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Abstract

Spectral methods have recently emerged as a powerful tool for dimensionality reduction

and manifold learning. These methods use information contained in the eigenvectors of a

data affinity (i.e., item-item similarity) matrix to reveal the low dimensional structure in

the high dimensional data. The most popular manifold learning algorithms include Locally

Linear Embedding, ISOMAP, and Laplacian Eigenmap. However, these algorithms only

provide the embedding results of training samples. There are many extensions of these

approaches which try to solve the out-of-sample extension problem by seeking an embed-

ding function in reproducing kernel Hilbert space. However, a disadvantage of all these

approaches is that their computations usually involve eigen-decomposition of dense ma-

trices which is expensive in both time and memory. In this thesis, we introduce a novel

dimensionality reduction framework, calledSpectral Regression(SR). SR casts the prob-

lem of learning an embedding function into a regression framework, which avoids eigen-

decomposition of dense matrices. Also, with the regressionas a building block, differ-

ent kinds of regularizers can be naturally incorporated into our framework which makes

it more flexible. SR can be performed in supervised, unsupervised and semi-supervised

situation. It can make efficient use of both labeled and unlabeled points to discover the

intrinsic discriminant structure in the data. We have applied our algorithms to several real

world applications, e.g. face analysis, document representation and content-based image

retrieval.
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Chapter 1

Introduction

Dimensionality reduction has been a key problem in many fields of information process-

ing, such as machine learning, data mining, information retrieval, and pattern recognition.

Practical algorithms in supervised machine learning degrade in performance (prediction

accuracy) when faced with many features that are not necessary for predicting the desired

output. An important question in the fields of machine learning, knowledge discovery,

computer vision and pattern recognition is how to extract a small number of good fea-

tures. A common way to attempt to resolve this problem is to use dimensionality reduction

techniques.

One of the most popular dimensionality reduction algorithms might be Principal Com-

ponent Analysis (PCA) [57]. PCA performs dimensionality reduction by projecting the

originalm-dimensional data onto thed(≪ m)-dimensional linear subspace spanned by the

leading eigenvectors of the data’s covariance matrix. Its goal is to find a set of mutually

orthogonal basis functions that capture the directions of maximum variance in the data so

that the pairwiseEuclideandistances can be best preserved. If the data is embedded in

a linear subspace, PCA is guaranteed to discover the dimensionality of the subspace and

produces a compact representation.

In many real world problems, however, there is no evidence that the data is sampled

from a linear subspace. For example, it is always believed that the face images are sampled

from a nonlinear low-dimensional manifold which is embedded in the high-dimensional

ambient space [47]. This motivates us to consider manifold based techniques for dimen-

sionality reduction. Recently, various manifold learning techniques, such as ISOMAP [75],
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Locally Linear Embedding (LLE) [68] and Laplacian Eigenmap[4] have been proposed

which reduce the dimensionality of afixed training set in a way that maximally preserve

certain inter-point relationships. LLE and Laplacian Eigenmap are local methods which

attempt to preserve local geometry of the data; essentially, they seek to map nearby points

on the manifold to nearby points in the low-dimensional representation. ISOMAP is a

global method which attempts to preserve geometry at all scales, mapping nearby points

on the manifold to nearby points in low-dimensional space, and faraway points to faraway

points. One of the major limitations of these methods is thatthey do not generally provide

a functional mapping between the high and low dimensional spaces that are valid both on

and off the training data.

There are a lot of approaches that try to address this issue byexplicitly requiring an

embedding function either linear or in reproducing kernel Hilbert space (RKHS) when

minimizing the objective function [46, 7, 84]. They providenatural out-of-sample ex-

tensions of Lapalcian Eigenmaps, LLE and Isomap. However, the computation of these

methods involves eigen-decomposition of dense matrices which is expensive in both time

and memory. It is almost infeasible to apply these approaches on large data sets. Some

other approaches address this issue through a kernel view ofLLE, Isomap and Laplacian

Eigenmaps [6, 39]. They interpret these spectral embeddingalgorithms as learning the

principal eigenfunctions of an operator defined from a kernel and the unknown data gen-

erating density. Such kernel is usually data dependant1. To obtain the embedding result of

an unseen example, we need to calculate the kernel function values of this unseen example

with all the training samples which may not be possible in some situations.

In this thesis, we propose a novel dimensionality reductionalgorithm, calledSpectral

Regression(SR). The proposed algorithm is fundamentally based on regression and spec-

tral graph analysis [26]. It can be performed either in supervised, unsupervised or semi-

supervised situations. Specifically, we first construct an affinity graph over both labeled

1The kernel functionK(xi, xj) depends not only onxi andxj but also on the whole data set.
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and unlabeled points to discover the intrinsic discriminant structure in the data. This graph

is used to learn responses for both labeled and unlabeled points. Once the responses are

obtained, the ordinary regression is then applied for learning the embedding function.

The points below highlight several aspects of our approach:

1. SR casts the problem of learning an embedding function into a regression framework,

which avoids eigen-decomposition of dense matrices. With different graph matrix

W , SR provides the efficient solutions of Linear DiscriminantAnalysis (LDA) [19],

Locality Preserving Projection (LPP) [46, 17, 20], Neighborhood Preserving Embed-

ding (NPE)[45, 17], Isometrix Projeciton (IsoP)[13], Locality Sensitive Discriminant

Analysis (LSDA) [21] and much more.

2. With regression as the building block, various kinds of regularization techniques can

be easily incorporated in SR which makes it more flexible (e.g., L1-norm regularizer

to produce sparse projections [14]).

3. SR can be performed in supervised [19], unsupervised [20]and semi-supervised [16,

15] situations. It can make efficient use of both labeled and unlabeled points to

discover the intrinsic discriminant structure in the data.

4. SR may be conducted in the original space or in the reproducing kernel Hilbert space

(RKHS) into which data points are mapped. This gives rise to kernel SR (efficent

solutions for many kernel subspace learning algorithms [12]).

3



Chapter 2

Graph Embedding View of Subspace
Learning

Let x1, · · · , xn be then data points sampled from an underlying submanifoldM embedded

in R
m, dimensionality reduction (or, subspace learning) aims atfinding{zi}n

i=1 ⊂ R
d, d ≪

m, wherezi can “represent”xi. In the past decades, many algorithms, either supervised

or unsupervised, have been proposed to solve this problem. Despite the different moti-

vations of these algorithms, they can be nicely interpretedin a generalgraph embedding

framework. In this chapter, we give a detailed analysis of this framework and its linear

extension.

2.1 Manifold Learning and Graph Embedding

We begin with a brief review of Locally Linear Embedding (LLE) [68], Isomap [75], and

Laplacian Eigenmaps [4], three of the most popular manifoldlearning techniques. We then

discuss how these three algorithms can be unified in a graph embedding framework with

different graphs. For simplicity, we consider one dimensional mapping. Letyi be the one

dimensional map ofxi, i = 1, · · · , n.

2.1.1 Locally Linear Embedding

The basic idea of LLE is that the data points might reside on a nonlinear submanifold,

but it might be reasonable to assume that each local neighborhood is linear. Thus, we can

characterize the local geometry of these patches by linear coefficients that reconstruct each

data point from its neighbors. Specifically, we first construct ak nearest neighbor graphG

4



with weight matrixM . Reconstructing errors are measured by the cost function [68]:

φ(M) =
n∑

i=1

‖xi −
n∑

j=1

Mijxj‖2, s.t.
n∑

j=1

Mij = 1

which adds up the squared distances between all the data points and their reconstructions.

Note that,Mij vanishes for distant data points. Please see [68] for how to find aM which

minimizesφ(M). Consider the problem of mapping the original data points to aline so

that each data point on the line can be represented as a linearcombination of its neighbors

with the coefficientsMij. Lety = (y1, y2, · · · , ym)T be such a map. A reasonable criterion

for choosing a “good” map is to minimize the following loss function [68]:

Φ(y) =
n∑

i=1

(
yi −

n∑

j=1

Mijyj

)2

This loss function, like the previous one, is based on locally linear reconstruction errors,

but here we fix the weightsMij while optimizing the coordinatesyi. It can be shown

that the optimal embeddingy is given by the eigenvector corresponding to theminimum

eigenvalue of the following eigen-problem:

(I − M)T (I − M)y = λy (2.1)

whereI is anm × m identity matrix.

Define matrixWLLE = M + MT − MT M , we can rewrite the eigen-problem in Eqn.

(2.1) as

(I − WLLE)y = λy

⇒ WLLEy = (1 − λ)y

Thus, the optimal embeddingy is given by the eigenvector corresponding to themaximum

5



eigenvalue of the eigen-problem:

WLLEy = λy (2.2)

2.1.2 ISOMAP

LetdM be the geodesic distance measure onM andd the standard Euclidean distance mea-

sure inR
m. ISOMAP aims to find a Euclidean embedding such that Euclidean distances in

R
m can provide a good approximation to the geodesic distances onM. That is,

f opt = arg min
f

∑

i,j

(
dM(xi, xj) − d

(
f(xi), f(xj)

))2

(2.3)

In real life data set, the underlying manifoldM is often unknown and hence the

geodesic distance measure is also unknown. In order to discover the intrinsic geometrical

structure ofM, we first construct ak nearest neighbor graphG over all data points to model

the local geometry. Once the graph is constructed, the geodesic distancesdM(i, j) between

all pairs of points on the manifoldM can be estimated by computing their shortest path dis-

tancesdG(i, j) on the graphG. The procedure is as follows: initializedG(xi, xj) = d(xi, xj)

if xi andxj are linked by an edge;dG(xi, xj) = ∞ otherwise. Then for each value ofl =

1, 2, · · · , n in turn, replace all entriesdG(xi, xj) bymin{dG(xi, xj), dG(xi, xl)+dG(xl, xj)}.

The matrix of final valuesDG = {dG(xi, xj)} will contain the shortest path distances be-

tween all pairs of points inG. This procedure is named Floyd-Warshall algorithm [27].

More efficient algorithms exploiting the sparse structure of the neighborhood graph can be

found in [37]. LetDY denote the matrix of Euclidean distances in the reduced subspace,

i.e. {dY (i, j) = ‖yi − yj‖}. Thus, ISOMAP aims to minimize the cost function:

‖τ(DG) − τ(DY )‖L2

where theτ operator converts distances to inner products, which uniquely characterize

6



the geometry of the data in a form that supports efficient optimization [75]. Specifically,

τ(D) = −HSH/2, whereSij = D2
ij andH = I − 1

m
eeT , e = (1, 1, · · · , 1)T . Define

WIsomap = τ(DG), it can be shown that the optimal embeddingy = (y1, · · · , ym) is given

by the eigenvector of the matrixWIsomap corresponding to the largest eigenvalue.

WISOMAPy = λy (2.4)

2.1.3 Laplacian Eigenmap

Laplacian Eigenmap is based on spectral graph theory [26]. Given ap nearest neighbor

graphG with weight matrixW , which can be defined as follows:

Wij =





1, if xi ∈ Np(xj) or xj ∈ Np(xi)

0, otherwise.
(2.5)

whereNp(xi) denotes the set ofp nearest neighbors ofxi.

The optimal maps can be obtained by solving the following minimization problem:

min
y

n∑

i,j=1

(yi − yj)
2Wij = min

y
2yT Ly

whereL = D−W is thegraph Laplacian[26] andDii =
∑

j Wij. The objective function

with our choice of weightsWij incurs a heavy penalty if neighboring pointsxi andxj are

mapped far apart. Therefore, minimizing it is an attempt to ensure that ifxi andxj are

“close” thenyi andyj are close as well.

The optimal embeddingy is given by the eigenvector corresponding to theminimum

eigenvalue of the following generalized eigen-problem

Ly = λDy, (2.6)

7



which is equivalent to find the eigenvector corresponding tothemaximum eigenvalue of

the following generalized eigen-problem

Wy = λDy, (2.7)

2.1.4 Graph Embedding

All the above three manifold learning algorithms encode theintrinsic structure information

of the data in a graph weight matrix. And all the three optimization problems end up with

the similar eigen-problems.

In the following, we consider the general graph embedding problem. Given a graphG

with n vertices, each representing a data point, letW be a symmetricn × n matrix with

Wij having the weight of the edge joining verticesi andj. TheG andW can be defined

to characterize certain statistical or geometric properties of the data set. The purpose of

graph embedding is to represent each vertex of the graph as a low dimensional vector that

preserves similarities between the vertex pairs, where similarity is measured by the edge

weight.

Let y = [y1, y2, · · · , yn]T be the map from the graph vertices to the real line. The

optimaly tries to minimize
∑

i,j

(yi − yj)
2Wij

under appropriate constraint. This objective function incurs a heavy penalty if neighboring

verticesi andj (with a largeWij) are mapped far apart. Therefore, minimizing it is an

attempt to ensure that if verticesi andj are “close” thenyi andyj are close as well [38].

With some simple algebraic formulations, we have

∑

i,j

(yi − yj)
2Wij = 2yT Ly,

8



whereL is thegraph Laplacianas discussed before. Finally, the minimization problem

reduces to find

y∗ = arg min
yT Dy=1

yT Ly = arg min
yT Ly
yT Dy

= arg max
yT Wy
yT Dy

, (2.8)

where the constraintyT Dy = 1 removes an arbitrary scaling factor in the embedding.

It is clear that the three manifold learning algorithms we discussed before can be inter-

preted in this framework with different choices ofW andD. The two matricesW andD

play the essential role in this graph embedding approach. The choices of these two graph

matrices can be very flexible. In later discussion, we use GE(W,D) to denote the graph

embedding with maximization problem ofmax(yT Wy)/(yT Dy).

All the above mentioned manifold learning algorithms are nonlinear. They are defined

only on the training data points and therefore can not be directly applied to supervised

learning problems. To overcome this limitation, some methods for out-of-sample exten-

sion have been proposed [6]. Bengioet al. proposed a unified framework for extending

LLE, Isomap, and Laplacian Eigenmap [6]. This framework is based on seeing these al-

gorithms as learning eigenfunctions of a data-dependent kernel. The Nystr̈om formula is

used to obtain an embedding for a new data point. However, To obtain the embedding

result of an unseen example, we need to calculate the kernel function values of this unseen

example with all the training samples which may not be possible in some situations1. In the

following sections, we will discuss how we can solve this issue by explicitly requiring an

embedding function either linear or in the reproducing kernel Hilbert space (RKHS) when

minimizing the objective function.

1e.g., the data dependant kernel is constructed by integrating label information. To calculateK(xi, xj),
we need to know whetherxi andxj have the same label. Since the label of an unseen example is usually
unavailable, we can not calculate the kernel function values of this unseen example with all the training
samples.
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2.2 Linear Extension of Graph Embedding

If we choose a linear function,i.e., yi = f(xi) = aT xi, we havey = XT a whereX =

[x1, · · · , xn] ∈ R
m×n. Eqn. (2.8) can be rewritten as:

a∗ = arg max
yT Wy
yT Dy

= arg max
aT XWXT a
aT XDXT a

. (2.9)

The optimala’s are the eigenvectors corresponding to the maximum eigenvalue of eigen-

problem:

XWXT a = λXDXT a.

This approach is called linear extension of graph embedding. It can certainly be applied

on LLE, Isomap and Laplacian Eigenmap which leads to Neighborhood Preserving Em-

bedding (NPE) [45], Isometric Projection [13] and LocalityPreserving Projection (LPP)

[46]. In the following, we will discuss three other linear dimensionality reduction algo-

rithms. These three algorithms are proposed with differentmotivations. However, we will

see that all these algorithms can be formulated as linear extension of graph embedding with

differentW andD.

