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Abstract

Spectral methods have recently emerged as a powerful todlifeensionality reduction
and manifold learning. These methods use information coedan the eigenvectors of a
data affinity (.e., item-item similarity) matrix to reveal the low dimensadrstructure in
the high dimensional data. The most popular manifold legyaigorithms include Locally
Linear Embedding, ISOMAP, and Laplacian Eigenmap. Howeaverse algorithms only
provide the embedding results of training samples. Thezenany extensions of these
approaches which try to solve the out-of-sample extensioblem by seeking an embed-
ding function in reproducing kernel Hilbert space. Howewedisadvantage of all these
approaches is that their computations usually involvere@gcomposition of dense ma-
trices which is expensive in both time and memory. In thisiewe introduce a novel
dimensionality reduction framework, call&pectral Regressior(SR). SR casts the prob-
lem of learning an embedding function into a regression &wa&ork, which avoids eigen-
decomposition of dense matrices. Also, with the regresama building block, differ-
ent kinds of regularizers can be naturally incorporated our framework which makes
it more flexible. SR can be performed in supervised, unsugeivand semi-supervised
situation. It can make efficient use of both labeled and wei&b points to discover the
intrinsic discriminant structure in the data. We have agpbur algorithms to several real
world applications, e.g. face analysis, document reptaien and content-based image

retrieval.
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dimensional vectors and compute the basis vectors (projeftinctions).

The basis vector is also 9-dimensional, as shown in (a). Ifle)basis vec-

tor can be converted to the matrix form and shown as an imagehwvas
referred as Eigenface (PCA) and Fisherface (LDA). The 9 nusinethe
basis vector are independent estimated and there is nalspétion be-
tween them. (c) The tensor-based subspace learning apeodaectly
take3 x 3 face images as input and compute a set of 3-dimensional ba-
sis vectorsu’s andv’s. (d) Eachu andv form a basisu ® v in tensor
space which can also be shown as an image. The 9 numbers entee t
basis only have 6 degrees of freedom and the values in the reavr{eol-

umn) have a common divisor. However, there is no guarantdeedpatial
smoothness of the basis function. . . . . . .. ... .. ... ...... 81
(a)~ (e) The first 7 Eigenfaces, Fisherfaces, and Smooth Fistesrfaalcu-
lated from the face images in the Yale database. For eaclidagmvector

a), we also calculated and showed th& - a|| below of each image. Since
each eigenvector is normalizef\ - a|| can measure the spatial smooth-
ness ofa. S-Fisherfaces is smoother than Fisherfaces. With bigger
S-Fisherfaces become much smoother. (g) The bases of 2DaBexsor
extension of LDA. The five bases auevl, uyvl, uivi, uvl, usvl, upvl
anduzv?. Itis interesting to note that the Eigenfaces are smoathest. . 85
Model selection for S-LDA on AT&T database. The curvevssithe accu-
racy of S-LDA with respect ta/(1+«). The solid line shows the accuracy

of 2DLDA and the dashed line shows the performance of Fisberf. . . . 90
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Chapter 1

Introduction

Dimensionality reduction has been a key problem in manydiefdnformation process-
ing, such as machine learning, data mining, informationenel!, and pattern recognition.
Practical algorithms in supervised machine learning digyia performance (prediction
accuracy) when faced with many features that are not negefssgredicting the desired
output. An important question in the fields of machine leagniknowledge discovery,
computer vision and pattern recognition is how to extractnalsnumber of good fea-
tures. A common way to attempt to resolve this problem is eodisiensionality reduction
techniques.

One of the most popular dimensionality reduction algorghmight be Principal Com-
ponent Analysis (PCA) [57]. PCA performs dimensionality rettn by projecting the
original m-dimensional data onto th&< m)-dimensional linear subspace spanned by the
leading eigenvectors of the data’s covariance matrix. d@l ¢s to find a set of mutually
orthogonal basis functions that capture the directionsafimum variance in the data so
that the pairwisecuclideandistances can be best preserved. If the data is embedded in
a linear subspace, PCA is guaranteed to discover the dimmatisyoof the subspace and
produces a compact representation.

In many real world problems, however, there is no evideneg tthe data is sampled
from a linear subspace. For example, it is always believatthe face images are sampled
from a nonlinear low-dimensional manifold which is embedide the high-dimensional
ambient space [47]. This motivates us to consider manifakked techniques for dimen-

sionality reduction. Recently, various manifold learniaghniques, such as ISOMAP [75],



Locally Linear Embedding (LLE) [68] and Laplacian Eigennidjp have been proposed
which reduce the dimensionality offedtraining set in a way that maximally preserve
certain inter-point relationships. LLE and Laplacian Eigap are local methods which
attempt to preserve local geometry of the data; essentiby seek to map nearby points
on the manifold to nearby points in the low-dimensional esentation. ISOMAP is a
global method which attempts to preserve geometry at alescenapping nearby points
on the manifold to nearby points in low-dimensional spacé, faraway points to faraway
points. One of the major limitations of these methods is tiey do not generally provide
a functional mapping between the high and low dimensionatep that are valid both on
and off the training data.

There are a lot of approaches that try to address this iss#xdicitly requiring an
embedding function either linear or in reproducing kernébétt space (RKHS) when
minimizing the objective function [46, 7, 84]. They provid@tural out-of-sample ex-
tensions of Lapalcian Eigenmaps, LLE and Isomap. Howehercomputation of these
methods involves eigen-decomposition of dense matriceshw expensive in both time
and memory. It is almost infeasible to apply these appraaonelarge data sets. Some
other approaches address this issue through a kernel viebWEflsomap and Laplacian
Eigenmaps [6, 39]. They interpret these spectral embedaggrithms as learning the
principal eigenfunctions of an operator defined from a kieanel the unknown data gen-
erating density. Such kernel is usually data depertddotobtain the embedding result of
an unseen example, we need to calculate the kernel funaioewof this unseen example
with all the training samples which may not be possible in s@ituations.

In this thesis, we propose a novel dimensionality reducigorithm, calledSpectral
Regressiorf{SR). The proposed algorithm is fundamentally based on segne and spec-
tral graph analysis [26]. It can be performed either in sviged, unsupervised or semi-

supervised situations. Specifically, we first construct finity graph over both labeled

1The kernel functionk (x;, x;) depends not only ok; andx; but also on the whole data set.



and unlabeled points to discover the intrinsic discrimtreructure in the data. This graph
is used to learn responses for both labeled and unlabeletspddnce the responses are
obtained, the ordinary regression is then applied for legrthe embedding function.

The points below highlight several aspects of our approach:

1. SR casts the problem of learning an embedding functi@aimégression framework,
which avoids eigen-decomposition of dense matrices. Witlerént graph matrix
W, SR provides the efficient solutions of Linear DiscriminAmialysis (LDA) [19],
Locality Preserving Projection (LPP) [46, 17, 20], Neightmod Preserving Embed-
ding (NPE)[45, 17], Isometrix Projeciton (IsoP)[13], LditaSensitive Discriminant
Analysis (LSDA) [21] and much more.

2. With regression as the building block, various kinds giutarization techniques can
be easily incorporated in SR which makes it more flexible.(.gnorm regularizer

to produce sparse projections [14]).

3. SR can be performed in supervised [19], unsupervisedd@kemi-supervised [16,
15] situations. It can make efficient use of both labeled anidheled points to

discover the intrinsic discriminant structure in the data.

4. SR may be conducted in the original space or in the repimgdkernel Hilbert space
(RKHS) into which data points are mapped. This gives rise tod&eSR (efficent

solutions for many kernel subspace learning algorithm§ [12



Chapter 2

Graph Embedding View of Subspace
Learning

Letxy,--- , X, be then data points sampled from an underlying submanifolctembedded

in R™, dimensionality reduction (or, subspace learning) ainfimding {z;}?", C R, d <

m, wherez; can “represent¥;. In the past decades, many algorithms, either supervised
or unsupervised, have been proposed to solve this probleespi2 the different moti-
vations of these algorithms, they can be nicely interprétesl generagraph embedding
framework. In this chapter, we give a detailed analysis &f tramework and its linear

extension.

2.1 Manifold Learning and Graph Embedding

We begin with a brief review of Locally Linear Embedding (L8], Isomap [75], and
Laplacian Eigenmaps [4], three of the most popular manifeddning techniques. We then
discuss how these three algorithms can be unified in a grapleduing framework with
different graphs. For simplicity, we consider one dimenalanapping. Ley; be the one

dimensional map of;,i =1,--- , n.

2.1.1 Locally Linear Embedding

The basic idea of LLE is that the data points might reside omrimear submanifold,
but it might be reasonable to assume that each local neigbbdris linear. Thus, we can
characterize the local geometry of these patches by liredficients that reconstruct each

data point from its neighbors. Specifically, we first constiak nearest neighbor gragh

4



with weight matrix)/. Reconstructing errors are measured by the cost functign [68

gb(M) = Z ||Xz — ZMZ‘]'X]‘HQ, s.t. ZMZ] =1
i=1 j=1 Jj=1

which adds up the squared distances between all the dats poid their reconstructions.
Note that,};; vanishes for distant data points. Please see [68] for hovndioafi\/ which
minimizes¢(M). Consider the problem of mapping the original data points lioeaso
that each data point on the line can be represented as a tioednination of its neighbors
with the coefficients\/;;. Lety = (y1, 2, -+ ,ym)? be such a map. A reasonable criterion

for choosing a “good” map is to minimize the following loss@iion [68]:

(y) = i <yi - i Mijyj>2

This loss function, like the previous one, is based on lgdalkear reconstruction errors,
but here we fix the weightd/;; while optimizing the coordinateg;. It can be shown
that the optimal embedding is given by the eigenvector corresponding to thi@imum

eigenvalue of the following eigen-problem:
(I = M)T(I - M)y =)y (2.1)

wherel is anm x m identity matrix.
Define matrixW; . = M + MT — MT M, we can rewrite the eigen-problem in Eqn.

(2.1) as

(I =Wre)y = Ay

= Wiey = (1= Ny

Thus, the optimal embeddingis given by the eigenvector corresponding toreximum



eigenvalue of the eigen-problem:

Wiy = Ay (2.2)

2.1.2 ISOMAP

Letd be the geodesic distance measuré\drandd the standard Euclidean distance mea-
sure inR™. ISOMAP aims to find a Euclidean embedding such that Eudtidigstances in

R™ can provide a good approximation to the geodesic distantég oThat is,

o = argmin 3 (%)) — d( %), /) (2.3)
ij

In real life data set, the underlying manifoli1 is often unknown and hence the
geodesic distance measure is also unknown. In order towdistioe intrinsic geometrical
structure ofM, we first construct & nearest neighbor graghover all data points to model
the local geometry. Once the graph is constructed, the gaodistanced \(i, j) between
all pairs of points on the manifold1 can be estimated by computing their shortest path dis-
tancesi (4, j) onthe grapltz. The procedure is as follows: initializk;(x;, X;) = d(X;, X;)
if x; andx; are linked by an edgel;(X;, X;) = oo otherwise. Then for each value b=
1,2,--- ,ninturn, replace all entried;(x;, X;) by min{de(X;, X;), da(X;, X;) +de (X, X;) }-
The matrix of final valueds = {ds(X;, X;)} will contain the shortest path distances be-
tween all pairs of points id7. This procedure is named Floyd-Warshall algorithm [27].
More efficient algorithms exploiting the sparse structurthe neighborhood graph can be
found in [37]. LetDy denote the matrix of Euclidean distances in the reducedpsuales

i.e.{dy(%,7) = |lvi — y;||}. Thus, ISOMAP aims to minimize the cost function:
Im7(Dg) = 7(Dy)ll2

where ther operator converts distances to inner products, which @hygcharacterize



the geometry of the data in a form that supports efficientnoiglaition [75]. Specifically,
7(D) = —HSH/2, whereS;; = D}, andH = I — ~ee’, e = (1,1,--- ,1)". Define
Wisomap = T(Dg), it can be shown that the optimal embedding- (v1, - - - , v ) iS given

by the eigenvector of the matri¥; ..., corresponding to the largest eigenvalue.

Wisomapy = Ay (2.4)

2.1.3 Laplacian Eigenmap

Laplacian Eigenmap is based on spectral graph theory [26lenGap nearest neighbor
graphG with weight matrixi¥’, which can be defined as follows:
1, ifx; € Ny(X;)orx; € N,(X;
W () OrX; € Ny () 5
0, otherwise.

whereN,(x;) denotes the set gfnearest neighbors of.

The optimal maps can be obtained by solving the followingimimation problem:

min ;(y — ;)P Wy = min 2y" Ly
whereL = D — W is thegraph Laplacian26] andD;; = Zj W;;. The objective function
with our choice of weight$V;; incurs a heavy penalty if neighboring pointsandx; are
mapped far apart. Therefore, minimizing it is an attemptrisuge that ifx; andx; are
“close” theny; andy; are close as well.
The optimal embedding is given by the eigenvector corresponding to mhi@imum

eigenvalue of the following generalized eigen-problem

Ly = \Dy, (2.6)



which is equivalent to find the eigenvector correspondinthomaximum eigenvalue of

the following generalized eigen-problem

Wy = ADy, (2.7)

2.1.4 Graph Embedding

All the above three manifold learning algorithms encodaniwnsic structure information
of the data in a graph weight matrix. And all the three optatian problems end up with
the similar eigen-problems.

In the following, we consider the general graph embeddimiplem. Given a graphy
with n vertices, each representing a data point}Jiebe a symmetrie: x n matrix with
W;; having the weight of the edge joining verticeandj. TheG andW can be defined
to characterize certain statistical or geometric propsrtif the data set. The purpose of
graph embedding is to represent each vertex of the graphoas @irhensional vector that
preserves similarities between the vertex pairs, wherdagity is measured by the edge
weight.

Lety = [yi,v2, - ,ys]’ be the map from the graph vertices to the real line. The
optimaly tries to minimize

Z(?/i — y;)* Wy

i\j
under appropriate constraint. This objective functionuns@ heavy penalty if neighboring
vertices: and; (with a largelV;;) are mapped far apart. Therefore, minimizing it is an
attempt to ensure that if verticeésandj are “close” theny; andy; are close as well [38].

With some simple algebraic formulations, we have

Z(yi —y;)°Wi; = 2y" Ly,

1,



where L is thegraph Laplacianas discussed before. Finally, the minimization problem

reduces to find

TL T
= arg max yTDy ,

y* = arg miny’ Ly = arg min (2.8)

yT Dy=1 yT D y

where the constraint’ Dy = 1 removes an arbitrary scaling factor in the embedding.

It is clear that the three manifold learning algorithms w&cdssed before can be inter-
preted in this framework with different choiceséf and D. The two matrice$? and D
play the essential role in this graph embedding approachk.chbices of these two graph
matrices can be very flexible. In later discussion, we us¢iizI) to denote the graph
embedding with maximization problem ofax(y? Wy)/(y? Dy).

All the above mentioned manifold learning algorithms aralmear. They are defined
only on the training data points and therefore can not bectiyrepplied to supervised
learning problems. To overcome this limitation, some meé¢hfor out-of-sample exten-
sion have been proposed [6]. Bengibal proposed a unified framework for extending
LLE, Isomap, and Laplacian Eigenmap [6]. This frameworkasdd on seeing these al-
gorithms as learning eigenfunctions of a data-dependenekeThe Nystom formula is
used to obtain an embedding for a new data point. However,btairothe embedding
result of an unseen example, we need to calculate the kemmetién values of this unseen
example with all the training samples which may not be pdssibtsome situatiorts In the
following sections, we will discuss how we can solve thisies®y explicitly requiring an
embedding function either linear or in the reproducing kéHilbert space (RKHS) when

minimizing the objective function.

le.g, the data dependant kernel is constructed by integradinel information. To calculat& (x;, X;),
we need to know whethet; andx; have the same label. Since the label of an unseen exampleatyus
unavailable, we can not calculate the kernel function \&lofethis unseen example with all the training
samples.



