theory fiber rotation. 

p = K«p-x:ppp (3.14) 

This is equivalent to the fiber rotation used by Dinh and Armstrong [38] in 

their theory, or to Jeffrey's equation [27] in the limit of infinite aspect ratio. It is 

derived via slender body theory for suspension dynamics that include no fiber-

fiber interactions. 

3.4 Force and Torque from Mechanical Fiber-Fiber Interaction 

Chapter Two demonstrated that interactions between fibers will contribute 

significant effects to concentrated suspension rheology. Furthermore, it 

confirmed that mechanical interactions (defined as particle separation distances 

less than d) are not only possible but are probable. This section extends the 

slender body theory for fiber suspensions to include interaction forces from 

nearby fibers. 

-41-



3.4.2 Forces from a Single Interacting Fiber 

Inclusion of the effects of interacting fibers begins by considering a single 

additional fiber approaching within one diameter of the test fiber. The position 

and orientation of the interacting fiber is described like that of the test fiber with 

the addition of a prime, rc' and p'. Equation (3.1) for the contact position is valid 

as the fiber diameter goes to zero in the slender body limit. Figure 3.3 shows the 

geometrical relationship of the test fiber and the interacting fiber. 

The force exerted on the test fiber by the second fiber shall be called a priori 

f. The force on the interacting fiber will be equal and opposite, f = - f'. A 

constitutive equation is required to describe the interaction force in terms of the 

kinematic variables. This development is left to a following section and for the 

present/is assumed to be known. 

The total force on the fiber now is the sum of the hydrodynamic force and 

the interaction force. 

F = C* [KTc-r'd + f (3.15) 

The motion of the centroid is found by setting the total force equal to zero. 

Figure 3.3 Interacting fiber action resolved into interaction force f at 
contact point s. 

-42-



rc = KTc + C^'f (3.16) 

The inverse of the hydrodynamic drag tensor is shown in Appendix A to be 

C-l = 2^"(B + p p ) (3.17) 

Equation (3.16) then becomes 

rc = K-rc + 2 ^ (5 + pp) • f (3.18) 

The centroid motion will be affected by the presence of the interaction force. 

Note that the tensor (5 + pp) allows forces in the p direction to be doubly 

effective at moving the fiber. 

The interaction force induces a translational dispersion velocity to both 

fibers v j and va'. 

vd = 2^ - (5 + pp)-f (3.19) 

The dispersion velocity of the interacting fiber will be equal and opposite. 

V d ' = 2ftT (5 + PP)*( - f > (3.20) 
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The moments on the test fiber can also be summed, yielding an expression 

for the rotation of the fiber in the presence of the interaction force. The 

interaction moment is simply the moment arm crossed with the applied force. 

Mi = sp x f (3.21) 

Summation of hydrodynamic and interaction moments give the total moment 

on the test fiber. 

M = P * | 12 C - [ K - p - p ] + s f | (3.22) 

When the moment is set to zero it is again apparent that the term in the curly 

brackets of Eq. (3.22) must be collinear with p . Therefore the orientation 

behavior of the test fiber is found in the manner described in Eq. (3.14). 

6s 
p = K-p-K:ppp+-£2£-f - (6-pp) (3.23) 

Again, the interaction force alters the motion of the fiber from the di lute 

response. The tensor ( 5 - pp ) selects forces perpendicular to p ; these are the 

only components that can change the orientation. The fluid drag coefficient 

inhibits the rotational effect of the interaction force. 
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3.4.2 Forces from Several Interacting Fibers 

One interacting fiber on the test fiber is easily conceptualized, but the step 

to several interacting fibers is required. Consider N interacting fibers each 

denoted by the subscript i, i = 1,N. The total force on the test fiber can be written 

in manner similar to Eq. (3.15) 

F = C ' [K- r c - r c ] + 2 f i (3.24) 
i=l 

The motion of the test fiber can be expressed as a function of the 

hydrodynamic motion and the interaction forces. 

1 ^ 
rc = K-rc + 2 7 - ( 5 + p p ) \ 2 fi (3.25) 

' a i=l 

The total moment on the test fiber includes the moments due to the forces 

fi applied at positions Sj. 

M = p x j ^2 C [ K-p -p ] + S sifj I (3.26) 

The test fiber will rotate in response to the moments applied. Equating the 

total applied moment to zero, the orientation behavior of the test fiber is 

determined for multiple interactions with neighboring fibers in the suspension. 

p = K 'p - K:ppp +TTF .2 %fi • ( 5 - pp ) (3.27) 
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3.5 Continuum Stress 

Presuming that the contact forces and geometry are known, calculation of 

the stress in the continuum is possible. The stress in the continuum is the sum 

of the stress in the fluid phase plus the stress in the solid fiber phase, as shown by 

Batchelor [50]. His cell model approach involves considering a small volume of 

the suspension containing only one fiber surrounded by the effective medium. 

The volume of this cell will be (1/n), where n is the number density of the fibers. 

Figure 3.4 shows the representative cell of the test fiber surrounded by effective 

medium. 

Random samples of the stress along the length of the representative 

volume will yield a stress contribution due to the average force carried by the 

fiber in the p direction on the p face and a stress contribution from the 

surrounding medium. —ris the area transverse to the fiber, and F is defined as 

the average force carried by the fiber. The slender fiber will not contribute to the 

any shear stress nor any normal stress not in the p direction. The stress in the 

Figure 3.4 Representative volume of suspension with stress contribution from 
the single test fiber. 
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test fiber cell is given by the following equation. 

t(p) = A*Y + nL F p (3.28) 

This stress is a function of the orientation of the test fiber p because the cell 

is built about that particular fiber. A continuum expression for the stress in the 

suspension is found by averaging the effects of the microstructure of fibers, by 

performing an orientation average over all possible fiber directions. 

The average force carried in the test fiber remains to be found. The fiber 

load as a function of the axial coordinate s can be found via a force balance on a 

segment of the fiber. This process gives an expression for the force carried by the 

fiber as a function of s. Figure 3.5 shows the fiber segment with associated forces. 

2 F = 0 = fmedium + (interactions + p(s) (3.29) 

The internal load at any position s is balanced by the integral of the 

continuous suspension forces on the fiber and the sum of the contact forces. 

- • medium forces (continuous) 

-F(s) 

-•contact forces (discrete) 

Figure 3.5 Free-body diagram of fiber segment. 
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F(s) = -C_U1 i t * [ KTc + SK«p - r'c-sp ] ds + X fiw(s-si) (3.30) 

In this equation, u(s-s;) is the unit step function, equal to zero if s < si and equal 

to one otherwise. The boundary condition on the end of the slender fiber is force 

equal to zero. Carrying out the integral gives the force in the test fiber as a 

function of s. 

F(s) = - ^ s + j ) IC • [ K T C - rc] - ( y - -£) |;C * [ K-p- p ] - 2 Uu(s-si i) 

(3.31) 

The average force is then is found through integration of Eq. (3.31) with 

respect to s and division by L. 

F " z£n mds <3'32) 

The result of this integration after substitution of the terms for fiber motion 

from Eq. (3.24) and Eq. (3.27) yields a simple expression for fiber load. 

- L N Si 

F = ^ C- xzppp + 2 j ; f i • pp (3.33) 
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Note that the average force in the fiber, a product of straining medium and 

random interaction forces, will always lie in the fiber axis direction. This is 

consistent with the assumptions of slender body theory. 

Substitution of average fiber force into Eq. (3.28) gives bulk stress in the 

immediate vicinity of the test fiber. 

t(p) = PY + -J2~ G" *:pppp + " .2 Sif; • ppp (3.34) 

The fiber contribution to the stress is a normal stress along the fiber axis 

(manifested in the tensor pp). Moreover, if f j is set to zero, Eq. (3.34) reduces to 

the result of Dinh and Armstrong [38], which is consistent with their assumption 

of no fiber-fiber interactions. An orientation average of the stress performed in 

order to determine the aggregate affect of the microstructure on the suspension is 

not truly valid yet, as the interaction forces in Eq. (3.34) will very likely be a 

function of orientation. That functional dependence is unkown at this point but 

will be developed in the next sections. 

3.6 A Constitutive Relation for Interaction Force 

The continuum stress contains a term for the forces applied by the 

interacting fibers and the positions of contact. Interaction force cannot be known 

a priori, and therefore we require a constitutive relation that will give the 

interaction force in terms of the kinematic variables of the effective medium. 

Using the assumption that this interaction force is hydrodynamic in 

nature, a simple expression can be written. 

fi = f l - [ r c ' + s i ' p ' - r c - s i p ] (3.35) 
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This gives the contact force as some tensor i\ multiplied by the relative velocity 

of the interacting fiber at the point of contact with the test fiber. The 

hydrodynamic friction is given with a tensorial form to produce different forces 

for different configurations and relative velocities of the fibers. 

The translation and rotation of the test fiber are given by Eqs. (3.24) and 

(3.27). These equations also describe the motion of the interacting fibers. 

Substitution of these equations into the constitutive relation gives 

fi = f r [ {K-rc' + 2 ^ ( 5 + P i ' P i ' ) \ f fj'} 

6 Nf 
+ Si'[ K-pi' - Kipi'pi'pi' + ^ - 2 Sj'fj' • ( 5 - pi 'pi ')} 

' i {KTc + 2 ^ ( 8 + p p ) - 2 fiJ 

Si{K-p-K:ppp + ^ 2 ^ 2 S i f j - ( 5 - p p ) } ] (3.36) 

The summations within the first two terms in curly brackets are over all 

interactions on the i t h interacting fiber. Several terms on the right-hand side 

will cancel due to geometric factors associated with the contact point. 

fi = fi * [ { Si K:ppp - Si'Kzpi'pi'pi') 

+ 2%[(5 + P i ' P i ' ) ' ^ % 

6 Nj' 
+S i ' 72T-2 Sj'fj'.(G-pi'pi') 

'- sa i=l 
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1 N 
- 2 ^ ( 5 + p p ) - 2 fi 

- S i ^ - . 2 s i f i - ( 5 - p p ) ] (3.37) 

One can see that each individual interaction force fj on the test fiber is 

dependent on the motion of the test fiber and all interacting fibers on both the 

test fiber and the ith interacting fiber. Fiber contact forces and fiber motions are 

therefore interdependent. Shaqfeh and Koch [36] solve a similar difficulty 

involving hydrodynamic interactions using a multiple reflection expansion 

technique. 

As a closure approximation, we will use the dilute motion of the fibers 

involved in interaction to determine the interaction force. This approximation 

could serve as a first step in an iteration scheme, or the hydrodynamic friction 

coefficient tensor may be modified to accommodate higher order effects of 

interaction motion. Using this assumption for the fiber motion, Eq. (3.37) is 

simplified to include only the terms in the curly brackets. 

fi = f r [siKZppp-Si'Kzpi'pi'pi'] (3.38) 

In this form, the interaction force is a function of the bulk velocity field, 

test and interacting fiber orientations, and contact position only. Substitution of 

Eq. (3.38) into the expression for stress in the neighborhood of the test fiber gives 

-51-



T(p) = w + - j j - £• x:pppp 

N 
+ n 2 Si fi • [ SjK:ppp - Sj'xrpi'pi'pi' ] • ppp (3.39) 

i=l 

The stress in the cell about the test fiber is a function of bulk strain rate, test fiber 

geometry and contact fiber geometry. 