2.2.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [35] is one of the most well known supervised di-

mensionality reduction algorithms. It seeks directions onwhich the data points of different

classes are far from each other while requiring data points of the same class to be close

to each other. Suppose we have a set ofn samplesx1, x2, · · · , xn ∈ R
m, belonging toc

classes. The objective function of LDA is as follows:

aopt = arg max
a

aT Sba
aT Swa

, (2.10)

10



Sb =
c∑

k=1

nk(µµµ
(k) − µµµ)(µµµ(k) − µµµ)T , (2.11)

Sw =
c∑

k=1

(
nk∑

i=1

(x(k)
i − µµµ(k))(x(k)

i − µµµ(k))T

)
, (2.12)

whereµµµ is the total sample mean vector,nk is the number of samples in thek-th class,µµµ(k)

is the average vector of thek-th class, andx(k)
i is thei-th sample in thek-th class. We call

Sw the within-class scatter matrix andSb the between-class scatter matrix.

Define the total scatter matrixSt =
∑n

i=1(xi − µµµ)(xi − µµµ)T , we haveSt = Sb + Sw

[35]. The objective function of LDA in Eqn. (2.10) is equivalent to

aopt = arg max
a

aT Sba
aT Sta

. (2.13)

The optimala’s are the eigenvectors corresponding to the non-zero eigenvalue of eigen-

problem:

Sba = λSta. (2.14)

Since the rank ofSb is bounded byc−1, there are at mostc−1 eigenvectors corresponding

to non-zero eigenvalues [35].

Without loss of generality, we assumeµµµ = 0.2 We have

Sb =
c∑

k=1

nk(µµµ
(k))(µµµ(k))T

=
c∑

k=1

nk

(
1

nk

nk∑

i=1

x(k)
i

)(
1

nk

nk∑

i=1

x(k)
i

)T

=
c∑

k=1

X(k)W (k)(X(k))T

(2.15)

whereW (k) is ank×nk matrix with all the elements equal to1/nk andX(k) = [x(k)
1 , · · · , x(k)

nk ]

denote the data matrix ofk-th class.
2This can be achieved by centering the data,i.e., subtract the mean vector from all the sample vectors.
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Let the data matrixX = [X(1), · · · , X(c)] and define an × n matrixWLDA as:

WLDA =




W (1) 0 · · · 0

0 W (2) · · · 0

...
...

. . .
...

0 0 · · · W (c)




(2.16)

We have

Sb =
c∑

k=1

X(k)W (k)(X(k))T = XWLDAXT . (2.17)

Thus, the objective function of LDA in Eqn. (2.13) can be rewritten as

aopt = arg max
a

aT Sba
aT Sta

= arg max
a

aT XWLDAXT a
aT XXT a

. (2.18)

Thus, LDA can also be interpreted as a linear extension of graph embedding approach.

2.2.2 Semi-supervised Discriminant Analysis

In this subsection, we introduce a semi-supervised subspace learning algorithm, called

Semi-supervised Discriminant Analysis (SDA), which can make efficient use of both la-

beled and unlabeled points to discover the intrinsic discriminant structure in the data. SDA

is fundamentally developed from LDA and LPP.

LDA aims to find a projection vectora such that the ratio betweenaT Sba andaT Sta is

maximized. When there is no sufficient training sample, overfitting may happen. A typical

way to prevent overfitting is to impose a regularizer [41]. The optimization problem of the

regularized version of LDA can be written as follows:

max
a

aT Sba
aT Sta + αJ(a)

(2.19)

whereJ(a) controls the learning complexity of the hypothesis family,and the coefficient

12



α controls balance between the model complexity and the empirical loss. One of the most

popular regularizers is the Tikhonov regularizer [76]:

J(a) = ‖a‖2.

LDA model with Tikhonov regularizer is usually referred as Regularized Discriminant

Analysis (RDA) [34].

The regularizer termJ(a) provides us the flexibility to incorporate our prior knowledge

on some particular applications. When a set of unlabeled examples available, we aim to

construct aJ(a) incorporating the manifold structure. The key to semi-supervised learning

algorithm is the prior assumption of consistency. For classification, it means nearby points

are likely to have the same label [87]. For dimensionality reduction, it can be interpreted

as nearby points will have similar embeddings (low-dimensional representations). Given a

set of examples{xi}N
i=1, we can use ap-nearest neighbor graphG to model the relationship

between nearby data points. The corresponding weight matrix WN can be defined as in Eq.

(2.5), where the subscriptN denotes thatWN is with sizeN × N .

In general, the mapping function should be as smooth as possible on the graph. Specif-

ically, if two data points are linked by an edge, they are likely to be in the same class.

Moreover, the data points lying on a densely linked subgraphare likely to have the same

label. Thus, a natural regularizer can be defined as follows:

J(a) =
∑

ij

(
aT xi − aT xj

)2
WN,ij (2.20)

This formulation is motivated from spectral dimensionality reduction [4, 46], which also

plays a key role in spectral clustering [62] and various kinds of graph based semi-supervised

learning algorithms [5, 24, 71].
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Let X = [x1, x2, · · · , xn]. We have

J(a) =
∑

ij

(aT xi − aT xj)
2WN,ij

= 2
∑

i

aT xiDiixT
i a− 2

∑

ij

aT xiWN,ijxT
j a

= 2aT X(D − WN)XT a

= 2aT XLXT a

whereD is a diagonal matrix; its entries are column (or row, sinceWN is symmetric) sum

of S, Dii = ΣjWN,ij. L = D − WN is the Laplacian matrix [26].

With this data dependent regularizer, we get the objective function of our semi-supervised

discriminant analysis:

max
a

aT Sba
aT
(
St + αXLXT

)
a
. (2.21)

The projective vectora that maximizes the objective function is given by the maximum

eigenvalue solution to the generalized eigenvalue problem:

Sba = λ(St + αXLXT )a (2.22)

Without loss of generality, we assume that the firstn data points are labeled and they

are ordered according to their labels. We useXn = [x1, · · · , xn] to denote the labeled data

matrix. Define the weight matrixWSDA ∈ R
N×N as

WSDA =




WLDA 0

0 0


 , Ĩ =




I 0

0 0




whereWLDA ∈ R
n×n is defined in Eqn. (2.16) andI is an identity matrix of sizen × n.
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Based on Eqn. (2.17), we have

Sb = XnWLDAXT
n = XWSDAXT (2.23)

and

St = XnXT
n = XĨXT . (2.24)

Thus, the objective function of SDA in eqn. (2.25) can be rewritten as

max
a

aT XWSDAXT a

aT X
(
Ĩ + αL

)
XT a

, (2.25)

which again is linear extension of a graph embedding problem.

2.2.3 Locality Sensitive Discriminant Analysis

As we described previously, naturally occurring data may begenerated by structured sys-

tems with possibly much fewer degrees of freedom than the ambient dimension would

suggest. Thus we consider the case when the data lives on or close to a submanifold of the

ambient space. One hopes then to estimate geometrical and discriminant properties of the

submanifold from random points lying on this unknown submanifold. In this section, we

consider the particular question of maximizinglocal margin between different classes.

Recall that we can use ap-nearest neighbor graphG with weight matrixW to char-

acterize the local geometry of the data manifold. In order todiscover both geometrical

and discriminant structure of the data manifold, we construct two graphs, i.e.within-class

graphGw andbetween-class graphGb. Let l(xi) be the class label ofxi. For each data

pointxi, the setN(xi) can be naturally split into two subsets,Nb(xi) andNw(xj). Nw(xi)

contains the neighbors sharing the same label withxi, whileNb(xi) contains the neighbors

15



(a) (b) (c) (d)

Figure 2.1: (a) The center point has five neighbors. The points with the same color and
shape belong to the same class. (b) Thewithin-class graphconnects nearby points with
the same label. (c) Thebetween-class graphconnects nearby points with different labels.
(d) After Locality Sensitive Discriminant Analysis, the margin between different classes is
maximized.

having different labels. Specifically,

Nw(xi) = {xj
i |l(xj

i ) = l(xi), 1 ≤ j ≤ p}

Nb(xi) = {xj
i |l(xj

i ) 6= l(xi), 1 ≤ j ≤ p}

Clearly,Nb(xi) ∩ Nw(xi) = ∅ andNb(xi) ∪ Nw(xi) = N(xi). Let Ww andWb be the

weight matrices ofGw andGb, respectively. We define:

Wb,ij =





1, if xi ∈ Nb(xj) or xj ∈ Nb(xi)

0, otherwise.
(2.26)

Ww,ij =





1, if xi ∈ Nw(xj) or xj ∈ Nw(xi)

0, otherwise.
(2.27)

It is clear to seeW = Wb + Ww and the nearest neighbor graphG can be thought of as a

combination of within-class graphGw and between-class graphGb.

Now consider the problem of mapping the within-class graph and between-class graph

to a line so that connected points ofGw stay as close together as possible while connected

points ofGb stay as distant as possible. Lety = (y1, y2, · · · , yn)T be such a map. A

16



reasonable criterion for choosing a “good” map is to optimize the following two objective

functions:

min
∑

ij

(yi − yj)
2Ww,ij (2.28)

max
∑

ij

(yi − yj)
2Wb,ij (2.29)

under appropriate constraints. The objective function (2.28) on within-class graph incurs a

heavy penalty if neighboring pointsxi andxj are mapped far apart while they are actually

in the same class. Likewise, the objective function (2.29) on between-class graph incurs

a heavy penalty if neighboring pointsxi and xj are mapped close together while they

actually belong to different classes. Therefore, minimizing (2.28) is an attempt to ensure

that if xi andxj are close and sharing the same label thenyi andyj are close as well. Also,

maximizing (2.29) is an attempt to ensure that ifxi andxj are close but have different

labels thenyi andyj are far apart. The learning procedure is illustrated in Figure 2.1.

Supposea is a projection vector, that is,yT = aT X, whereX = (x1, · · · ,xn) is a

m×n matrix. By simple algebra formulation, the objective function (2.28) can be reduced

to

1

2

∑

ij

(yi − yj)
2Ww,ij

=
1

2

∑

ij

(
aTxi − aTxj

)2
Ww,ij

=
∑

i

aTxiDw,iix
T
i a −

∑

ij

aTxiWw,ijx
T
j a

= aT XDwXTa − aT XWwXTa

whereDw is a diagonal matrix; its entries are column (or row, sinceWw is symmetric) sum
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of Ww, Dw,ii =
∑

j Ww,ij. Similarly, the objective function (2.29) can be reduced to

1

2

∑

ij

(yi − yj)
2Wb,ij

=
1

2

∑

ij

(
aTxi − aTxj

)2
Wb,ij

= aT X(Db − Wb)X
Ta

= aT XLbX
Ta

whereDb is a diagonal matrix; its entries are column (or row, sinceWb is symmetric) sum

of Wb, Db,ii =
∑

j Wb,ij. Lb = Db − Wb is the Laplacian matrix ofGb.

Note that, the matrixDw provides a natural measure on the data points. IfDw,ii is large,

then it implies that the class containingxi has a high density aroundxi. Therefore, the

bigger the value ofDw,ii is, the more “important” isxi. Therefore, we impose a constraint

as follows:

yT Dwy = 1 ⇒ aT XDwXTa = 1

Thus, the objective function (2.28) becomes the following:

min
a

1 − aT XWwXTa (2.30)

or equivalently,

max
a

aT XWwXTa (2.31)

And the objective function (2.29) can be rewritten as follows:

max
a

aT XLbX
Ta (2.32)
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Finally, the optimization problem reduces to finding:

max
a

aT X
(
αLb + (1 − α)Ww

)
XT a

aT XDwXT a
, (2.33)

which again is linear extension of a graph embedding problem.

2.3 Computational and Complexity Analysis

The linear extension of graph embedding ends up with solvingthe generalized eigen-

problem

XWXT a = λXDXT a. (2.34)

To get a stable solution of this eigen-problem, the matricesXDXT is required to be non-

singular [73] which is not true when the number of features islarger than the number of

samples. There are two methods to solve this problem. The first one is by using Singular

Value Decomposition (SVD) ofX.

Supposerank(X) = r, the SVD decomposition ofX is

X = UΣV T (2.35)

whereΣ = diag(σ1, · · · , σr) and σ1 ≥ · · · ≥ σr > 0 are the singular values ofX,

U ∈ R
m×r, V =∈ R

n×r andUT U = V T V = I. Let X̃ = UT X = ΣV T andb = ΣUT a,
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we have

XWXT a = λXDXT a (2.36)

⇒ UΣV T WV ΣUT a = λUΣV T DV ΣUT a (2.37)

⇒ UΣV T WV b = λUΣV T DV b (2.38)

⇒ Σ−1UT UΣV T WV b = λΣ−1UT UΣV T DV b (2.39)

⇒ V T WV b = λV T DV b (2.40)

It is clear thatV T DV is nonsingular and the eigen-problem in Eqn. (2.40) can be stably

solved. After we getb∗, thea∗ can be obtained by

a∗ = UΣ−1b∗. (2.41)

The above SVD approach has been widely used in many subspace learning algorithms

(e.g., LDA [18] and LPP [47]) to solve the singularity problem. For clarity, we name this

approach as SVD+LGE (Linear Graph Embedding).

The second method is using the idea of regularization, by adding constant values to the

diagonal elements ofXDXT , asXDXT +γI, for γ > 0. It is easy to see thatXDXT +γI

is nonsingular. This method is used in [34].

2.3.1 Complexity Analysis of General Linear Graph Embedding

Now let us analyze the computational complexity of both SVD+LGE and the regularization

approaches. We consider the case that the number of features(m) is larger than the number

of samples (n) and use the termflam[72], a compound operation consisting of one addition

and one multiplication, to present operation counts.

The most efficient algorithm to calculate the SVD decomposition requires3
2
n2m+ 9

2
n3

flam [73]. Whenn < m, the rank ofX is usually ofn. Thus,V is square matrix of
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sizen × n. The calculation of matricesV WV T andV DV T requires at least2n3 flam.

The eigen-problem in Eqn. (2.40) requires9
2
n3 flam [73]. Overall, the time complexity of

SVD+LGE approach measured by flam is

3

2
n2m + 11n3,

which is cubic-time complexity with respect ton. For large scale high dimensional data,

the SVD+LGE approach is unlikely to be applied.

In the regularization approach, The calculation of matricesXWXT andXDXT + γI

requires at least2nm2 flam. The generalized eigen-problem requires9
2
m3 flam. Overall,

the time complexity of the regularization approach measured by flam is

2nm2 +
9

2
m3,

which is cubic-time complexity with respect tom. The regularization approach is also

unlikely to be applied for large scale high dimensional data.

2.3.2 Complexity Analysis of Linear Discriminant Analysis

LDA can get some computational benefits from the special structure ofWLDA as shown in

the following equations.

XWLDAXT a = λXXT a

⇒ UΣV T WLDAV ΣUT a = λUΣΣUT a

⇒ Σ−1UT UΣV T WLDAV
(
ΣUT a

)
= λΣ−1UT UΣ

(
ΣUT a

)

⇒ V T WLDAV b = λb

(2.42)

V ∈ R
n×d is right singular matrix ofX andd is the rank ofX. The i-th row vector of

V corresponds to the data pointxi and we denote it aszi, V = [z1, · · · , zm]T . Let z(k)
i
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denote the row vector ofV which corresponds tox(k)
i . Defineννν(k) = 1

nk

∑nk

i=1 z(k)
i and

H = [
√

l1ννν
(1), · · · ,

√
lcννν

(c)] ∈ R
d×c. Inspired by Eqn. (2.15), we have

V T WLDAV =
c∑

k=1

1

nk

(
nk∑

i=1

z(k)
i

nk∑

i=1

(z(k)
i )T

)

=
c∑

k=1

nk ννν(k)(ννν(k))T

=HHT

(2.43)

The above algebraic steps show that the LDA projective functions can be obtained by the

SVD decomposition ofX and calculating the eigenvectors ofHHT .