2.2 Linear Extension of Graph Embedding

If we choose a linear function.e., y; = f(x;) = a’'x;, we havey = XTawhereX =
X1, -+, X,] € R™*™, Eqn. (2.8) can be rewritten as:

y'Wy alXwXxTa

yTDy = arg max m (29)

a" = arg max

The optimala’s are the eigenvectors corresponding to the maximum eajeewf eigen-
problem:

XWXTa=\XDX"a.

This approach is called linear extension of graph embeddingan certainly be applied
on LLE, Isomap and Laplacian Eigenmap which leads to Neigitmd Preserving Em-
bedding (NPE) [45], Isometric Projection [13] and LocalRyeserving Projection (LPP)
[46]. In the following, we will discuss three other lineamtknsionality reduction algo-
rithms. These three algorithms are proposed with diffenestivations. However, we will

see that all these algorithms can be formulated as lineansiin of graph embedding with

differentW andD.

2.2.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [35] is one of the most lknown supervised di-
mensionality reduction algorithms. It seeks directionsubich the data points of different
classes are far from each other while requiring data poihteedsame class to be close
to each other. Suppose we have a set smplesx;, x5, -+ , X, € R™, belonging toc
classes. The objective function of LDA is as follows:

a’'S,a

— 2.1

Aopt = arg max
a

10



Sy = np(p® — p) (u® — )" (2.11)
k=1

5= (i(x?“ - )" — u(’“’)T> , (2.12)

k=1 =1
whereyp is the total sample mean vectay, is the number of samples in theth classp(®)
is the average vector of theth class, andxgk) is thei-th sample in thé:-th class. We call
S, the within-class scatter matrix arttj the between-class scatter matrix.
Define the total scatter matri% = >~  (x; — p)(X; — p)”, we haveS;, = S, + S,
[35]. The objective function of LDA in Eqgn. (2.10) is equieailt to

a’'S,a
al's,a

Qopt = arg max
a

(2.13)

The optimala’s are the eigenvectors corresponding to the non-zero eaden of eigen-

problem:

Sya = A\S,a. (2.14)

Since the rank of, is bounded by — 1, there are at most— 1 eigenvectors corresponding
to non-zero eigenvalues [35].

Without loss of generality, we assume= 0.> We have

Sy =3 ma(u®) (u)"
k=1

T
c 1 ng 1 Nk

(k) (k)
— ne | — X; i X; (2.15)

=1

- ZX(k)W(k) (XN
k=1

wherelV ) is any, x n;, matrix with all the elements equal tgn, andX® =[x\ ...  x¥)]

denote the data matrix éfth class.

2This can be achieved by centering the daga, subtract the mean vector from all the sample vectors.

11



Let the data matrixX = [X™), ... X ()] and define @ x n matrix W, as:

LW g 0 |
0o w® ... 0
Wipa = _ o _ (2.16)
00 Wi |
We have
Sp=Y  XOWE (X = XWpsXT. (2.17)

k=1

Thus, the objective function of LDA in Egn. (2.13) can be rit@n as

aTSba aTXWLDAXTa
= arg max

al'S,a a al'XXTa

(2.18)

Qopt = argmax
a

Thus, LDA can also be interpreted as a linear extension giftgeanbedding approach.

2.2.2 Semi-supervised Discriminant Analysis

In this subsection, we introduce a semi-supervised subsleaening algorithm, called
Semi-supervised Discriminant Analysis (SDA), which carkeafficient use of both la-
beled and unlabeled points to discover the intrinsic disicrant structure in the data. SDA
is fundamentally developed from LDA and LPP.

LDA aims to find a projection vecta such that the ratio betweer S,a anda’ S,a is
maximized. When there is no sufficient training sample, oter§j may happen. A typical
way to prevent overfitting is to impose a regularizer [41]eT™ptimization problem of the
regularized version of LDA can be written as follows:

a’'S,a

2.19
max al'S;a+ aJ(a) ( )

where.J(a) controls the learning complexity of the hypothesis famélgd the coefficient
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« controls balance between the model complexity and the éraploss. One of the most

popular regularizers is the Tikhonov regularizer [76]:
J(a) = [al|*.

LDA model with Tikhonov regularizer is usually referred asgRkrized Discriminant
Analysis (RDA) [34].

The regularizer ternd (a) provides us the flexibility to incorporate our prior knowtgd
on some particular applications. When a set of unlabeled pkeravailable, we aim to
construct a/(a) incorporating the manifold structure. The key to semi-suiged learning
algorithm is the prior assumption of consistency. For dfesgion, it means nearby points
are likely to have the same label [87]. For dimensionaliguetion, it can be interpreted
as nearby points will have similar embeddings (low-dimenal representations). Given a
set of example$x; } Y, we can use p-nearest neighbor graghto model the relationship
between nearby data points. The corresponding weightxridtti can be defined as in Eq.
(2.5), where the subscrip{ denotes thakl/y is with sizeN x N.

In general, the mapping function should be as smooth aslpess the graph. Specif-
ically, if two data points are linked by an edge, they arellike be in the same class.
Moreover, the data points lying on a densely linked subgiaxehikely to have the same

label. Thus, a natural regularizer can be defined as follows:
J(@) =" (aTx; —alx;)* Wy (2.20)
ij
This formulation is motivated from spectral dimensionatiéduction [4, 46], which also

plays a key role in spectral clustering [62] and various kiafigraph based semi-supervised

learning algorithms [5, 24, 71].
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Let X = [Xq,Xa,- -+, X,]. We have

J(a) = Z(aTXZ‘ — aTXj)QWNVZ‘j
i
= 2) a'xDyxla—2)» a'xWy,x/a

= 2a"’X(D - Wy)XTa

= 2a'XLX"a

whereD is a diagonal matrix; its entries are column (or row, sificg is symmetric) sum
of S, D;; = ¥;Wn;. L = D — Wy is the Laplacian matrix [26].
With this data dependent regularizer, we get the objectimetion of our semi-supervised
discriminant analysis:
a’'S,a

) 2.21
maa“XaT(Stjtoé)(LXT)a (2.21)

The projective vectoa that maximizes the objective function is given by the maximu

eigenvalue solution to the generalized eigenvalue problem

Spa= \(S; +aXLX")a (2.22)

Without loss of generality, we assume that the firgtata points are labeled and they
are ordered according to their labels. We i§e= [xi, - - - , X,,] to denote the labeled data

matrix. Define the weight matri¥/sp4 € RV*V as

Wrpa O ~ I 0
Wspa = , I=

0 0 0 0

whereW pa € R is defined in Eqn. (2.16) andis an identity matrix of size x n.
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Based on Egn. (2.17), we have
Sy = X WrpaX] = XWspa X" (2.23)

and
S, = X, X = XIXT". (2.24)

Thus, the objective function of SDA in egn. (2.25) can be riam as

aTXWSDAXTa
max — ,
a al'X(I+aL)XTa

(2.25)

which again is linear extension of a graph embedding problem

2.2.3 Locality Sensitive Discriminant Analysis

As we described previously, naturally occurring data magdmeerated by structured sys-
tems with possibly much fewer degrees of freedom than theearhblimension would
suggest. Thus we consider the case when the data lives oosertcl a submanifold of the
ambient space. One hopes then to estimate geometrical serihdnant properties of the
submanifold from random points lying on this unknown subifwdeh. In this section, we
consider the particular question of maximizilegal margin between different classes.
Recall that we can usejanearest neighbor graph with weight matrixi¥ to char-
acterize the local geometry of the data manifold. In ordediszover both geometrical
and discriminant structure of the data manifold, we coms$tiwo graphs, i.ewithin-class
graph G,, andbetween-class grapty,. Letl(x;) be the class label of;,. For each data
pointx;, the setV(x;) can be naturally split into two subsef$,(x;) and N,,(x;). N, (x;)

contains the neighbors sharing the same label sitwhile N, (x;) contains the neighbors
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Figure 2.1: (a) The center point has five neighbors. The poiith the same color and
shape belong to the same class. (b) Whthin-class graphconnects nearby points with
the same label. (c) Theetween-class graptonnects nearby points with different labels.
(d) After Locality Sensitive Discriminant Analysis, the rgan between different classes is
maximized.

having different labels. Specifically,

Nu(x;) = {x|l(x]) = I(x:),1 < j < p}

Ny(xi) = {x][1(x]) # U(x;), 1 < j < p}

Clearly, Ny(x;) N Ny(x;) = @ and Ny(x;) U Ny (x;) = N(x;). LetW,, andWW, be the

weight matrices o€7,, andG,, respectively. We define:

.
1, ifx; € Ny(x;)orx; € Ny(x;

Wb,ij _ b( j) J b( ) (2.26)
0, otherwise.

1, ifx; € N,(x;)0orx; € N, (x;
. (x5) 0rx; € N, (x) 07
0, otherwise.

\

Itis clear to seéV = W, + W, and the nearest neighbor graphcan be thought of as a
combination of within-class grapfi,, and between-class gragh.

Now consider the problem of mapping the within-class gramdhlaetween-class graph
to a line so that connected points@f, stay as close together as possible while connected

points of G, stay as distant as possible. Let= (y1,%2,---,%,)T be such a map. A
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reasonable criterion for choosing a “good” map is to optertize following two objective

functions:

max Z(yz — yj)QWbﬂ'j (229)

under appropriate constraints. The objective functioB§Ron within-class graph incurs a
heavy penalty if neighboring points andx; are mapped far apart while they are actually
in the same class. Likewise, the objective function (2.29between-class graph incurs
a heavy penalty if neighboring points andx; are mapped close together while they
actually belong to different classes. Therefore, miningz{2.28) is an attempt to ensure
that if x; andx; are close and sharing the same label theandy; are close as well. Also,
maximizing (2.29) is an attempt to ensure thakjfandx; are close but have different
labels thery; andy; are far apart. The learning procedure is illustrated in Fagu1.
Supposea is a projection vector, that is;” = a’ X, whereX = (x;,---,x,)is a
m x n.matrix. By simple algebra formulation, the objective funat(2.28) can be reduced

to

1
B Z(yz - yj)ZWw,ij
i
= %Z (aTxi — aij)szJj
]
= Z aTXZ'Dw’n‘XITa - Z aTX,»WijXJTa
i ij

= al'XD,XTa—alXW,X"a

whereD,, is a diagonal matrix; its entries are column (or row, sifi¢gis symmetric) sum
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of Wy, Dy i = Zj W,.i;. Similarly, the objective function (2.29) can be reduced to

1
5 > (Wi — )W
]

1
= 5 Z (aTxl- — aTXj)2Wb’ij
ij

= a'X(D, —W,)X"a

= a'XL,X"a

whereD, is a diagonal matrix; its entries are column (or row, sifiGeis symmetric) sum
of Wy, Dy = Zj Wy Ly = Dy — Wy is the Laplacian matrix of7,.

Note that, the matrixD,, provides a natural measure on the data point®, Jf; is large,
then it implies that the class containirg has a high density arounc<i. Therefore, the
bigger the value oD, ;; is, the more “important” ic;. Therefore, we impose a constraint
as follows:

y'Dyy=1=a’XD,XTa=1

Thus, the objective function (2.28) becomes the following:
min 1 —a’ XW,X"a (2.30)

or equivalently,

max a’ XW,X"a (2.31)

And the objective function (2.29) can be rewritten as fobow

max a’ XL, X a (2.32)
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Finally, the optimization problem reduces to finding:

a’ X (aLy+ (1—a)W,)X"a
max aTXD.X7a , (2.33)

which again is linear extension of a graph embedding problem

2.3 Computational and Complexity Analysis

The linear extension of graph embedding ends up with soltmeggeneralized eigen-
problem

XWXTa=)MXDX"a (2.34)

To get a stable solution of this eigen-problem, the matri€ézX” is required to be non-
singular [73] which is not true when the number of featurelaiger than the number of
samples. There are two methods to solve this problem. Theofiesis by using Singular
Value Decomposition (SVD) ok'.

Supposeank(X) = r, the SVD decomposition oX is
X =Uuxv" (2.35)

whereY = diag(oy,---,0,) andoy > --- > o, > 0 are the singular values of,

UeR™ V =c R andUTU = VTV = I. LetX = UTX = 2V7 andb = $U7a,

19



we have

XWXTa=AXDX"a (2.36)
= USVIWVvsUTa=\USVTDVEUTa (2.37)
= USVIWVb=XULVTDVDb (2.38)
= YWUTUSVIWVb =\ UTUSvVTDVD (2.39)
= VIWVb=AV'DVb (2.40)

It is clear thatV” DV is nonsingular and the eigen-problem in Egn. (2.40) can diglyst

solved. After we geb*, thea* can be obtained by

a=Ux"'b*. (2.41)

The above SVD approach has been widely used in many subspagenly algorithms
(e.g, LDA [18] and LPP [47]) to solve the singularity problem. rradarity, we name this
approach as SVD+LGE (Linear Graph Embedding).

The second method is using the idea of regularization, byngdmbnstant values to the
diagonal elements of DXT, asX DX +~I, fory > 0. Itis easy to see that DX7T +~1

Is nonsingular. This method is used in [34].

2.3.1 Complexity Analysis of General Linear Graph Embedding

Now let us analyze the computational complexity of both SV G and the regularization
approaches. We consider the case that the number of feétuyeslarger than the number
of samples«) and use the terrflam[72], a compound operation consisting of one addition
and one multiplication, to present operation counts.

The most efficient algorithm to calculate the SVD decomjmsitequiresin?m + 2n?

flam [73]. Whenn < m, the rank of X is usually ofn. Thus,V is square matrix of
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sizen x n. The calculation of matrice8 W V7? and VDV requires at leas2n?® flam.
The eigen-problem in Eqgn. (2.40) requir%s3 flam [73]. Overall, the time complexity of
SVD+LGE approach measured by flam is

3
§n2m + 11n3,

which is cubic-time complexity with respect to For large scale high dimensional data,
the SVD+LGE approach is unlikely to be applied.

In the regularization approach, The calculation of magikél X7 and XDXT + ~I
requires at leastnm? flam. The generalized eigen-problem requig®s3 flam. Overall,

the time complexity of the regularization approach measbseflam is

9
2nm? + ng’

which is cubic-time complexity with respect ta. The regularization approach is also

unlikely to be applied for large scale high dimensional data

2.3.2 Complexity Analysis of Linear Discriminant Analysis

LDA can get some computational benefits from the speciatsira ofIV;, 4 as shown in

the following equations.

XWpaXTa= ) XX"Ta
= USVIW,p VU Ta=\UXXU"a
(2.42)
N z—lUTUZVTWLDAv<EUTa) — AN UTUY (zUTa)

= VTWLDAVb =\b

V € R™ s right singular matrix ofX andd is the rank ofX. Thei-th row vector of

V corresponds to the data poixtand we denote it as;, V = [z;,--- ,z,]7. Letz®
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denote the row vector df" which corresponds tmgk). Definev® = n—lk S z* and

=13

H = [livW ... Ip)] € R, Inspired by Egn. (2.15), we have

=1 =1

_ Z i v ® (W NT (2.43)
k=1

VIWLpAV = an (Zz Zzy“ >

=HH"

The above algebraic steps show that the LDA projective fanstcan be obtained by the
SVD decomposition of¢ and calculating the eigenvectors Bt~ .

It is easy to check that the left singular vectorsof(column vectors ofJ) are the
eigenvectors ofY X7 and the right singular vectors df (column vectors ofl’) are the
eigenvectors o 7 X [73]. Moreover, ifU or V is given, then we can recover the other via
the formulaXV = U andU?X = XV, In fact, the most efficient SVD decomposition
algorithm (i.e.cross-produgtapplies this strategy [73]. Specificallyyif> m, we compute
the eigenvectors ak X7, which gives ud/ and can be used to recover If n < m, we
compute the eigenvectors &f7 X, which gives us/ and can be used to recovér Since
the matrixH is of sizer x ¢, wherer is the rank ofX andc is the number of classes. In most
of the cases; is close tomin(m, n) which is far larger tham. Thus, comparing to directly
calculate the eigenvectors &f H7, compute the eigenvectors &f” H then recover the
eigenvectors of/ H* can achieve a significant saving.