The interaction force coefficient tensor will be a function of the separation 

distance, the intervening fluid viscosity and the area of contact. Relative 

velocities of contacts in the transverse directions and in the axial direction on the 

test fiber may have different effects. This suggests a simple transversely isotropic 

form for the force coefficient tensor. 

fi = / P p p + y r ( 5 - p p ) (3.40) 

Other tensorial combinations of p and p could be used to create the interaction 

drag coefficient tensor, but none are as simple as this form. Inserting Eq. (3.40) 

into the equations for fiber translation, rotation and cell stress yields interesting 

results. We begin first by inserting the relations for fiber interation force, 

including the transversely isotropic form of the interaction force coefficient. 

1 N 
rc = K-rc + 2^ - (5 + p p ) - 2 | / p P P + / r ( 5 - p p ) ] - [ spcppp -sj'Krpi'pi'pi' ] 

(3.41) 

The tensor dot product ( 5 + pp )'[fpPP +fr (8 - pp)] can be completed first because 

the tensors are symmetric. 
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\fpPP +JT (5 - PP)] • ( 5 + p p ) = 2/ppp +frib - pp) (3.42) 

Replacing this product in Eq. (3.41) gives 

1 N 
rc = K T C + 2 ^ .2 [2/ppp +frib - pp)] • [ SiK:ppp - Si'Krpi'pi'pi' ] (3.43) 

Using the same procedure on the fiber orientation equation (3.27) 

p = K«p-K:ppp + 

6 N 
TzT 2 stfpPP +fr (5 " PP)] * [ Si%:ppp - Sj'Kzpi'pi'pi' ] • ( 5 - pp ) 
L' *•& i = l 

(3.44) 

The dot product of the tensors \fppp + / r ( 8 - p p ) ] • ( 6 - p p ) leaves only the 

transverse terms in the equation, a significant simplification. 

p = K-p - K:ppp + p £ - 2 s\fr [ siK:ppp -Si'K:pi'pi'pi' ] • (5 - pp) (3.45) 

Furthermore, the stress equation is simplified through the same process to 

include only the axial term of the coefficient tensor. 
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. . nL' 
T(p) = py + ^ 2 " C'K:pppp 

N 
+ nZjSifp [s;K:ppp-Si'K:pi'pi'pi' ] p p p (3.46) 

1=1 

In the case of the orientation and the stress, the effect a transversely 

isotropic interaction force coefficient tensor is actually nil. The orientation uses 

only the scalar coefficient from the transverse motion, and the stress uses only 

the scalar coefficient from the axial motion. This is to be expected actually, since 

axial motion will not rotate a fiber and the slender body can bear loads only along 

the axis. Therefore a scalar version of the interaction force coefficient will be 

suitable in all following computations. 

Another possibility for interactions is two fibers approaching in the 

direction perpendicular to the plane defined by their orientation vectors. This 

motion would have the effect of changing the separation distance between the 

solid particles, and the contribution to the interaction force tensor would include 

a term in the pxp' direction from relative motion in the pxp' direction which is 

proportional to the inverse of the changing separation distance. 

The scalar interaction force coefficients will be a function of the relative 

orientation of the test fiber and the interacting fiber. When the fibers lie at right 

angle to one another, the area of the contact is approximately d2. As the angle 

between two fibers decreases the area of contact increases. Therefore, the scalar 

interaction coeficient is proportional to the inverse of the sine of the angle 

between the test fiber and the interacting fiber. 

3.7 Fiber-Fiber Contact from Geometric Probability 

The contact geometry for interactions with fibers having orientations p;' at 

positions S{ and sj' cannot be expressly given for calculation of equations like Eq. 
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(3.39). Fiber network geometry in a suspension of small particles is a stochastic 

variable. Contacts on the test fiber can be given only in terms of probabilities. 

This section details a method of statistically accounting for fiber-fiber crossings in 

the suspension, and using that description to determine the fiber microstructure 

effects on the suspension rheology. 

A discrete sum over i intersecting fibers is not applicable for a fiber in an 

actual suspension; instead an integral of the probability of contact over the 

length of the test fiber, over the length of the intersecting fiber, and over all 

possible orientations for the intersecting fiber must serve to represent discrete 

contacts. Intersection probability increases with fiber length, fiber number 

fraction and with the angle between the fibers. In a suspension containing n 

fibers per unit volume, the expected number of fibers in a volume V is simply 

n V. If we restrict fiber orientations to lie nearly in a single plane, a common 

occurrence in thinner injection and compression molds, the probability of 

contact becomes clear. Contact probability is the probability of finding a fiber in a 

volume of fluid adjacent to the test fiber segment. 

Consider an infinitesimal segment of the test fiber. If there exists a 

crossing at that point, an intersecting fiber segment will reside in the portion of 

effective medium just above or below the test fiber segment. The volume of that 

Figure 3.6 Two pairs of fibers with different relative orientations. Crossing is 
less likely as intersection angle leaves it/2. 
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Figure 3.7 Test fiber segment. Crossing occurs if an interacting fiber segment 
lies in the volume of fluid above or below the test fiber segment. 

portion will depend on the angle of intersection between the interacting fiber 

and the test fiber. Figure 3.6 demonstrates this geometrical relationship in a top 

view of the test fiber and an interacting fiber. The probability of contact with a 

fiber at 90° is higher than that for a fiber at some angle /3 * m/2. The area of the 

parallelogram that the interacting fiber centroid must lie in for crossing to occur 

is a maximum at b = jt/2 and decreases to zero as /3 goes to zero or JC. 

Figure 3.7 shows the infinitesimal test fiber segment oriented at p . Above 

and below are volumes in the effective medium whose size are one fiber 

diameter thick by an area of dsxds' multiplied by the absolute value of the sine 

of the angle between p and p'. The probability P of contact at a given segment on 

the test fiber equals that fluid volume multiplied by the number of fibers per 

unit volume times the fraction of fibers at the intersecting orientation. 
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P = 2n ip{p) d ds ds' I pxp' I dp' (3.47) 

The total number of fiber interactions expected on the test fiber may be 

found by integrating this probability along the entire test fiber length, along the 

lengths of all possible interacting fibers and over all possible interaction 

orientations. 

E(N) = fc.f^ZfUji *" #?')d ds ds' ^ P ' ' d P ' (3.48) 

Equation (3.48) can be evaluated for random in-plane fiber orientation by 

using ip = —. The result of the integration gives the expected number of fiber-
2JI 

fiber crossings per fiber in a random in-plane fiber suspension. 

2cL 
E(N) = —j (3.49) 

n a 

Equation (3.49) is identical to that of Kalmes and Corte [55] for 2D wood pulp 

networks (Eq. (2.49)). 

3.8 Probabilistic Expressions for Fiber Motion and Suspension Stress 

To this point, N had been assumed to be known for development 

purposes, but it is a random variable whose expected value can be calculated. 

The previous section showed how the probability of contact can predict the 

expected number of contacts on some test fiber of orientation p. All other 

functions of the random variables involving number and orientations of 

interacting fibers can be expressed in the same fashion, with integrals over the 

probability space of interaction replacing a sum of discrete interactions. 
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3.8.2 General Expressions 

The probability integral can be substituted into the equation for fiber 

centroid translation. The integral is substituted for the sum in Eq. (3.24) to give 

the expected value of fiber translation. 

Etfc) . K.rc+|i £ £ £ £ £ W> wi 

fi • [ SKzppp-s'xippp ] ds ds' dp" • ( 6 + p p ) (3.50) 

Evaluation of this integral for any form of the distribution function yields a 

trivial result. The expected motion of the centroid is simply the dilute motion. 

E(r*c) = KTC (3.51) 

All of the effects of interactions have been averaged out of the picture in Eq. 

(3.51). The same situation develops when evaluating the integral expression for 

fiber motion. The orientation behavior of the test fiber in the suspension is a 

function of random fiber interactions as well as straining fluid 

E(p) = K'p-K:ppp + 

fi • [ s2K:ppp - ss'Kzp'p'p' ] ds ds' dp' • ( 5 - pp ) (3.52) 
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This integral too is identically equal to zero for any distribution function. 

E(p) = K-p-Kzppp (3.53) 

The expected orientation behavior of a fiber in a suspension with multiple fiber-

fiber interactions is simply the dilute motion. 

The stress equation including the integral of probable interactions from 

neighboring fibers in the suspension is 

nl? 
E(T(p)) = ny + -^~ X.' K:pppp + 

2nHJ^>')lp><p'1 

fr • [ s2K:ppp - ss'Kzp'p'p' ]dsds' dp* • ppp (3.54) 

The integral term in this equation is not identically equal to zero for any 

distribution function. Mechanical fiber-fiber interaction in non-dilute 

suspension will cause an increase in the stress in a non-dilute suspension. 

3.8.2 Results for Random-in-Plane Orientation 

As a means of examining these expressions for suspension stress and fiber 

motion analytically, we now consider the special case where fibers are randomly 

distributed in space and randomly oriented parallel to a single plane. 

Furthermore, in order to extract an analytical expression for expected stress about 

the test fiber, we will simplify the hydrodynamic inter-fiber friction tensor to a 

scalar constant f\. The expected values for test fiber motion remain the same as 
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that seen in Eq.s (3.53) and (3.51). Yet with these stipulations, the equation for 

stress simplifies to a more elucidating form. 

riO- „ n W / j 
E(t(p)) = fJCi + -22~C'K:pppp +—jj^-Kcpppp (3.55) 

Two observations can be made regarding this equation. One, the inclusion 

of mechanical interactions produces a new term in the stress expression (third of 

the right-hand side of Eq. (3.55)), a term that is second order in fiber number 

fraction. In that respect, this result is analogous to constitutive equations for 

non-dilute suspensions of interacting spheres. Two, the interaction term has the 

same functionality with respect to suspension kinematics and test fiber 

orientation (x:pppp) as the fiber-fluid term. Therefore, simplified theories like 

those of Dinh and Armstrong [38] or Batchelor [50] could accommodate fiber-fiber 

contact through a modified hydrodynamic fluid drag tensor £. 

3.8.3 Orientation Averaging for Suspension Stress 

This theory for non-dilute suspensions including fiber-fiber interactions 

was developed using a cell model or test fiber approach. To this point we have 

concerned ourselves only with the behavior of the test fiber and the suspension 

in its immediate vicinity. In order to predict the stress in the continuum which 

represents the macroscopic behavior of the suspension, Eq. (3.47) for stress in the 

cell about the test fiber must be integrated over all possible orientations of the 

generalized "test fiber." 

E(t) = £ ijip) E(t(p)) dp (3.56) 
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For a random in-space distribution and random in-plane orientation the 

result for stress is 

E « p ) ) = PY + l2"C'K:<pppp) + " 1 2 «(PPPP) (3.57) 

In Eq. (3.57) the angle brackets indicate an ensemble average over all possible 

values for the fourth-order dyadic product of the orientation vector. This is the 

fourth order orientation tensor of the suspension as described by Advani and 

Tucker [11]. 

Discussion of the macroscopic behavior of the individual fiber motion is 

not meaningful. Test fiber rotation and translation is only pertinent at the 

microscopic level, at the level of the fiber, not at the macroscopic level of the 

continuum representation of the suspension. Rather, the o r i e n t a t i o n 

distribution function and the fiber number fraction are macroscopic variables 

which will change with respect to time and position. These require their own 

conservation equations which are discussed in the following section. 

3.9 Conservation Equation for Orientation Probability 

The work discussed thus far demonstrated expressions for the expected 

values of the stress state and fiber motion in suspension. These were derived 

from the averaged quantities for interaction, and produced trivial results for fiber 

motion. The effects of interaction simply averaged out. But, no single fiber in 

the network will experience precisely the average interaction effect. The 

stochastic nature of the fiber network will introduce variance in the interactions 

upon a fiber. This will lead to variance in the dependent quantities of stress, 

fiber orientation and fiber translation. 
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Variance in the factors that influence fiber orientation are the mechanistic 

basis for what Folgar and Tucker [44] proposed as orientational diffusion. Fiber 

orientation is a stochastic variable, given in terms of a probability distribution 

function ip. The evolution of a stochastic variable is described by the Fokker-

Planck equation (e.g. Reif [55]). 