It is easy to check that the left singular vectors ofX (column vectors ofU ) are the

eigenvectors ofXXT and the right singular vectors ofX (column vectors ofV ) are the

eigenvectors ofXT X [73]. Moreover, ifU or V is given, then we can recover the other via

the formulaXV = UΣ andUT X = ΣV T . In fact, the most efficient SVD decomposition

algorithm (i.e.cross-product) applies this strategy [73]. Specifically, ifn ≥ m, we compute

the eigenvectors ofXXT , which gives usU and can be used to recoverV ; If n < m, we

compute the eigenvectors ofXT X, which gives usV and can be used to recoverU . Since

the matrixH is of sizer×c, wherer is the rank ofX andc is the number of classes. In most

of the cases,r is close tomin(m,n) which is far larger thanc. Thus, comparing to directly

calculate the eigenvectors ofHHT , compute the eigenvectors ofHT H then recover the

eigenvectors ofHHT can achieve a significant saving.

Whenn ≥ m, the calculation ofXXT requires1
2
nm2 flam; Computing the eigen-

vectors ofXXT requires9
2
m3 flam [73, 36]; RecoveringV from U requiresnm2 flam by

assumingX is of full rank; Computing the eigenvectors ofHHT requires1
2
mc2+ 9

2
c3+mc2

flam; Finally, calculatinga’s from b’s requiringm2c. Whenn < m, we have the similar
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analysis. We conclude that the time complexity of LDA measured by flam is

3

2
mnt +

9

2
t3 +

3

2
tc2 +

9

2
c3 + t2c

wheret = min(m,n). Consideringc ≪ t, the time complexity of LDA can be written as

3
2
mnt + 9

2
t3 + O(t2).
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Chapter 3

Spectral Regression for Efficient
Subspace Learning

The graph embedding view of subspace learning provides us a powerful platform to develop

various kinds of dimensionality reduction algorithms. However, the high computational

cost restricts these algorithms to be applied to large scalehigh dimensional data sets. In

this Chapter, we describe our approach which can overcome this difficulty.

3.1 Spectral Regression

In order to solve the eigen-problem

XWXT a = λXDXT a (3.1)

efficiently, we use the following theorem:

Theorem 1 Lety be the eigenvector of eigen-problem

Wy = λDy (3.2)

with eigenvalueλ. If XT a = y, thena is the eigenvector of eigen-problem in Eqn. (3.1)

with the same eigenvalueλ.

Proof We haveWy = λDy. At the left side of Eqn. (3.1), replaceXT a by y, we have

XWXT a = XWy = XλDy = λXDy = λXDXT a
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Thus,a is the eigenvector of eigen-problem Eqn. (3.1) with the sameeigenvalueλ.

Theorem (1) shows that instead of solving the eigen-problemin Eqn. (3.1), the linear

projective functions can be obtained through two steps:

1. Solve the eigen-problem in Eqn. (3.2) to gety.

2. Finda which satisfiesXT a = y. In reality, sucha might not exist. A possible way is

to finda which can best fit the equation in the least squares sense:

a = arg min
a

n∑

i=1

(aT xi − yi)
2 (3.3)

whereyi is thei-th element ofy.

The advantages of this two-step approach are as follows:

1. BothW andD are sparse matrices and the top eigenvectors of eigen-problem in Eqn.

(3.2) can be efficiently calculated with Lanczos algorithms[73]. Moreover, we will

show later how this eigen-problem istrivial and the eigenvectorsy can be directly

obtained with a supervised graph matrixW .

2. There exist many efficient iterative algorithms (e.g., LSQR [66]) that can handle very

large scale least square problems.

In the situation that the number of samples is smaller than the number of features, the

minimization problem (3.3) isill posed. We may have infinitely many solutions to the

linear equations systemXT a = y (the system is underdetermined). The most popular way

to solve this problem is to impose a penalty on the norm ofa:

a = arg min
a

(
m∑

i=1

(
aT xi − yi

)2
+ α‖a‖2

)
(3.4)
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This is so called regularization and is well studied in statistics. The regularized least square

is also called ridge regression [41]. Theα ≥ 0 is a parameter to control the amounts of

shrinkage. Now we can see the third advantage of the two-stepapproach:

3 Since the regression is used as a building block, the regularization techniques can

be easily incorporated and produce more stable and meaningful solutions, especially

when there exist a large number of features [41].

Our above two-step approach essentially performs regression after the spectral analysis

of the graph, we called itSpectral Regression(SR).

3.2 Theoretical Analysis

The regularized least squares in Eqn. (3.4) can be rewrittenin the matrix form as:

a = arg min
a

(
(XT a− y)T (XT a− y) + αaT a

)
. (3.5)

Requiring the derivative of right side with respect toa vanish, we get

(XXT + αI)a = Xy

⇒ a = (XXT + αI)−1Xy
(3.6)

Whenα > 0, this regularized solution will not satisfy the linear equations systemXT a = y

and a will not be the eigenvector of eigen-problem in Eqn. (3.1). It is interesting and

important to see when (3.6) gives the exact solutions of eigen-problem (3.1). Specifically,

we have the following theorem:

Theorem 2 Supposey is the eigenvector of eigen-problem in Eqn. (3.2), ify is in the space

spanned by row vectors ofX, the corresponding projective functiona calculated in Eqn.

(3.6) will be the eigenvector of eigen-problem in Eqn. (3.1) asα deceases to zero.
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Proof Supposerank(X) = r, the SVD decomposition ofX is

X = UΣV T

The y is in the space spanned by row vectors ofX, therefor,y is in the space spanned

by column vectors ofV . Thus, y can be represented as the linear combination of the

column vectors ofV . Moreover, the combination is unique because the column vectors

of V are linear independent. Suppose the combination coefficients areb1, · · · , br. Let

b = [b1, · · · , br]
T , we have:

V b=y ⇒ V T V b=V T y ⇒ b=V T y ⇒ V V T y=y (3.7)

To continue our proof, we need introduce the concept of pseudo inverse of a matrix [67],

which we denote as(·)+. Specifically, pseudo inverse of the matrixX can be computed by

the following two ways:

X+ = V Σ−1UT

and

X+ = lim
α→0

(XT X + αI)−1XT

The above limit exists even ifXT X is singular and(XT X)−1 does not exist [67]. Thus,

the regularized least squares solution in Eqn. (3.6)

a =
(
XXT + αI

)−1

Xy α→0
= (XT )+y = UΣ−1V T y

Combine with the equation in Eqn. (3.7), we have

XT a = V ΣUT a = V ΣUT UΣ−1V T y = V V T y = y
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By Theorem (1),a is the eigenvector of eigen-problem in Eqn. (3.1).

When the the number of features is larger than the number of samples, the sample

vectors are usually linearly independent,i.e., rank(X) = n. In this case, we will have a

stronger conclusion which is shown in the following Corollary.

Corollary 3 If the sample vectors are linearly independent,i.e., rank(X) = n, all the

projective functions calculated by Eqn. (3.6) are the eigenvectors of eigen-problem in Eqn.

(3.1) asα deceases to zero. These solutions are identical to those of SVD+LGE in Eqn.

(2.41).

Proof The matricesW andD are of sizen × n and there aren eigenvectors{yj}n
j=1 of

eigen-problem (3.2). Sincerank(X) = n, all thesen eigenvectorsyj are in the space

spanned by row vectors ofX. By Theorem (2), alln correspondingaj of SR in Eqn (3.6)

are eigenvectors of eigen-problem in Eqn. (3.1) asα decreases to zero. They are

aSR
j = UΣ−1V T yj.

Consider the eigen-problem in Eqn. (2.40), since then eigenvectorsyj are also in the space

spanned by column vectors ofV , eigenvectorbj will be the solution of linear equations

systemV bj = yj. The column vectors ofV are linearly independent, thusbj is unique and

bj = V T yj.

Thus, the projective functions of SVD+LGE

aSV D+LGE
j = UΣ−1bj = UΣ−1V T yk = aSR

j
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3.3 Eigenvectors of Supervised Graph Matrices

Now let us study the eigenvectors of eigen-problem in Eqn. (3.2). We consider the case

that the graph weight matrixW is constructed with the label information,i.e., searching

thep nearest neighbors ofxi among the points share the same label withxi.

Without loss of generality, we assume that the data points in{x1, · · · , xn} are ordered

according to their labels. It is easy to check that the matrixW in these three algorithms has

a block-diagonal structure

W =




W (1) 0 · · · 0

0 W (2) · · · 0

...
...

. ..
...

0 0 · · · W (c)




(3.8)

wherec is the number of classes,W (k) ∈ R
nk×nk andnk is the number of samples ink-th

class. We also have theD as the diagonal matrix. Thus, the eigenvalues and eigenvectors

of Wy = λDy are the union of the eigenvalues and eigenvectors of its blocks (the latter

padded appropriately with zeros) [36]:

W (k)y(k) = λD(k)y(k).

It is straightforward to show that the above eigen-problem has an eigenvectore(k) ∈ R
nk

associated with the largest eigenvalue 1, wheree(k) = [1, 1, · · · , 1]T [26]. Thus the topc

eigenvectors of eigen-problem in Eqn. (3.2) are

yk = [ 0, · · · , 0︸ ︷︷ ︸
∑k−1

i=1
ni

, 1, · · · , 1︸ ︷︷ ︸
nk

, 0, · · · , 0︸ ︷︷ ︸∑c
i=k+1

ni

]T . (3.9)

These eigenvectors correspond to the same largest eigenvalue 1. Since 1 is a repeated
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eigenvalue, we could just pick any otherc orthogonal vectors in the space spanned by{yk}

in Eqn. (3.9), and define them to be ourc eigenvectors [36]. The vector of all ones is

naturally in the spanned space. This vector is useless sincethe responses of all the data

points are the same. In reality, we can pick the vector of all ones as our first eigenvector

and use Gram-Schmidt process to get the remainingc − 1 orthogonal eigenvectors. The

vector of all ones can then be removed.

For theW in LDA, we can easily see that all the elements ofW (k) are equal to1/nk.

Thus the rank ofW (k) is 1 and there is only one non-zero eigenvalue which is exactly 1.

We have exactlyc eigenvectors (orc − 1 useful eigenvectors after Gram-Schmidt process)

with respect to non-zero eigenvalue for eigen-problem in Eqn. (3.2). For theW in LPP

and NPE, we can get more eigenvectors since the rank ofW (k) is usually larger than 1. For

a c class problem, previous studies [3][45] show thatc− 1 projective functions are usually

enough.

Our above analysis shows that whenW is constructed by integrating label informa-

tion, the topc − 1 eigenvectors of eigen-problem in Eqn. (3.2) can be directlyobtained.

Moreover, although the graphs used in LDA, LPP and NPE are different, the topc − 1

eigenvectors of their graph matrices are the same. Thus the projective functions calculated

in SR are the same. By Theorem 2 and Corollary 7, these projective functions are identical

to those of SVD+LGE approach in Eqn. (2.40) when the sample vectors are linearly inde-

pendent. Our analysis here gives the reason why the three algorithms LDA [3], LPP [47]

and NPE [45] achieve similar performance for high-dimensional low sample size problems.

It is easy to check that the values of thei-th andj-th entries of any vectory in the space

spanned by{yk} in Eqn. (3.9) are the same as long asxi andxj belong to the same class.

Thus thei-th andj-th rows ofY are the same, whereY = [y1, · · · , yc−1]. Corollary (7)

shows that when the sample vectors are linearly independent, thec−1 projective functions

of LDA (LPP, NPE) are exactly the solutions of thec−1 linear equations systemsXT ak =

yk. LetA = [a1, · · · , ac−1] be the transformation matrix which embeds the data points into
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the LDA (LPP, NPE) subspace as:

AT X = Y T .

The columns of matrixY T are the embedding results of samples in the LDA (LPP, NPE)

subspace. Thus, the data points with the same label are corresponding to the same point in

the LDA (LPP, NPE) subspace when the sample vectors are linearly independent.

These projective functions are optimal in the sense of separating training samples with

different labels. However, they usually overfit the training set thus may not be able to

perform well for the test samples, thus the regularization is necessary.

3.4 Computational Complexity Analysis

SR uses regularized least squares to find the projective functions, which is a necessary step

in both supervised and unsupervised cases. Thus, we begin our analysis with analyzing this

step.

Whenm is not very large, the regularized least squares problem in Eqn. (3.4) can

be solved by directly solving the linear equations system inEqn. (3.6). The calculation of

XXT requires1
2
nm2 flam. Since the matrixXXT +αI is positive definite, using Gaussian

Elimination to solve the linear equations system in Eqn. (3.6) costs1
6
m3 flam [72].

For large scale high dimensional data, the regularized least squares problem in Eqn.

(3.4) can be efficiently solved by iterative algorithm LSQR which is designed to solve

large scale sparse linear equations and least squares problems [66]. In each iteration, LSQR

needs to compute two matrix-vector products in the form ofXp andXT q. The remaining

work load of LSQR in each iteration is3n + 5m flam [65]. Thus, the time cost of LSQR

in each iteration is2mn + 3n + 5m. If LSQR stops afterk2 iterations1, the time cost is

k2(2mn + 3n + 5m). Finally, the total time cost ford projective functions isdk2(2mn +

1LSRQ converges very fast [66]. In our experiments, 20 iterations are enough.
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Table 3.1: Computational complexity of LDA, LPP and SR
Time complexity (operation counts,flam)

Graph Responses Embedding
Algorithm Construction Generation Functions

Supervised
LDA

−
− 3

2mnt + 9
2 t3

SR nc2 2ck2ns + 5ck2m

Unsupervised
LPP

n2(s + log n)
− 3

2mnt + 9
2 t3 + min(9

2 t, dk1)t
2

SR dk1n(p + 8) 2dk2ns + 5dk2m

Memory cost
Algorithm

Supervised
LDA ns + (m + n)t + mc

SR ns + nc + mc

Unsupervised
LPP ns + np + (m + n)t + md

SR ns + np + nd + md

n: the number of data samples
m: the number of features
t: min(m, n)
s: the average number of nonzero features for one sample (s ≤ n)
c: the number of classes (LDA and SR will producec − 1 projective functions)
d: the number of dimensions (projective functions) required in LPP and SR
p: the number of nearest neighbors
k1: the number of iterations in Lanczos
k2: the number of iterations in LSQR

3n + 5m). Besides data matrixX, LSQR needsn + 2m additional memory [65]. Finally,

the memory cost in this step ismn+n+2m+dm, with dm to store the projective functions.

In supervised case, the eigen-problem in third step of SR is trivial and we can directly

obtain thosec − 1 eigenvectors. The cost of this step is mainly the cost of Gram-Schmidt

method, which requires(nc2 − 1
3
c3) flam andnc + c2 memory [72].

In unsupervised case, the affinity graph construction step is same as we analyzed before.

Since thep-nearest neighbor graph matrixW is sparse (has aroundnp non-zero entries),

we can use Lanczos algorithm to compute the firstd eigenvectors withindk1n(p + 8) flam,

wherek1 is the iteration number for Lanczos algorithm. The memory requirement of this

step is simply the memory to storeW andd eigenvectors.

We summarize our complexity analysis results in Table 3.1. We assumem ≫ c and
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only show the dominant part of the time and memory costs for simplicity. The main con-

clusions include:

• In supervised case:

⋄ LDA has cubic-time complexity with respect tomin(m,n). Moreover, the left

and right singular vector matrices ofX, which are required to be stored in

memory, are both dense. When bothm andn are large, it is not feasible to

apply LDA.

⋄ SR has linear-time complexity with respect to bothm andn. It only has very

small additional memory requirement besides data matrixX. Thus, SR can be

easily scaled to high dimensional large data sets.

⋄ The computational complexity analysis clearly shows the advantages of using

SR instead of directly applying LDA.