Whenn > m, the calculation ofX X7 requires%nm2 flam; Computing the eigen-
vectors ofX X”' requiresim? flam [73, 36]; Recovering” from U requiresnm? flam by
assumingX is of full rank; Computing the eigenvectors BtH” requiresimc?+ 2¢*+mc?

flam; Finally, calculatinga’s from b’s requiringm?c. Whenn < m, we have the similar
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analysis. We conclude that the time complexity of LDA meadury flam is

3 9 3 9
Emnt + 5753 + 52502 + 503 —+ t2c

wheret = min(m,n). Considering: < ¢, the time complexity of LDA can be written as

%mnt + %t?’ + O(t?).
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Chapter 3

Spectral Regression for Efficient
Subspace Learning

The graph embedding view of subspace learning provides owarful platform to develop
various kinds of dimensionality reduction algorithms. Hwer, the high computational
cost restricts these algorithms to be applied to large dugle dimensional data sets. In

this Chapter, we describe our approach which can overcomélifficulty.

3.1 Spectral Regression

In order to solve the eigen-problem
XWXTa= ) XDX"a (3.1)

efficiently, we use the following theorem:

Theorem 1 Lety be the eigenvector of eigen-problem
Wy = ADy (3.2)

with eigenvalue\. If X7a =y, thena is the eigenvector of eigen-problem in Egn. (3.1)

with the same eigenvalue
Proof We havelVy = ADy. At the left side of Eqn. (3.1), replacé”a by y, we have
XWXTa=XWy=XADy=\AXDy=\AXDX"a
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Thus,ais the eigenvector of eigen-problem Eqn. (3.1) with the saigenvalue\.

Theorem (1) shows that instead of solving the eigen-prolteBqgn. (3.1), the linear

projective functions can be obtained through two steps:
1. Solve the eigen-problem in Eqn. (3.2) to get
2. Finda which satisfies{”a = y. In reality, sucha might not exist. A possible way is
to find a which can best fit the equation in the least squares sense:

a = arg min Z(aTXi —y;)? (3.3)

a i=1

wherey; is thei-th element ofy.
The advantages of this two-step approach are as follows:

1. BothIW andD are sparse matrices and the top eigenvectors of eigenepnablEqn.
(3.2) can be efficiently calculated with Lanczos algoritH#®]. Moreover, we will
show later how this eigen-problemtisvial and the eigenvectons can be directly

obtained with a supervised graph matrix

2. There exist many efficient iterative algorithnesg, LSQR [66]) that can handle very

large scale least square problems.

In the situation that the number of samples is smaller thamtimber of features, the
minimization problem (3.3) isll posed We may have infinitely many solutions to the
linear equations systeti’a = y (the system is underdetermined). The most popular way

to solve this problem is to impose a penalty on the norma: of

a= arg min ( (a'x; — yi)Q + aHaHQ) (3.4)

a i=1
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This is so called regularization and is well studied in stats. The regularized least square
is also called ridge regression [41]. The> 0 is a parameter to control the amounts of

shrinkage. Now we can see the third advantage of the twoagipmach:

3 Since the regression is used as a building block, the regal®n techniques can
be easily incorporated and produce more stable and meahsa@itions, especially

when there exist a large number of features [41].

Our above two-step approach essentially performs regnessier the spectral analysis

of the graph, we called Bpectral RegressiofsR).

3.2 Theoretical Analysis

The regularized least squares in Eqn. (3.4) can be rewiittdre matrix form as:

a=argmin (X"a-y)"(X"a—y)+aa’a). (3.5)

a

Requiring the derivative of right side with respecttganish, we get

(XXT +ala= Xy
(3.6)
= a=(XX" +al)'Xy

Whena > 0, this regularized solution will not satisfy the linear etiaas systemY7a =y
and a will not be the eigenvector of eigen-problem in Eqn. (3.1).islinteresting and
important to see when (3.6) gives the exact solutions ofregreblem (3.1). Specifically,

we have the following theorem:

Theorem 2 Supposg is the eigenvector of eigen-problem in Eqn. (3.2Y,if in the space
spanned by row vectors df, the corresponding projective functi@ncalculated in Egn.

(3.6) will be the eigenvector of eigen-problem in Eqn. (34 a@eceases to zero.
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Proof Supposeank(X) = r, the SVD decomposition oX is

X =Uuxv?T

They is in the space spanned by row vectorsXof therefor,y is in the space spanned
by column vectors of’. Thus,y can be represented as the linear combination of the

column vectors ofl”. Moreover, the combination is unique because the columtoxec

of V' are linear independent. Suppose the combination coeffscemes,,--- ,b,. Let
b=1[b, - ,b]", we have:
Vb=y = V'Vb=V"ly = b=V"y = VV'y=y (3.7)

To continue our proof, we need introduce the concept of pséuarse of a matrix [67],
which we denote a§)". Specifically, pseudo inverse of the matfixcan be computed by
the following two ways:

Xt =vxy”

and

Xt = lim (XTX +al) ' XT

The above limit exists even K7 X is singular and X7 X)~! does not exist [67]. Thus,

the regularized least squares solution in Eqn. (3.6)
T -1 a—0 T\+ —1y,T
a:<XX +a1) Xy = (XT)ty = sy Ty
Combine with the equation in Eqn. (3.7), we have

XTa=veUta=vUutus " 'Wly=vvly=y
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By Theorem (1)ais the eigenvector of eigen-problem in Eqn. (3.1).

When the the number of features is larger than the number oplsamthe sample
vectors are usually linearly independeing,, rank(X) = n. In this case, we will have a

stronger conclusion which is shown in the following Corollar

Corollary 3 If the sample vectors are linearly independerg,, rank(X) = n, all the
projective functions calculated by Eqn. (3.6) are the eigetors of eigen-problem in Eqgn.
(3.1) asa deceases to zero. These solutions are identical to thos¥#ISGE in Eqn.

(2.41).

Proof The matricedV and D are of sizen x n and there are: eigenvectorgy;}7_, of
eigen-problem (3.2). Sincennk(X) = n, all thesen eigenvectorsy/; are in the space
spanned by row vectors of. By Theorem (2), alkh corresponding, of SR in Eqn (3.6)

are eigenvectors of eigen-problem in Eqn. (3.1yakecreases to zero. They are
SR __ -1y /T
at=Ux""VvVy,.

Consider the eigen-problem in Egn. (2.40), sincertleégenvectory; are also in the space
spanned by column vectors bdf, eigenvectob; will be the solution of linear equations

systemV’b; = y;. The column vectors df are linearly independent, thbs is unique and
b; =VT"y,.

Thus, the projective functions of SVD+LGE

a)VPrer — U Tth; = Uy, =&t

J
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3.3 Eigenvectors of Supervised Graph Matrices

Now let us study the eigenvectors of eigen-problem in Eqm2)(3We consider the case
that the graph weight matrid/ is constructed with the label informatione., searching
thep nearest neighbors af among the points share the same label wjth

Without loss of generality, we assume that the data poin{in- - - ,x,,} are ordered
according to their labels. It is easy to check that the maifiin these three algorithms has

a block-diagonal structure

i wo 0 0 ]
0o w® ... 0
W = (3.8)
0 0 W)

wherec is the number of classeB/*) ¢ R™*™ andn,, is the number of samples kth
class. We also have the as the diagonal matrix. Thus, the eigenvalues and eigesngect
of Wy = ADy are the union of the eigenvalues and eigenvectors of itkbl@be latter

padded appropriately with zeros) [36]:

Wky®) — \pEyE).

It is straightforward to show that the above eigen-problers &n eigenvecta” ¢ R™
associated with the largest eigenvalue 1, whetre= [1,1,--- ,1]7 [26]. Thus the top:

eigenvectors of eigen-problem in Egn. (3.2) are

yk:[07”'70)17"',]—70,"',0]T. (39)
—— N — ——
Tt T Yk i

These eigenvectors correspond to the same largest eigenal Since 1 is a repeated
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eigenvalue, we could just pick any otheorthogonal vectors in the space spannedyj}

in Egn. (3.9), and define them to be aueigenvectors [36]. The vector of all ones is
naturally in the spanned space. This vector is useless #ueceesponses of all the data
points are the same. In reality, we can pick the vector of mdlsoas our first eigenvector
and use Gram-Schmidt process to get the remainirgl orthogonal eigenvectors. The
vector of all ones can then be removed.

For thelV in LDA, we can easily see that all the elements’sf*) are equal td /n;.
Thus the rank of’*) is 1 and there is only one non-zero eigenvalue which is ex4ctl
We have exactly eigenvectors (or — 1 useful eigenvectors after Gram-Schmidt process)
with respect to non-zero eigenvalue for eigen-problem in.E@®.2). For thél in LPP
and NPE, we can get more eigenvectors since the railk®fis usually larger than 1. For
ac class problem, previous studies [3][45] show that 1 projective functions are usually
enough.

Our above analysis shows that whBnis constructed by integrating label informa-
tion, the topc — 1 eigenvectors of eigen-problem in Eqn. (3.2) can be direaiiained.
Moreover, although the graphs used in LDA, LPP and NPE aferdiit, the topc — 1
eigenvectors of their graph matrices are the same. Thugdjective functions calculated
in SR are the same. By Theorem 2 and Corollary 7, these pragdctinctions are identical
to those of SVD+LGE approach in Eqn. (2.40) when the sampteove are linearly inde-
pendent. Our analysis here gives the reason why the thredthlgs LDA [3], LPP [47]
and NPE [45] achieve similar performance for high-dimenaldow sample size problems.

Itis easy to check that the values of th#n andj;-th entries of any vector in the space
spanned byy, } in Egn. (3.9) are the same as longxasndx; belong to the same class.
Thus thei-th andj-th rows ofY are the same, whefé = |y,,---,y._,]. Corollary (7)
shows that when the sample vectors are linearly indepenitherat— 1 projective functions
of LDA (LPP, NPE) are exactly the solutions of the- 1 linear equations systenié’ a;, =

y,.. LetA =[a;, - ,a. 1] be the transformation matrix which embeds the data poiids in
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the LDA (LPP, NPE) subspace as:
ATX =YT,

The columns of matrix’” are the embedding results of samples in the LDA (LPP, NPE)
subspace. Thus, the data points with the same label aresponding to the same point in
the LDA (LPP, NPE) subspace when the sample vectors arealyniadependent.

These projective functions are optimal in the sense of s¢ipgrtraining samples with
different labels. However, they usually overfit the tragiset thus may not be able to

perform well for the test samples, thus the regularizatsomeicessary.

3.4 Computational Complexity Analysis

SR uses regularized least squares to find the projectivéifunsc which is a necessary step
in both supervised and unsupervised cases. Thus, we bagamalysis with analyzing this
step.

Whenm is not very large, the regularized least squares problemgim H3.4) can
be solved by directly solving the linear equations systetaqn. (3.6). The calculation of
X X" requires;nm? flam. Since the matriX X* + o/ is positive definite, using Gaussian
Elimination to solve the linear equations system in Eqm)(eosts%m3 flam [72].

For large scale high dimensional data, the regularized Epsares problem in Eqgn.
(3.4) can be efficiently solved by iterative algorithm LSQRi@h is designed to solve
large scale sparse linear equations and least squaresm®[@6]. In each iteration, LSQR
needs to compute two matrix-vector products in the fornrXpfand X”g. The remaining
work load of LSQR in each iteration B + 5m flam [65]. Thus, the time cost of LSQR
in each iteration i2mn + 3n + 5m. If LSQR stops aftek, iterations, the time cost is

k2(2mn + 3n 4+ 5m). Finally, the total time cost fod projective functions iglky(2mn +

1LSRQ converges very fast [66]. In our experiments, 20 itenatare enough.
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Table 3.1: Computational complexity of LDA, LPP and SR

Time complexity (operation counts,flam)

Graph Responses Embedding
Algorithm Construction | Generation Functions
LDA - Smnt + §t3
Supervised —
SR nc? 2ckons + 5ckam
_ 3 943 s (9 2
Unsupervised LPP n%(s +logn) gt + 3t° + min(3t, diy )t
SR dkin(p + 8) 2dkans + bdkam
Memory cost
Algorithm
Supervised LDA ns + (m+n)t + mc
SR ns + nc+ mc
. LPP ns +np + (m + n)t +md
Unsupervise SR ns + np + nd + md

t: min(m,n)

n: the number of data samples
m: the number of features

s: the average number of nonzero features for one sampier()

c: the number of classes (LDA and SR will produce 1 projective functions)
d: the number of dimensions (projective functions) required in LPP and SR
p: the number of nearest neighbors
k1: the number of iterations in Lanczos
ko: the number of iterations in LSQR

In supervised case, the eigen-problem in third step of SRvialtand we can directly

In unsupervised case, the affinity graph construction stepme as we analyzed before.

We summarize our complexity analysis results in Table 3.2 adsumen > ¢ and
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3n + 5m). Besides data matriX, LSQR needs + 2m additional memory [65]. Finally,

the memory cost in this stepnisn+n+2m+dm, with dm to store the projective functions.

obtain those: — 1 eigenvectors. The cost of this step is mainly the cost of G&atmmidt

method, which requiregic? — 1¢*) flam andnc + ¢ memory [72].

Since thep-nearest neighbor graph matriX is sparse (has aroungh non-zero entries),
we can use Lanczos algorithm to compute the fimsigenvectors withirk;n(p + 8) flam,
wherek; is the iteration number for Lanczos algorithm. The memogunement of this

step is simply the memory to stoV& andd eigenvectors.




only show the dominant part of the time and memory costs fapkcity. The main con-

clusions include:

e In supervised case:

¢ LDA has cubic-time complexity with respect toin(m, n). Moreover, the left
and right singular vector matrices of, which are required to be stored in
memory, are both dense. When boethandn are large, it is not feasible to

apply LDA.

© SR has linear-time complexity with respect to bethandn~. It only has very
small additional memory requirement besides data mafrix hus, SR can be

easily scaled to high dimensional large data sets.

o The computational complexity analysis clearly shows theaathges of using

SR instead of directly applying LDA.
e In unsupervised case:

¢ The graph construction step is unavoidable for all the spkgtaph embedding
approaches. If the same graph is used, the computationabicdkis step can

be neglected when we compare the different algorithms.

© The popular manifold learning algorithre.¢, LLE, Isomap, Laplacian Eigen-
maps) only compute the embedding results of the training, ddtich is exactly
the responses generation step of SR. SR uses regression tbefiptbjective
functions with the additional linear-time complexity c¢giith respect to both

m andn) and almost no additional memory requirement.

o Those linear (kernel) extension approaclesg (LPP, NPE, Kernel Eigenmaps)
directly calculate the projective functions by solving dereigen-problems.

They require additional cubic-time complexity cost (wispect tanin(m, n))
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and(m + n) - min(m, n) memory cost. When bott. andn are large, it is in-

feasible to apply these approaches.
¢ In both cases:

¢ In many real problems, the data matrix is sparse. HoweveA Bbd LPP
need thecompleteSVD decomposition, which can not get any benefit from the
sparseness of the data matrix. Moreover, the left and riggtigar matrices are

both dense. They can not be fit into the memory when botndn are large.

¢ As shown in Table (4.1), SR can fully explore the sparsenedsealata matrix
and gain significant computational saving on both time anchorg. SR can

successfully applied as long as the data makrigan be fit into the memory.

¢ Even the data matriXX' is too large to be fit into the memory, SR can still
be applied with some reasonable disk 1/0. This is becausadh geration of
LSQR, we only need to calculate two matrix-vector producth@form of X p

andX7q, which can be easily implemented withand X stored on the disk.

3.5 Experimental Results

In this section, we briefly show the experimental resultsRff& supervised learning task
(face recognition), unsupervised learning task (docurokrstering) and semi-supervised
learning task (content-based image retrieval).

All of our experiments have been performed on an Intel Pentiu 3.20GHz Linux
machine with 2GB memory. For the purpose of reproducibnity provide our algorithms
and data sets used in these experiments at:

http://www.cs.uiuc.edu/homes/dengcai2/Data/data.htm
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3.5.1 Face Recognition

In this section, we investigate the performance of our psed®&R approach for face recog-
nition on PIE database.