Dip 3 r , 1 a 2 , 
Dt = ~ 3p" * [*(P)#)] + 2 3pT : D W W ] (3-58) 

In this equation, A(p) and D(p) are defined as follows. 

A(p) = UmI<M 
T-»0 X 

D(p) , ^ S ^ ) 
x—0 x 

Here Ap represents the random orientational change of a fiber over a time t. In 

Eq. (3.52), the expected value of the orientation change in a small time is the 

expected value of p" (as in Eq. (3.46)). A(p) is therefore named the advection 

vector. D(p) is the expected value of the square of the angle change possible in x. 

It is called the diffusion tensor, and can be expressed as eVar(p), where e is a time 

scale over which the interaction geometry (number and position of contacts) is 

uncorrelated. Appendix B details the derivation of D(p) = eVar(p). A(p) has 

already been calculated in Eq. (3.46), and Var(p) is derived similarly according to 

the definition of statistical variance. The diffusion function is given as the 

integral 
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{ fi • [s2x:ppp - ss K:p'p'p] • (6 - pp) fds ds' dp' 

(3.61) 

Here the superscript n indicates a dyadic product of the vector term in the curly 

brackets with itself. Using this particular form of the advection-diffusion 

equation, the time evolution of the orientation state ip can be solved for any 

given suspension kinematics. 

The random variables of interaction will influence fiber orientation, and 

they will fluctuate over small time increments. The correlation time e is a 

measure of those small time scales of fluctuation. It is calculated from the 

correlation function (Eq. 2.46) for orientation behavior. 

% - „ ) _ «P<W-tf»tfW-<P>» (3.62) 

<(P«l)-<P»2> 

Initially, the correlation function is equal to one and it decreases to zero as f% 

goes to infinity. The correlation time measures speed at which the correlation 

function shrinks to zero, e is the integral of the Correlation function over time 

from *2 = fl to <2 — °°-

Jt2=n 
C(t2-ti)dti (3.63) 
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This integral is not evaluated explicitly for concentrated suspensions of 

rigid rods. The magnitude of the correlation time is proportional to the inverse 

of the scalar magnitude of the strain rate. Faster motion in the suspension 

means shorter times over which interaction geometries change. Furthermore, 

correlation time is proportional to the inverse of the number of fibers in the 

neighborhood of the test fiber. More fibers nearby mean more opportunities for 

the interaction geometry to be altered. Therefore, the correlation time used in 

the diffusion function (Eq. 3.61) will have the following dependencies. 

e « —X ( J ~ J ) = (Y„ndL2)-l (3.64) 

"V^Y? 

Three factors are involved in the fiber oriental or Always present is the 

fluid motion, acting to align the fibers. Random mechanical fiber-fiber 

interactions will tend to disorient fibers, adding a mechanical dispersion, 

spreading the distribution function. As the concentration is increased, the 

magnitude of the mechanical interaction force will increase as fiber-fiber crossing 

becomes more frequent. Yet as the concentration is increased, variance in the 

interaction forces betweeen the fibers will decrease. This will tend to lessen the 

dispersive effect of mechanical interaction. Dispersion effects that increase and 

then decrease with concentration have been observed in the literature [26,44]. 

The spatial fiber distribution can be treated in the same fashion as the 

orientation. These calculations will reveal the effect of particle interactions on 

phenomenon such as fiber agglomeration or non-uniform dispersal. In this case 

we are concerned with a fiber number fraction which is a function of position 

n(r). The Fokker-Planck equation in this case has the form 
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W=-dr" K(r)»(r)] + ~ : [D„(r)n(r)] (3.62) 

The number fraction advection vector is the expected value of the centroid 

motion given in Eq. (3.44). 

A„(r) = K-r (3.63) 

The number fraction diffusion tensor is the variance of the centroid motion 

multiplied by the correlation time. 

end - f+L/2 p¥hli D»*"<» - BU"nf"n *->'«' 
II { fi • [ SK:ppp - s'K:p'p'p' ] • (5 + pp) } ds ds' dp' (3.64) 

Equations (3.58) and (3.62) are the governing equations for the macroscopic 

variables that are concerned with the microstructure of the composite 

suspension. The number fraction of fibers and the orientation of those fibers are 

critically important to the rheology of the suspension and to the mechanics of 

the solid composite. Therefore, transport equations are needed to describe the 

evolution of the microstructure during processing. Inspection of these equations 

(3.58) and (3.62) together with the momentum transport equation (3.54) reveals 

that they are all coupled. Kinematics produce stress which produces 

reorientation which alters kinematics, etc.. 
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3.10 Summary 

This chapter details the governing equations for a fluid with an internal 

structure. Processing of fiber reinforced polymer composites is related to the 

rheology of concentrated fiber suspensions. Within a concentrated or non-dilute 

suspensions of long slender particles, particle-particle interactions are highly 

probable. The effects of these interactions are here incorporated into a theory for 

the evolution of the structure and the stress in the suspension. 

Mechanical fiber-fiber interactions cause an increase in the normal stresses 

in the suspension. Mechanical fiber-fiber interactions induce dispersive fiber 

velocities resulting in a diffusive effect in the probability distribution function 

describing the orientation. Both of these phenomena have been witnessed 

experimentally and are reported in Chapter Two. 
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4. NUMERICAL SIMULATION OF CONCENTRATED SUSPENSION THEORY 

This chapter describes numerical solutions to the theory for concentrated 

suspensions of interacting fibers. The equations for suspension stress and fiber 

orientation distribution typically have no analytical solution, therefore a 

numerical approximation is an appropriate means to determine the behavior of 

the governing equations. The numerical work detailed in this chapter is focused 

on a solution to the conservation equation for orientation, Eq. (3.58). This 

equation is solved for planar fiber orientation states where the orientation can be 

described by only a single Eulerian angle <f> (0 = n/2). (See Figure 2.1.) 

The governing equations developed in Chapter Three are given in terms 

of the general 3D orientation vector p, and by that virtue the theory is properly 

invariant under coordinate rotation. The simplified 2D planar equations in 

terms of 0 are presented in Appendix C, and the orientation conservation 

equation is Eq. (C 6). These are not properly invariant in that they must rely on a 

specific plane of fiber orientation being known a priori. Even so, the restriction 

allows a significant simplification and economy in the numerical solution, as 

well as facilitating clearer visualization of the results. 

The goal of the work described in this chapter is to calculate transient and 

steady state behavior of the advection-diffusion equation for orientation 

distribution function. Orientation results are given for planar flows in shear, 

elongation, and combinations thereof. Viscometric functions of the suspensions 

under strain are also presented. 

4.1 Formulation of the Finite Difference Solution 

4.2.2 Governing Equations 

The equation of conservation of orientation is a special form of the 

advection-diffusion equation. 
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IX = " d$ [A^^)] + \a%- &WV#] (41) 

The subscripts ^ will be henceforth dropped from A and D for the sake of 

simplicity and clarity. 

The harmonic character of the domain and the nature of the probability 

distribution function are well served by the flux-conservative form of this 

equation in the numerical solution. The change in the probability distribution 

or the fraction of fibers at 0 is due only to orientation moving into or out of the 

differential volume about <f>. The amount of orientation probability multiplied 

by the velocity with which it is carried is the flux. 

Dy j) 
dip 

uw o , i 

^ = --{Flux(0} (4.2) 

Transformation of Eq. (4.2) into this form gives 

15F = - J^(*)y(*> - 2^[D(#V#]| (43) 

It is elucidating to differentiate the second term on the right-hand-side of 

Eq. (4.3) into two parts. 

Dy 
Dt = - ^ { ^ ( 0 ) ^ ) - | D ( ^ [ W ) ] " \ V<0^[D(0]} (4.4) 
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The right hand side of this equation has an advecfion term and a standard 

diffusion term similar to those seen in mass or heat transfer. The third term in 

the curly brackets is a second diffusion-derived term. Its existence is due to the 

fact that the interaction-driven diffusion term D(0) is a function of the 

orientation. This creates a flux of oriented fibers due to the non-constant fiber 

dispersion effects of fiber-fiber interaction. To summarize, the flux in the curly 

bracket is comprised of three terms. By dividing each by the distribution 

function, an orientation velocity results. 

Advective velocity: A(<p) 

Diffusion velocity: D # ) = ^ j ^ W ) ] 

Interaction velocity: Iv(<p) = — [D(<p)] 
o<j> 

The fully-explicit finite-difference form of Eq. (4.2) is written as follows 

^ " " ^ = _ — [Flux™?'2 - Flux"?'2] (4.5) 
At A0 l 1 

The superscript index m denotes position and the subscript index ; denotes time 

within the finite difference scheme. The flux is derived from the terms in the 

curly brackets of Eq. (4.3). The flux out of the finite difference grid point is 

evaluated as follows. 

m+,/, [ A T V r ^ T ^ 1 [Dfy/f-DTVn 
2 " 2 A0 H u xn«/2 = •• » r » L%Ld _ ± ±Z_L_L_L_ LJLld (4.6) 

The flux into the grid point is 
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1 2 2 A^ 

Fully explicit time differencing of transient problems is prone to 

numerical instability problems, and small time steps are required to retain well 

mannered solutions. A two-step predictor-corrector method is used in this work 

to avoid such difficulties. This method requires making an initial calculation for 

the time derivative of the probability distribution function. Then, rather than 

using that number to move to time = i+1, the calculation is remade at time = 

i+1/2. The time derivative of yr found at i+l/2 is used to step yfrom i to i+1. 

In equations, this process first needs the probability distribution function 

at the intermediate time step. 

Next, the temporary value of y is used to correct the derivative of the 

distribution function and calculate the new value of yr. 

%s#J,,W ™ 
This is also known as a second-order Runge-Kutta method. Higher order 

predictor-corrector methods exist which often provide more economical explicit 

time differencing. In spite of this fact the primary computing time requirement 

in this problem is the integration of the diffusion function D(0), and integration 

must be performed with each prediction and each correction. 
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The diffusion term is integrated at each orientation over all possible 

orientations of the interacting fibers. The analytical diffusion integral is derived 

in Chapter Three and simplified for planar orientation in Appendix C. 

D(# = 4endL2//2Ca-2 f" v#) sin 1 0 - ^ I 

[cos2*' %%+ sin2f % ( + cosf sinf ( % S # ^ d f (4.10) 

This is the diffusion integral after integration over the lengths of the 

interaction and test fibers has been executed with a constant n (uniform spatial 

orientation). This equation for the diffusion function uses the scalar fiber-fiber 

interaction force coefficient, which is proportional to [sin(0- 0")]_1. The sin(...) 

term accounts for the variation in area of interaction as the relative orientation 

between test fiber and interacting fiber changes. If g(0,0',O represents the 

integrand of Eq. 4.10, the numerical representation of the integrand is g"-n, where 

n signifies the grid points of the interacting fibers, we write the numerical 

integration as a sum. The numerical integration is performed over all n using 

the trapezoidal rule. 

f-1 
A0 i 

oT= Z ItgT+sT'W (4.1D 

n=0 

where g"Jn takes the form 

g"T = 4endL2/;2Ca-2V^1sinl0m-^l 
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Equations (4.6) and (4.11) make up the equations solved by the finite difference 

simulation. 