• In unsupervised case:

⋄ The graph construction step is unavoidable for all the spectral graph embedding

approaches. If the same graph is used, the computational cost on this step can

be neglected when we compare the different algorithms.

⋄ The popular manifold learning algorithm (e.g., LLE, Isomap, Laplacian Eigen-

maps) only compute the embedding results of the training data, which is exactly

the responses generation step of SR. SR uses regression to findthe projective

functions with the additional linear-time complexity cost(with respect to both

m andn) and almost no additional memory requirement.

⋄ Those linear (kernel) extension approaches (e.g., LPP, NPE, Kernel Eigenmaps)

directly calculate the projective functions by solving dense eigen-problems.

They require additional cubic-time complexity cost (with respect tomin(m,n))
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and(m + n) · min(m,n) memory cost. When bothm andn are large, it is in-

feasible to apply these approaches.

• In both cases:

⋄ In many real problems, the data matrix is sparse. However, LDA and LPP

need thecompleteSVD decomposition, which can not get any benefit from the

sparseness of the data matrix. Moreover, the left and right singular matrices are

both dense. They can not be fit into the memory when bothm andn are large.

⋄ As shown in Table (4.1), SR can fully explore the sparseness of the data matrix

and gain significant computational saving on both time and memory. SR can

successfully applied as long as the data matrixX can be fit into the memory.

⋄ Even the data matrixX is too large to be fit into the memory, SR can still

be applied with some reasonable disk I/O. This is because in each iteration of

LSQR, we only need to calculate two matrix-vector products inthe form ofXp

andXT q, which can be easily implemented withX andXT stored on the disk.

3.5 Experimental Results

In this section, we briefly show the experimental results of SR for supervised learning task

(face recognition), unsupervised learning task (documentclustering) and semi-supervised

learning task (content-based image retrieval).

All of our experiments have been performed on an Intel Pentium D 3.20GHz Linux

machine with 2GB memory. For the purpose of reproducibility, we provide our algorithms

and data sets used in these experiments at:

http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html
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3.5.1 Face Recognition

In this section, we investigate the performance of our proposed SR approach for face recog-

nition on PIE database.

The CMU PIE face database2 contains 68 subjects with 41,368 face images as a whole.

The face images were captured under varying pose, illumination and expression. We

choose the five near frontal poses (C05, C07, C09, C27, C29) and use all the images under

different illuminations and expressions, thus we get 170 images for each individual. All the

face images are manually aligned and cropped. The cropped images are64×64 pixels, with

256 gray levels per pixel. The features (pixel values) are then scaled to [0,1] (divided by

256). For each individual,l(= 30, 40, 50, 60, 80, 100, 120) images are randomly selected

for training and the rest are used for testing.

The face recognition task is handled as a multi-class classification problem− we map

each test image to a low-dimensional subspace via the embedding learned from training

data, and then classify the test data by the nearest neighborclassifier. Three subspace

learning algorithms are compared in the experiment. They are:

1. Linear Discriminant Analysis (LDA)

2. Regularized Linear Discriminant Analysis (RDA)

3. Spectral Regression (SR)

The recognition error rates and the computational time are reported on the Table 3.2 and

Figure 3.1. Considering both accuracy and efficiency, SR is the best choice among three

of the compared approaches. It provides an efficient and effective regularized subspace

learning solution for large scale data sets.

2http://www.ri.cmu.edu/projects/project418.html
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Table 3.2: Performance comparisons on PIE
Error rates (mean±std-dev%) Computational time (s)
LDA RDA SR LDA RDA SR

G30/P140 8.8±0.3 5.9±0.3 6.1±0.2 59.37 396.2 17.39
G40/P130 8.6±0.2 5.0±0.2 5.2±0.2 131.2 404.5 20.11
G50/P120 9.3±0.4 4.6±0.3 4.8±0.3 241.3 413.1 22.71
G60/P110 10.1±1.2 4.2±0.2 4.5±0.2 394.9 421.8 25.49
G80/P90 7.5±0.2 3.9±0.2 4.2±0.2 442.1 442.1 31.13
G100/P70 6.2±0.2 3.7±0.2 4.0±0.2 455.4 455.4 35.98
G120/P50 5.6±0.3 3.5±0.2 3.8±0.2 471.6 471.6 41.57
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Figure 3.1: Recognition error rates and computational time of each algorithm on PIE.

3.5.2 Document Clustering

Clustering is one of most crucial techniques to organize the documents in an unsupervised

manner. The ordinary clustering algorithms (e.g. K-means) can be performed in the original

document space or in the reduced document space (by using thedimensionality reduction

algorithms,e.g., Latent Semantic Indexing (LSI)[29], LPP). In this experiment, we inves-

tigate the use of dimensionality reduction algorithms for text clustering. The following six

methods are compared in the experiment:

• K-means on original term-document matrix, which is treatedas our baseline (denoted

asBaseline)

• K-means after Latent Semantic Indexing [29] (denoted asLSI )
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• K-means after Locality Preserving Indexing [43] (denoted asLPI )

• K-means after Spectral Regression (denoted asSR)

• Clustering using Probabilistic Latent Semantic Indexing [48] (denoted asPLSI).

• Nonnegative Matrix Factorization-based clustering [83] (denoted asNMF ).

It is important to note that the two methods LPI and SR need to construct a graph on the

documents. In this experiment, we use the same graph for these two methods and the

parameterp (number of nearest neighbors) was set to 7. The parameterα in SR was set to

0.1.

All these algorithms are tested on the TDT2 corpus. The TDT2 corpus3 consists of data

collected during the first half of 1998 and taken from 6 sources, including 2 newswires

(APW, NYT), 2 radio programs (VOA, PRI) and 2 television programs (CNN, ABC). It

consists of 11201 on-topic documents which are classified into 96 semantic categories. In

this experiment, those documents appearing in two or more categories were removed, and

only the largest 30 categories were kept, thus leaving us with 9,394 documents in total.

The clustering result is evaluated by comparing the obtained label of each document

with that provided by the document corpus. The accuracy (AC) is used to measure the

clustering performance [10], [83]. Given a documentxi, letri andsi be the obtained cluster

label and the label provided by the corpus, respectively. TheAC is defined as follows:

AC =

∑n
i=1 δ(si,map(ri))

n

wheren is the total number of documents andδ(x, y) is the delta function that equals one

if x = y and equals zero otherwise, and map(ri) is the permutation mapping function that

maps each cluster labelri to the equivalent label from the data corpus. The best mapping

can be found by using the Kuhn-Munkres algorithm [56].

3Nist Topic Detection and Tracking corpus at http://www.nist.gov/speech/tests/tdt/tdt98/index.htm
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Table 3.3: Clustering results on TDT2

c
Accuracy (mean±std-dev%)

Baseline LSI PLSI LPP SR NMF
2 97.7±7.3 93.4±14.2 91.7±13.0 99.8±0.3 99.9±0.2 99.2±4.7
3 88.4±18.0 86.1±20.0 82.8±18.3 99.6±0.4 99.6±0.4 95.7±11.0
4 85.7±18.9 79.2±21.2 75.4±19.3 99.3±0.8 99.4±0.8 92.4±11.9
5 82.4±17.8 76.8±22.3 72.5±18.0 98.7±1.8 98.8±1.8 92.2±10.5
6 79.0±17.5 72.0±19.4 68.2±16.8 98.6±1.5 98.8±1.3 88.0±12.6
7 74.5±16.5 65.9±18.1 64.0±14.1 97.8±2.4 98.2±2.1 83.1±14.6
8 70.1±17.9 61.3±18.0 61.1±15.2 96.8±4.2 97.3±4.2 79.7±13.1
9 72.3±15.6 64.5±18.0 62.2±11.5 95.5±6.0 97.5±2.4 84.8±13.1
10 69.2±17.0 63.4±18.0 61.1±13.2 94.0±6.3 96.0±4.5 81.5±10.1
30 58.5 54.2 59.6 −∗ 86.7 61.0

c
Processing time (s)

Baseline LSI PLSI LPP SR NMF
2 6.25 0.43 3.22 11.50 1.08 6.0
3 18.23 0.67 7.49 26.81 1.95 23.1
4 29.74 0.96 11.23 33.56 2.62 63.3
5 61.82 1.50 18.67 76.37 4.50 113.7
6 66.51 1.78 20.70 65.30 4.37 238.4
7 117.63 2.97 31.57 143.86 7.65 389.5
8 171.76 4.20 40.06 179.03 9.27 766.6
9 193.85 5.00 45.57 228.12 10.93 869.7
10 261.05 6.48 56.79 266.53 13.09 1348.3
30 2720.21 132.12 511.53 −∗ 224.71 15101.0
∗LPI can not be applied due to the memory limit

Besides clustering the whole data set into 30 clusters, the evaluations were also con-

ducted with different number of clusters, ranging from 2 to 10. For each given cluster

numberk, 50 tests were conducted on different randomly chosen categories, and the aver-

age performance was computed over these 50 tests (except the30 cluster case). For each

test, K-means algorithm was applied 10 times with differentstart points and the best result

in terms of the objective function of K-means was recorded. After LSI, LPI, or SR, how to

determine the dimensions of the subspace is still an open problem. In this experiment, we

keepk dimensions for all the three algorithms as suggested by previous study [10].

Table 3.3 and Figure 3.2 show the average accuracy of the six algorithms. LSI seems

not promising in dimension reduction for clustering because the K-means on the LSI sub-

space is even worse than K-means on the original document space. One may iterate all the
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Figure 3.2: Clustering performance comparisons on TDT2 corpus

possible dimensions for better performance of LSI as suggested in [10]. However, it may

not possible to do so in a real case. Clustering using PLSI is even worse. NMF method

achieves better performance than Baseline which is consistent with previous study [83],

[10]. Both LPI and SR achieve significant improvements over other four algorithms. The

reason is that LPI and SR try to reveal the local geometric structure of document space.

More detailed analysis and experiments of document clustering using LPI are provided in

[10].

Table 3.3 and Figure 3.2 also show the processing time of the six algorithms. The

processing time of LSI, LPI and SR include two parts: dimensionality reduction time and

time of K-means on the reduced subspace. The processing timeof Baseline and NMF

methods are simply the time of clustering approaches (K-means and nonnegative matrix

factorization). PLSI estimate the probability of each document belongs to each cluster,

which can be directly used to infer the clustering result. Thus, the processing time of

PLSI is only the dimensionality reduction (model estimation) time. After dimensionality

reduction of LSI (LPI and SR), K-means is performed in a very low dimensional subspace

thus is much more efficient then K-means in the original document space. The results here

further show the advantage of dimensionality reduction forclustering. Clustering based

on LSI is the most efficient approach. However, the low clustering accuracy makes LSI

approach less attractable. Although the NMF method achieves better performance than
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Table 3.4: Image features used in the experiment
Feature Name Dimension

Color Histogram [63] 166
Color Correlogram [50] 144

Color Moment [74] 9
Wavelet Texture [1] 18
Canny Edge [22] 72

All 409

Baseline method, the high computational cost (NMF spent morethan 4 hours for clustering

9,394 documents into 30 classes!) makes it not applicable onlarge document set. The same

shortcoming exists for LPI approach. It can not be applied with 9,394 documents due to

the memory limit. Consider both accuracy and efficiency, SR isobviously the best among

the six compared algorithms for document clustering.

3.5.3 Content-Based Image Retrieval

In this section, we describe how to apply Spectral Regressionto CBIR. Particularly, we

consider relevance feedback driven image retrieval.

Features for Image Retrieval

Low-level image representation is a crucial problem in CBIR. General visual features in-

cludes color, texture, shape, etc. Color and texture features are the most extensively used

visual features in CBIR. Compared with color and texture features, shape features are usu-

ally described after images have been segmented into regions or objects. Since robust

and accurate image segmentation is difficult to achieve, thesue of shape features for im-

age retrieval has been limited to special applications where objects or regions are readily

available. In this work, we use a 409-dimensional features as shown in Table (3.4) which

combines color, texture and shape infomration.

In fact, if the low-level visual features are accurate enough, that is, if the Euclidean

40



distances in the low-level feature space can accurately reflect the semantic relationship

between images, then one can simply perform nearest neighbor search in the low-level

feature space and the retrieval performance can be guaranteed. Unfortunately, there is

no strong connection between low-level visual features andhigh-level semantic concepts

based on the state-of-the-art computer vision techniques.Thus, one has to resort to user

interactions to discover the semantic structure in the data.

Relevance Feedback Image Retrieval

Relevance feedback is one of the most important techniques tonarrow down the gap be-

tween low level visual features and high level semantic concepts [69]. Traditionally, the

user’s relevance feedbacks are used to update the query vector or adjust the weighting of

different dimensions. This process can be viewed as an on-line learning process in which

the image retrieval system acts as a learner and the user actsas a teacher. The typical

retrieval process is outlined as follows:

1. The user submits a query image example to the system. The system ranks the images

in database according to some pre-defined distance metric and presents to the user

the top ranked images.

2. The user provides his relevance feedbacks to the system bylabeling images as “rel-

evant” or “irrelevant”.

3. The system uses the user’s provided information to re-rank the images in database

and returns to the user the top images. Go to step 2 until the user is satisfied.

All the subspace learning algorithms (e.g., LPP and SR) can use the user’s relevance

feedbacks to update their graphs, which leads to better subspace for semantic concepts.

Let q denote the query image andA be the transformation matrix of one subspace learning

algorithm, i.e.x′
i = ATxi andq′ = ATq. The distance betweenx′

i andq′ can be computed
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as follows:

dist(x′

i,q
′) =

√
(x′

i − q′)T (x′
i − q′)

=
√

(xi − q)T AAT (xi − q)

For a general subspace learning algorithm, one needs to estimate the optimal dimen-

sionality of the subspace which could be very hard in practical. Our analysis shows that

there will be onlyc dimensions for SR subspace (with the Semi-supervised Discriminant

Analysis formulation), wherec is the number of classes. For image retrieval,c = 2 since

there are two classes (relevant or not). Since all the other three suffer the problem of dimen-

sionality estimation, this is one of the advantages of applying SR instead of other subspace

learning algorithms.

In many situations, the number of images in the database can be extremely large, which

makes the computation of all the algorithms infeasible. In order to reduce the computa-

tional complexity, we do not take all the images in the database to construct thep nearest

neighbors graphs. Instead, we only take the top 400 images atthe previous retrieval itera-

tion, plus the labeled images, to find the optimal projection.

Image Data Set

The COREL data set is widely used in many CBIR systems, such as [42,55, 77, 86]. For

the sake of evaluations, we also choose this data set for testing. 30 categories of color

images were selected, where each consists of 100 images. Each image is represented as a

409-dimensional vector as described before. Figure 3.3 shows some sample images from

the COREL data set.
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(a) (b) (c)

Figure 3.3: Sample images from category 24, 25, and 30, respectively.

Evaluation Metrics

Due to the relatively low recall in CBIR system, we do not use theprecision-recallcurve

[51]. Instead, we useprecision-scope curveandprecision rateas the performance evalua-

tion metrics [55]. The scope is specified by the number (N ) of top-ranked images presented

to the user. The precision is the ratio of the number of relevant images presented to the user

to the scopeN . The precision-scope curve describes the precision with various scopes and

thus gives an overall performance evaluation of the algorithms. On the other hand, the

precision rate emphasizes the precision at a particular value of scope.

In a real image retrieval system, a query image is usually notin the image database. To

simulate such environment, we usefive-fold cross validationto evaluate the algorithms

which is also adopted in the paper [55]. More precisely, we divide the whole image

database into five subsets with equal size. Thus, there are 20images per category in each

subset. At each run of cross validation, one subset is selected as the query set, and the other

four subsets are used as the database for retrieval. The precision-scope curve and precision

rate are computed by averaging the results from the five-foldcross validation.