The CMU PIE face databaseontains 68 subjects with 41,368 face images as a whole.
The face images were captured under varying pose, illuimatnd expression. We
choose the five near frontal poses (C05, C07, C09, C27, C29) andl tleeienages under
different illuminations and expressions, thus we get 178ges for each individual. All the
face images are manually aligned and cropped. The croppegkisraré4 x 64 pixels, with
256 gray levels per pixel. The features (pixel values) aem tbcaled to [0,1] (divided by
256). For each individual,(= 30, 40, 50, 60, 80, 100, 120) images are randomly selected
for training and the rest are used for testing.

The face recognition task is handled as a multi-class ¢iea8on problem— we map
each test image to a low-dimensional subspace via the enmgelidrned from training
data, and then classify the test data by the nearest neigitdssifier. Three subspace

learning algorithms are compared in the experiment. They ar
1. Linear Discriminant Analysis (LDA)
2. Regularized Linear Discriminant Analysis (RDA)
3. Spectral Regression (SR)

The recognition error rates and the computational timeegpented on the Table 3.2 and
Figure 3.1. Considering both accuracy and efficiency, SRas#st choice among three
of the compared approaches. It provides an efficient andtefferegularized subspace

learning solution for large scale data sets.

2http://www.ri.cmu.edu/projects/projedtl 8.html
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Table 3.2: Performance comparisons on PIE
Error rates (meafistd-deWy) | Computational time (s
LDA RDA SR LDA | RDA SR

G30/P140| 8.8+0.3 | 5.9+:0.3 | 6.1+£0.2 | 59.37| 396.2| 17.39
G40/P130| 8.6+0.2 | 5.0+0.2 | 5.2+0.2 | 131.2| 404.5| 20.11
G50/P120| 9.3+0.4 | 4.6+0.3 | 4.8+0.3 | 241.3| 413.1| 22.71
G60/P110| 10.1£1.2 | 4.24+0.2 | 4.5+0.2 | 394.9| 421.8| 25.49
G80/P90 | 7.5+0.2 | 3.9+0.2 | 4.2+:0.2 | 442.1| 442.1| 31.13
G100/P70| 6.2+0.2 | 3.7+0.2 | 4.0£0.2 | 455.4| 455.4| 35.98
G120/P50| 5.6+0.3 | 3.5+0.2 | 3.8£0.2 | 471.6| 471.6| 41.57
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Figure 3.1: Recognition error rates and computational tifreaoh algorithm on PIE.

3.5.2 Document Clustering

Clustering is one of most crucial techniques to organize tdweichents in an unsupervised
manner. The ordinary clustering algorithnesy K-means) can be performed in the original
document space or in the reduced document space (by usiiintieasionality reduction
algorithms,e.g, Latent Semantic Indexing (LSI)[29], LPP). In this expeent, we inves-
tigate the use of dimensionality reduction algorithms &t tlustering. The following six

methods are compared in the experiment:

e K-means on original term-document matrix, which is treatedur baseline (denoted

asBaseling

¢ K-means after Latent Semantic Indexing [29] (denoted$i9
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K-means after Locality Preserving Indexing [43] (denoted Rl )

K-means after Spectral Regression (denote8R)s

Clustering using Probabilistic Latent Semantic Indexingj [@lenoted a®LSI).

Nonnegative Matrix Factorization-based clustering [&Bjr{oted adiMF ).

It is important to note that the two methods LPI and SR needtwsituct a graph on the
documents. In this experiment, we use the same graph foe tiwes methods and the
parametep (number of nearest neighbors) was set to 7. The parameteSR was set to
0.1.

All these algorithms are tested on the TDT2 corpus. The TDFPwsS consists of data
collected during the first half of 1998 and taken from 6 sosy@ecluding 2 newswires
(APW, NYT), 2 radio programs (VOA, PRI) and 2 television pragrs (CNN, ABC). It
consists of 11201 on-topic documents which are classifiedd6 semantic categories. In
this experiment, those documents appearing in two or mdegjoees were removed, and
only the largest 30 categories were kept, thus leaving us 9894 documents in total.

The clustering result is evaluated by comparing the obthlabel of each document
with that provided by the document corpus. The accuraty)(is used to measure the
clustering performance [10], [83]. Given a documentetr; ands; be the obtained cluster

label and the label provided by the corpus, respectively A@ is defined as follows:

AC — Zi:l 5(8i’ map<rl))
n
wheren is the total number of documents ad(d:, y) is the delta function that equals one
if x = y and equals zero otherwise, and mapis the permutation mapping function that
maps each cluster label to the equivalent label from the data corpus. The best mgppin

can be found by using the Kuhn-Munkres algorithm [56].

3Nist Topic Detection and Tracking corpus at http://wwwtigiev/speech/tests/tdt/tdt98/index.htm
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Table 3.3: Clustering results on TDT2

. Accuracy (meattstd-devi)

Baseline LSI PLSI LPP SR NMF
2 || 97.747.3 | 93.4£14.2 | 91./A413.0| 99.8+0.3 | 99.9+0.2 | 99.2+4.7
3 | 88.4t18.0| 86.14+-20.0 | 82.8+18.3 | 99.6+0.4 | 99.6+0.4 | 95.74-11.0
4 || 85.4+18.9| 79.2:21.2 | 75.4+19.3| 99.3-0.8 | 99.4+-0.8 | 92.4+11.9
5 | 82.4+17.8 | 76.8£22.3| 72.5-18.0| 98.74+1.8 | 98.8+1.8 | 92.2£10.5
6 || 79.0+17.5| 72.0£19.4 | 68.2+16.8 | 98.6+1.5 | 98.8+1.3 | 88.0+12.6
7 || 74.5+16.5| 65.9£18.1 | 64.0+14.1| 97.8+2.4 | 98.2+2.1 | 83.1:£14.6
8 || 70.1+17.9 | 61.3+£18.0| 61.14+15.2| 96.8+4.2 | 97.3+t4.2 | 79.7+13.1
9 || 72.3+15.6 | 64.5£18.0 | 62.2+11.5| 95.5+6.0 | 97.5+2.4 | 84.8+13.1
10 || 69.2£17.0| 63.4+18.0| 61.1+13.2 | 94.0+6.3 | 96.0+4.5 | 81.5+10.1
30 58.5 54.2 59.6 —* 86.7 61.0
. Processing time (s)

Baseline LSI PLSI LPP SR NMF
2 6.25 0.43 3.22 11.50 1.08 6.0
3 18.23 0.67 7.49 26.81 1.95 23.1
4 29.74 0.96 11.23 33.56 2.62 63.3
5 61.82 1.50 18.67 76.37 4.50 113.7
6 66.51 1.78 20.70 65.30 4.37 238.4
7 117.63 2.97 31.57 143.86 7.65 389.5
8 171.76 4.20 40.06 179.03 9.27 766.6
9 193.85 5.00 45.57 228.12 10.93 869.7
10 261.05 6.48 56.79 266.53 13.09 1348.3
30| 2720.21 132.12 511.53 —* 224.71 15101.0

*LPI can not be applied due to the memory limit

Besides clustering the whole data set into 30 clusters, taki@ions were also con-
ducted with different number of clusters, ranging from 2 @ IFor each given cluster
numberk, 50 tests were conducted on different randomly chosen caésy and the aver-
age performance was computed over these 50 tests (exce®ld ttiester case). For each
test, K-means algorithm was applied 10 times with diffestatt points and the best result
in terms of the objective function of K-means was recordeiterA_SI, LPI, or SR, how to
determine the dimensions of the subspace is still an opdrigmo In this experiment, we
keepk dimensions for all the three algorithms as suggested byquswstudy [10].

Table 3.3 and Figure 3.2 show the average accuracy of thdgaxitams. LS| seems
not promising in dimension reduction for clustering beeatle K-means on the LSI sub-

space is even worse than K-means on the original documece sPme may iterate all the
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Figure 3.2: Clustering performance comparisons on TDT2uorp

possible dimensions for better performance of LSI as sugdes [10]. However, it may

not possible to do so in a real case. Clustering using PLSlaa @orse. NMF method
achieves better performance than Baseline which is consistiéh previous study [83],

[10]. Both LPI and SR achieve significant improvements ovleofour algorithms. The

reason is that LPI and SR try to reveal the local geometrigcire of document space.
More detailed analysis and experiments of document ciast@ising LPI are provided in

[10].

Table 3.3 and Figure 3.2 also show the processing time ofithalgorithms. The
processing time of LSI, LPI and SR include two parts: dimenaiity reduction time and
time of K-means on the reduced subspace. The processingofilBaseline and NMF
methods are simply the time of clustering approaches (Kasi@nd nonnegative matrix
factorization). PLSI estimate the probability of each doemt belongs to each cluster,
which can be directly used to infer the clustering result.ug;hthe processing time of
PLSI is only the dimensionality reduction (model estimajiime. After dimensionality
reduction of LSI (LPI and SR), K-means is performed in a very thmensional subspace
thus is much more efficient then K-means in the original doentnspace. The results here
further show the advantage of dimensionality reductionclastering. Clustering based
on LSI is the most efficient approach. However, the low clusteaccuracy makes LSI

approach less attractable. Although the NMF method achibedter performance than
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Table 3.4: Image features used in the experiment
| Feature Name | Dimension|

Color Histogram [63] 166

Color Correlogram [50] 144

Color Moment [74] 9
Wavelet Texture [1] 18
Canny Edge [22] 72

] All \ 409 \

Baseline method, the high computational cost (NMF spent itinane 4 hours for clustering
9,394 documents into 30 classes!) makes it not applicabl@rga document set. The same
shortcoming exists for LPI approach. It can not be applieith ®j394 documents due to
the memory limit. Consider both accuracy and efficiency, Sebigously the best among

the six compared algorithms for document clustering.

3.5.3 Content-Based Image Retrieval

In this section, we describe how to apply Spectral Regressid®BIR. Particularly, we

consider relevance feedback driven image retrieval.

Features for Image Retrieval

Low-level image representation is a crucial problem in CBIRn&al visual features in-
cludes color, texture, shape, etc. Color and texture fesiane the most extensively used
visual features in CBIR. Compared with color and texture featsleape features are usu-
ally described after images have been segmented into egioobjects. Since robust
and accurate image segmentation is difficult to achievestieeof shape features for im-
age retrieval has been limited to special applications e/lobjects or regions are readily
available. In this work, we use a 409-dimensional featusesh@wn in Table (3.4) which
combines color, texture and shape infomration.

In fact, if the low-level visual features are accurate ermgugat is, if the Euclidean
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distances in the low-level feature space can accuratelgctetthe semantic relationship
between images, then one can simply perform nearest neigigaoch in the low-level
feature space and the retrieval performance can be guadantdnfortunately, there is
no strong connection between low-level visual featurestagh-level semantic concepts
based on the state-of-the-art computer vision techniqilibss, one has to resort to user

interactions to discover the semantic structure in the.data

Relevance Feedback Image Retrieval

Relevance feedback is one of the most important techniqueartow down the gap be-
tween low level visual features and high level semantic epts[69]. Traditionally, the
user’s relevance feedbacks are used to update the quenr we@djust the weighting of
different dimensions. This process can be viewed as amerldiarning process in which
the image retrieval system acts as a learner and the useasetdeacher. The typical

retrieval process is outlined as follows:

1. The user submits a query image example to the system. Ftensyanks the images
in database according to some pre-defined distance mettiprasents to the user

the top ranked images.

2. The user provides his relevance feedbacks to the systdabblng images as “rel-

evant” or “irrelevant”.

3. The system uses the user’s provided information to rk-tla@ images in database

and returns to the user the top images. Go to step 2 until #reisisatisfied.

All the subspace learning algorithms.¢, LPP and SR) can use the user’s relevance
feedbacks to update their graphs, which leads to bettepagbsfor semantic concepts.
Let g denote the query image andbe the transformation matrix of one subspace learning

algorithm, i.ex; = ATx; andq’ = AT q. The distance betweetj andq’ can be computed
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as follows:

dist(x),q) = /(x;—d)"(x}—q)

= (xi — q)TAAT(x; — q)

For a general subspace learning algorithm, one needs toastihe optimal dimen-
sionality of the subspace which could be very hard in pratti©ur analysis shows that
there will be onlyc dimensions for SR subspace (with the Semi-supervised iDis@nt
Analysis formulation), where is the number of classes. For image retrievak 2 since
there are two classes (relevant or not). Since all the otieetsuffer the problem of dimen-
sionality estimation, this is one of the advantages of dppl$R instead of other subspace
learning algorithms.

In many situations, the number of images in the databaseeaxttemely large, which
makes the computation of all the algorithms infeasible. raheo to reduce the computa-
tional complexity, we do not take all the images in the daselta construct thg nearest
neighbors graphs. Instead, we only take the top 400 imagée a@trevious retrieval itera-

tion, plus the labeled images, to find the optimal projection

Image Data Set

The COREL data set is widely used in many CBIR systems, such a8%$42,7, 86]. For
the sake of evaluations, we also choose this data set fanges80 categories of color
images were selected, where each consists of 100 imagels.irkage is represented as a
409-dimensional vector as described before. Figure 3.@slsome sample images from

the COREL data set.
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Figure 3.3: Sample images from category 24, 25, and 30, cagel.

Evaluation Metrics

Due to the relatively low recall in CBIR system, we do not usepfexision-recallcurve
[51]. Instead, we usprecision-scope curvandprecision rateas the performance evalua-
tion metrics [55]. The scope is specified by the numBér ¢f top-ranked images presented
to the user. The precision is the ratio of the number of relenvaages presented to the user
to the scopeV. The precision-scope curve describes the precision wiibws scopes and
thus gives an overall performance evaluation of the algorst On the other hand, the
precision rate emphasizes the precision at a particulaewvafi scope.

In a real image retrieval system, a query image is usuallymibte image database. To
simulate such environment, we uBee-fold cross validatiorio evaluate the algorithms
which is also adopted in the paper [55]. More precisely, waddi the whole image
database into five subsets with equal size. Thus, there amafes per category in each
subset. At each run of cross validation, one subset is selestthe query set, and the other
four subsets are used as the database for retrieval. Thgiprescope curve and precision

rate are computed by averaging the results from the fivediads validation.

Automatic Relevance Feedback Scheme

We designed an automatic feedback scheme to model thevedtpi®cess. For each sub-
mitted query, our system retrieves and ranks the image®iddtabase. The top 10 ranked
images were selected as the feedback images, and theimé&dyehation (relevant or irrel-

evant) is used for re-ranking. Note that, the images whicke lieeen selected at previous
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iterations are excluded from later selections. For eachyytle automatic relevance feed-
back mechanism is performed for four iterations. The sinslzheme was used in [42],

[55], [86].

Compared Algorithms

To demonstrate the effectiveness and efficiency of our megpdmage retrieval algorithm
(SR), we compare it with three state-of-the-art semi-supedvsubspace learning algo-
rithms, i.e. incremental Locality Preserving Projection (LPP) [42)yginented Relation
Embedding (ARE) [55] and Semantic Subspace Projection (£5P)

A crucial problem of LPP (or, ARE and SSP) is how to determireedimensionality
of the subspace. In our experiments, we iterate all the déloas and select the dimension
with respect to the best performance. For SR, we simply usg-thimensional subspace.
For all these algorithms, the Euclidean distances in theaed subspace are used for rank-
ing the images in the database. All these algorithms neealtstiict &-nearest neighbors
graph, we empirically set = 5.

It is important to note that all the three algorithms (LPP, A&tel SSP) can be fit into
the spectral regression framework to be efficiently comghuttowever, to show the advan-
tages of SR, we implemented all the three algorithms in theiinary ways (SVD+LGE

approach).