4.1.2 Boundary and Initial Conditions 

The domain of the equation for conservation of orientation in three 

dimensions is the surface of the unit sphere. For a planar orientation, the 

domain is the boundary of a unit circle; fibers may be oriented at any angle 0 £ <f> < 

2n. Yet, fibers at n are indistinguishable from those at 0 or 2%. Therefore, it is 

useful to consider only the domain of orientation as 0 < 0 < % where fibers at 

some angle <t>* are equivalent to those at #*+ rt. Furthermore, the boundary 

conditions on y(<p) are harmonic. That is, 

V<TI) = y(0) (4.13a) 

30V(TT) = ^ y ( 0 ) (4.13b) 

The initial conditions required for the numerical solution are simply a 

specification of y{<p) the orientation state at time equal zero, the onset of strain on 

the suspension. The orientation in polymer composite suspensions will often be 

random at the beginning of processing and thus while any initial orientation 

state is possible we will begin from a random-in-plane orientation. In that case, 

Y is a constant equal to —. 
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4.2.3 Problem Parameters 

Solutions of the difference equations require certain suspension and 

kinematic data. Velocity gradients are the key to fiber rotation, and they must be 

specified. The theory and thus the numerical code requires the planar velocity 

gradients -^r, ~^L, -^-, and-3^ in the input file. We will examine the behavior 

of the solutions for shear and stretching flows as well as combinations of each. 

The fiber-fiber interaction force coefficient describes the magnitude of the 

hydrodynamic friction between two fibers at a separation distance of less than or 

equal to d. The strain rate in the fluid between the interacting fibers is therefore 
^relative 

greater than or equal to -3 . The suspending fluid viscosity is p, and the 

area of interaction between the two fibers goes like d2sin(0-0')- Therefore, the 
ud 

interaction force coefficient can be expressed as/j> - /x_ ,,x. 

The hydrodynamic drag tensor is characterized by the axial drag coefficient 

Ca- Burgers [28] calculated Ca = Lp in slender body theory. The correlation time e 

is related to the inverse of the frequency of new interactions on the test fiber. 

The frequency of interactions must be proportional to the strain rate g , the 

aspect ratio of the fibers L/d, and the number of fibers in the suspension near the 

test fiber nL2d. At the same time, an increase in the number of interacting fibers 

on the test fiber will lessen the significance of each individual interaction 

thereby increasing the correlation time (from Eq. 2.49, number of interactions = 

2nL2d/ii). Therefore, in a concentrated suspension where the number of fiber 

crossings per fiber is greater than one, the time over which the interaction 

geometry is uncorrelated has the following form. 

e = 0 
. xd 1 2nL2d 

Kn" LnLd2 it = O 
. ,2d 

V 1 ^ (4.14) 
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This relation is pleasantly simple but strictly an approximation of the size 

of the correlation time. The experimental work detailed in Chapter Five will in 

part be devoted to assessing this assertion about the correlation time. 

4.2 Numerical Results 

This section demonstrates the numerical behavior of the mechanistic-

interaction fiber orientation model. Here we examine predictions for probability 

distribution function and the components of the its governing equation (Eq. 4.1) 

according to the suspension dynamics described in the previous chapters. Flows 

found during processing of short-fiber reinforced polymer composites can be 

generally considered to be combinations of shear and stretching. Therefore, the 

response of concentrated suspensions of fibers in shear and elongation are 

studied. 

4.2.2 Shearing Flow 

The numerical model described in the preceding sections of this chapter is 

exercised for an suspension described initially by a random-in-plane orientation 

distribution function in a planar shear flow. In this case the velocity field is 

vx = 0; vy = y\x vz = 0 (4.15) 

The results shown in Figures 4.1-4.7 were generated using the parameters given 

in Table 4.1. 

Figure 4.1 shows the evolution of the probability distribution function y. 

The distribution function is initially uniform for all orientation angles (i.e. 

random, in-plane orientation). The fibers in the suspension are rotated by the 
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Table 4.1 Input parameters for numerical simulation of flow and orientation 
of a concentrated suspension with fiber-fiber interactions 

Parameter 

scalar strain rate 

number density 

fiber length 

fiber diameter 

suspending fluid viscosity 

interaction force coefficient 

hydrodynamic force coefficient 

interaction correlation time 

time step size 

angular step size 

Symbol 

y„ 

n 

L 

d 

P 

fi 
Ca 
e 

M 

A</> 

Value 

0.25 

6.82e9 

12.7e-3 

152.4e-6 

1.0 

30.0e-3 

12.7e-3 

0.01 

0.01 

7T/30 

Units 

1/s 

l / m 3 

m 

m 

Pas 

Pa-s-m 

Pas-m 

s 

s 

radians 

straining motion that has been imposed on the system. Soon the largest fraction 

of fibers are oriented primarily in the direction of the y axis where <f>= it/2. 

The peak of the probability distribution function is skewed away from 

<p = 7r/2 due to the fact that shearing flow has an asymmetric rotational 

component. While the slender fibers that lie perfectly in the streamline will 

experience zero hydrodynamic torque, the slightest alignment away from <p = 7r/2 

results in very different behaviors depending on the sign of the angular 

disturbance. The fiber whose orientation is displaced -A0, or towards the 

direction of principle positive normal strain rate is rotated back towards the 

streamline. Meanwhile, fibers which are displaced +A# are rotated away from 

the streamline until the fiber has rotated 180°. 

Figure 4.2 shows profiles of the distribution function at selected times 

during the simulation. For the flowing suspension in Figure 4.2, time equals 

four (4) seconds and 32 seconds are equivalent to the scaled times y t of Figure 

4.1 of one (1) and eight (8) respectively. Scaling the time by the magnitude of the 
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strain rate (in this case y = 0.25 s"1) gives an indication of the magnitude of the 

total strain in the suspension. 

The orienting strength of the advective contribution to the probability 

distribution function is given in Figure 4.3. This is the fiber rotation that Jeffrey 

[28] calculated, given by Eq. (2.31). The angular velocity of fibers oriented at right 

angles to the streamlines is maximum, while fiber parallel to the streamlines 

experience no effect of the rotational component of the strain in the suspension. 

The diffusion orientation velocity, shown in Figure 4.4, shows the 

disorienting effect of fiber-fiber interactions. While the fibers are aligned by the 

shearing motion, they are hindered and dispersed by the interaction forces 

between the fibers. Figure 4.5 shows the interaction orientation velocity. This 

term exists as a result of the fact that the strength of the diffusion changes with 

orientation. 

In Figure 4.6 are displayed the simulation results for the diffusion 

function D(<p,t). The diffusion is used in the orientation calculations, and it is 

itself a function of the orientation and requires a numerical integration over 

every node, at every node, and at every time step. The result is a diffusion that is 

smallest in the direction aligned with highest orientation probability density. 

This distinctive shape is the result of a pair of factors. The interactions that 

create the diffusion effect are more numerous for fibers oriented away from the 

streamlines. Meanwhile, interaction forces from fibers oriented perpendicular to 

the streamlines will be largest, due to the fact that they have the largest advective 

angular velocity. The interaction velocity in the probability flux term is a result 

of the changing magnitude of the diffusion. 

Orientation tensors are a compact means of describing the state of the fiber 

orientation in a suspension of fibers. The terms of the two-dimensional second 
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order orientation tensor are shown in Figure 4.7. At time equals zero, the 

diagonal terms an and 022 are equal indicating no preferential, or random-in-

plane, orientation. As the fibers begin to line up along the streamlines, the 022 

term grows at the expense of an. Meanwhile the growth of 012 indicates that the 

most probable orientation is tilted slightly away from the y-axis. 

4.2.2 Stretching Flow 

The behavior of a suspension of rods experiencing fiber-fiber interaction 

in a planar stretching flow is examined through the next set of figures. Planar 

stretching has a velocity field described by 

Y Y 
vx = -~Y x; vy = ~Y y; vz = 0 (4.16) 

All other inputs for the simulation of planar stretching are the same as those for 

the planar shear simulation of §4.2.1 and are given in Table 4.1. 

Figure 4.8 shows the evolution of the orientation probability distribution 

function for a concentrated suspension in planar stretching. The distribution 

function is presented for select times during the simulation in Figure 4.9. The 

initially random fibers are rotated towards the streamlines from both directions 

in stretching flow. Therefore, the planar elongational flow will result in a 

peaked distribution function that is symmetric about the streamline direction 

C/>=TT/2. 

The convective orientation velocity imparted to the fibers by the bulk 

straining motion in the suspension is shown in Figure 4.10. Fibers at angles less 

than 7r/2 have positive angular velocity while those at orientations greater than 

7r/2 will be rotated in a negative direction towards the streamline. 
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The diffusive and interaction orientation velocities are shown in Figures 

4.11 and 4.12 respectively. As heretofore shown in the simulation of shearing 

flow, the dispersive effect of fiber-fiber interaction produces terms that must 

change the overall orientation state of the suspension. Once again, the diffusion 

effect is not constant for fibers at all orientations. 

The diffusion function D(0, t) , for planar elongation shown in Figure 4.13 is 

evidently not constant for suspensions with mechanical fiber-fiber interactions. 

D((f>, t) shows a marked dip in the region where the fibers are most highly 

aligned. This occurs because the fibers oriented at <p = n/2 are least likely to 

experience crossings from other fibers in the suspension. Fewer crossings mean 

lower dispersive effect from fiber-fiber interactions. 

The orientation tensor elements for a suspension in planar stretching are 

shown in Figure 4.14. The initially random suspension has a\\ and 822 

equivalent at 0.5, but the strain in the suspension orients the fibers in the y-axis 

direction. In the case of no dispersion effect from fiber-fiber interaction, the 

orientation tensor #22 would quickly attain a value of unity, all fibers aligned in 

the y direction. Fiber-fiber interaction precludes perfect alignment of the fibers. 

Since planar stretching is symmetric about the y axis, there will be no 'tilt' to the 

orientation distribution and the simulation shows that a\2 remains zero 

throughout the test. A comparison of the tensorial results in Figures 4.14 and 4.7 

reveals that, although the shear and stretching flows have equal magnitudes and 

the interaction parameters are equivalent, the stretching flow aligns the fibers 

more quickly and more strongly. 

4.2.3 Viscometric Functions and Combination Flows 

The introduction of fibers into the Newtonian solvent will produce a 

suspension with a viscosity that will be significantly larger than that of the 
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solvent alone. Furthermore, since the fibers are anisometric, they create 

viscosity increases that are anisotropic. The viscosity of the suspension is a 

function of the straining in the Newtonian solvent viscosity and the resistance 

of the fibers to stretching along their axes. The simple shear viscosity in a fluid is 

defined as 

U = JSBL' (4.17) 

Yxy 

The shear stress is given in the expression in Eq. (3.55). After substituting the 

expressions for the hydrodynamic drag coefficient (Eq. (2.40)) the shear stress the 

shear stress for any orientation state results. 

Txy = PY'xy + "12" & Y'*!f <PxPyPxPy) + —12 Yxy (VxpyVxPy) (4.18) 

The terms in the angle brackets are elements of the fourth order orientation 

tensor, (pxpypxpy) = 21212- The shear viscosity is therefore 

/* + 
p^ + ^] f l l 2 1 2 (419) 

The orientation tensor #1212 can be calculated from the probability 

distribution function shown in Figure 4.1, the orientation in planar shear. Using 

this and the values given in Table 4.1, the shear viscosity for the suspension is 

calculated and shown in Figure 4.15. From Table 4.1, the size of the first term in 

the square brackets of Eq. (4.19) is O(103), and the second term in the square 
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Figure 4.15 The simple shear viscosity as a function of time scaled by the 
magnitude of the strain rate tensor for a suspension of rigid rods 
initially oriented randomly in-plane. 

brackets is O(104). The presence of the fibers will certainly increase the viscosity 

of the suspension. Rheological experiments can assist in properly quantifying 

the parameters that govern the effect of the fiber orientation such as the 

interaction force coefficient. The fourth order orientation tensor component 

fll2i2 is non-zero for the duration of the shearing, therefore the suspension shear 

viscosity (shown in Figure 4.15) is predicted to be significantly higher than the 

solvent viscosity. 