Automatic Relevance Feedback Scheme

We designed an automatic feedback scheme to model the retrieval process. For each sub-

mitted query, our system retrieves and ranks the images in the database. The top 10 ranked

images were selected as the feedback images, and their labelinformation (relevant or irrel-

evant) is used for re-ranking. Note that, the images which have been selected at previous
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iterations are excluded from later selections. For each query, the automatic relevance feed-

back mechanism is performed for four iterations. The similar scheme was used in [42],

[55], [86].

Compared Algorithms

To demonstrate the effectiveness and efficiency of our proposed image retrieval algorithm

(SR), we compare it with three state-of-the-art semi-supervised subspace learning algo-

rithms, i.e. incremental Locality Preserving Projection (LPP) [42], Augmented Relation

Embedding (ARE) [55] and Semantic Subspace Projection (SSP)[86].

A crucial problem of LPP (or, ARE and SSP) is how to determine the dimensionality

of the subspace. In our experiments, we iterate all the dimensions and select the dimension

with respect to the best performance. For SR, we simply use the2-dimensional subspace.

For all these algorithms, the Euclidean distances in the reduced subspace are used for rank-

ing the images in the database. All these algorithms need to construct ak-nearest neighbors

graph, we empirically setk = 5.

It is important to note that all the three algorithms (LPP, AREand SSP) can be fit into

the spectral regression framework to be efficiently computed. However, to show the advan-

tages of SR, we implemented all the three algorithms in their ordinary ways (SVD+LGE

approach).

Image Retrieval Performance

Figure 3.4 shows the averageprecision-scopecurves of the different algorithms for the 1st,

2nd and 4th feedback iterations. Thebaselinecurve describes the initial retrieval result

without feedback information. Specifically, at the beginning of retrieval, the Euclidean dis-

tances in the original 409-dimensional space are used to rank the images in the database.

After the user provides relevance feedbacks, the LPP, ARE, SSP, and SR algorithms are

then applied to re-rank the images in the database. Our SR algorithm significantly outper-
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(b) Feedback Iteration 2
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(c) Feedback Iteration 4

Figure 3.4: Compare the retrieval performance of different algorithms. (a)-(c) Via illustrat-
ing with the precision-scope curves, we plot the results in the 1st, 2nd, and 4th feedback
iteration, respectively. The SR algorithm performs the best on the entire scope for all the
three feedback iterations.

forms the other three algorithms on the entire scope. The overall performances of LPP,

ARE and SSP are very close to each other. ARE performs better than the other two at the

first round, especially with a small scope. All these four algorithms are significantly bet-

ter than the baseline, which indicates that the user provided relevance feedbacks are very

helpful for improving the retrieval performance.

Table 3.5 gives the processing time for each query of the fouralgorithms. All the three

algorithms LPP, ARE and SSP are computed by SVD+LGE approach as we described

in Chapter 2. It is clear to see the SR has a significant computational advantage over

the SVD+LGE approach. This results verified our theoreticalanalysis on computational
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Table 3.5: Time on processing one query for each method (s)
tW tSV D tGEigen tAll

LPP

0.062
0.453

0.494 1.009
ARE 0.489 1.004
SSP 0.487 1.002

tSEigen tRLS

SR 0.024 0.041 0.127
tW : time on the graph construction.
tSV D: time on SVD decomposition.
tGEigen: time on generalized eigen-problem.
tSEigen: time on sparse eigen-problem
tRLS : time on regularized least squares

complexity in Table 3.1.
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Chapter 4

Kernel Spectral Regression

4.1 Derivation of LGE in Reproducing Kernel Hilbert

Space

In this section, we generalize LGE approach to nonlinear problems and develop Kernel

Graph Embedding (KGE).

We seek a functionf ∈ HK such that the following objective function is maximized,

min
f∈HK

n∑

i=1

(f(xi) − f(xj))
2Wij (4.1)

Proposition 4 LetH = {∑n
i=1 αiK(·,xi)|αi ∈ R} be a subspace ofHK , the solution to

the problem (4.1) is inH.

Proof Let H⊥ be the orthogonal complement ofH, i.e. HK = H ⊕ H⊥. Thus, for any

functionf ∈ HK , it has orthogonal decomposition as follows:

f = fH + fH⊥

Now, let’s evaluatef atxi:

f(xi) = 〈f,Kxi
〉HK

(4.2)

= 〈fH + fH⊥
, Kxi

〉HK
(4.3)

= 〈fH, Kxi
〉HK

+ 〈fH⊥ , Kxi
〉HK

(4.4)
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Notice thatKxi
∈ H while fH⊥ ∈ H⊥. This implies that〈fH⊥ , Kxi

〉HK
= 0. Therefore,

f(xi) = 〈fH, Kxi
〉HK

= fH(xi)

This completes the proof.

Since the solutions to the problem (4.1) are inH, we useHK andH interchangeably

thereafter. Thus, the inner product betweenf, g ∈ H wheref(·) =
∑n

i=1 αiK(·,xi) and

g(·) =
∑n

j=1 βjK(·,xj) is 〈f, g〉 =
∑

i,j αiβjK(xi,xj). If the kernel function is chosen

as inner productK(x,y) = 〈x,y〉, thenHK is a linear functional space and the algorithm

reduces to ordinary LGE. For general kernel functionK andf ∈ HK , we have

f(x) =
n∑

i=1

αiK(x,xi) = K(x)T α (4.5)

whereααα = [α1, · · · , αn]T andK(x)
.
= [K(x,x1), · · · , K(x,xn)]T . We define

y = (f(x1), · · · , f(xn))T

=




K(x1)
Tααα

...

K(x1)
Tααα




=




K(x1,x1) · · · K(x1,xn)

...
. ..

...

K(xn,x1) · · · K(xn,xn)




ααα

.
= Kααα

whereK is the kernel matrix,Kij = K(xi,xj). Note that,K is symmetric. Thus, the
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objective function can be reduced to

n∑

i=1

(f(xi − f(x)j))
2Wij

= 2
n∑

i=1

f(xi)Diif(xi) − 2
n∑

i=1

f(xi)Wijf(xj)

= 2yT Dy − 2yT Wy

= 2yT Ly

= 2αααT KLKααα

whereL is the graph Laplacian. Similarly, the constraint can be derived as follows:

yT Dy = 1 ⇒ αααT KDKααα = 1 (4.6)

Therefore, the optimal mapping functionf ∈ HK can be obtained by solving the following

minimization problem

ααα∗ = arg min
αααT KLKTααα

αααT KDKTααα
, (4.7)

or equivalent maximization problem

ααα∗ = arg max
αααT KWKTααα

αααT KDKTααα
. (4.8)

This leads to the following generalized eigenvector problem:

KWKααα = λKDKααα (4.9)

To get nonlinear function, we simply choose a nonlinear kernel. Also, it is important to

note that there is no nonlinear optimization involved in KGE, hence it can be computed as

simply as the standard LGE.
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4.2 Efficient KGE via Spectral Regression

One can easily see the similarity between the eigen-problemof KGE in Eq. (4.9) and

the eigen-problem of LGE in Eq. (2.34). Thus, the spectral regression idea introduced in

Chapter 3 can also be applied on the KGE problem.

Specifically, we have the following theorm

Theorem 5 Lety be the eigenvector of eigen-problem

Wy = λDy (4.10)

with eigenvalueλ. If Kααα = y, thenααα is the eigenvector of eigen-problem in Eqn. (4.9)

with the same eigenvalueλ.

Proof We haveWy = λDy. At the left side of Eqn. (4.9), replaceKααα by y, we have

KWKααα = KWy = KλDy = λKDy = λKDKααα

Thus,ααα is the eigenvector of eigen-problem Eqn. (4.9) with the sameeigenvalueλ.

The above theorem shows that the KGE optimization problem can also be solved

through regression. The kernel matrixK is positive semi-definite. WhenK is non-singular

(positive definite), for any giveny, we have a uniqueααα = K−1y which satisfy the above

linear equations system. WhenK is singular, the system may have no solution or have

infinite many solutions (the linear equations system is underdetermined) [36]. A possible

way is to approximateααα by solving the following linear equations:

(K + δI)ααα = y (4.11)

whereI is the identity matrix andδ ≥ 0 is the regularization parameter. Since the matrix

K + δI is positive definite, the Cholesky decomposition can be used to efficiently solve the
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linear equations in Eqn. (4.11) [36], [72]. The computational complexity analysis will be

provided in the later section.

The linear equations system in Eqn. (4.11) has close connection with regularized re-

gression [79]. We denote the projective function in the feature space as:

f(x) = 〈ννν, φ(x)〉 =
n∑

i=1

αiK(x, xi)

It can be easily verified that the solutionααα∗ = (K + δI)−1y given by equations in Eqn.

(3.3) is the optimal solution of the following regularized regression problem [79]:

min
f∈F

n∑

i=1

(
f(xi) − yi

)2
+ δ‖f‖2

K (4.12)

whereyi is thei-th element ofy, F is the RKHS associated with Mercer kernelK and‖ ‖K

is the corresponding norm.

4.3 Theoretical Analysis

When the kernel matrixK is positive definite and theδ = 0, Theorem 5 shows that the

solutionαααk = K−1y are exactly the eigenvectors of the KGE eign-problem in Eqn.(4.9).

In this case, Kernel Spectral Regression (KSR) is equivalent to ordinary KGE. Thus, it is

interesting and important to see when the positive semi-definite kernel matrixK will be

positive definite.

One of the most popular kernels is the Gaussian RBF kernel,K(xi, xj) = exp(−‖xi −

xj‖2/2σ2). Our discussion in this section will only focus on Gaussian kernel. Regarding

the Gaussian kernel, we have the following lemma:

Lemma 6 (Full Rank of Gaussian RBF Gram Matrices [58])Suppose thatx1, · · · , xn
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are distinct points, andσ 6= 0. The matrixK given by

Kij = exp(−‖xi − xj‖2/2σ2)

has full rank.

Proof See [58] and Theorem 2.18 in [70].

In other words, the kernel matrixK is positive definite (provided no twoxi are the same).

Thus, we have the following theorem:

Theorem 7 If all the sample vectors are different and the Gaussian RBF kernel is used,

all the projective functions in KSR are eigenvectors of eigen-problem in Eqn. (4.9) when

δ = 0. In other words, the KSR and ordinary KGE are equivalent.

Proof This theorem can be easily proofed by combining Lemma 6 and Theorem 5.

4.4 Computational Analysis

In this section, we provide the computational analysis of Kernel Spectral Regression. For

simplicity, we use the LDA supervised graph in Eq. (2.16). Inthis case, KSR provides

an efficient solution for Kernel Discriminant Analysis (KDA) [2][59]. We begin with the

complexity analysis of the traditional KDA.

4.4.1 Computational Analysis of KDA

To get a stable solution of the eigen-problem in Eqn. (4.9), the matrixKDK is required

to be non-singular [36]. WhenK is singular, there are two methods to solve this problem.

The first method is by using eigen-decomposition ofK, which was proposed in [2].
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Suppose the rank ofK is r(r ≤ n) and the eigen-decomposition ofK is as follows:

K = UΣUT = UrΣrU
T
r

whereΣ = diag(σ1, · · · , σn) is the diagonal matrix of sorted eigenvalues (σ1 ≥ · · · ≥

σm ≥ 0) andU is the matrix of normalized eigenvectors associated toΣ. Σr is the diagonal

matrix of nonzero eigenvalues andUr is the firstr columns ofU . ThusΣ−1
r exists and

UT
r Ur = I, whereI is the identity matrix.

SubstitutingK in Eqn. (4.8)(D = I with WLDA), we get

αααopt = arg max

(
ΣrU

T
r ααα
)T

UT
r WUr

(
ΣrU

T
r ααα
)

(
ΣrUT

r ααα
)T

UT
r Ur

(
ΣrUT

r ααα
) .

We proceed to variable modification usingβββ = ΣrU
T
r ααα and get:

βββopt = arg max
βββT UT

r WUrβββ

βββTβββ
,

Thus, the optimalβββ’s are the leading eigenvectors of matrixUT
r WUr. Onceβββ’s are calcu-

lated,ααα can be computed asααα = UrΣ
−1
r βββ.

The second method is using the idea of regularization, by adding constant values to the

diagonal elements ofKK, asKK + γI, for γ > 0. It is easy to see thatKK + γI is

nonsingular. This method is used in [59]. By noticing that

KK + γI = UΣUT UΣUT + γI = U(Σ2 + γI)UT ,
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we defineΣ̃ = (Σ2 + γI)1/2, the objective function of regularized KDA can be written as:

max
αααT KWKααα

αααT (KK + γI)ααα

= max
αααT UΣUT WUΣUTααα

αααT UΣ̃Σ̃UTααα

= max
βββT Σ̃−1ΣUT WUΣΣ̃−1βββ

βββTβββ

whereβββ = Σ̃UTααα. With this formulation, the above two methods can be computed in

exactly the same way.

To reduce the computation in calculatingβββ, we shall exploit the special structure of

W . Based on the analysis in the previous Section, we know that the matrix W has a

block-diagonal structure. We partition then × r matrix Ur as [U
(1)
r , · · · , U

(c)
r ]T , where

U
(k)
r ∈ R

r×nk . Let v(k)
i be thei-th column vector ofU (k)

r , we have:

UT
r WUr =

c∑

k=1

U (k)
r W (k)(U (k)

r )T

=
c∑

k=1

1

nk

(
nk∑

i=1

v(k)
i

nk∑

i=1

(v(k)
i )T

)

=
c∑

k=1

nkv̄(k)(v̄(k))T

=HHT

whereH =
[√

n1v̄(1), · · · ,
√

ncv̄(c)
]
∈ R

r×c andv̄(k) is the average vector ofv(k)
i .

To calculate thec leading eigenvectors ofHHT , it is not necessary to work on matrix

HHT which is of sizer × r. We can use a much more efficient algorithm. Suppose the

Singular Value Decomposition ofH is

H = PΓQT ,
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it is easy to check that the column vectors ofP are the eigenvectors ofHHT and the

column vectors ofQ are the eigenvectors ofHT H [73]. Moreover, ifP or Q is given, we

can recover the other via the formulaHQ = PΓ andP T H = ΓQT . Sincec ≪ r, we can

calculate thec eigenvectors ofHT H and then recover the eigenvectors ofHHT , which are

βββ’s.

We use the termflam [72], a compound operation consisting of one addition and one

multiplication, to measure the operation counts. All the kernel methods need to compute

the kernel matrixK which requiresO(n2m) flam, wherem is the number of features. The

eigen-decomposition ofK requires9
2
n3 flam [73, 36]; Calculating thec − 1 eigenvectors

βββ’s requires9
2
c3 + 3

2
nc2 flam; Computingααα’s from βββ’s requiresn2c flam. Finally, we

conclude the time complexity of KDA measured by flam is

9

2
n3 + n2c + O(n2m) +

3

2
nc2 +

9

2
c3.

Consideringn ≫ c, the above time complexity can be simplified as

9

2
n3 + n2c + O(n2m). (4.13)

For a large scale problem, we haven ≫ m. Thus, the time complexity of KDA is domi-

nated by9
2
n3, which is the cost of eigen-decomposition of sizen × n kernel matrixK.

4.4.2 Computational Analysis of KSR

The computation of KSR involves two steps: responses (y in Eqn. 3.9) generation and reg-

ularized regression. The cost of the first step is mainly the cost of Gram-Schmidt method,

which requires(nc2 − 1
3
c3) flam [72].