Image Retrieval Performance

Figure 3.4 shows the averageecision-scopeurves of the different algorithms for the 1st,
2nd and 4th feedback iterations. Thaselinecurve describes the initial retrieval result
without feedback information. Specifically, at the begngnof retrieval, the Euclidean dis-
tances in the original 409-dimensional space are used tothenimages in the database.
After the user provides relevance feedbacks, the LPP, ARE, &8l SR algorithms are

then applied to re-rank the images in the database. Our SRtaly significantly outper-

44



Baseline Baseline
0.91, —+—LPP 0.91 4 —*—LPP
0.8} s} —=—ARE 0.8 —=— ARE
—e— SSP —e— SSP
0.7 —a SR

0.6
0.5
0.4
0.3

Precision
Precision

o2t o2t—-——
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Scope Scope
(a) Feedback Iteration 1 (b) Feedback Iteration 2

l 4

: Baseline
0.9 —+— LPP
0.8 —=— ARE

—e— SSP

s 0.7 — 4+ SR

3 0.6

Q

o

0.5
0.4
0.3
0.2

10 20 30 40 50 60 70 80 90 100
Scope
(c) Feedback Iteration 4

Figure 3.4: Compare the retrieval performance of differégu@hms. (a)-(c) Via illustrat-
ing with the precision-scope curves, we plot the resulthelst, 2nd, and 4th feedback
iteration, respectively. The SR algorithm performs thet lo@sthe entire scope for all the
three feedback iterations.
forms the other three algorithms on the entire scope. Theathygerformances of LPP,
ARE and SSP are very close to each other. ARE performs bettethkaother two at the
first round, especially with a small scope. All these fouraillpms are significantly bet-
ter than the baseline, which indicates that the user prawidievance feedbacks are very
helpful for improving the retrieval performance.

Table 3.5 gives the processing time for each query of thedtgorithms. All the three
algorithms LPP, ARE and SSP are computed by SVD+LGE approackeadescribed

in Chapter 2. It is clear to see the SR has a significant compungtadvantage over

the SVD+LGE approach. This results verified our theoretgalysis on computational
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Table 3.5: Time on processing one query for each method (s)

tw tsvDp | tGEigen tAn
LPP 0.494 1.009
ARE 0.453 0.489 1.004
SSP | 0.062 0.487 1.002
tSEigen tRLS
SR 0.024 0.041 0.127

tyw . time on the graph construction.

tsyp: time on SVD decomposition.

tGEigen. time on generalized eigen-problem.
tsEigen: ime on sparse eigen-problem
trrs: time on regularized least squares

complexity in Table 3.1.
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Chapter 4

Kernel Spectral Regression

4.1 Derivation of LGE in Reproducing Kernel Hilbert
Space

In this section, we generalize LGE approach to nonlineablpras and develop Kernel
Graph Embedding (KGE).

We seek a functiorf € Hy such that the following objective function is maximized,

n

min | (f(xi) = f(x;))* Wy (4.1)

=1

Proposition 4 LetH = {> ", &;K(-,x;)|o; € R} be a subspace dfi, the solution to
the problem (4.1) is ifH.

Proof Let H* be the orthogonal complement &f, i.e. Hx = H ® H*. Thus, for any

function f € Hg, it has orthogonal decomposition as follows:

J =TI+ fne
Now, let’s evaluatef atx;:
f(XZ) = <fa KXi>HK (42)
= <f7‘( + fHL7 Kxi>HK (43)
= <va sz‘>HK + <in7 KXi>HK (44)
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Notice thatKy, € H while f;,. € H*. This implies that f, ., Ky, ), = 0. Therefore,

f(xi) = (fr, Kxi)mie = fr(xi)

This completes the proof.

Since the solutions to the problem (4.1) areHn we useH andH interchangeably
thereafter. Thus, the inner product betwegen € H wheref(-) = > | ;K (-,x;) and
9(:) = 2 BiK (L x;) is (f,g9) = >, ; i K (xi,%;). If the kernel function is chosen
as inner produck (x,y) = (x,y), thenH is a linear functional space and the algorithm

reduces to ordinary LGE. For general kernel functiorand f € H g, we have
f(x) = ZaiK(x,xi) = Kx)Ta (4.5)
=1

wherea = [y, -+, a,]7 and K (x) = [K(x,%), -+ , K(x,x,)]T. We define

K(X1>T0!
K(Xl)TOf
K(x1,x1) K(x1,x,)
— o
K(x,,%1) K(xy,%p,)
= Ka

where K is the kernel matrixK;; = K(x;,x;). Note that,K is symmetric. Thus, the
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objective function can be reduced to

n

Y (66 = f(x)7) Wy

=1

= 2 Z J(xi)Dyi f(x;) — 2 Z f(x)Wis f(x5)
i=1 i=1

= 2y Dy —2yT Wy

= 2y"Ly

= 22" KLKa
whereL is the graph Laplacian. Similarly, the constraint can bévedras follows:
y'Dy=1=ao"KDKa =1 (4.6)

Therefore, the optimal mapping functigne Hx can be obtained by solving the following

minimization problem

. . o' KLK T«
a = arg min m, (47)
or equivalent maximization problem
. o’ KWK Ta
a = argmax m (48)
This leads to the following generalized eigenvector proble
KWKa =) \KDKa (4.9

To get nonlinear function, we simply choose a nonlinear &erflso, it is important to
note that there is no nonlinear optimization involved in KGENce it can be computed as

simply as the standard LGE.
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4.2 Efficient KGE via Spectral Regression

One can easily see the similarity between the eigen-proloeKGE in Eq. (4.9) and
the eigen-problem of LGE in Eqg. (2.34). Thus, the spectrge@ssion idea introduced in
Chapter 3 can also be applied on the KGE problem.

Specifically, we have the following theorm

Theorem 5 Lety be the eigenvector of eigen-problem
Wy = \Dy (4.10)

with eigenvalue\. If Ka =y, thena is the eigenvector of eigen-problem in Eqn. (4.9)

with the same eigenvalue

Proof We havell’'y = ADy. At the left side of Eqn. (4.9), replad€a by y, we have
KWKa =KWy =KADy = AKDy=\AKDKa

Thus,a is the eigenvector of eigen-problem Eqn. (4.9) with the saigenvalue\.

The above theorem shows that the KGE optimization problematso be solved
through regression. The kernel matfixis positive semi-definite. WheR is non-singular
(positive definite), for any givey, we have a unique = K ~'y which satisfy the above
linear equations system. Wheh is singular, the system may have no solution or have
infinite many solutions (the linear equations system is whetermined) [36]. A possible

way is to approximate: by solving the following linear equations:
(K+d0Da=y (4.11)

wherel! is the identity matrix and > 0 is the regularization parameter. Since the matrix

K + 41 is positive definite, the Cholesky decomposition can be usefdfitiently solve the
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linear equations in Egn. (4.11) [36], [72]. The computasibcomplexity analysis will be
provided in the later section.
The linear equations system in Eqn. (4.11) has close coioneeith regularized re-

gression [79]. We denote the projective function in thedeaspace as:
F) = @, 0(x) = > aiK (X, %)
=1

It can be easily verified that the solutiart = (K + §7)~'y given by equations in Eqgn.

(3.3) is the optimal solution of the following regularizezbression problem [79]:

n

ip > (F0) - wi) -+l Ik (4.12)

wherey; is thei-th element ofy, F is the RKHS associated with Mercer kerébnd|| || x

is the corresponding norm.

4.3 Theoretical Analysis

When the kernel matrix< is positive definite and thé = 0, Theorem 5 shows that the
solutionay, = K~y are exactly the eigenvectors of the KGE eign-problem in E4r®).
In this case, Kernel Spectral Regression (KSR) is equivateatdinary KGE. Thus, it is
interesting and important to see when the positive semnidefkernel matrixi” will be
positive definite.

One of the most popular kernels is the Gaussian RBF kefiiel, X;) = exp(—||x; —
X;j||?/20%). Our discussion in this section will only focus on Gaussiamkl. Regarding

the Gaussian kernel, we have the following lemma:

Lemma 6 (Full Rank of Gaussian RBF Gram Matrices [58])Suppose that,, - - - , X,
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are distinct points, and # 0. The matrixK given by
Kij = exp(=||x; — x;[|*/20?)

has full rank.
Proof See [58] and Theorem 2.18 in [70].

In other words, the kernel matriX is positive definite (provided no twg are the same).

Thus, we have the following theorem:

Theorem 7 If all the sample vectors are different and the Gaussian R&frdd is used,
all the projective functions in KSR are eigenvectors of eigablem in Egn. (4.9) when

0 = 0. In other words, the KSR and ordinary KGE are equivalent.

Proof This theorem can be easily proofed by combining Lemma 6 ameiem 5.

4.4 Computational Analysis

In this section, we provide the computational analysis afiéeSpectral Regression. For
simplicity, we use the LDA supervised graph in Eq. (2.16).tHis case, KSR provides
an efficient solution for Kernel Discriminant Analysis (KDA2][59]. We begin with the

complexity analysis of the traditional KDA.

4.4.1 Computational Analysis of KDA

To get a stable solution of the eigen-problem in Egn. (418,matrix K DK is required
to be non-singular [36]. WheR is singular, there are two methods to solve this problem.

The first method is by using eigen-decompositiorkgfwhich was proposed in [2].
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Suppose the rank df is r(r < n) and the eigen-decomposition &fis as follows:
K=UxU" =U,%,U;

whereX = diag(oy,--- ,0,) is the diagonal matrix of sorted eigenvalues ¢ --- >
o > 0)andU is the matrix of normalized eigenvectors associated.t, is the diagonal
matrix of nonzero eigenvalues aid is the firstr columns ofU. ThusX: ! exists and
UT'U, = I, wherel is the identity matrix.

SubstitutingK in Eqn. (4.8)0 = I with Wp4), we get

(z,UTa) UTWU, (5,U )
(%.Ura) UTU,(3,UTa)

Q,pt = arg max

We proceed to variable modification usifig= >, U« and get:

BTUTWU,B
TR

Bopt = arg max

Thus, the optimaB’s are the leading eigenvectors of mattiX W U,.. Oncef’s are calcu-
lated,a can be computed as= U, 14.

The second method is using the idea of regularization, byngdmnstant values to the
diagonal elements oK' K, asK K + ~I, for v > 0. It is easy to see thak K + I is

nonsingular. This method is used in [59]. By noticing that

KK +~I =USUTUSUT + 41 = U(Z?* +41)U7,
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we define: = (X2 4+ ~1)'/2, the objective function of regularized KDA can be written as

o' KWKa
* o (KK + 1)
USUTWURU
aTUSYU T
BIE IS UTWULE !B
BB

ma

— Imax

— Imax

wheref = >UTa. With this formulation, the above two methods can be conpurte
exactly the same way.

To reduce the computation in calculatifg we shall exploit the special structure of
W. Based on the analysis in the previous Section, we know tleatrtatrix 1/ has a
block-diagonal structure. We partition thex r matrix U, as [Uﬁl), e ,Uﬁc)]T, where

U e R, Letv™ be thei-th column vector of/{", we have:

WU, =Y uPw®wk)T

k=1

e L e 8)
S (v Swer)
C

i=1 =1

whereH = [/nv, -+ |\ /nv©] € R andv® is the average vector of".
To calculate the: leading eigenvectors of H7, it is not necessary to work on matrix
HHT which is of sizer x . We can use a much more efficient algorithm. Suppose the

Singular Value Decomposition @ is

H = Pro’,
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it is easy to check that the column vectors @fare the eigenvectors of H7 and the
column vectors of) are the eigenvectors é¢f” H [73]. Moreover, if P or Q) is given, we
can recover the other via the formula) = PT" andPTH = I'Q*. Sincec < r, we can
calculate the: eigenvectors of/” H and then recover the eigenvectorstbf/”, which are
B’s.

We use the ternflam[72], a compound operation consisting of one addition anel on
multiplication, to measure the operation counts. All thenleé methods need to compute
the kernel matrixx” which requiresD(n?m) flam, wherem is the number of features. The
eigen-decomposition ok’ requiresgn?’ flam [73, 36]; Calculating the — 1 eigenvectors
B's requiresic® + 3nc? flam; Computinga’s from 8's requiresn®c flam. Finally, we

conclude the time complexity of KDA measured by flam is

9 3 9
5"3 +n?c+ O(n*m) + 57102 + 503.

Considering: > ¢, the above time complexity can be simplified as

gn?’ +nPc+ O(n*m). (4.13)

For a large scale problem, we have> m. Thus, the time complexity of KDA is domi-

nated bygn?’, which is the cost of eigen-decomposition of size n kernel matrixk .

4.4.2 Computational Analysis of KSR

The computation of KSR involves two steps: respongés Egn. 3.9) generation and reg-
ularized regression. The cost of the first step is mainly tie# of Gram-Schmidt method,
which requiregnc? — 3¢%) flam [72].

To solve thec — 1 linear equations systems in Egn. (3.3), we can use the Cholesk

decomposition, which uniquely factorizes the positivededimatrix X' + 67 in the form
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K+ = RTR, whereR is upper triangular with positive diagonal elements. Thel€$iy
decomposition require}§n3 flam [72]. With this Cholesky decomposition, the- 1 linear
equations can be solved withiric flam [72]. Besides solving the KSR optimization prob-
lem, we also need to compute the kernel mafixvhich require)(n?*m) flam. Thus, the
computational cost of KSR is

Lo +n?c+ O(n*m) + nc® — L
6 37

which can be simplified as

1
6713 +nPc+ O(n*m).

Comparing to the computational cost of ordinary KDA in Eqn.1®), KSR reduces the

dominant part, which ign3 of ordinary KDA, to%n3; achieves a 27-times speedup.

4.5 Incremental Kernel Discriminant Analysis

Due to the difficulty of designing an incremental solution fiee eigen-decomposition on
the kernel matrix in KDA, there has been little work on desigrnincremental KDA algo-
rithms that can efficiently incorporate new data exampletheg become available. The
KSR algorithm uses regression instead of eigen-deconpogad solve the optimization
problem, which provides us the chance to develop increrheatsion of KDA.

The major cost in KSR computation is the step of Cholesky dgosition which re-
quires%n3 flam. Fortunately, the Cholesky decomposition can be easjiyjamented in the
incremental manner [72]. Actuallgherman’s marchone of the most popular Cholesky
decomposition algorithms, is implemented in the incremem@nner [72].

The procedure of Sherman’s march is illustrated graplyiéalFigure 4.1. The gray

area represents the part of the Cholesky decompositiondsatifeady been computed with
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Figure 4.1: Sherman’s march (Cholesky decomposition)

R andR” separated by a diagonal lth€The white area represents untouched elements of
the original matrix. The thin vertical box represents thieiom of R about to be computed.
The algorithm is easy to derive. We show how to proceed ffom 1) x (n — 1) submatrix

to an x n matrix. We have

Kn—l kln
K, =

T

kln knn

Rg 1 0 R, T

- 9

T

r, Tnn 0 Ton

which leads to

T
anl :Rnfanfl
T
kln :Rnflrln

T 2
kTm =li.ln + Tnn

When the Cholesky decomposition of the— 1) x (n — 1) submatrixk,_; is known, it
is easy to get the Cholesky decomposition ofthe n K,,. For detailed derivation, please
see [72].

Now, let us consider the additional computational cost oféemental KSR when\n

new data samples are injected to the system which already sasples. Compare to the

!Actually, we only need to stora.
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Table 4.1: Computational complexity of KDA and KSR
Algorithm operation countsfilam[72])

KDA In® + cn® + O(mn?)

KSR &n® 4+ en?® + O(mn?)

Incrementall KDA | §n® + cn® + O(mnAn)
mode | KSR | (42 4 c)n® + O(mnAn)

n: the number of data samples

m: the number of features

c: the number of classes

An: the number of new data samples

Batch mode

batch mode of KSR, we can get computational saving on two steps

1. We only need to calculate the additional part of kerneftixathich requiresD (mnAn+

mAn?) flam;
2. The incremental Cholesky decomposition requires+ An)? — in® flam [72].

Thus, the computation cost of incremental KSR measured hyifla

1

1 1
2n2An + §nAn2 + EAn?’ + (n + An)?c

+ O(mnAn +mAn?) + (n + An)c® — %c?’.

WhenAn < n andc < n, the above cost can be simplified as
A
(TH + ¢)m? + O(mnAn).

We summarize our complexity analysis results in Table 4.he fain conclusions

include:

e The ordinary KDA needs to perform eigen-decomposition am kbrnel matrix,

which is very computationally expensive. Moreover, it iffidult to develop in-
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Table 4.2: Statistics of the three data sets
train test # of

size gn) | size | classesd)

Isolet 617 6238 | 1559 26

USPS| 256 7291 | 2007 10
PIE 1024 8000 | 3554 68

dataset| dim (n)

cremental algorithm based on the ordinary KDA formulatidn. both batch and

incremental modes, ordinary KDA has the dominant part otthst asgn?’.