A slight increase in the predicted shear viscosity near ty n = 1.5 shows in 

Figure 4.15 as result of fibers moving through an orientation colinear with the 

direction of the positive principle strain rate in the suspension <p = 7r/4. In a 

shear flow of slender fibers that experience no dispersive interactions, all fibers 

will lie along the streamline and would make no contribution to the shear 

viscosity. The inclusion of the fiber-fiber interactions causes an increase in the 
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shear viscosity for two reasons: one, the diffused distribution of fibers away from 

the streamlines and particularly towards the direction of positive normal strain 

rate allows the fibers to resist stretching along their axes. And two, the forces 

between the fibers create another resistance to straining of the suspension with a 

resulting increase in viscosity. 

Another common viscometric function is the first normal stress 

coefficient, Wi. Many suspensions, polymer melts and polymer solutions show 

normal stresses arising in simple shear flow. This is due to elongated molecules 

that are trying to regain a higher entropy state or aligned fibers that resist the 

stretching component of the strain. The first normal stress coefficient is defined 

as 

V l B M Z J H (4.20) 

Yxy1 

The normal stresses Tyy and rxx are also both functions of particular terms in the 

fourth order orientation tensor 34. 

. [nL2fa n2dl*fi\ . , _ 
Tyy = Yxy[-i2— + 1 2 Jfl1222 (4.21) 

r=,^[#+=%%].,2. (4.22) 

The first normal stress coefficient is shown in Figure 4.16. As the fibers in 

the suspension are oriented from random to a preferred direction near 0 = 7r/2, 

the normal stresses grow from zero as a result of the changing orientation state. 

The slender fibers will resist only stretching along their axes and as the peak of 
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the distribution function approaches the direction of maximum elongation at (p = 

7r/4, so will the normal stress follow. The steady state orientation distribution 

retains a significant fraction of fibers pointing in the neighborhood of 7r/4 so 

therefore the steady state value of Wi will remain quite large in steady state. 

The elongational viscosity of the suspension is also a function of the 

orientation state of the fibers in the suspension. As a fiber in the stretching 

suspension is oriented towards the direction of greatest stretching, it will resist 

that straining motion along its axis, changing the apparent viscosity of the 

suspension as the orientation state changes. The elongational viscosity for a 

suspension during start up of planar elongation is defined as 

- + = Tyy-Txx 

1 . 
2 / n 

(4-23) 

The normal stresses in the suspension undergoing a planar elongation will be 

140000-
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(Pa.s2) 

80000 
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'• 

': 

c i : l A \ i 3 8 

Figure 4.16 The first normal stress coefficient Wi during start up of steady 
planar shear of a concentrated suspension of rigid rods. 
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Tyy 
l . l . [nL2U n2dL*f{\. 

= W n + 2 y j . 1 2 - + 12 J (fl2222 " flll22) 

l . l . [nL2Ca n2dl*fi\ , 
Txx = -PiY n - 5 y J.-IT" + 12 J ( f l m i " fl221l) 

(4.24) 

(4.25) 

In this case, the orientation tensor components are calculated from the 

distribution function for a suspension in stretching flow. Figure 4.17 shows the 

growth of the elongational viscosity in planar elongation of a concentrated 

suspension of fibers. The elongational viscosity grows in the suspension as the 

fibers are aligned such that the majority are pointed in the direction of the largest 

positive strain rate. 

Often in polymer processing flows one will find combinations of shearing 

and stretching flows. Numerical simulations are well suited to experimentation 
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0 

Figure 4.17 The elongational viscosity of a suspension of initially random 
fibers subject to planar elongation. Viscosity is plotted as a 
function of time scaled by the magnitude of the strain rate in the 
suspension. 
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with the input parameters such as the velocity gradients. Therefore, the shearing 

flow field of §4.2.1 can be combined with the stretching flow field of §4.2.2. In 

earlier discussion it was noted that the stretching flow was more effective at 

orienting fibers. Apparently, a flow could orient the fibers in the suspension 

more quickly and more thoroughly. A combination simulation could verify 

these observations. 

Figure 4.18 shows the results of an equal combination of shearing and 

stretching flow. The velocity field for this simulation is 

r r 
vx = - y x + Ty; vy = y y; vz = 0; f = 0.25 s"1 (4.26) 

Figure 4.18 shows the orientation tensor values an, «22/ and a\2 for an 

equal combination of shear and stretching. The results confirm that the 

stretching flow will align the fibers more quickly and more effectively in the y-

axis direction. This is shown by the preeminence of #22- The shearing flow does 

act to reduce the stretching alignment, which results in an orientation state 

which is nearly random with some tilt («i2 * 0) with a few extra fibers pointing in 

the stretching direction at steady state. 

If we increase the strength of the shearing portion of the combination 

flow, the simulation reveals more about the orientation behavior of stretching 

versus shearing flow. In this experiment, the velocity field is input as 

r r 
vx = - j x + Ty; vy = j y; vz = 0; f = 0.25s"1 (4.27) 
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Figure 4.19 Orientation tensors as a function of strain for a concentrated 
suspension in a combination of shear and stretching flow. The 
shear flow in the 1 direction is twice the magnitude of the stretching 
flow in the 2 direction. 
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The orientation tensor data of Figure 4.18 reveals a stretching action that 

although handicapped, can still orient fibers more quickly than shear. Note that 

the &22 component briefly starts to grow larger than an . Eventually, the larger 

strength of the shear flow forces the greater fraction of the fibers to orient in the 1 

direction. Here again, the overall orientation is still only partially oriented, and 

there is notable tilt in the distribution maximum away from the x axis. 

4.2.4 Numerical Convergence Tests 

The numerical calculations presented in this chapter are only numerical 

approximations to the actual solution of the governing equation for fiber 

orientation. Refinement of the finite difference grid will typically increase the 

accuracy of a properly formulated finite difference scheme. 

In this section, we investigate the behavior of the orientation simulations 

for a succession of increasingly finer finite difference grids. The parameters used 

in this study of numerical convergence in planar elongation are given in Table 

4.2 

The results of the four cases are shown in Figure 4.20. In this figure are 

the steady state probability distribution functions for simulations using 18, 30, 60, 

and 90 nodes in the finite difference grid of the orientation space for the fibers. 

The calculations with 30, 60, and 90 nodes all look very similar while the results 

of the simulation using 18 nodes show a marked decrease in accuracy. 

Figure 4.21 shows the convergence more clearly. Here the flu component 

of the orientation tensor is plotted for each simulation. Clearly, mesh 

refinement beyond 90 nodes will achieve little reward. The 30-node simulation 

shows a barely discernible decrease in numerical accuracy. Due to nature of the 

computations involved in this finite difference model, increases in the number 

of nodes in the orientation domain are computationally expensive. The choice of 
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Figure 4.20 Steady state probability distribution functions as a function 
of orientation for successively finer finite difference grids. 

11 
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Figure 4.21 Steady state orientation tensor component a\\ as a function of 
number of nodes in the orientation domain of the finite 
difference model for fiber orientation. 
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30 nodes therefore is optimum when computational resources need 

conservation, and this is the choice used to create the bulk of this results in this 

work of research. 
Table 4.2 Finite difference simulation input parameters for convergence tests 

with elongational flow of a concentra 

Parameter 

scalar strain rate 

number density 

fiber length 

fiber diameter 

suspending fluid viscosity 

interaction force coefficient 

hydrodynamic force coefficient 

interaction correlation time 

time step size 

angular step size — four cases 

Symbol 

y\ 

n 

L 

d 

V 

fl 
Ca 

e 

M 

A4> 

ted suspension. 

Value 

0.25 

6.82e9 

12.7e-3 

152.4e-6 

1.0 

152.4e-6 

12.7e-3 

0.5 

0.01 

7T/18, 7T/30, 

TT/60, 7T/90 

Units 

1/s 

l /m3 

m 

m 

Pas 

P a s m 

Pa-s-m 

s 

s 

radians 

4.3 Summary 

Chapter Four has described a numerical solution to the distribution 

function calculation for suspensions that experience mechanical fiber-fiber 

interaction. These interactions create a dispersive effect in the fiber rotations that 

acts like a diffusion in the governing equation for the probability distribution 

function. In dilute particle suspensions, fibers would freely rotate into the 

directions of the streamline. The resulting distribution function is a Dirac delta 

function at the orientation in the flow direction. However in concentrated 

suspensions, fibers are hindered and bumped as they rotate. This factor creates a 

material that is Theologically dependent on the the fiber orientation and the 

forces that the fibers impart to one another. 
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The numerical simulations given in this chapter can be used to ascertain 

the validity of the assumptions involved in creating a model of fiber orientation 

in concentrated suspensions. Given results that are sound, the numerical 

methods used here to solve the distribution function are necessary to experiment 

and analyze the behavior of different suspensions under various flow 

conditions. Furthermore since the distribution function calculations have 

proved to be computationally intensive, the comprehensive solutions to the 

distribution function must be used to validate solutions to the governing 

equations for the orientation tensor. 
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5. EXPERIMENTS WITH FIBER ORIENTATION IN STRETCHING R O W 

This chapter details an experimental program meant to check the results 

of the numerical solution and to provide greater insight into the physical 

phenomena present in flows of concentrated fiber suspensions. In these 

experiments, concentrated suspensions of high aspect ratio fibers with planar 

orientation are forced to undergo planar stretching flow. Here planar orientation 

means that the fibers are oriented all in a single plane. Meanwhile, the 

stretching flow is to take place all in the same plane as the plane of fiber 

orientation. 

5.1 Description of Experiments 

5.1.1 Kinematics of Planar Stretching 

The term planar stretching implies a deformation in which the velocities 

and velocity gradients in the material lie wholly in a single plane. We shall call 

this the x-y plane. In these experiments with suspensions of orientable fibers, the 

fibers shall have negligible component of orientation lying outside of the x-y If 

the magnitude of the strain rate in the material is y, the velocity field in the 

material will be 

vx = f* (5.1) 

vy=-j-y (5.2) 

The total strain will be a function of position. 
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y = 2 1 n ^ = - 2 1 n ^ - (5.3) 
•*o yo 

x0 and y0 describe the initial position of the material element in the stretching 

flow. The strain on a particular element of the material is a linear function of 

the time that it remains in the flow. 

Y = Yt (5.4) 

The streamlines in the bulk material are described by the equation, xy = C. The 

product of x and y is a constant. 

5.2.2 Materials - Fibers and Fluid 

The suspension used in the experiments is comprised of glycerin and clear 

fibers of nylon monofilament. Tracer fibers of the same nylon monofilament 

colored black were included to indicate the orientation state of the fibers in the 

suspension. 

Nylon monofilament of two different diameters was used to create 

suspensions with different fiber aspect ratios. The filaments were provided by 

E.I. DuPont de Nemours & Co. in diameters of 0.006" and 0.0016". The measured 

diameters of the filaments were 0.0059" ± 0.000025 and 0.00152" ± 0.000031". The 

hanks were chopped to half inch fibers, measured to be 0.51" ± 0.017". The 

viscosity of the glycerin was measured at 24.8° C. The Newtonian viscosity of the 

glycerin, n = 2.99 (lbf/in2)-s±0.039(lbf/in2)-s = 0.994Pas±0.013Pas. 