To solve thec − 1 linear equations systems in Eqn. (3.3), we can use the Cholesky

decomposition, which uniquely factorizes the positive definite matrixK + δI in the form
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K+δI = RT R, whereR is upper triangular with positive diagonal elements. The Cholesky

decomposition requires1
6
n3 flam [72]. With this Cholesky decomposition, thec − 1 linear

equations can be solved withinn2c flam [72]. Besides solving the KSR optimization prob-

lem, we also need to compute the kernel matrixK which requiresO(n2m) flam. Thus, the

computational cost of KSR is

1

6
n3 + n2c + O(n2m) + nc2 − 1

3
c3,

which can be simplified as
1

6
n3 + n2c + O(n2m).

Comparing to the computational cost of ordinary KDA in Eqn. (4.13), KSR reduces the

dominant part, which is9
2
n3 of ordinary KDA, to 1

6
n3; achieves a 27-times speedup.

4.5 Incremental Kernel Discriminant Analysis

Due to the difficulty of designing an incremental solution for the eigen-decomposition on

the kernel matrix in KDA, there has been little work on designing incremental KDA algo-

rithms that can efficiently incorporate new data examples asthey become available. The

KSR algorithm uses regression instead of eigen-decomposition to solve the optimization

problem, which provides us the chance to develop incremental version of KDA.

The major cost in KSR computation is the step of Cholesky decomposition which re-

quires1
6
n3 flam. Fortunately, the Cholesky decomposition can be easily implemented in the

incremental manner [72]. Actually,Sherman’s march, one of the most popular Cholesky

decomposition algorithms, is implemented in the incremental manner [72].

The procedure of Sherman’s march is illustrated graphically in Figure 4.1. The gray

area represents the part of the Cholesky decomposition that has already been computed with
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Figure 4.1: Sherman’s march (Cholesky decomposition)

R andRT separated by a diagonal line1. The white area represents untouched elements of

the original matrix. The thin vertical box represents the column ofR about to be computed.

The algorithm is easy to derive. We show how to proceed from(n−1)× (n−1) submatrix

to an × n matrix. We have

Kn =




Kn−1 k1n

kT
1n knn




=




RT
n−1 0

rT
1n rnn







Rn−1 r 1n

0 rnn


 ,

which leads to

Kn−1 =RT
n−1Rn−1

k1n =RT
n−1r 1n

knn =rT
1nr 1n + r2

nn

When the Cholesky decomposition of the(n − 1) × (n − 1) submatrixKn−1 is known, it

is easy to get the Cholesky decomposition of then× n Kn. For detailed derivation, please

see [72].

Now, let us consider the additional computational cost of incremental KSR when∆n

new data samples are injected to the system which already hasn samples. Compare to the

1Actually, we only need to storeR.
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Table 4.1: Computational complexity of KDA and KSR
Algorithm operation counts (flam [72])

Batch mode
KDA 9

2
n3 + cn2 + O(mn2)

KSR 1
6
n3 + cn2 + O(mn2)

Incremental KDA 9
2
n3 + cn2 + O(mn∆n)

mode KSR (∆n
2

+ c)n2 + O(mn∆n)

n: the number of data samples
m: the number of features
c: the number of classes
∆n: the number of new data samples

batch mode of KSR, we can get computational saving on two steps:

1. We only need to calculate the additional part of kernel matrix which requiresO(mn∆n+

m∆n2) flam;

2. The incremental Cholesky decomposition requires1
6
(n + ∆n)3 − 1

6
n3 flam [72].

Thus, the computation cost of incremental KSR measured by flam is

1

2
n2∆n +

1

2
n∆n2 +

1

6
∆n3 + (n + ∆n)2c

+ O(mn∆n + m∆n2) + (n + ∆n)c2 − 1

3
c3.

When∆n ≪ n andc ≪ n, the above cost can be simplified as

(
∆n

2
+ c)m2 + O(mn∆n).

We summarize our complexity analysis results in Table 4.1. The main conclusions

include:

• The ordinary KDA needs to perform eigen-decomposition on the kernel matrix,

which is very computationally expensive. Moreover, it is difficult to develop in-
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Table 4.2: Statistics of the three data sets

dataset dim (n)
train test # of

size (m) size classes (c)
Isolet 617 6238 1559 26
USPS 256 7291 2007 10
PIE 1024 8000 3554 68

cremental algorithm based on the ordinary KDA formulation.In both batch and

incremental modes, ordinary KDA has the dominant part of thecost as9
2
n3.

• KSR performs regression instead of eigen-decomposition. In the batch mode, it only

has the dominant part of the cost as1
6
n3, which is a 27-times speedup of ordinary

KDA. Moreover, it is easy to develop incremental version of KSR which only has

quadratic-time complexity with respect ton. This computational advantage makes

KSR much more practical in real world applications.

4.6 Experimental Results

In this section, we investigate the performance of our proposed KSR algorithm in both

batch mode and incremental mode.

4.6.1 Datasets

Three datasets are used in our experimental study, including spoken letter, handwritten digit

image, and face image data sets. The important statistics ofthree datasets are summarized

below (see also Table 4.2):

• The Isolet spoken letter recognition database2 was first used in [33]. It contains 150

subjects who spoke the name of each letter of the alphabet twice. The speakers are

grouped into sets of 30 speakers each, and are referred to as isolet1 through isolet5.

2http://www.ics.uci.edu/∼mlearn/MLSummary.html
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In the past usage [33][30], isolet1&2&3&4 were used as the training set and isolet5

was used as the test set. For the purposes of our experiment, we also choose isolet5

as the test set and perform several runs with isolet1, isolet1&2, isolet1&2&3, and

isolet1&2&3&4 as the training set respectively.

• The USPS handwritten digit database is described in [52]. A popular subset3 con-

tains 929816 × 16 handwritten digit images in total, which is then split into 7291

training images and 2007 test images. In our experiment, we train all the algorithms

on the first 1500 (3000, 4500, 6000, and 7291) images in the training set and test on

the 2007 test images.

• The CMU PIE face database as we introduced in the previous Chapter.

4.6.2 Compared Algorithms

Four algorithms which are compared in our experiments are listed below:

1. Linear Discriminant Analysis (LDA) [35], which providesus a baseline performance

of linear algorithms. We can examine the usefulness of kernel approaches by com-

paring the performance of KDA and LDA.

2. Kernel Discriminant Analysis (KDA) as discussed in Section 2. We test the regular-

ized version and choose the regularization parameterδ by five fold cross-validation

on the training set.

3. Kernel Spectral Regression (KSR), our approach proposed inthis paper. The reg-

ularization parameterδ is also chosen by five fold cross-validation on the training

set.

4. KDA/QR (KQR) [81], a KDA variation in which QR decomposition is applied rather

than eigen-decomposition. Thus, KDA/QR is very efficient.

3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html#usps
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Table 4.3: Performance comparisons on Isolet dataset
Error (%) Time (s)

Speedup
Training Set LDA KDA KSR KQR SVM LDA KDA KSR KQR SVM

Isolet1 15.2711.7412.8917.1912.51 1.93 18.86 1.21 0.93 4.75 15.6
Isolet1+2 6.61 3.79 3.85 7.63 4.11 2.14 134.6 5.51 3.60 13.79 24.4

Isolet1+2+3 5.90 2.99 3.08 7.12 3.34 2.37 451.614.09 7.98 23.84 32.1
Isolet1+2+3+4 5.71 2.82 2.89 6.86 3.27 2.56 991.227.8614.0234.82 35.6
∗Column labeled “Speedup” shows how many times faster
the KSR is (comparing to ordinary KDA).

Table 4.4: Performance comparisons on USPS dataset
Error (%) Time (s)

Speedup
Training Size LDA KDA KSR KQR SVM LDA KDA KSR KQR SVM

1500 10.61 6.58 5.88 10.86 6.85 0.21 14.97 0.92 0.66 0.78 16.3
3000 9.77 5.53 5.38 10.66 5.58 0.27 111.9 4.35 2.61 2.20 25.7
4500 9.52 5.53 4.88 9.67 5.13 0.34 354.3 11.29 5.85 4.06 31.4
6000 9.92 5.03 4.43 9.37 5.08 0.40 825.3 22.7410.41 6.22 36.3
7291 10.26 4.83 4.04 9.02 4.83 0.47 1553.637.5915.60 8.18 41.3

5. Support Vector Machine (SVM) [79], which is believed as one of the state-of-the-

art classification algorithms. Specifically, we use the LibSVM system [23] which

implemented the multi-class classification with one versusone strategy. SVM is

used to get the sense that how good the performance of KDA is.

We use the Gaussian RBF kernel for all the kernel-based methods. We tune the kernel width

parameterσ and large margin parameterC in SVM to achieve best testing performance

for SVM. Then, the same kernel width parameterσ is used in all the other kernel-based

algorithms.

4.6.3 Results

The classification error rate as well as the training time (second) for each method on the

three data sets are reported on the Table (4.3∼ 4.5) respectively.

The main observations from the performance comparisons include:

• The Kernel Discriminant Analysis model is very effective inclassification. KSR has
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Table 4.5: Performance comparisons on PIE dataset
Error (%) Time (s)

Speedup
Training Size LDA KDA KSR KQR SVM LDA KDA KSR KQR SVM

2000 5.29 5.18 4.81 15.62 6.30 8.77 36.51 2.47 1.66 24.13 14.8
3000 4.61 4.25 3.94 9.82 4.70 9.06 116.9 5.39 3.66 43.99 21.7
4000 4.14 5.53 3.24 7.93 3.74 9.42 256.6 10.35 6.39 68.43 24.8
5000 3.85 3.23 2.90 5.94 3.29 9.73 502.3 17.4010.0096.26 28.9
6000 3.57 2.91 2.53 5.68 2.84 10.06 830.7 27.2114.20125.6 30.5
7000 3.40 2.65 2.19 4.08 2.64 10.391340.938.6519.12155.6 34.7
8000 3.35 2.41 2.17 4.00 2.34 10.791908.153.7524.96186.7 35.5

the best performance for almost all the cases in all the threedata sets (even better than

SVM). For Isolet data set, previous study [30] reported the minimum error rate train-

ing on Isolet1+2+3+4 by OPT4 with 30 bit ECOC is 3.27%. KDA (KSR) achieved

better performance in our experiment for this train/test split. For USPS data set,

previous studies [70] reported error rate 3.7% for KDA and 4.0% for SVM, slightly

better than the results in our experiment. For all the cases,KDA (KSR) achieved sig-

nificantly better performance than LDA, which suggests the effectiveness of kernel

approaches.

• Since the eigen-decomposition of the kernel matrix is involved, the ordinary KDA

is computationally expensive in training. KSR uses regression instead of eigen-

decomposition to solve the optimization problem, and thus achieve significant speedup

comparing to ordinary KDA. The empirical results are consistent with the theoreti-

cal estimation of the efficiency. The time of training KSR is comparable with that

of training SVM. KSR is faster than SVM on Isolet and PIE data sets, while slower

than SVM on USPS data set. This is because the time of trainingSVM is dependant

with the number of support vectors [8]. For some data sets with lots of noise (e.g.,

USPS), the number of support vectors is far less than the number of samples. In this

case, SVM can be trained very fast.

4Conjugate-gradient implementation of back-propagation
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• The KDA/QR algorithm is very efficient because it only need toperform QR decom-

position on matrices with sizem × c [81]. However, there is no theoretical relation

between the optimization problem solved in KDA/QR and that of the KDA. In all the

three data sets, the performances of KDA/QR is the worst.

4.6.4 Experiments on Incremental KDA

In this experiment, we study the computational cost of KSR performing in the incremental

manner. The USPS and PIE data sets are used. We start from the training set with the size

of 1000 (the first 1000 samples in whole training set) and increase the training size by 200

for each step. KSR is then performed in the incremental manner. It is important to note

that KSR in the incremental manner give the exactly same projective functions as the KSR

in the batch mode. Thus, we only care about the computationalcosts in this experiment.

Figure 4.2 and 4.3 shows log-log plots of how CPU-time of KDA (KSR, incremental

KSR) increases with the size of the training set on USPS and PIEdata set respectively.

Lines in a log-log plot correspond to polynomial growthO(nd), whered corresponds to the

slope of the line. The ordinary KDA scales roughlyO(n2.9), which is slightly better than

the theoretical estimation. KSR in the batch mode has betterscaling, which is also better

than theoretical estimation with roughlyO(n2.6) over much of the range. This explains why

KSR can be more than 27 times faster than ordinary KDA in the previous experiments. The

KSR in the incremental mode has the best scaling, which is (tosome surprise) better than

quadratic with roughlyO(n1.8) over much of the range.
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Figure 4.2: Computational cost of KDA, batch KSR and incremental KSR on the USPS
data set.
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Figure 4.3: Computational cost of KDA, batch KSR and incremental KSR on the PIE data
set.
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Chapter 5

Sparse Subspace Learning for Feature
Selection

One of the major disadvantages of all the algorithms discussed in previous Chapters is that

the learned projective functions are linear combinations of all the original features, thus it

is often difficult to interpret the results. Recently, there are considerable interests on de-

veloping sparse subspace learning algorithms. Zouet al. [89] proposed an elegant sparse

PCA algorithm (SPCA) using their “Elastic Net” framework forL1-penalized regression on

regular principle components, solved very efficiently using least angle regression(LARS)

[32]. Subsequently, d’Aspremontet al. [28] relaxed the hard cardinality constraint and

solved for a convex approximation using semi-definite programming. In [60, 61], Moghad-

damet al. proposed a spectral bounds framework for sparse subspace learning. Particularly,

they proposed both exact and greedy algorithms for sparse PCAand sparse LDA.

In this Chapter, we propose a novel Unified Sparse Subspace Learning framework

(USSL), for sparse projections learning. The proposed approach is fundamentally based

on our spectral regression framework. By incorporating the regression as a building block,

different kinds of regularizers can be naturally incorporated in SR. Specifically, with aL1-

norm regularizer (lassoor elastic net), the sparse projections can be efficiently computed

in USSL.
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5.1 Sparse Subspace Learning Formulation

For simplicity, we defineA = XWXT , B = XDXT and rewrite the optimization problem

of LGE in Eqn. (2.9) as:

max aT Aa

subject to aT Ba = 1

Following [61], we define the Sparse Subspace Learning (SSL)optimization in terms of

the following cardinality-constrained QCQP:

max aT Aa

subject to aT Ba = 1

card(a) = k

(5.1)

The feasible set is all sparsea ∈ R
m with k non-zero elements andcard(a) as their

L0-norm. Unfortunately, this optimization problem is NP-hard and therefor generally in-

tractable .

In [60, 61], Moghaddamet al. proposed a spectral bounds framework for sparse sub-

space learning. Particularly, they proposed both exact andgreedy algorithms for sparse

PCA and sparse LDA. Their spectral bounds framework is based on the following optimal

condition of the sparse solution.

A sparse vectora ∈ R
m with cardinalityk yielding the maximum objective value in

Eqn. (5.1) would necessarily imply that

λmax =
aT Aa
aT Ba

=
bT Akb
bT Bkb

whereb ∈ R
k contains thek non-zero elements ina and thek × k principle sub-matrices

of A andB obtained by deleting the rows and columns corresponding to the zero indices

of a. The k-dimensional quadratic form inb is equivalent to a standard unconstrained
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generalized Rayleigh quotient, which can be solved by a generalized eigen-problem.

The above observation gives the exact algorithm for sparse subspace learning: a dis-

crete search for thek indices which maximizeλmax of the subproblem(Ak, Bk). However,

such observation does not suggest an efficient algorithm because an exhaustive search is

still NP-hard. To solve this problem, Moghaddamet al. proposed an efficient greedy al-

gorithm which combinesbackward eliminationandforward selection[60, 61]. As we dis-

cussed in Section 2, many of the popular graph-based subspace learning algorithms can be

formulated as the generalized eigen-problem, Moghaddam’sapproach provides a general

solution for learning sparse projections in all these subspace learning algorithms. However,

there are two major drawbacks of their approach:

1. Even their algorithm is a greedy one, the cost of backward elimination is with com-

plexity O(m4 + nm2)[61].