¢ KSR performs regression instead of eigen-decompositiothd batch mode, it only
has the dominant part of the cost%g#, which is a 27-times speedup of ordinary
KDA. Moreover, it is easy to develop incremental version @K which only has
quadratic-time complexity with respect to This computational advantage makes

KSR much more practical in real world applications.

4.6 Experimental Results

In this section, we investigate the performance of our psedoKSR algorithm in both

batch mode and incremental mode.

4.6.1 Datasets

Three datasets are used in our experimental study, ingghoken letter, handwritten digit
image, and face image data sets. The important statistitsed datasets are summarized

below (see also Table 4.2):

e The Isolet spoken letter recognition datalfasas first used in [33]. It contains 150
subjects who spoke the name of each letter of the alphabet tWihe speakers are

grouped into sets of 30 speakers each, and are referredgolatlithrough isolet5.

2http://www.ics.uci.edutmlearn/MLSummary.html
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In the past usage [33][30], isolet1&2&3&4 were used as thmtng set and isolet5
was used as the test set. For the purposes of our experimealsw choose isolet5
as the test set and perform several runs with isoletl, k&&tisolet1l&2&3, and

isolet1&2&3&4 as the training set respectively.

e The USPS handwritten digit database is described in [52]opufar subset con-
tains 929816 x 16 handwritten digit images in total, which is then split int291
training images and 2007 test images. In our experimentraue &ll the algorithms
on the first 1500 (3000, 4500, 6000, and 7291) images in ti@rigaset and test on

the 2007 test images.

e The CMU PIE face database as we introduced in the previous @hapt

4.6.2 Compared Algorithms
Four algorithms which are compared in our experiments atedibelow:

1. Linear Discriminant Analysis (LDA) [35], which provides a baseline performance
of linear algorithms. We can examine the usefulness of keymgroaches by com-

paring the performance of KDA and LDA.

2. Kernel Discriminant Analysis (KDA) as discussed in Sext?2. We test the regular-
ized version and choose the regularization paramebsrfive fold cross-validation

on the training set.

3. Kernel Spectral Regression (KSR), our approach propos#dsrpaper. The reg-

ularization parametef is also chosen by five fold cross-validation on the training

set.

4. KDA/QR (KQR) [81], a KDA variation in which QR decompositias applied rather

than eigen-decomposition. Thus, KDA/QR is very efficient.

Shttp://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/multiclass.html#usps
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Table 4.3: Performance comparisons on Isolet dataset
Error (%) Time (s) Speedup
Training Set| LDA |KDA | KSR|KQR|SVM || LDA |KDA | KSR |KQR|SVM
Isoletl 15.2711.7412.8917.1912.51 || 1.93/18.8 1.21| 0.93| 4.75 15.6
Isolet1+2 6.61]3.79| 3.85| 7.63| 4.11 || 2.14/134. 5.51| 3.60(|13.79| 24.4
Isoletl+2+3 || 5.90| 2.99| 3.08| 7.12| 3.34 || 2.37|/451.614.09 7.98|23.84| 32.1
Isoletl+2+3+4 5.71|2.82| 2.89| 6.86| 3.27 || 2.56(991.227.8614.0234.82| 35.6
*Column labeled “Speedup” shows how many times faster
the KSR is (comparing to ordinary KDA).

Table 4.4: Performance comparisons on USPS dataset
Error (%) Time (s) Speedup
Training Sizel LDA |[KDA |[KSR|KQR|SVM | LDA| KDA | KSR|KQR|SVM
1500 10.61 6.58|5.88/10.86 6.85 || 0.21| 14.97| 0.92| 0.66| 0.78 16.3
3000 9.77|5.53|5.38/10.66 5.58 || 0.27| 111.9| 4.35| 2.61| 2.20 25.7
4500 9.52|5.53|4.88/ 9.67| 5.13 || 0.34| 354.3|11.29 5.85| 4.06 314
6000 9.92|5.03|4.43| 9.37| 5.08 || 0.40| 825.3|22.7410.41 6.22 36.3
7291 10.26 4.83(4.04|/ 9.02| 4.83 || 0.47]1553.637.5915.60 8.18 41.3

5. Support Vector Machine (SVM) [79], which is believed ag @i the state-of-the-
art classification algorithms. Specifically, we use the MbSsystem [23] which
implemented the multi-class classification with one versne strategy. SVM is

used to get the sense that how good the performance of KDA is.

We use the Gaussian RBF kernel for all the kernel-based metkideigine the kernel width
parametew and large margin parametér in SVM to achieve best testing performance

for SVM. Then, the same kernel width parameteis used in all the other kernel-based

algorithms.

4.6.3 Results

The classification error rate as well as the training timedgad) for each method on the
three data sets are reported on the Table {4435) respectively.

The main observations from the performance comparisomsdac

e The Kernel Discriminant Analysis model is very effectiveciassification. KSR has
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Table 4.5: Performance comparisons on PIE dataset

Error (%) Time (s) Speedup

Training Size LDA |KDA |KSR|KQR|SVM || LDA | KDA | KSR|KQR|SVM

2000 5.29/5.18|4.81/15.62 6.30 || 8.77| 36.51| 2.47| 1.66(24.13| 14.8
3000 4.61| 4.25/3.94/ 9.82|4.70 || 9.06| 116.9| 5.39| 3.66|43.99| 21.7
4000 4.14/5.53|3.24| 7.93| 3.74 || 9.42| 256.6/10.35 6.39(68.43| 24.8
5000 3.85/3.23|/2.90| 5.94| 3.29 | 9.73] 502.3|17.4010.0096.26| 28.9
6000 3.57|2.91/2.53| 5.68| 2.84 || 10.06 830.7|27.2114.20125.6| 30.5
7000 3.40] 2.65|2.19| 4.08| 2.64 || 10.391340.938.6519.12155.6| 34.7
8000 3.35/2.41/2.17/ 4.00| 2.34 || 10.791908.153.7524.96186.7| 35.5

the best performance for almost all the cases in all the ttaitsesets (even better than
SVM). For Isolet data set, previous study [30] reported ti@mmum error rate train-
ing on Isolet1+2+3+4 by OPfTwith 30 bit ECOC is 3.27%. KDA (KSR) achieved
better performance in our experiment for this train/tedit.sg-or USPS data set,
previous studies [70] reported error rate 3.7% for KDA ar@@4dfor SVM, slightly
better than the results in our experiment. For all the cages, (KSR) achieved sig-
nificantly better performance than LDA, which suggests tifiecéveness of kernel

approaches.

e Since the eigen-decomposition of the kernel matrix is wmed| the ordinary KDA
is computationally expensive in training. KSR uses regoessistead of eigen-
decomposition to solve the optimization problem, and thulmseave significant speedup
comparing to ordinary KDA. The empirical results are coresiswith the theoreti-
cal estimation of the efficiency. The time of training KSR @wparable with that
of training SVM. KSR is faster than SVM on Isolet and PIE dagtsswhile slower
than SVM on USPS data set. This is because the time of traBig is dependant
with the number of support vectors [8]. For some data sets bis of noise €.g,
USPS), the number of support vectors is far less than the auoflsamples. In this

case, SVM can be trained very fast.

4Conjugate-gradient implementation of back-propagation
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e The KDA/QR algorithm is very efficient because it only neegénform QR decom-
position on matrices with sizer x ¢ [81]. However, there is no theoretical relation
between the optimization problem solved in KDA/QR and thdhe KDA. In all the

three data sets, the performances of KDA/QR is the worst.

4.6.4 Experiments on Incremental KDA

In this experiment, we study the computational cost of KSRgpming in the incremental
manner. The USPS and PIE data sets are used. We start froraithieg set with the size
of 1000 (the first 2000 samples in whole training set) andeiase the training size by 200
for each step. KSR is then performed in the incremental marihés important to note
that KSR in the incremental manner give the exactly sameeptigg functions as the KSR
in the batch mode. Thus, we only care about the computatasas in this experiment.
Figure 4.2 and 4.3 shows log-log plots of how CPU-time of KDASE incremental
KSR) increases with the size of the training set on USPS anddBt& set respectively.
Lines in a log-log plot correspond to polynomial grov@iin?), whered corresponds to the
slope of the line. The ordinary KDA scales rouglilyn??), which is slightly better than
the theoretical estimation. KSR in the batch mode has bst@mg, which is also better
than theoretical estimation with roughiy(n*%) over much of the range. This explains why
KSR can be more than 27 times faster than ordinary KDA in tlegipus experiments. The
KSR in the incremental mode has the best scaling, which isqoe surprise) better than

quadratic with roughly)(n'#) over much of the range.
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Figure 4.2: Computational cost of KDA, batch KSR and incretaelSR on the USPS
data set.

10 T
—— KDA
—=e— SRKDA
100} —— SRKDA-Incre
2.9
O(n =)
o(n 2.6)
1.8
10° O(n ™)

Computational time (s)

Training size

Figure 4.3: Computational cost of KDA, batch KSR and incretal)iSR on the PIE data
set.
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Chapter 5

Sparse Subspace Learning for Feature
Selection

One of the major disadvantages of all the algorithms dismligsprevious Chapters is that
the learned projective functions are linear combinatidrelidhe original features, thus it
is often difficult to interpret the results. Recently, there eonsiderable interests on de-
veloping sparse subspace learning algorithms. &aai. [89] proposed an elegant sparse
PCA algorithm (SPCA) using their “Elastic Net” framework fby-penalized regression on
regular principle components, solved very efficiently gdemast angle regressio(LARS)
[32]. Subsequently, d’Aspremot al. [28] relaxed the hard cardinality constraint and
solved for a convex approximation using semi-definite progning. In [60, 61], Moghad-
damet al. proposed a spectral bounds framework for sparse subsgaoérig. Particularly,
they proposed both exact and greedy algorithms for sparsedP@Aparse LDA.

In this Chapter, we propose a novel Unified Sparse Subspaamihgdramework
(USSL), for sparse projections learning. The proposedagmgtr is fundamentally based
on our spectral regression framework. By incorporating éugession as a building block,
different kinds of regularizers can be naturally incorpedan SR. Specifically, with & -
norm regularizerl@ssoor elastic ne}, the sparse projections can be efficiently computed

in USSL.
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5.1 Sparse Subspace Learning Formulation

For simplicity, we defined = XW X7T, B = XDXT and rewrite the optimization problem
of LGE in Egn. (2.9) as:

max a’ Aa

subjectto a’Ba=1

Following [61], we define the Sparse Subspace Learning (®$tinization in terms of

the following cardinality-constrained QCQP:

max alAa
subjectto a’Ba=1 (5.1)
card(a) = k

The feasible set is all sparse € R™ with k& non-zero elements anehrd(a) as their
Lo-norm. Unfortunately, this optimization problem is NP-thand therefor generally in-
tractable .

In [60, 61], Moghaddanet al. proposed a spectral bounds framework for sparse sub-
space learning. Particularly, they proposed both exactgreddy algorithms for sparse
PCA and sparse LDA. Their spectral bounds framework is basedefollowing optimal
condition of the sparse solution.

A sparse vectoa € R™ with cardinality £ yielding the maximum objective value in
Eqn. (5.1) would necessarily imply that

a’Aa b"A;b
al'Ba b"B;b

)\ma:p -

whereb € R* contains thek non-zero elements iaand thek x & principle sub-matrices
of A and B obtained by deleting the rows and columns correspondinge@ero indices

of a. The k-dimensional quadratic form ib is equivalent to a standard unconstrained
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generalized Rayleigh quotient, which can be solved by a géined eigen-problem.

The above observation gives the exact algorithm for sparsspace learning: a dis-
crete search for the indices which maximize,,,,.. of the subprobleniA, B;). However,
such observation does not suggest an efficient algorithrausecan exhaustive search is
still NP-hard. To solve this problem, Moghaddanal. proposed an efficient greedy al-
gorithm which combinebackward eliminatiorandforward selectior{60, 61]. As we dis-
cussed in Section 2, many of the popular graph-based subfgEaing algorithms can be
formulated as the generalized eigen-problem, Moghaddappsoach provides a general
solution for learning sparse projections in all these sabspearning algorithms. However,

there are two major drawbacks of their approach:

1. Even their algorithm is a greedy one, the cost of backwhmreation is with com-

plexity O(m?* + nm?)[61].

2. In reality, more than one projective functions are usuakcessary for subspace
learning. However, the optimal condition of the sparsetsmtuonly gives the guide
to find ONE sparse “eigenvector”, which is the first projeetiunction. It is un-
clear how to find the following projective functions. Althgiu [60] suggests to use
recursive deflation, the sparseness of the the followingeptiwe functions is not

guaranteed.

In [89], Zouet al. proposed an elegant sparse PCA algorithm (SPCA) using thleis~
tic Net” framework for L,-penalized regression on regular principle componentsedo
very efficiently usindeast angle regressiofLARS) [32]. The key idea of SPCA is formu-
lating PCA as a regression-type optimization problem.

Without loss of generality, we assume the data are ceriteféxd PCA objective func-

1This can be achieved by subtracting the mean vector frorhaample vectors.
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tion is
max a XXTa
(5.2)
subjectto a’a=1
and the optimab’s are the eigenvectors with respect to the maximum eigaegabf the
following eigen-problem:

XXTa=)a (5.3)

Suppose the rank of is r and the Singular Value Decomposition (SVD)JXfis:
X =UxvT, (5.4)

it is easy to verify that the column vectorsiihare the eigenvectors of X' [36], i.e., the
projective functions of PCA. Let = |y,,---,y,] = UTX = XV, each row vector o’
is the sample vector in thedimensional PCA subspace. Thus, the projective functiébns o

PCA are essentially the solutions of the linear equatioresyst
X'y =y, t=1,--,r
in other wordsg; is the solution of the regression system:

: T t\2
a; = arg min a X, —vy;
8! ;:1( Y;)

wherey! is thei-th element ofy,. Zou et al. [89] add L,-regularizer to get the sparse

solutions:

a =argmin ) (a'% —y;)*+5) lajl

whereq; is the j-th element ofa. The above regression problem is calleabso[41] and
can be efficiently computed using LARS algorithm [32].

By using spectral regression framework, the similar tealmmican easily be applied to
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those linear graph embedding algorithms.

5.2 Unified Sparse Subspace Learning via Spectral
Regression

With a L;-norm ona in the regression step of SR, we have

a = argmin (Z (aTXi — yi)Q + 0 |aj|> , (5.5)
=1

a i=1

which is usually referred assso regressiofdl1]. Due to the nature of thé,; penalty,
some coefficients will be shrunk to exact zergsiis large enough. Therefore the lasso
produces a sparse model, which is exactly what we want. Hexvéwe lasso has several
limitations as pointed out in [88]. The most relevant onehig work is that the number
of selected features by the lasso is limited by the numberaofpdes. For example, if
applied to the face image data where there are thousandatafds {» > 1000) with less
than 100 samplesy(< 100), the lasso can only select at masteatures, which is clearly
unsatisfactory. The Elastic Net [88] generalizes the lassovercome its drawbacks by

combining both the ridge and lasso penalty:

a i=1

a = arg min (Z (aTXiyi)Z—i-aZa?—&-ﬁZaj) (5.6)
j=1 j=1

For kernel subspace learning algorithms, recall the sestglof KSR, which is solv-

ing the linear equations systelfix = y. Essentially, we try to solve a regression problem:

where K (:, X;) is thei-th column of K andy; is thei-th element ofy. We can also use a
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Ly-norm regularizer:

min (Zn: (K(:,xi)Ta—yi>2+5zn:|ai|> (5.7)
i=1

=1

In this way, Spectral Regression framework provides a negpearse subspace learning

approach.