Silicone oil was used as a lubricant for the walls of the apparatus. The low 

viscosity silicone (200 centistokes) had two important qualities that allowed it to 

lubricate the flow of the glycerin/nylon fiber suspension. One, the silicone was 
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immiscible with the glycerin fluid. Two, the silicone would wet the Plexiglas 

walls of the experiment more readily than the glycerin. This results in a layer of 

low viscosity silicone adhering to the walls of the experiment, lubricating the 

flow of the glycerin. The majority of the out-of-plane shearing {~Q£, ~§7) would 

therefore occur in the thin layer of silicone. The silicone was spread thinly on all 

interior surfaces of the channel momentarily prior to the start of the 

elongational flow. Several other researchers have used similar lubricated flows 

to successfully establish and analyze stretching flows in polymers [58-60]. 

5.1.3 Apparatus for Planar Stretching 

The planar stretching apparatus used in the experiment is shown 

schematically in Figure 5.1. The test section whose sides are described by the 

hyperbola xy = ± 4 in2 was fed with suspension from two material loading zones. 

The j " deep channel was fed from the extreme opposite ends of the material 

loading zones by an unfilled glycerin pumping fluid. The pumping fluid was 

driven by an Instron Model 8501 tensile testing machine (100 kN rated 

maximum force) using a hydraulic piston. The top of the apparatus was made of 

one inch thick Plexiglas that allowed visualization of the suspension flowing in 

the channel. 

The Plexiglas top of the apparatus was removable so that the randomly 

oriented suspension could be poured into the prelubricated channel 

momentarily prior to the start of the experiment. The channel height of one 

quarter inch insured that the fibers would be forced to find an orientation in the 

x-y plane of the apparatus. The channel was slightly overfilled to insure that no 

air would be trapped with the suspension as the silicone oil-lubricated top was 

lowered and secured in place. 
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5.1.4 Data Acquisition and Processing 

The clear Plexiglas top of the apparatus allowed observation of the fibers in 

the stretching flow. After a period equal to 10 times the inverse of the strain rate 

magnitude, photographs were taken of the suspension in the first quadrant of 

the test section at a rate of 2.2 exposures per second. Three photographs were 

selected across each experimental set. The selections were spaced widely over the 

set so that the orientation state of each would be statistically independent. 

After enlargement, the black tracer fibers in the suspension show clearly in 

the photographs and their orientations were digitized using a HP-Apollo model 

730 workstation and a HP digitizing tablet. The fibers were grouped according the 

position of their centroid. Centroid position in this experiment indicates the 

amount of total strain the fiber has experienced in the stretching flow (as per Eq. 

(5.3)). Fibers were sorted into three groups in which the total strain was less than 

0.08, between 0.9 and 1.1, and greater than 2.0. The orientation tensor 

components fln,fl22, and fli2 were calculated for each of these groups from each 

photo. Figure 5.2 shows the test section and the regions in which the suspension 

strain fell into these bins. 

5.2 Experimental Results 

The 0.006" and 0.0015" fibers were each combined with glycerin in five 

different concentrations for elongational flow experiments. These combinations 

are shown in Table 5.1. The concentrations are comparable across the two 

diameters. For random planar orientation, each row of Table 5.1 will have an 

equal number of fiber crossings according to Eq. (2.49). 

The magnitude of the strain rate in each experiment was y = 2.828 s"1. 

This yields a velocity at the entrance of the test section vx = 2.827 in/s. The 
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particle Reynolds number for this flow is O(10"3), and the Reynolds number for 

the bulk flow is O(10"1). 

A sample photograph capturing the fiber suspension moving through the 

test section is shown in Figure 5.3. In this experiment, the fibers are 0.015" in 

diameter and 0.5" in length. The suspension concentration is 5.33%; this is a 

concentrated suspension for fibers of this aspect ratio. The concentration level is 

larger than the square of the inverse aspect ratio. The black tracer fibers evident 

in the photo make up g of the fibers in the suspension and will be used to 

characterize the orientation state. 

The orientation tensors measured from in the latest stages of strain in the 

experiments (Region 3 of Figure 5.2) are given as a function of suspension 

concentration in Figures 5.4 and 5.5 for 0.006" diameter fiber suspensions and 

0.015" diameter fiber suspension respectively. This shall be called the steady state 

result. These data indicate that an increase in fiber concentration brings about a 

decrease in the stretching direction alignment. This is an apparent diffusion 

effect due to the fiber-fiber interactions in the straining suspension. The error 

bars on the data are taken from the standard deviations in the data divided by the 

square root of the number of fibers digitized (typically 100 per region per photo) 

over the group of three photographs 

Table 5.1 Suspension concentrations used in the planar elongation 

experiment. 
fiber diameter = 0.006 

concentration, c 

% 

0.25 

0.50 

1.00 

2.00 

3.00 

number density, n 

l / in3 - l /m3 

13.9e3- 8.49e8 

27.8e3 -1.70e9 

55.6e3 - 3.39e9 
l l . le4 - 6.78e9 

16.7e4 - 10.2e9 

fiber diameter = 0.015" 

concentration, c 

% 

0.67 

1.33 

2.66 

5.33 

8.00 

number density, n 

l / in3 - l /m3 

5.93e3 - 3.61e8 

11.9e3 - 7.23e8 

23.7e3 - 1.45e9 

47.4e3 - 2.89e9 

71.1e3 - 4.34e9 
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Figures 5.7-5.16 give the evolution of the orientation tensors in the test 

section. They show the orientation as a function of strain, or time multiplied by 

the magnitude of the strain rate. These figures show results for each suspension 

given in Table 5.1. In many of these figures at strain equal to zero, i.e. the 

entrance to the test section, the fibers begin the experiment preoriented in the y 

direction. The fibers had been loaded in the channel in an initially random state, 

and flow and shear in the loading zone orients the fibers. This is altered to a 

principally x-direction orientation in the stretching flow. The data from the 

more concentrated suspensions of the 0.015" diameter fibers (Figures 5.12-15) 

show a quicker approach to a steady state value for any value of the initial 

orientation. 

5.3 Discussion 

This chapter has described a simple look at the behavior of concentrated 

suspensions of fibers in planar elongation flow. The fibers in these suspensions 

experience numerous fiber-fiber contacts (approach to within a diameter 

distance). These contacts cause the orientation of the fibers to exhibit a diffusion 

effect; perfect streamline orientation is impeded by the inter-fiber forces. 

In all of the experiments, the fiber-fiber contacts would often form clumps, 

i.e. groups of fibers that traveled, rotated, and strained together. Figure 5.16 

shows a photograph of an experiment with fibers of 0.0006" diameter at 3.0% 

concentration by volume. The wave-like orientation structure through the 

middle of the test section in this figure is a result of macro-scale changes to the 

bulk flow due to persistent clumping effects. The clumps are located under the 

crest of each wave; their existence forces the other fibers and fluid to find a new 

path. Therefore in the framework of this observation, fiber-fiber interactions do 
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not cause a dispersive orientation velocity that results in a diffusion in the 

overall orientation state, but rather a hindrance to the tangled fibers. 

Whether the fibers are dispersed or impeded by interactions makes a 

difference in the rheology of the suspension. This difference changes the 

orientation state of the fiber in a different fashion, it alters the fiber forces from 

interactions, and clumps indicate a wholly different flow field around the fibers 

leading to macro-scale changes to the flow field in the suspension. While the 

theory that is presented in this work assumes that the interactions create a 

dispersion rather than a hinderance, the resulting orientation states are often 

indistinguishable. 

-o an 
<• 422 
« — & i 2 

1 2 
Concentration (96) 

Figure 5.4 Steady state orientation tensors for suspensions of 0.006" diameter 
fibers in planar stretching as a function of concentration. 
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Steady state orientation tensors for suspensions of 0.015" diameter 
fibers in planar stretching as a function of concentration. 
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Figure 5.6 Orientation tensors for 0.25% concentration suspensions of 0.006" 
diameter fibers in planar stretching as a function of strain. 
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Figure 5.7 Orientation tensors for 0.50% concentration suspensions of 0.006" 
diameter fibers in planar stretching as a function of strain. 
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Figure 5.8 Orientation tensors for 1.0% concentration suspensions of 0.006" 
diameter fibers in planar stretching as a function of strain. 
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Figure 5.9 Orientation tensors for 2.0% concentration suspensions of 0.006" 
diameter fibers in planar stretching as a function of strain. 
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Figure 5.10 Orientation tensors for 3.0% concentration suspensions of 0.006" 
diameter fibers in planar stretching as a function of strain. 
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Figure 5.11 Orientation tensors for 0.667% concentration suspensions of 0.015" 
diameter fibers in planar stretching as a function of strain. 
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Figure 5.12 Orientation tensors for 1.33% concentration suspensions of 0.015" 
diameter fibers in planar stretching as a function of strain. 
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Figure 5.13 Orientation tensors for 2.66% concentration suspensions of 0.015" 
diameter fibers in planar stretching as a function of strain. 
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Figure 5.14 Orientation tensors for 5.33% concentration suspensions of 0.015" 
diameter fibers in planar stretching as a function of strain. 
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Figure 5.15 Orientation tensors for 8.0% concentration suspensions of 0.015" 
diameter fibers in planar stretching as a function of strain. 
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6. DISCUSSION OF RESULTS 

The numerical model exercised in Chapter Four and the experimental 

results of Chapter Five are gathered together here to analyze the effectiveness of 

the mechanical fiber-fiber interaction model. Numerical simulations of 

suspension behavior including interactions have shown themselves to be quite 

computationally intensive. Therefore, simplified versions of the mechanistic 

diffusion are also discussed. 

6.1 Comparison of Numerical Results and Experiments 

The experimental results from Chapter Five are presented in the 

following figures against numerical results of the simulation of the orientation 

model. The goal of any simulation of a physical process such as fiber orientation 

in a concentrated suspension is to predict behaviors under a range of conditions 

with a minimum required amount of parameter adjustment. The parameters of 

Table 6.1 Input parameters for numerical simulation of flow and orientation 
of three concentrated 

Parameter 

scalar strain rate 

number density 

fiber length 

fiber diameter 

suspending fluid viscosity 

interaction force coefficient 

hydrodynamic force coefficient 

interaction correlation time 

time step size 

angular step size 

suspensions of C 

Symbol 

rn 

n 

L 

d 

m 

fi 
Ca 

e 

Af 

# 

.006" diameter fibers 

Value 

2.828 

3.39e9 

6.78e9 

10.2e9 

12.7e-3 

152.4e-6 

1.0 

23.626-3 

12.7e-3 

0.001 

0.001 

7T/30 

Units 

1/s 

l / m 3 

m 

m 

Pas 

Pa-s-m 

Pa-sm 

s 

s 

radians 
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Table 6.2 Input parameters for numerical simulation of flow and orientation 
of three concentrated suspensions of 0.015" diameter fibers 

Parameter 

scalar strain rate 

number density 

fiber length 

fiber diameter 

suspending fluid viscosity 

interaction force coefficient 

hydrodynamic force coefficient 

interaction correlation time 

time step size 

angular step size 

Symbol 

yB 

n 

L 

d 

m 

fi 

& 

e 
At 

M> 

Value 

2.828 

1.45e9 
2.89e9 
4.34e9 

12.7e-3 

381.O6-6 

1.0 

15.756-3 

12.76-3 

0.0025 

0.001 

7T/30 

Units 

1/s 

l /m3 

m 

m 

Pas 

Pa-s-m 

Pa-s-m 

s 

s 

radians 

this model include the interaction force coefficient and the correlation time. 