2. In reality, more than one projective functions are usually necessary for subspace

learning. However, the optimal condition of the sparse solution only gives the guide

to find ONE sparse “eigenvector”, which is the first projective function. It is un-

clear how to find the following projective functions. Although [60] suggests to use

recursive deflation, the sparseness of the the following projective functions is not

guaranteed.

In [89], Zouet al. proposed an elegant sparse PCA algorithm (SPCA) using their “Elas-

tic Net” framework forL1-penalized regression on regular principle components, solved

very efficiently usingleast angle regression(LARS) [32]. The key idea of SPCA is formu-

lating PCA as a regression-type optimization problem.

Without loss of generality, we assume the data are centered1. The PCA objective func-

1This can be achieved by subtracting the mean vector from all the sample vectors.
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tion is

max aT XXT a

subject to aT a = 1
(5.2)

and the optimala’s are the eigenvectors with respect to the maximum eigenvalues of the

following eigen-problem:

XXT a = λa. (5.3)

Suppose the rank ofX is r and the Singular Value Decomposition (SVD) ofX is:

X = UΣV T , (5.4)

it is easy to verify that the column vectors inU are the eigenvectors ofXXT [36], i.e., the

projective functions of PCA. LetY = [y1, · · · , yr] = UT X = ΣV T , each row vector ofY

is the sample vector in ther-dimensional PCA subspace. Thus, the projective functions of

PCA are essentially the solutions of the linear equation systems:

XT at = yt, t = 1, · · · , r

in other words,at is the solution of the regression system:

at = arg min
a

n∑

i=1

(aT xi − yt
i)

2

whereyt
i is the i-th element ofyt. Zou et al. [89] addL1-regularizer to get the sparse

solutions:

at = arg min
a

n∑

i=1

(aT xi − yt
i)

2 + β
m∑

j=1

|aj|

whereaj is thej-th element ofa. The above regression problem is calledLasso[41] and

can be efficiently computed using LARS algorithm [32].

By using spectral regression framework, the similar technique can easily be applied to
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those linear graph embedding algorithms.

5.2 Unified Sparse Subspace Learning via Spectral

Regression

With aL1-norm ona in the regression step of SR, we have

a = arg min
a

(
n∑

i=1

(
aT xi − yi

)2
+ β

m∑

j=1

|aj|
)

, (5.5)

which is usually referred aslasso regression[41]. Due to the nature of theL1 penalty,

some coefficients will be shrunk to exact zero ifβ is large enough. Therefore the lasso

produces a sparse model, which is exactly what we want. However, the lasso has several

limitations as pointed out in [88]. The most relevant one to this work is that the number

of selected features by the lasso is limited by the number of samples. For example, if

applied to the face image data where there are thousands of features (m > 1000) with less

than 100 samples (n < 100), the lasso can only select at mostn features, which is clearly

unsatisfactory. The Elastic Net [88] generalizes the lassoto overcome its drawbacks by

combining both the ridge and lasso penalty:

a = arg min
a




n∑

i=1

(
aT xi − yi

)2
+ α

m∑

j=1

a2
j + β

m∑

j=1

|aj |


 (5.6)

For kernel subspace learning algorithms, recall the secondstep of KSR, which is solv-

ing the linear equations systemKααα = y. Essentially, we try to solve a regression problem:

min
ααα

n∑

i=1

(
K(:, xi)

Tααα − yi

)2

whereK(:, xi) is thei-th column ofK andyi is thei-th element ofy. We can also use a
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L1-norm regularizer:

min
ααα

(
n∑

i=1

(
K(:, xi)

Tααα − yi

)2

+ δ
n∑

i=1

|αi|
)

(5.7)

In this way, Spectral Regression framework provides a natural sparse subspace learning

approach.

5.3 Computational Complexity of USSL

The USSL computation involves two steps: responses generation (calculate the eigenvec-

tors of eigen-problem in Eqn. (3.2)) and regularized regression.

For theW in LDA, the cost of the first step is mainly the cost of Gram-Schmidt

method, which isO(nc2) [72]. For ak-NN graphW in LPP, the cost of the first step

is O(n2m + n2 log n + qdnp). O(n2m) is used to calculate the pairwise distance between

n samples withm features andO(n2 log n) is used forp-nearest neighbors finding for all

then samples. Thep-NN graph matrixW is sparse and the Lanczos algorithm [36] can

be used to efficiently compute the firstd eigenvectors of the eigen-problem in Eqn. (3.2)

within O(qdnp), whereq is number of iterations in Lanczos.

All of the three types of regularized regression problems can be solved inO(m3+nm2)

[41][32]. By using theLeast Angel Regression(LARS) algorithm [32], the entire solution

path (the solutions with all the possible cardinality ona) of lasso and elastic net with a

specificα can be computed inO(m3 + nm2).

Consideringn ≫ c andn ≫ d, USSL provides a sparse LDA solution withO(m3 +

nm2) complexity and a sparse LPP solution withO(n2m + n2 log n + m3 + nm2) com-

plexity. This complexity is exactly the same as the ordinarynon-sparse solution solved by

generalized eigen-problem. Comparing to theO(m4 + nm2) greedy algorithm described

in [61], USSL is much more efficient.
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5.4 Experimental Results

In this section, we investigate the performance of our proposed USSL approach for both

supervised learning (face recognition) and unsupervised learning (face clustering).

Two face databases were used in the experiment. The first one is the PIE (Pose, Illumi-

nation, and Experience) database2 from CMU, and the second one is the Extended Yale-B

database3.

The CMU PIE face database contains 68 human subjects with 41,368 face images as a

whole. The face images were captured by 13 synchronized cameras and 21 flashes, under

varying pose, illumination and expression. We choose the frontal poses (C27) and use all

the images under different illuminations and expressions,thus we get 3329 face images in

total.

The Extended Yale-B face database contains 16128 images of 38 human subjects under

9 poses and 64 illumination conditions. In this experiment,we choose the frontal pose and

use all the images under different illumination. Finally weget 2414 images in total.

All the face images are manually aligned and cropped. The size of each cropped image

is 32 × 32 pixels, with 256 gray levels per pixel. Thus each image is represented as a

1024-dimensional vector.

5.4.1 USSL for Supervised Learning

In this experiment, we use theW in Eqn. (2.16). Thus, USSL provides a sparse LDA solu-

tion. We compare our algorithm with PCA, LDA and SparsePCA [89]. In face recognition,

PCA and LDA are also called Eigenface [78] and Fisherface [3].They are two of the most

popular linear methods for face recognition. We do not compare with Sparse LDA [61]

since it can only be applied to two-class case. Please refer to [61] for the details.

For each database,r (= 33, 67) percent of samples are randomly selected for training

2http://www.ri.cmu.edu/projects/project418.html
3http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html
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Figure 5.1: Error rate vs. dimensionality reduction on PIE database
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Figure 5.2: Error rate vs. dimensionality reduction on Yale-B database

and the rest are used for testing. The training samples are used to learn the basis functions.

By using these basis functions, the testing images can be mapped into lower dimensional

subspace where recognition is carried out by using nearest neighbor classifier. 5-fold cross

validation has been performed in SparsePCA and USSL for selecting the best cardinality

of the basis functions. The choices of the cardinality are 10, 20, · · · 100, 150, 200,· · · ,

1000, 1024.

For each givenr, we average the recognition results over 20 random splits. Figure

5.1 and 5.2 show the plots of error rate versus dimensionality reduction for the PCA,

SparsePCA, LDA, USSL and baseline methods on PIE and Yale-B databases, respec-
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Table 5.1: Comparison of classification error rate on PIE

Method
33% Training 67% Training

error (%) dim sparsity error (%) dim sparsity
Baseline 11.7±0.5 1024 − 3.6±0.6 1024 −

PCA 11.7±0.5 700 0 3.6±0.6 1000 0
SparsePCA 7.0±0.6 380 92.2% 2.6±0.5 480 92.2%

LDA 4.0±0.2 67 0 2.5±0.5 67 0
USSL 2.4±0.2 64 90.2% 1.6±0.3 66 90.2%

Table 5.2: Comparison of classification error rate on Yale-B

Method
33% Training 67% Training

error (%) dim sparsity error (%) dim sparsity
Baseline 28.4±1.3 1024 − 17.3±0.7 1024 −

PCA 28.4±1.3 700 0 17.3±0.7 830 0
SparsePCA 16.7±1.1 230 95.1% 8.0±0.5 250 95.1%

LDA 6.0±0.6 37 0 2.7±0.5 37 0
USSL 3.9±0.6 37 86.3% 1.0±0.3 37 86.3%

tively. For the baseline method, the recognition is simply performed in the original 1024-

dimensional image space without any dimensionality reduction. Note that, the upper bound

of the dimensionality of LDA isc − 1 wherec is the number of individuals [31]. We use

the LDA graphW as defined in Section 2 in our USSL algorithm. Thus, the upper bound

of the dimensionality of USSL is alsoc − 1. As can be seen, the performance of the PCA,

SparsePCA, LDA and USSL algorithms varies with the number of dimensions. We show

the best results together with the standard deviations obtained by them in Table 5.1 and 5.2

and the corresponding face subspaces are called optimal face subspace for each method.

Particularly, we also shown the sparsity of the basis functions for these algorithms. The

sparsity is computed as the ratio of the number of zero entries and the total number of en-

tries. As can be seen, the sparsity for PCA and LDA are both zero, while the sparsity for

sparse PCA and USSL are very high.
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5.4.2 USSL for Unsupervised Learning

In this subsection, we investigate the use of our proposed approach for face clustering. Face

clustering is an unsupervised task and we compare our algorithm with PCA, SparsePCA

and Locality Preserving Projection (LPP) [46][47]. We use the samep-nearest neighbor

graph in LPP and USSL. Thus, USSL provides a sparse LPP solution. We empirically set

the value ofp to 5.

We choose K-means as our clustering algorithm. K-means can be performed in the

original feature space (Baseline) or in the reduced feature space (by using the dimension-

ality reduction algorithms,e.g., PCA, LPP and USSL). The clustering result is evaluated

by comparing the obtained label of each image with that provided by the ground truth. We

use the normalized mutual information (MI) to measure the clustering performance [10].

Let C denote the set of clusters obtained from the ground truth andC ′ obtained from an

algorithm. Their mutual information metricMI(C,C ′) is defined as follows:

MI(C,C ′) =
∑

ci∈C,c′j∈C′

p(ci, c
′

j) · log2

p(ci, c
′
j)

p(ci) · p(c′j)

wherep(ci) andp(c′j) are the probabilities that a sample arbitrarily selected from the data

set belongs to the clustersci andc′j, respectively, andp(ci, c
′
j) is the joint probability that

the arbitrarily selected document belongs to the clustersci as well asc′j at the same time.

In our experiments, we use the normalized mutual information MI as follows:

MI(C,C ′) =
MI(C,C ′)

max(H(C), H(C ′))

whereH(C) andH(C ′) are the entropies ofC andC ′, respectively. It is easy to check

thatMI(C,C ′) ranges from 0 to 1.MI = 1 if the two sets of clusters are identical, and

MI = 0 if the two sets are independent.

Figure (5.3(a)) shows the plot of normalized mutual information versus dimensional-
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Figure 5.3: Normalized mutual information vs. dimensionality (a) and Normalized mutual
information vs. cardinality (b) on PIE database

ity for the PCA, SparsePCA, LPP, USSL and baseline methods. As can be seen, all the

methods obtain the best performance with dimensionality less than 100, and there is no

performance improvement with more dimensions. Our USSL algorithm outperforms the

other four methods. LPP performs the second best. PCA performs the worst, close to the

baseline.

Figure (5.3(b)) shows the performances of all the algorithmin the 100-dimensional

subspace. We show the performance change with the cardinality of basis functions in

SparsePCA and USSL. As can be seen, the best performance is obtained with relatively

small cardinality.

5.4.3 Experiments on Sparse KSR

In this experiment, we study the performance of KSR performing in the sparse mode,i.e.,

the KSR withL1-norm regularizer to produce the sparse KDA solution. To thebest of

our knowledge, there is no other published method to generate a sparse KDA solution.

Moghaddam’s sparse LDA approach [61] can be modified to generate the sparse KDA

solution. However, as we pointed out before, their approachcan only generate ONE sparse
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Table 5.3: Classification error on Isolet dataset
Error (%) Sparsity

Training Set KDA KSR KSR(Sparse)
Isolet1 11.74 12.89 11.74 60%

Isolet1+2 3.79 3.85 3.59 60%
Isolet1+2+3 2.99 3.08 2.82 60%

Isolet1+2+3+4 2.82 2.89 2.82 60%

Table 5.4: Classification error on USPS dataset
Error (%) Sparsity

Training Set KDA KSR KSR(Sparse)
1500 6.58 5.88 5.83 60%
3000 5.53 5.38 5.13 60%
4500 5.53 4.88 4.73 60%
6000 5.03 4.43 4.04 60%
7291 4.83 4.04 3.94 60%

Table 5.5: Classification error on PIE dataset
Error (%) Sparsity

Training Set KDA KSR KSR(Sparse)
2000 5.18 4.81 4.73 60%
3000 4.25 3.94 3.71 60%
4000 5.53 3.24 3.12 60%
5000 3.23 2.90 2.81 60%
6000 2.91 2.53 2.44 60%
7000 2.65 2.19 2.17 60%
8000 2.41 2.17 2.14 60%

projective function and only suitable for binary class problem. While all the three data sets

studied in this paper are multi-class data sets.

Three data sets used in this experiment are Isolet, USPS and PIE. Please see Chapter

4 for detailed description. Table (5.3), (5.4) and (5.5) show the classification error rate of

KSR in sparse mode on the three data sets respectively. By using theLeast Angel Regres-

sion (LARS) algorithm [32], the entire solution path (the solutions with all the possible

cardinality on the projective functionααα) can be computed. After this, we use cross val-

idation to select the optimal cardinality of the projectivefunction in the experiment. We

also show the sparsity of the projective function of KSR(sparse) in the tables. The sparsity
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is defined as the percentage of zero entries in a projective vector. For ordinary KDA and

KSR, the projective functions (vectors) are dense and the sparsity is zero.

As can be seen, the KSR(sparse) generates much more parsimonious model. The spar-

sity of the projective function in KSR(sparse)is 60%, which means the number of the “sup-

port vectors” are less than half of the total training samples. Moreover, such parsimony

leads to better performance. In all the cases, the performance of KSR(sparse) is better than

that of the ordinary KDA and KSR.
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Chapter 6

Learning a Spatially Smooth Subspace
for Face Recognition

We have discussed how to use bothL2 andL1 norm regularizers in SR in previous sev-

eral chapters. Both these two regularizers are data independent. In some real applications,

one might hope that the characteristic of the data can help usto design specific regular-

izer. In this chapter, we will discuss how to design a specially smooth regularizer for face

recognition.

The subspace learning algorithms have been extensively applied on face recognition

[78][3][47]. All these methods consider a face image as a high dimensional vector. They

do not take advantage of the spatial correlation of pixels inthe image, and the pixels are

considered as independent pieces of information. However,a m1 × m2 face image repre-

sented in the plane is intrinsically a matrix, or 2-order tensor. Even though we havem1×m2

pixels per image, this spatial correlation suggests the real number of freedom is far less.

Recently there have been a lot of interest in tensor based approaches to data analysis in high

dimensional spaces. Vasilescu and Terzopoulos have proposed a novel face representation

algorithm called Tensorface [80]. Tensorface represents the set of face images by a higher-

order tensor and extends Singular Value Decomposition (SVD) to higher-order tensor data.