5.3 Computational Complexity of USSL

The USSL computation involves two steps: responses geoer@alculate the eigenvec-
tors of eigen-problem in Egn. (3.2)) and regularized regjoes

For the W in LDA, the cost of the first step is mainly the cost of Gram-Sat
method, which isO(nc?) [72]. For ak-NN graphT in LPP, the cost of the first step
is O(n?*m + n?logn + qdnp). O(n?*m) is used to calculate the pairwise distance between
n samples withn features and)(n?logn) is used forp-nearest neighbors finding for all
then samples. The-NN graph matrixiV is sparse and the Lanczos algorithm [36] can
be used to efficiently compute the fikseigenvectors of the eigen-problem in Eqn. (3.2)
within O(gdnp), wheregq is number of iterations in Lanczos.

All of the three types of regularized regression problenmstisolved irO(m? +nm?)
[41][32]. By using theLeast Angel RegressidhARS) algorithm [32], the entire solution
path (the solutions with all the possible cardinality @nof lasso and elastic net with a
specifica can be computed i®(m? + nm?).

Considering: > ¢ andn > d, USSL provides a sparse LDA solution with(m? +
nm?) complexity and a sparse LPP solution wittin?m + n?logn + m?3 + nm?) com-
plexity. This complexity is exactly the same as the ordinap-sparse solution solved by
generalized eigen-problem. Comparing to then* + nm?) greedy algorithm described

in [61], USSL is much more efficient.
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5.4 Experimental Results

In this section, we investigate the performance of our pseddJSSL approach for both
supervised learning (face recognition) and unsupervisaadhing (face clustering).

Two face databases were used in the experiment. The firssahe PIE (Pose, Illumi-
nation, and Experience) databa§®m CMU, and the second one is the Extended Yale-B
database

The CMU PIE face database contains 68 human subjects witlb& 1a8e images as a
whole. The face images were captured by 13 synchronizedreamaed 21 flashes, under
varying pose, illumination and expression. We choose thetél poses (C27) and use all
the images under different illuminations and expressitng we get 3329 face images in
total.

The Extended Yale-B face database contains 16128 imag@&snfiBan subjects under
9 poses and 64 illumination conditions. In this experimesmt,choose the frontal pose and
use all the images under different illumination. Finally get 2414 images in total.

All the face images are manually aligned and cropped. Theedfirach cropped image
is 32 x 32 pixels, with 256 gray levels per pixel. Thus each image isegpnted as a

1024-dimensional vector.

5.4.1 USSL for Supervised Learning

In this experiment, we use th& in Eqn. (2.16). Thus, USSL provides a sparse LDA solu-
tion. We compare our algorithm with PCA, LDA and SparsePCA [89face recognition,
PCA and LDA are also called Eigenface [78] and FisherfaceTBgy are two of the most
popular linear methods for face recognition. We do not campdth Sparse LDA [61]
since it can only be applied to two-class case. Please @féd} for the details.

For each database,(= 33, 67) percent of samples are randomly selected for training

2http://www.ri.cmu.edu/projects/projedtl8.html
3http://vision.ucsd.edw/leekc/ExtYaleDatabase/ExtYaleB.html
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Figure 5.2: Error rate vs. dimensionality reduction on YBldatabase

and the rest are used for testing. The training samples acktasearn the basis functions.
By using these basis functions, the testing images can beadap lower dimensional
subspace where recognition is carried out by using neaggghtioor classifier. 5-fold cross
validation has been performed in SparsePCA and USSL fortsedetbe best cardinality
of the basis functions. The choices of the cardinality are20)--- 100, 150, 200; - -,
1000, 1024.

For each given, we average the recognition results over 20 random splitgur&
5.1 and 5.2 show the plots of error rate versus dimensignediuction for the PCA,

SparsePCA, LDA, USSL and baseline methods on PIE and Yalet@bdses, respec-
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Table 5.1: Comparison of classification error rate on PIE

Method 33% Training 67% Training
error (%) | dim | sparsity| error (%) | dim | sparsity
Baseline | 11.740.5| 1024 — 3.6+£0.6 | 1024 —

PCA 11.740.5| 700 0 3.6+£0.6 | 1000 0
SparsePCA 7.0+£0.6 | 380 | 92.2% | 2.6:£0.5 | 480 | 92.2%
LDA 4.0£0.2 | 67 0 2.5+0.5 | 67 0

USSL 24+0.2 | 64 | 90.2% | 1.6£0.3 | 66 | 90.2%

Table 5.2: Comparison of classification error rate on Yale-B

Method 33% Training 67% Training
error (%) | dim | sparsity| error (%) | dim | sparsity
Baseline | 28.4+1.3 | 1024 - 17.3+0.7 | 1024 -

PCA 28.4£1.3| 700 0 17.3:0.7 | 830 0
SparsePCA 16.741.1| 230 | 95.1% | 8.0£0.5 | 250 | 95.1%
LDA 6.0£0.6 | 37 0 2.7£05 | 37 0

USSL 3.9+406 | 37 | 86.3% | 1.0£0.3 | 37 | 86.3%

tively. For the baseline method, the recognition is simmgyfgrmed in the original 1024-
dimensional image space without any dimensionality redaoctNote that, the upper bound
of the dimensionality of LDA is: — 1 wherec is the number of individuals [31]. We use
the LDA graphl¥ as defined in Section 2 in our USSL algorithm. Thus, the uppant

of the dimensionality of USSL is also— 1. As can be seen, the performance of the PCA,
SparsePCA, LDA and USSL algorithms varies with the numbeilimoidsions. We show
the best results together with the standard deviationsr@atdy them in Table 5.1 and 5.2
and the corresponding face subspaces are called optinebktdispace for each method.
Particularly, we also shown the sparsity of the basis fanstifor these algorithms. The
sparsity is computed as the ratio of the number of zero enanel the total number of en-
tries. As can be seen, the sparsity for PCA and LDA are both zéride the sparsity for

sparse PCA and USSL are very high.
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5.4.2 USSL for Unsupervised Learning

In this subsection, we investigate the use of our proposprbaph for face clustering. Face
clustering is an unsupervised task and we compare our #igowith PCA, SparsePCA
and Locality Preserving Projection (LPP) [46][47]. We uBe samep-nearest neighbor
graph in LPP and USSL. Thus, USSL provides a sparse LPP @oluffe empirically set
the value ofp to 5.

We choose K-means as our clustering algorithm. K-means egoelformed in the
original feature space (Baseline) or in the reduced feafpeiees(by using the dimension-
ality reduction algorithmse.g, PCA, LPP and USSL). The clustering result is evaluated
by comparing the obtained label of each image with that piexiby the ground truth. We
use the normalized mutual informatioh/() to measure the clustering performance [10].
Let C denote the set of clusters obtained from the ground truth(dnmbtained from an

algorithm. Their mutual information metrie/ I (C, C”) is defined as follows:

p(ci7 C;)

MIC.CY= 3 plenc) logr it

cieC.chec
wherep(c;) andp(c) are the probabilities that a sample arbitrarily selectedhfthe data
set belongs to the clustersandc, respectively, ang(c;, c;) is the joint probability that
the arbitrarily selected document belongs to the clusteas well as; at the same time.
In our experiments, we use the normalized mutual inforrmatitl as follows:

MI(C,C")
max(H (C), H(C"))

MI(C,C) =

where H(C') and H(C") are the entropies of' andC’, respectively. It is easy to check
that M1(C, C’) ranges from 0 to 1M1 = 1 if the two sets of clusters are identical, and

M1 = 0 if the two sets are independent.

Figure (5.3(a)) shows the plot of normalized mutual infotioraversus dimensional-

74



Normalized mutual information
o o o
(6] (2] ~
[ =
b

N
IS

0.3} E

Normalized mutual information

Baseline 03 Baseline
0.2 —=— PCA 0.2 PCA
—e— SparsePCA —e— SparsePCA
0.1 —4&— LPP 0.1 LPP
—*— USSL —*— USSL
00 20 40 60 80 100 OO 200 400 600 800 1000
Dim Cardinality (k)

(@) (b)

Figure 5.3: Normalized mutual information vs. dimensidaygk) and Normalized mutual
information vs. cardinality (b) on PIE database

ity for the PCA, SparsePCA, LPP, USSL and baseline methods.aAde seen, all the
methods obtain the best performance with dimensionalgg tean 100, and there is no
performance improvement with more dimensions. Our USSbrélgm outperforms the
other four methods. LPP performs the second best. PCA pesftirenworst, close to the
baseline.

Figure (5.3(b)) shows the performances of all the algorithnthe 100-dimensional
subspace. We show the performance change with the catgliodlbasis functions in
SparsePCA and USSL. As can be seen, the best performanceaisenbtvith relatively

small cardinality.

5.4.3 Experiments on Sparse KSR

In this experiment, we study the performance of KSR perfogmin the sparse modee.,
the KSR with L;-norm regularizer to produce the sparse KDA solution. Tolibast of
our knowledge, there is no other published method to gemeratparse KDA solution.
Moghaddam’s sparse LDA approach [61] can be modified to gémehe sparse KDA

solution. However, as we pointed out before, their appraeachonly generate ONE sparse
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Table 5.3: Classification error on Isolet dataset

Error (%) | Sparsity

Training Set | KDA | KSR | KSR(Sparse)
Isoletl 11.74)| 12.89| 11.74| 60%
Isoletl+2 3.79 | 3.85 | 3.59 60%
Isoletl+2+3 | 2.99 | 3.08 | 2.82 60%
Isoletl+2+3+4| 2.82 | 2.89 | 2.82 60%

Table 5.4: Classification error on USPS dataset

Error (%) | Sparsity

Training Set| KDA | KSR | KSR(Sparse)
1500 6.58 | 5.88| 5.83| 60%
3000 553 | 5.38| 5.13| 60%
4500 553 | 4.88|4.73| 60%
6000 5.03 | 4.43 | 4.04| 60%
7291 483 | 4.04|3.94| 60%

Table 5.5: Classification error on PIE dataset

Error (%) | Sparsity

Training Set| KDA | KSR | KSR(Sparse)
2000 5.18 | 4.81 | 4.73| 60%
3000 425 | 3.94|3.71| 60%
4000 553 | 3.24 | 3.12| 60%
5000 3.23 1290|281 60%
6000 291 | 253|244 60%
7000 265 | 219|217 60%
8000 241 | 2.17| 2.14| 60%

projective function and only suitable for binary class peob. While all the three data sets
studied in this paper are multi-class data sets.

Three data sets used in this experiment are Isolet, USPSI&ndPRRase see Chapter
4 for detailed description. Table (5.3), (5.4) and (5.5)vehioe classification error rate of
KSR in sparse mode on the three data sets respectively. By tsheast Angel Regres-
sion (LARS) algorithm [32], the entire solution path (the solusowith all the possible
cardinality on the projective function) can be computed. After this, we use cross val-
idation to select the optimal cardinality of the projectfuaction in the experiment. We

also show the sparsity of the projective function of KSR(spaim the tables. The sparsity
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is defined as the percentage of zero entries in a projectst@wveor ordinary KDA and
KSR, the projective functions (vectors) are dense and thesitp#s zero.

As can be seen, the KSR(sparse) generates much more pasimombdel. The spar-
sity of the projective function in KSR(sparse)is 60%, whichans the number of the “sup-
port vectors” are less than half of the total training sammpl®loreover, such parsimony
leads to better performance. In all the cases, the perfarenaiKSR(sparse) is better than

that of the ordinary KDA and KSR.
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Chapter 6

Learning a Spatially Smooth Subspace
for Face Recognition

We have discussed how to use bdthand L; norm regularizers in SR in previous sev-
eral chapters. Both these two regularizers are data indepénit some real applications,
one might hope that the characteristic of the data can hetp design specific regular-
izer. In this chapter, we will discuss how to design a spgcghooth regularizer for face
recognition.

The subspace learning algorithms have been extensiveliedpm face recognition
[78][3][47]. All these methods consider a face image as & hignensional vector. They
do not take advantage of the spatial correlation of pixeth@image, and the pixels are
considered as independent pieces of information. Howewer, x m, face image repre-
sented in the plane is intrinsically a matrix, or 2-ordesstan Even though we have; x ms
pixels per image, this spatial correlation suggests themaaber of freedom is far less.
Recently there have been a lot of interest in tensor basedagpes to data analysis in high
dimensional spaces. Vasilescu and Terzopoulos have pgd@osovel face representation
algorithm called Tensorface [80]. Tensorface represémtset of face images by a higher-
order tensor and extends Singular Value Decomposition (S¥Bigher-order tensor data.
Some other researchers have also shown how to extend PCA,LEPAMFA and LDE to
higher order tensor data [11, 25, 44, 84, 85]. Some expetahezsults have showed the
superiority of these tensor approaches over their correipg vector approaches. How-
ever, our analysis later will show that these tensor appresonly consider the relationship
between pixels in the same row (column) and fail to fully expt the spatial information

of images. The embedding functions of tensor approachéstilibe spatially rough.
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In this Chapter, we introduce a Spatially Smooth Subspaceniren (SSSL) model
using a Laplacian penalty to constrain the coefficients tggmially smooth. Instead of
considering the basis function ag®a x my-dimensional vector, we consider it as a matrix,
or a discrete function defined omma, x m. lattice. Thus, the discretized Laplacian can
be applied to the basis functions to measure their smoattalesg horizontal and vertical
directions. The discretized Laplacian operator is a finitieeience approximation to the
second derivative operator, summed over all directione dhoice of Laplacian penalty
allows us to incorporate the prior information that neigtihg pixels are correlated. Once
we obtain compact representations of the images, clagsficand clustering can be per-

formed in the lower dimensional subspace.

6.1 Graph Based Tensor Subspace Analysis

A face image represented in the plane is intrinsically a atr the second order tensor.
The relationship between nearby pixels of the image mighiripertant for finding a pro-
jection. Recently there have been a lot of interest in extenthe ordinary vector-based
subspace learning approaches to tensor space [11, 25,,85]84

The tensor-based approaches directly operate on the mapiesentation of image
data and are believed can capture the spatial relationgitvpelen the pixels. To examine
what kind of spatial relationship has been captured in thexsgor-based approaches, we
need to examine the basis function.

Let {u,};, be an orthonormal basis ®™ and{v,}3 be an orthonormal basis of
R™2. It can be shown thafu; ® v;} forms a basis of the tensor spaRé&" @ R™2 [54].
Specifically, the projection of' € R™ ® R™2 on the basis); ® v; can be computed as
their inner product:

<T,u; ®V; >=<T,uv] >=u/Tv,

The ordinary vector-based approaches are linear,y; = a’x; wherex; € R™ is the
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vector representation of théth image,a is the projection vector (basis vector) apd
is the one-dimensional embedding on this basis. #healues in basis functioma are
independently estimated. The tensor-based approachesudtibnear,i.e., y; = u’T,v,
whereT; € R™ ® R is thematrix representation of theth image andn = m; x mo.
Them values in a tensor basis/? only havem,; + m, degrees of freedom. In fact, the
tensor-based approaches can be thought of as special tase®o-based approaches with

the following constraint:

Qigmy (j—1) = UiV} (6.1)

wherea;, u; andv; are thei-th elements ira, u andv respectively.

Figure (6.1) gives a intuitive example. It is easy to see thate is a common divisor
of the values belong to the same row (or column) in a tensoisbadich exactly the
spatial relation captured by the tensor-based approabitagively, the spatial correlation
of pixels in a face image would suggest the spatial smoothokthe basis function,e.,
the element values in basis function would be similar if therents are spatially near.
However, the tensor-based approaches have no guarantéésand the basis function
could still be spatially rough.

A more natural measurement of spatial smoothness of basitidn could be the sum
of the squared differences between nearby elements. Iretttesection, we will show how
to achieve this by incorporating a 2-D discretized laplagaoothing term in ordinary

vector-based approaches.