Other terms such as the hydrodynamic force coefficient and the carrier fluid 

viscosity are well defined and understood. 

The input data to the simulation are given in Table 6.1 for the 0.006" 

diameter fiber suspensions and Table 6.2 for the 0.015" diameter fibers 

suspensions. The orientation tensors calculated from the finite difference 

solutions of the probability distribution function are given in Figures 6.1-6.8. 

Figure 6.1 shows the steady state values of the x direction orientation 

tensor for concentrated suspensions of 0.006" diameter fibers, and Figure 6.2 

shows the same data for the 0.0015" diameter fibers. Each of these figures gives 

the calculated steady state value for a\\ against the experimental results. Results 

from the numerical solution indicate that a steady configuration had been 

established at strain equal to three (3), y nt = 3. At that point, the slope of the 
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orientation as a function of strain decreased below 0.02, and at strain equal to five 

(5), the orientation would change by 0.7% per unit strain. Data on these figures, 

6.1 and 6.2, was taken from each condition at strain equals five. 

In each figure, all model parameters remain the same; only the input 

concentration level is varied once a suitable number for the interaction force 

coefficient is determined by trial an error for each fiber diameter. The 

experimental and numerical data indicate that a true steady state was not 

measured in the experiments. Therefore, an interaction force coefficient was 

chosen such that the numerical steady state value was slightly higher than the 

last data point in each experiment. The numerical results do show the same 

linear decrease in the equilibrium orientation state as the experimental data. 

The favorable results in these figures indicate that the model does a good job of 

calculating the suspension orientation state for the range of suspension 

concentrations examined in these experiments (i.e. semi-concentrated to 

concentrated). 

The interaction force coefficient is discussed in Chapters Three and Four. 

There the interaction force is presumed to behave like hydrodynamic friction. In 

that case, the magnitude of the interaction force coefficient// is governed by the 

viscosity of the suspending fluid //, the nominal area of interaction d2, and the 

separation distance h < d. 

fi - O ( ^ ) (6.1) 

From this, the separation distance in each suspension is calculated to be 1.5 um 

for the 0.0015" diameter fibers and 1.0 um for the 0.006" diameter fibers. 

Therefore, fitting// confirms that fiber centers in the concentrated suspensions 
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Figure 6.1 The stretching direction orientation tensor an from experiment and 
from numerical simulations of suspension of 0.006" diameter fibers 
in planar stretching flow. 
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Figure 6.2 The stretching direction orientation tensor an from experiment and 
from numerical simulations of suspensions of 0.015" diameter 
fibers in planar stretching flow. 
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Figure 6.3 Orientation tensors from stretching experiment and from 
numerical simulation of an 3.0% concentration suspension of 
0.006" diameter fibers in planar stretching flow. 
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Figure 6.4 Orientation tensors from stretching experiment and from 
numerical simulation of an 2.0% concentration suspension of 
0.006" diameter fibers in planar stretching flow. 
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Figure 6.5 Orientation tensors from stretching experiment and from 
numerical simulation of an 1.0% concentration suspension of 
0.006" diameter fibers in planar stretching flow. 
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Figure 6.6 Orientation tensors from stretching experiment and from 
numerical simulation of an 8.0% concentration suspension of 
0.015" diameter fibers in planar stretching flow. 
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Figure 6.7 Orientation tensors from stretching experiment and from 
numerical simulation of an 5.33% concentration suspension of 
0.015" diameter fibers in planar stretching flow. 
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Figure 6.8 Orientation tensors from stretching experiment and from 
numerical simulation of an 2.66% concentration suspension of 
0.015" diameter fibers in planar stretching flow. 
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must lie nearly one diameter apart and the surfaces are lubricated by a thin film 

of fluid. 

The time evolution of the orientation in concentrated suspensions is 

shown in Figures 6.3-6.8. The orientation tensors are again calculated from the 

probability distribution function, whose behavior is determined via the 

interaction-based diffusion theory. In each of these cases the orientation tensors 

appear to qualitatively follow the behavior of the experimental data, but the time 

scale appears to be too long in the majority of the simulations, i.e. the 

orientation show equilibriums in the experimental data more quickly than 

predicted. This may be due in to overly large sampling areas in the experiments 

(see Figure 5.2), to a sampled fiber population that is too small, or possibly to an 

inability to sustain a random fiber orientation state at the entrance to the test 

section. 

6.2 Isotropic Diffusion and Governing Equations for Orientation Tensors 

While the fiber interaction-based diffusion function is a sensible approach 

to the problem of prediction of fiber orientation in concentrated suspensions, it is 

computationally prohibitive. Integration over the entire planar orientation 

domain at each node in the orientation space and at each time step requires a 

significant number of calculations. Other more frugal techniques exist for the 

simulation of concentrated suspension behavior. This section examines the 

possibility of using such techniques in conjunction with the fiber-fiber 

interaction model to economize the process of simulating flow and orientation 

of fiber suspensions. 

One such technique includes adding an isotropic orientational (or 

rotational) diffusion term to the dilute solution to the governing equation for 
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the probability distribution function [44]. In this case, the equation is simply a 

specialized version of Eq. (4.1). 

T5F = - ^ W + D r g w (6.2) 

Folgar and Tucker postulate that the rotational diffusion due to interactions is 

likely to be proportional to the strain rate in the material. Only fiber motion can 

cause fiber dispersion. 

Dr = C/ yn (6.3) 

Equation (6.1) can be evaluated very efficiently in comparison to Eq. (4.1). 

The diffusion function of the fiber-fiber interaction theory does indeed turn out 

to be proportional to y n. When Eq. (6.2) is evaluated with the interaction 

coefficient C/ adjusted to match the steady state results of the mechanistic 

diffusion equation, we arrive at the results shown in Figures 6.9 and 6.10 for two 

different suspensions respectively. These figures show that the isotropic 

diffusion results do not vary significantly from the results of the interaction-

based diffusion calculations. 

This process of matching the results of the isotropic diffusion calculation 

to those of the mechanistic diffusion equation is repeated for several conditions, 

and in Figure 6.11 are shown the data. The isotropic interaction coefficient is 

plotted as a function of the terms that appear in the diffusion function Eq. (3.61). 

The data fall convincingly onto a straight line, and ignoring a constant that is 

non-physical and negligible, the interaction coefficient C/ has the following form. 
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Figure 6.9 Orientation tensors from stretching experiment, and mechanistic 
diffusion and isotropic diffusion simulations for a suspension of 
0.006" fibers at 3.0% concentration by volume. 
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Figure 6.10 Orientation tensors from stretching experiment, and mechanistic 
diffusion and isotropic diffusion simulations for a suspension of 
0.015" fibers at 8.0% concentration by volume. 
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C/ oc endL2fi2U-2 (6.3) 

The constant of proportionality in this case is 0.422. 

Another technique that provides an even greater computational savings 

over the mechanistic diffusion calculations is a direct evaluation of the 

governing equation for the orientation tensors. 

Da2 1 1 • . 
-pp = - 2(w -32-32«(")) +2(Y -32-a2-Y-2v • M) + 2Dr (5-2%) (6.4) 

to = Vv - VvT is the vorticity and v = Vv + VvT is the rate of strain tensor. In this 

governing equation is the rotational diffusivity Dr. This term is identical to that 

found in the governing equation for the probability distribution function. 

Advani [23] shows how (6.4) can be derived from (6.2). A problematic term in the 

Q 

o.o 

C/ = -0.0264 0.422 endllfPCa2 

i i i i i i i i • 
0.2 0.4 0.6 0.8 1.0 1.2 

WL%2&-: 

Figure 6.11 Isotropic diffusion coefficient C/ required to match steady state 
results from mechanistic diffusion calculations as a function of 
the variables that govern the magnitude of the diffusion 
function. 
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equation of change for the second order orientation tensor is the fourth order 

orientation tensor 34. In that the orientation tensors are incomplete descriptors 

of the full probability distribution function, the savings in variables comes with a 

necessary approximation of the higher order tensor. This closure problem is 

discussed by Advani [23] as well as others [26,61]. 

6.3 Summary 

The model for fiber-fiber interaction that describes that dispersion of fibers 

in concentrated suspensions can be used to successfully model the increase in the 

diffusion observed in concentrated suspensions of slender fibers. The numerical 

simulations of the experimental suspensions required hundreds of minutes of 

CPU time on a modern workstation. This was for an experiment were the strain 

rate was uniform and constant throughout. Modeling a more complicated flow 

field or three dimensional orientation states would certainly be prohibitively 

time-consuming. 

In answer to this need, the governing equation to the probability 

distribution function for fiber orientation and the orientation tensor equation of 

change can include an isotropic rotary diffusion term and possess a definite 

advantage in economy. This chapter has shown how the use of an isotropic 

diffusion whose magnitude is proportional to the strain rate can be matched to 

the results of the interaction diffusion model for planar orientation and flow. 

The scalar interaction coefficient C/ has shown a simple proportional 

relationship to the suspension variables that appear in the mechanistic equation 

of change for the probability distribution function in a suspension with strong 

fiber-fiber interaction. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

Slender stiff fibers added to polymers create composite materials that have 

the processability of the polymer matrix and the strength of the fiber reinforcement 

The mechanical properties of these composites are highly dependent on the 

orientation of the fibers. Processing fiber reinforced polymer composites determines 

to a large extent the orientation state of the reinforcement in the material. In 

commercially viable composites, the reinforcing fibers are added to thermoses or 

thermoplastics to volume concentrations of 5-40%. In these concentrated 

suspensions each fiber will experience numerous fiber-fiber interactions. The 

orientation and rheology in the composite during processing will be influenced by 

the restraining nature of the interaction forces. 

The interaction forces are incorporated in a model based on classical slender 

body theory to predict the orientation and rheology of concentrated suspensions of 

fibers. The interaction force between particles is modeled as a hydrodynamic 

friction; the force is proportional to the relative velocity at the point of contact. The 

addition of the interfiber forces creates additional terms in the stress response of the 

material that are second order in concentration. The addition of the interfiber forces 

create a diffusion in the behavior of the probability distribution function. This 

diffusion term is proportional to the number of fibers and the rate of strain in the 

suspension. 

Numerical solution of the advection-diffusion equation verifies the diffusive 

nature of the interfiber forces. The perfect alignment of the fibers in shear or 

stretching is moderated. More fibers in the suspension moan greater total 

interaction forces and subsequently a larger diffusion effect. The rheological 

responses calculated from the numerical simulations show normal stresess in steady-

shear, variation during start-up of shear flow and extensional viscosity that is 
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several orders of magnitude larger that the carrier fluid viscosity. These 

characteristics are all typical of suspension of slender fibers. 

Experiments with semi-concentrated and concentrated suspension of fibers in 

a glycerin simulate the flow of composite materials during processing. The fibers 

were oriented initially in a random-in-plane orientation and subject to a stretching 

flow in the plane of the fiber orientation. The experiments conducted during this 

research lead to two important conclusions. 

• Concentrated suspensions do show a diffusive effect in their orientation 

states, and this effect increases with increasing concentration levels. That 

is, higher concentration results in lower fiber alignment in the flow 

direction. 