6.2 Spatially Smooth Subspace Learning

In this section, we describe how to apply Laplacian pendlizectional to measure the
smoothness of the basis vectors of the face space, which tilaykey role in our Spatially
Smooth Subspace Learning (SSSL) approach . We begin witmergedescription of

Laplacian smoothing.
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Figure 6.1: Take face images of sizex 3. The ordinary vector-based subspace learning
algorithms é.g PCA and LDA) first convert the face images to 9-dimensionatwes and
compute the basis vectors (projection functions). Thesbesttor is also 9-dimensional,
as shown in (a). (b) The basis vector can be converted to thtexrfam and shown as an
image, which was referred as Eigenface (PCA) and Fisherfdda)( The 9 numbers in
the basis vector are independent estimated and there isatialgelation between them.
(c) The tensor-based subspace learning approaches yliaaB x 3 face images as input
and compute a set of 3-dimensional basis veawssandv’s. (d) Eachu andv form a
basisu ® v in tensor space which can also be shown as an image. The 9 rmimlibe
tensor basis only have 6 degrees of freedom and the valules satne row (column) have
a common divisor. However, there is no guarantee of theapatnoothness of the basis
function.
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6.2.1 Laplacian Smoothing
Let f be a function defined on a region of intere3tc R?. The Laplacian operataf is
defined as follows [53]:

d_ 92
i =351 6.2)

The Laplacian penalty functional, denoted 8yis defined by:

J(f) = /Q [£f]"dt 6.3)

Intuitively, 7 (f) measures the smoothness of the functfoaver the regior(). In this
paper, our primary interest is in image. An image is intgafliy a two-dimensional signal.

Therefore, we také to be 2 in the following.

6.2.2 Discretized Laplacian Smoothing

As we described previously,; x m, face images can be represented as vect@®s'inm =
my X mo. Leta; € R™ be the basis vectors (projection functions) obtained bysate
learning algorithms. Without loss of generalig, can also be considered as functions
defined on an; x my, lattice.

For a face image, the region of interéstis a two-dimensional rectangle, which for
notational convenience we take to [ie1]®. A lattice is defined o2 as follows. Let
h = (h1, hy) whereh; = 1/my andhy = 1/ms. £, consists of the set of two-dimensional
vectorst; = (t;,,t;,) With t;, = (i; — 0.5) - h; for 1 < i; <njandl < j <2. There are a
total of m = m; x my grid points in this lattice. LeD; be anm; x m; matrix that yields

a discrete approximation @ /0t>. Thus ifu = (u(t1),- - -, u(t,,)) is anm -dimensional
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vector which is a discretized version of a functieft), thenD, has the property that:

fori =1,---,m;. There are many possible choices/of[9]. In this work, we apply the
modified Neuman discretization [64]:
-1 1 0
1 -2 1
1 -2 1
1
h;
1 -2 1
1 -2 1
0 1 -1

Give D;, a discrete approximation for two-dimensional Laplacdiais them x m matrix:

A=D L, +1, @ D, (6.4)

wherel; ism; x m; identity matrix forj = 1, 2. ® is the kronecker product [49].
For am; x my dimensional vectoa, it is easy to check thatA - a||? is proportional
to the the sum of the squared differences between nearbygnids ofa with its matrix

form. It provides a measure of smoothness oh them; x my lattice.

6.2.3 The Algorithm

Given a pre-defined graph structure with weight mat#ix the SSSL approach is defined
as the maximizer of
alXwXxTa
(1—a)@'XDXTa+aJ(a)’

(6.5)
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where.7 is the discretized Laplacian regularization functional:
J@) =||A-a*=a’ATAa (6.6)

The parameted < o < 1 controls the smoothness of the estimator.
The vectorsy; (i = 1,--- 1) that maximize the objective function (6.5) are given by

the maximum eigenvalue solutions to the following geneealieigenvalue problem.
XWXTa=X((1-a)XDX"+aA"A)a (6.7)

With the choices of differenitl” as described in Section 2, our approach gives the spatially

smooth version of LDA, LPP and NPE.

6.3 Experimental Results

In this section, several experiments are carried out to gsheweffectiveness of our pro-
posed Spatially Smooth Subspace Learning (SSSL) approadhde representation and

recognition.

6.3.1 Face Representation Using Smooth Fisherfaces

In the last section, we have discussed how to learn a spasgi@both face subspace. The
images of faces in the training set are used to learn such spaob. The subspace is
spanned by the eigenvectors corresponding to the larggstvalues in Eq. (6.7). We can
display the eigenvectors as images.

When we use the spatially smooth LDA approach, these imaggdeealledSmooth
Fisherface4S-Fisherfaces). Using the Yale face database as thetgaet, we present the

first seven S-Fisherfaces in Fig. (6.2), together with Eiaess, Fisherfaces and 2DLDA
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0.87 122 125 1.65 195 2.33 2.50
(a) Eigenfaces

16.1 143 13.4 141 128 162 142
(b) Fisherfaces

13.3 129 126 122 155 13.0 15.3
(c) 2DLDA

107 10.8 118 116 124 11.8 13.6
(d) Smooth Fisherfaces(= 0.5)

756 719 791 7.45 8.27 8.03 895
(e) Smooth Fisherfaces/(= 5)

Ll ales D

3.89 3.82 439 429 426 4.74 4.82
(f) Smooth Fisherfacesy= 50)

Figure 6.2: (a)~ (e) The first 7 Eigenfaces, Fisherfaces, and Smooth Fistesrfzalculated
from the face images in the Yale database. For each facen(@gira), we also calculated
and showed th@A - a|| below of each image. Since each eigenvector is normaljz&d,

a|| can measure the spatial smoothnesa.o8-Fisherfaces is smoother than Fisherfaces.
With biggera, S-Fisherfaces become much smoother. (g) The bases of 2DaDgxsor
extension of LDA. The five bases amgv?, u,v?, upvl, usvl, uzvl, uvl anduzvl. Itis
interesting to note that the Eigenfaces are smoothest.

85



[85]. Note that there is a parametekvhich controls the smoothness in S-Fisherfaces. Fig.
(6.2) shows three groups S-Fisherfaces with 0.5, 5 and 50. For each face (eigenvector
a), we also calculated theA - al| which can measure the spatial smoothness of

We can see that S-Fisherfaces is smoother than Fisherfades.biggera is, the
smoother are S-Fisherfaces. It is interesting to note thetHigenfaces are smoothest.
However, Eigenfaces do not encode discriminating infoiomathus are not optimal for
recognition. As we discussed in Section 6.1, the bases sbteapproaches only consider
the relationship of pixels in the same row (or column), thhestbases in 2DLDA are still
spatially rough. S-Laplacianfaces consider both the oignating power and the spatial

correlation between the pixels in the face images.

6.3.2 Face Recognition Using SSSL Approach

In this section, we investigate the performance of our psegddspatially Smooth Subspace
Learning approach for face recognition. The face recogmitask is handled as a multi-
class classification problem we map each test image to a low-dimensional subspace via
the embedding learned from training data, and then clasiséytest data by the nearest

neighbor criterion.

Datasets and Compared Algorithms

The Yale and AT&T face databases are used in our experim&htsYale face database
contains 165 gray scale images of 15 individuals, each ithdg@al has 11 images. The
images demonstrate variations in lighting condition,daekpression (normal, happy, sad,
sleepy, surprised, and wink).

The AT&T face databageonsists of a total of 400 face images, of a total of 40 people

(10 samples per person). The images were captured at diffénges and have different

http://cve.yale.edu/projects/yalefaces/yalefaces.ht
2http://www.cl.cam.ac.uk/Research/DTG/attarchivegtataglance.html
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Table 6.1: Compared algorithms

Objective Ordinary Tensor Smooth
function version extension | version
PCA Eigenface [78] CSA[82] -
LDA Fisherface [3] | 2DLDA [85] | S-LDA
LPP Laplacianface [47] TSA [44] S-LPP
NPE NPE [45] TNPE S-NPE
MFA (LDE) MFA [84] TMFA [84] | S-MFA

variations including expressions (open or closed eyedjrggror non-smiling) and facial
details (glasses or no glasses). The images were taken wikbrance for some tilting and
rotation of the face up to 20 degrees.

All the face images are manually aligned and cropped. Treedizach cropped image
IS 32 x 32 pixels, with 256 gray levels per pixel. The features (pixa@les) are then scaled
to [0,1] (divided by 256). For the vector-based approactiesjmage is represented as a
1024-dimensional vector, while for the tensor-based aggres the image is represented
as a(32 x 32)-dimensional matrix, or the second order tensor.

The image set is then partitioned into the gallery and prebevgh different numbers.
For ease of representationyGPn meansn images per person are randomly selected for
training and the remaining images are for testing.

Table 6.1 summarizes the 14 algorithms compared in our erpats. These algo-
rithms belong to five familieg,e., PCA family, LDA family, LPP [46] family, NPE [45]
family and MFA [84] (LDE [25]) family. For each family, we takthe ordinary vector-
based approach,e., Eigenface [78], Fisherface [3], Laplacianface [47], NBE] and
MFA [84]. We also take their tensor extensions (or 2D extems),i.e. CSA [82], 2DLDA
[85], TSA [44], TNPE and TMFA [84] respectively. Finally, weaplement their spatially
smooth versions by using 2-D Laplacian smoothing regudion technique, which leads

to S-LDA, S-LPP, S-NPE and S-MFA.
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Table 6.2: Recognition accuracy on Yale database (msthdevi)
| Method | G2/P9 | G3/P8 | G4/P7 | Gb5/P6 |
Eigenface | 46.0+3.4 | 50.0+3.5 | 55.7+£3.5 | 57.7+3.8
CSA 49.4+3.5| 54.0+3.0 | 57.8+3.3 | 59.8+3.9

Fisherface | 45.74+4.2 | 62.3:4.5| 73.0£5.4 | 76.9+-3.2
2DLDA 43.4+6.2 | 56.3+4.7 | 63.5+:5.6 | 66.1+4.8
S-LDA 57.6£4.1| 72.3+4.4 | 77.8:3.0 | 81.743.2

Laplacianface 54.5£5.2 | 67.2:4.1 | 72.7+4.2 | 75.8-4.6
TSA 44.3+6.5 | 55.8+4.5| 63.2£6.0 | 65.7+4.6
S-LPP 57.9+4.5| 72.0+4.0 | 76.0+3.4 | 81.4+2.9
NPE 52.6+4.0 | 66.0£4.6 | 73.2:5.0 | 76.4+4.4
TNPE 43.4+6.2 | 56.8+3.9 | 61.8+£3.5 | 63.0t3.4
S-NPE 57.5+4.7 | 71.9-3.9 | 77.0+3.4 | 80.9£3.5
MFA 45.7+4.2 | 62.3+4.5| 73.0+5.4 | 76.9£3.2
TMFA 43.4+6.2 | 56.3+4.7 | 63.5+5.6 | 66.1+4.8
S-MFA 57.2+4.3 | 71.2+4.0 | 76.9-3.1 | 81.1+3.1

Face recognition results

The recognition accuracy of different algorithms on Yald & &T databases are reported
on the Table (6.2) and (6.3) respectively. For each givehe number of training images
per individual), we average the results over 20 randomssahtd report the mean as well
as the standard deviation. The cross validation in theitrgiset was used to select the
parametery in those SSSL approaches (S-LDA, S-LPP, S-NPE and S-MFA).

A crucial problems for most of the subspace learning basssirfecognition methods is
dimensionality estimation. The performance usually \&wéh the number of dimensions.
We show the best results obtained by those ordinary sub$gateng algorithms and their
tensor extensions. Since the cross validation is needesditoage the parameterfor those
SSSL approaches, we simply set the dimensionality -asl for those SSSL approaches
wherec is the number of individuals.

The main observations from the performance comparisomsdac

e SSSL approach significantly outperforms the corresponalidmary subspace learn-
ing algorithm and the tensor extension with different nursb® training samples

per individual in both the two databases. The reason lied &Rflicitly takes into
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Table 6.3: Recognition accuracy on AT&T database (resd-devi)
| Method | G2/P8 | G3/P7 | G4/P6 | G5/P5 |
Eigenface | 70.742.7 | 78.9+2.3 | 84.2+2.1 | 87.9+2.5
CSA 71.3t2.6 | 79.9£2.2 | 84.8:1.9 | 88.1+2.5
Fisherface | 75.5-3.3 | 86.1+1.9 | 91.6+1.9 | 94.3+1.4
2DLDA 80.4+3.0 | 89.8+2.1 | 93.5+1.7 | 95.8+1.2
S-LDA 85.2+2.2 | 92.3+1.7 | 95.8+£1.3 | 97.2£1.3

Laplacianfacel 77.6£2.5 | 86.0+2.0 | 90.3+1.7 | 93.0+1.9

TSA 80.4+3.2 | 89.8+:2.1 | 93.4+:1.6 | 95.41.3
S-LPP 85.2£2.2 | 92.3+1.7 | 95.8+1.3 | 97.2+1.3
NPE 77.6£2.7 | 85.741.8 | 90.5+1.8 | 93.4£1.8

TNPE 80.4+3.0 | 87.6£2.2 | 91.5£1.7 | 93.7£2.3
S-NPE 84.8£2.3 | 92.3+1.7 | 95.4+:1.2 | 96.9+-0.9
MFA 75.4£3.1| 86.1£1.9| 91.6£1.9 | 94.3+1.4
TMFA 80.4+3.0| 89.8+:2.1 | 93.41.7 | 95.8+1.2
S-MFA 84.9+2.3 | 92.4+1.3 | 95.8+:1.5| 97.4+:1.2

account the spatial relationship between the pixels in aagan The use of spa-
tial information significantly reduces the number of degreéfreedom. Therefore,
SSSL can have good performance even when there is only arsmnalier of training

samples available.

The methods based on PCA (Eigenface and CSA) perform the worsbst the
cases. This is probably due to the fact that the PCA is unsigaeehand does not

encode discriminating information.

The tensor-based algorithms show their advantages on AT&dbadise while failed
gain improvement on Yale database. This suggests that #iglspelationship of
face images considered in tensor-based approach (relatareen the pixels in the
same row or column) has its limitation. Compare to the tengpraaches, our SSSL
approach is a more natural extension of incorporating ajpiatfiormation in vector-

based algorithm, which is supported by the experimentaltses
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Figure 6.3: Model selection for S-LDA on AT&T database. Theve shows the accuracy
of S-LDA with respect tav/(1 + «). The solid line shows the accuracy of 2DLDA and the
dashed line shows the performance of Fisherface.

Model selection for SSSL

Thea > 0is an essential parameter in our SSSL approaches whiclototite smoothness
of the estimator. We use cross validation on the trainindcsselect this parameter in the
previous experiments. In this subsection, we take S-LDAasxample to study the impact
of parametery on the recognition performance.

Figure (6.3) shows the performance of S-LDA as a functionhef parametery on
AT&T database. For convenience, the X-axis is plotted A4 + «) which is strictly in the
interval [0, 1]. Each figure has three lines. The curve shows the accuracyBiASwith
respect tav/(1 + «). The solid line shows the accuracy of 2DLDA and the dashesl lin
shows the performance of Fisherface. Itis easy to see thB¥#Secan achieve significantly

better performance than both 2DLDA and Fisherface overgelaange oftv. Thus, the
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parameter selection is not a very crucial problem in S-LDgoathm.
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Chapter 7

Conclusions

In this thesis, we propose a new dimensionality reductigorihm calledSpectral Re-
gression(SR). It is based on the same variational principle that gigesto the Laplacian
Eigenmap [4]. As a natural extension of several recent n@ampetric techniques for global
nonlinear dimensionality reduction such as [68, 75, 4], 8fsaat learning an embedding
function (either linear or in RKHS) which is defined everywd¢and therefore on novel
test data points). It casts the problem of learning an emhgddnction into a regression
framework which facilitates both efficient computation ahd use of regularization tech-
niques. The computational complexity analysis illustsdtee advantage of SR over other
linear or kernel extensions of LLE and Laplacian Eigenmdy) 4 45].

By using the affinity graph to model both label and local neghibod information,
SR can make efficient use of both labeled and unlabeled pwndgscover the intrinsic
discriminant structure in the data. Our theoretical analiisked our algorithm to LDA
[40] and LPP [46] in supervised and unsupervised cases. Nierienental results on clas-
sification and semi-supervised classification demonstreteeffectiveness and efficiency
of our algorithm.

Our approach provides a general framework for learning atfan (either linear or in
RKHS) in graph embedding approaches. With the specific affgraph, SR can provide a
natural out-of-sample extension of many spectral embeggalgorithms like LLE, Isomap,

Laplacian Eigenmaps and spectral clustering algorithr@k [6
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