• The nature of the interaction force in concentrated suspensions does not 

actually produce a dispersive effect in the fiber rotation velocity, but 

rather it produces a hindrance to the fiber rotation. Observed fibers 

would travel in the suspension in clumps of the size of the fiber length 

and larger. These clumps apparently possessed a viscosity higher than the 

mean, and the suspension would set up flow fields that curved around the 

groups of 10-50 fibers. This indicates that the simple hydrodynamic 

approximation for the interfiber force used in the theory is not strictly 

correct. 

The results of the experiments were compared to numerical simulations of the 

suspension behavior using the interaction-based diffusion model. Simulation and 

experiment concur that, in the concentrated regime, increases in the fiber volume 

fraction increase the spread in the probability distribution function. Comparison of 

simulation and experiment show also that future experiments must be able to 

capture orientation behavior at strains greater than two (2), and that the theory 

predicts an approach to steady state that is too slow in stretching flow. 
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In spite of the complexity of the diffusion function that results from including 

an interaction force in the fiber dynamics of a concentrated suspension, the 

theoretical predictions can be effectively mimicked by an isotropic rotary diffusion. 

This rotary diffusion was shown to be proportional to the strain rate in the material 

and proportional to the combination of variables ( endLPfi2!*2) that govern the 

magnitude of the mechanistic diffusion function. This fact allows significant 

economy in solving for the fiber orientation in suspensions of slender fibers. 

Inclusion of the fiber-fiber contact forces is an important and necessary 

component of prediction of concentrated suspension orientation and rheology. 

Future work must be targeted at better describing the relative motion between 

crossed fibers and the force between them. Furthermore, the current model requires 

a more accurate prediction of the time over which fiber-fiber contact geometry is 

uncorrelated. Future work must also include experiments that allow observation of 

fiber behavior at large (>2) strains. 
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Appendix A. Proof of C"1 = ^ ~ (^ + pp) 

Prove that 

C"2 = 2 ^ ( 5 + PP) (A.1) 

If A.l is true then 

C • K-1 = 6 ( 2 5 - pp) • 2 ^ (8 + PP) = 8 (A.2) 

Gibbs index notation is often more convenient for proofs. 

C • C-1 = 6(23j -ppj) - y (b)k + ppk) = Sj (A.3) 

= 2 (2<%j - PiP]) (§k + PjPk) (A.4) 

= j ( 2 ^ ^k + 2<5jj pjpk - Pipj <%k - P\p\ pjpk) (A.5) 

Recall that 

&jj^k = ^k 

GjPjPk = PiPk 

PjPj = 1 

Equation (A.5) simplifies to 

C • C"1 = j (2#k+ 2piPk - PiPk - PiPk) (A.6) 

C - C"1 = | (26ik) = 8 (A.7) 

Q.E.D. 
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Appendix B. Derivation of Diffusion Tensor D(p) = eVar(p) 

The diffusion tensor was defined in Chapter Three as the expected value of 

the square of the angle change Ap achieved in a small time x. 

D(p) = lim ^ ^ (B.1) 
T-»0 T 

More precisely, this is an integral over all possible values of the dyadic product 

ApAp. 

D(p) = lim (6 ApApP(p+Ap,Tlp)dAp (B.2) 
T-»0J^P 

The weighting function in the integrand P(p+Ap,r I p) is a transition probability 

density. It is the normalized probability that a fiber initially at p will move to p+Ap 

in time x. The work detailed in this appendix is concerned primarily with finding 

this function. For the reasons of simplicity, P(p+Ap,r I p) shall be referred to as 

P(Ap) henceforth. 

The angle change Ap is comprised of a large number (N) of smaller angle 

changes 8p. 

N 
Ap = X 6pi (B.3) 

i=l 

Then P(Ap) is a comprised of the probabilities w(8p;) of the the small angle changes 

Spi-
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P(Ap)dAp = Jgpj Jsp2 ...Jgpw w(8pi)d8piw(8p2)d8p2...w(8pN)d8pN (B.4) 

The integration limits on each of the small angle changes must be restricted to 

include only the combinations of the angle changes 8pi, i = 1...N such that 

N 
Ap < £ 8pi < Ap + dAp (B.5) 

i=l 

This restriction is difficult to apply within the limits of the integral. The Dirac delta 

function can be used to selectively eliminate combinations of 8p; that do not sum to 

Ap. The analytical form of the Dirac delta function must be used in the expression to 

transfer this responsibility to the integrand. 

8 ( A p - X 8 p i ) = ^ f + 0 ° e - & ( A P - Z W d k (B.6) 
i=l 2n J_oo 

Inserting this expression into Eq. (B.4), each integral may now be performed over all 

possible values of 8p;. The delta function selects only the values that combine to 

yield an angle change of Ap. 

P(Ap) dAp = ^gpi j ) ^ ... ^ w(8pi)w(8p2)...w(8pN) 

— f "*" 6-&( AP ~ SP1 ~ 8P2 - - 5PN ) dk d8pi d8p2 ... d8pN 
2n J-oo 

(B.7) 
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The integrals can be rearranged to a more meaningful form. 

P(Ap)dAp = 2 ^ j ^ [fsp! w(*Pi) e f l * d « p i j^w(8p2)e f l c d»dSp2-. 

L w(8PN) e*dPN dSpN ]e"^Dp dk (B.8) 

This can be regrouped again with the understanding that the small angle changes 

are due to interaction geometries that are statistically independent. Therefore, each 

small change Sp is statistically independent and statistically equivalent. 

P(Ap) dAp = ^ J + ~ e" ikAP[ <f5pw(8p)e ikdPd8p]Ndk (B.9) 

The term in square brackets can be substituted with a Taylor's series expansion for 

small 8p. 

jL w(8p) e ^ P dSp = ^ w(8p/l + ikSp - \ k28p2 +...ld8p (B.10) 

Evaluation of each of the terms in the integral in the right can now be easily 

accomplished. 

<J!g w(8p) eikdP dSp = 1 + ikSp - \ k2 8p2+... (B.ll) 

where 
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8p"= L , w(Sp) Sp" dSp (B.12) 

This is the usual definition of the n * moment of the random variable 8p. 

Equation (B.10) now has the form 

P(Ap) dAp = — r™ e_ikAP [ 1 + ik8 j - \k2 EpX... ] N dk (B.13) 
2n J_oo z 

The term in the square brackets can be simplified by taking the natural logarithm 

and expanding that for small ikSp 

ln[ l+ik8p- 2
1k2 8p2+...]N = Nln[l+ik8p- |k28p2+.. . ] (B.14) 

= N [ ikSp - \ k2 Sp2- (ik8p j 2 - . . . ] (B. 15) 

— 1 
= N [ ik8p - j k2 (ASp)2 -. . . ] (B.16) 

where the usual definition of the variance is used 

Var(8p) = 8^2- (6p)2 (B.17) 

Once the exponential of (B.16) is taken it may be returned to its place in Eq. (B.13), 

giving 
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1 f+oo r - - - - - 1. 
P(Ap)dAp = - f*~ e - ^ P [ e *N8p-2 k 2 N (A5P)2 ] dk (B.18) 

2% J_oo 

Regrouping once more yields 

P(Ap)dAp = -±- (+~ e*CN8p - D p ) " 2 k 2 N (A5P)2dk (B.19) 
27t J_oo 

The solution to this integral is the familiar Gaussian form. 

P(Ap) dAp = 1
 e(Nop-Ap)2/2N (A8p")2 (B.20) 

V27tN(A8p)2 

The diffusion tensor may now be calculated through substitution of this transition 

probability density into Eq. (B.2). 

D(p) = lim - | ApAp P(Ap) dAp (B.21) 
T->0 X Jp 

Equation (B.21) can be expressed in terms of the mean and the variance 

D(p) = l im- f ApApP(Ap)dAp (B.21) 
T-»0 X Jp 
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= lim - [N (ASp)2 + N2 (8p)2 ] (B.22) 

The diffusion tensor has been expressed in terms of the minute angle changes 

caused by the application of random interation forces over a finite but small period 

of time, and the average of those angle changes. The summed angle change Ap is a 

composite of numerous independent interaction geometries during the time period 

x. 

In order to put (B.21) into useful terms we must specify the time scale over 

which the interaction geometries change. The correlation time is the expected period 

over which interaction geometries are uncorrelated and shall be given the symbol e. 

The correlation time was discussed in Chaper 2, Section 8. The distance that the 

orientation changes due to one interaction geometry is equal to the correlation time 

multiplied by the rotation rate imparted by the interaction forces. 

8p = ep (B.23) 

Furthermore, N is the number of different interaction geometries in the period x. 

Therefore, 

x = Ne (B.24) 

Substitution of (B.23) into (B.22) gives 

D(p) = l i m - [Ne2 (Ap)2+ N^e2 (p)2 ] (B.25) 
T-»0T 
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Substitution of (B.24) into (B.25) simplifies to 

D(p) = lim [e(Ap)2 + Ne(p)2 ] (B.26) 
T-»0 

Since Eq. (B.26) is taken as x goes to zero Ne must go to zero also and finally the 

result is 

D(p) = e(Ap)2 (B.27) 

= e (p - p)2 = eVar(p) (B.28) 
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Appendix C. Governing Equations for the Planar Suspension 

When the orientation of the fibers in suspension are limited to only a single 

plane, for example the plane a compression mold, significant simplifications are 

possible in the governing equations. Planar orientation means that the Eulerian 

angle 0 = n/2, a constant, and that the single orientation variable remaining is <p. 

Figure 2.1 shows the physical relationship of the orientation descriptors 0 and <p as 

well as the orientation vector for a single fiber p. 

The first result to present is the rotation rate of a single fiber in a straining 

fluid. This is Jeffrey's equation in terms of <p for planar strains and planar 

orientation, and for fibers of infinite aspect ratio. The hydrodynamic component of 

the rotation is 

6h = si#cos* [ ^ - ^ ] + c o s 2 ^ _ s m 2 ^ (c.l) 

The total rotation of the fiber includes aggregate effect of the interactions on the test 

fiber oriented at (p. 

<p = s i # cos0 [ a , l b j + c<*4 &r-sm20-^-

+ Z ^ ™ 2 ^ + s i n 2 ^ ^ 

(C.2) 

The number of contacts N, their orientation <p, and their placement s, ands' are all 

random variables in the suspension and the theory. Eq. (C.2) and others used in the 
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theory that depend on the aggregate effects of the random variables are all evaluated 

as an integral over the probability space rather than a discrete sum. 

The diffusion in the planar theory is a scalar function of <p. According to the 

analysis of Appendix B the diffusion will be 

D(<p) = eVar(^) (C.3) 

This expression is evaluated as an integral over the probability space of the 

interactions, the lengths of the interacting and test fiber and over all possible 

orientations of the interacting fibers. 

Drffl = e 2J"J \+2n\+In % « W ) s i n l * - f l []> - kfds ds'df (C.5) 

Substituting (C.2) and (C.l) in Eq. (C.5) gives the following. 

D # ) = e 2JJ J^/2
2 j ^ 2 2wW)sinl f_ f | [ ^ s i n ( ^ ) ] 2 

[costy § * + sinty | f + cos^'sW ^ + %*Jds ds' &f (C.6) 

Equation (C.6) can be integrated over the fiber lengths and the rearranged. 

D ^ ) = 4endL2fi2zM* v<0)sinl0-^l [sin(<p-$)f 

[ c o s 2 ^ ' ^ + s i n 2 ^ ^ + c o s ^ W ^ 4 - ^ ^ ' (C.5) 
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This expression is evaluated numerically as described in Chapter Four and 

used in the Fokker-Planck equation, a generalized advection-diffusion equation that 

governs the behavior of the orientation distribution function of interacting fibers in a 

concentrated suspension. 

§T = -^[A^HW*)] + \^p [D#)V#] (C6) 
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