Some other researchers have also shown how to extend PCA, LDA,LPP, MFA and LDE to

higher order tensor data [11, 25, 44, 84, 85]. Some experimental results have showed the

superiority of these tensor approaches over their corresponding vector approaches. How-

ever, our analysis later will show that these tensor approaches only consider the relationship

between pixels in the same row (column) and fail to fully explorer the spatial information

of images. The embedding functions of tensor approaches will still be spatially rough.
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In this Chapter, we introduce a Spatially Smooth Subspace Learning (SSSL) model

using a Laplacian penalty to constrain the coefficients to bespatially smooth. Instead of

considering the basis function as am1×m2-dimensional vector, we consider it as a matrix,

or a discrete function defined on am1 × m2 lattice. Thus, the discretized Laplacian can

be applied to the basis functions to measure their smoothness along horizontal and vertical

directions. The discretized Laplacian operator is a finite difference approximation to the

second derivative operator, summed over all directions. The choice of Laplacian penalty

allows us to incorporate the prior information that neighboring pixels are correlated. Once

we obtain compact representations of the images, classification and clustering can be per-

formed in the lower dimensional subspace.

6.1 Graph Based Tensor Subspace Analysis

A face image represented in the plane is intrinsically a matrix, or the second order tensor.

The relationship between nearby pixels of the image might beimportant for finding a pro-

jection. Recently there have been a lot of interest in extending the ordinary vector-based

subspace learning approaches to tensor space [11, 25, 44, 84, 85].

The tensor-based approaches directly operate on the matrixrepresentation of image

data and are believed can capture the spatial relationship between the pixels. To examine

what kind of spatial relationship has been captured in thesetensor-based approaches, we

need to examine the basis function.

Let {uk}m1

k=1 be an orthonormal basis ofRm1 and{vl}m2

l=1 be an orthonormal basis of

Rm2 . It can be shown that{ui ⊗ vj} forms a basis of the tensor spaceRm1 ⊗ Rm2 [54].

Specifically, the projection ofT ∈ Rm1 ⊗ Rm2 on the basisui ⊗ vj can be computed as

their inner product:

< T, ui ⊗ vj >=< T, uivT
j >= uT

i Tvj

The ordinary vector-based approaches are linear,i.e., yi = aT xi wherexi ∈ R
m is the
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vector representation of thei-th image,a is the projection vector (basis vector) andyi

is the one-dimensional embedding on this basis. Them values in basis functiona are

independently estimated. The tensor-based approaches aremultilinear, i.e., yi = uT Tiv,

whereTi ∈ Rm1 ⊗Rm2 is thematrix representation of thei-th image andm = m1 × m2.

Them values in a tensor basisuvT only havem1 + m2 degrees of freedom. In fact, the

tensor-based approaches can be thought of as special cases of vector-based approaches with

the following constraint:

ai+m1(j−1) = uivj (6.1)

whereai, ui andvi are thei-th elements ina, u andv respectively.

Figure (6.1) gives a intuitive example. It is easy to see thatthere is a common divisor

of the values belong to the same row (or column) in a tensor basis, which exactly the

spatial relation captured by the tensor-based approaches.Intuitively, the spatial correlation

of pixels in a face image would suggest the spatial smoothness of the basis function,i.e.,

the element values in basis function would be similar if the elements are spatially near.

However, the tensor-based approaches have no guarantee on this and the basis function

could still be spatially rough.

A more natural measurement of spatial smoothness of basis function could be the sum

of the squared differences between nearby elements. In the next section, we will show how

to achieve this by incorporating a 2-D discretized laplacian smoothing term in ordinary

vector-based approaches.

6.2 Spatially Smooth Subspace Learning

In this section, we describe how to apply Laplacian penalized functional to measure the

smoothness of the basis vectors of the face space, which plays the key role in our Spatially

Smooth Subspace Learning (SSSL) approach . We begin with a general description of

Laplacian smoothing.
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a1 a2 a3 a4 a5 a6 a7 a8 a9

(a) Basis vectoraT (a ∈ R
9)

⇒
a1 a4 a7

a2

a3

a5 a8

a6 a9

(b) Matrix form
of a

u1

u2

u3

⊗
v1

v2

v3

(c) Basis vectoru, v ∈ R
3

⇒
u1v1 u1v2 u1v3

u2v1

u3v1

u2v2 u2v3

u3v2 u3v3

(d) u⊗v = uvT , Basis
of tensor spaceR3 ⊗
R3

Figure 6.1: Take face images of size3 × 3. The ordinary vector-based subspace learning
algorithms (e.g. PCA and LDA) first convert the face images to 9-dimensional vectors and
compute the basis vectors (projection functions). The basis vector is also 9-dimensional,
as shown in (a). (b) The basis vector can be converted to the matrix form and shown as an
image, which was referred as Eigenface (PCA) and Fisherface (LDA). The 9 numbers in
the basis vector are independent estimated and there is no spatial relation between them.
(c) The tensor-based subspace learning approaches directly take3× 3 face images as input
and compute a set of 3-dimensional basis vectorsu’s andv’s. (d) Eachu andv form a
basisu ⊗ v in tensor space which can also be shown as an image. The 9 numbers in the
tensor basis only have 6 degrees of freedom and the values in the same row (column) have
a common divisor. However, there is no guarantee of the spatial smoothness of the basis
function.
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6.2.1 Laplacian Smoothing

Let f be a function defined on a region of interest,Ω ⊂ R
d. The Laplacian operatorL is

defined as follows [53]:

Lf(t) =
d∑

j=1

∂2f

∂t2j
(6.2)

The Laplacian penalty functional, denoted byJ , is defined by:

J (f) =

∫

Ω

[
Lf
]2

dt (6.3)

Intuitively, J (f) measures the smoothness of the functionf over the regionΩ. In this

paper, our primary interest is in image. An image is intrinsically a two-dimensional signal.

Therefore, we taked to be 2 in the following.

6.2.2 Discretized Laplacian Smoothing

As we described previously,m1×m2 face images can be represented as vectors inR
m,m =

m1 × m2. Let ai ∈ R
m be the basis vectors (projection functions) obtained by subspace

learning algorithms. Without loss of generality,ai can also be considered as functions

defined on am1 × m2 lattice.

For a face image, the region of interestΩ is a two-dimensional rectangle, which for

notational convenience we take to be[0, 1]2. A lattice is defined onΩ as follows. Let

h = (h1, h2) whereh1 = 1/m1 andh2 = 1/m2. Ωh consists of the set of two-dimensional

vectorsti = (ti1 , ti2) with tij = (ij − 0.5) · hj for 1 ≤ ij ≤ nj and1 ≤ j ≤ 2. There are a

total ofm = m1 × m2 grid points in this lattice. LetDj be anmj × mj matrix that yields

a discrete approximation to∂2/∂t2j . Thus ifu = (u(t1), · · · , u(tmj
)) is anmj-dimensional
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vector which is a discretized version of a functionu(t), thenDj has the property that:

[Dju]i ≈
∂2u(ti)

∂t2

for i = 1, · · · ,mj. There are many possible choices ofDj [9]. In this work, we apply the

modified Neuman discretization [64]:

Dj =
1

h2
j




−1 1 0

1 −2 1

1 −2 1

· · ·

1 −2 1

1 −2 1

0 1 −1




GiveDj, a discrete approximation for two-dimensional LaplacianL is them × m matrix:

∆ = D1 ⊗ I2 + I1 ⊗ D2 (6.4)

whereIj is mj × mj identity matrix forj = 1, 2. ⊗ is the kronecker product [49].

For am1 × m2 dimensional vectora, it is easy to check that‖∆ · a‖2 is proportional

to the the sum of the squared differences between nearby gridpoints ofa with its matrix

form. It provides a measure of smoothness ofa on them1 × m2 lattice.

6.2.3 The Algorithm

Given a pre-defined graph structure with weight matrixW , the SSSL approach is defined

as the maximizer of
aT XWXT a

(1 − α)aT XDXT a + αJ (a)
, (6.5)
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whereJ is the discretized Laplacian regularization functional:

J (a) = ‖∆ · a‖2 = aT ∆T ∆a. (6.6)

The parameter0 ≤ α ≤ 1 controls the smoothness of the estimator.

The vectorsai (i = 1, · · · , l) that maximize the objective function (6.5) are given by

the maximum eigenvalue solutions to the following generalized eigenvalue problem.

XWXT a = λ
(
(1 − α)XDXT + α∆T ∆

)
a. (6.7)

With the choices of differentW as described in Section 2, our approach gives the spatially

smooth version of LDA, LPP and NPE.

6.3 Experimental Results

In this section, several experiments are carried out to showthe effectiveness of our pro-

posed Spatially Smooth Subspace Learning (SSSL) approach for face representation and

recognition.

6.3.1 Face Representation Using Smooth Fisherfaces

In the last section, we have discussed how to learn a spatially smooth face subspace. The

images of faces in the training set are used to learn such a subspace. The subspace is

spanned by the eigenvectors corresponding to the largest eigenvalues in Eq. (6.7). We can

display the eigenvectors as images.

When we use the spatially smooth LDA approach, these images may be calledSmooth

Fisherfaces(S-Fisherfaces). Using the Yale face database as the training set, we present the

first seven S-Fisherfaces in Fig. (6.2), together with Eigenfaces, Fisherfaces and 2DLDA
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0.87 1.22 1.25 1.65 1.95 2.33 2.50
(a) Eigenfaces

16.1 14.3 13.4 14.1 12.8 16.2 14.2
(b) Fisherfaces

13.3 12.9 12.6 12.2 15.5 13.0 15.3
(c) 2DLDA

10.7 10.8 11.8 11.6 12.4 11.8 13.6
(d) Smooth Fisherfaces (α = 0.5)

7.56 7.19 7.91 7.45 8.27 8.03 8.95
(e) Smooth Fisherfaces (α = 5)

3.89 3.82 4.39 4.29 4.26 4.74 4.82
(f) Smooth Fisherfaces (α = 50)

Figure 6.2: (a)∼ (e) The first 7 Eigenfaces, Fisherfaces, and Smooth Fisherfaces calculated
from the face images in the Yale database. For each face (eigenvectora), we also calculated
and showed the‖∆ · a‖ below of each image. Since each eigenvector is normalized,‖∆ ·
a‖ can measure the spatial smoothness ofa. S-Fisherfaces is smoother than Fisherfaces.
With biggerα, S-Fisherfaces become much smoother. (g) The bases of 2DLDA, a tensor
extension of LDA. The five bases areu1vT

1 , u2vT
1 , u1vT

2 , u2vT
2 , u3vT

1 , u1vT
3 andu3vT

3 . It is
interesting to note that the Eigenfaces are smoothest.
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[85]. Note that there is a parameterα which controls the smoothness in S-Fisherfaces. Fig.

(6.2) shows three groups S-Fisherfaces withα = 0.5, 5 and 50. For each face (eigenvector

a), we also calculated the‖∆ · a‖ which can measure the spatial smoothness ofa.

We can see that S-Fisherfaces is smoother than Fisherfaces.The biggerα is, the

smoother are S-Fisherfaces. It is interesting to note that the Eigenfaces are smoothest.

However, Eigenfaces do not encode discriminating information thus are not optimal for

recognition. As we discussed in Section 6.1, the bases of tensor approaches only consider

the relationship of pixels in the same row (or column), thus the bases in 2DLDA are still

spatially rough. S-Laplacianfaces consider both the discriminating power and the spatial

correlation between the pixels in the face images.

6.3.2 Face Recognition Using SSSL Approach

In this section, we investigate the performance of our proposed Spatially Smooth Subspace

Learning approach for face recognition. The face recognition task is handled as a multi-

class classification problem− we map each test image to a low-dimensional subspace via

the embedding learned from training data, and then classifythe test data by the nearest

neighbor criterion.

Datasets and Compared Algorithms

The Yale and AT&T face databases are used in our experiments.The Yale face database1

contains 165 gray scale images of 15 individuals, each individual has 11 images. The

images demonstrate variations in lighting condition, facial expression (normal, happy, sad,

sleepy, surprised, and wink).

The AT&T face database2 consists of a total of 400 face images, of a total of 40 people

(10 samples per person). The images were captured at different times and have different

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2http://www.cl.cam.ac.uk/Research/DTG/attarchive/facesataglance.html
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Table 6.1: Compared algorithms
Objective Ordinary Tensor Smooth
function version extension version

PCA Eigenface [78] CSA [82] –
LDA Fisherface [3] 2DLDA [85] S-LDA
LPP Laplacianface [47] TSA [44] S-LPP
NPE NPE [45] TNPE S-NPE

MFA (LDE) MFA [84] TMFA [84] S-MFA

variations including expressions (open or closed eyes, smiling or non-smiling) and facial

details (glasses or no glasses). The images were taken with atolerance for some tilting and

rotation of the face up to 20 degrees.

All the face images are manually aligned and cropped. The size of each cropped image

is 32× 32 pixels, with 256 gray levels per pixel. The features (pixel values) are then scaled

to [0,1] (divided by 256). For the vector-based approaches,the image is represented as a

1024-dimensional vector, while for the tensor-based approaches the image is represented

as a(32 × 32)-dimensional matrix, or the second order tensor.

The image set is then partitioned into the gallery and probe set with different numbers.

For ease of representation, Gm/Pn meansm images per person are randomly selected for

training and the remainingn images are for testing.

Table 6.1 summarizes the 14 algorithms compared in our experiments. These algo-

rithms belong to five families,i.e., PCA family, LDA family, LPP [46] family, NPE [45]

family and MFA [84] (LDE [25]) family. For each family, we take the ordinary vector-

based approach,i.e., Eigenface [78], Fisherface [3], Laplacianface [47], NPE[45] and

MFA [84]. We also take their tensor extensions (or 2D extensions),i.e. CSA [82], 2DLDA

[85], TSA [44], TNPE and TMFA [84] respectively. Finally, weimplement their spatially

smooth versions by using 2-D Laplacian smoothing regularization technique, which leads

to S-LDA, S-LPP, S-NPE and S-MFA.
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Table 6.2: Recognition accuracy on Yale database (mean±std-dev%)
Method G2/P9 G3/P8 G4/P7 G5/P6

Eigenface 46.0±3.4 50.0±3.5 55.7±3.5 57.7±3.8
CSA 49.4±3.5 54.0±3.0 57.8±3.3 59.8±3.9

Fisherface 45.7±4.2 62.3±4.5 73.0±5.4 76.9±3.2
2DLDA 43.4±6.2 56.3±4.7 63.5±5.6 66.1±4.8
S-LDA 57.6±4.1 72.3±4.4 77.8±3.0 81.7±3.2

Laplacianface 54.5±5.2 67.2±4.1 72.7±4.2 75.8±4.6
TSA 44.3±6.5 55.8±4.5 63.2±6.0 65.7±4.6

S-LPP 57.9±4.5 72.0±4.0 76.0±3.4 81.4±2.9

NPE 52.6±4.0 66.0±4.6 73.2±5.0 76.4±4.4
TNPE 43.4±6.2 56.8±3.9 61.8±3.5 63.0±3.4
S-NPE 57.5±4.7 71.9±3.9 77.0±3.4 80.9±3.5

MFA 45.7±4.2 62.3±4.5 73.0±5.4 76.9±3.2
TMFA 43.4±6.2 56.3±4.7 63.5±5.6 66.1±4.8
S-MFA 57.2±4.3 71.2±4.0 76.9±3.1 81.1±3.1

Face recognition results

The recognition accuracy of different algorithms on Yale and AT&T databases are reported

on the Table (6.2) and (6.3) respectively. For each givenl (the number of training images

per individual), we average the results over 20 random splits and report the mean as well

as the standard deviation. The cross validation in the training set was used to select the

parameterα in those SSSL approaches (S-LDA, S-LPP, S-NPE and S-MFA).

A crucial problems for most of the subspace learning based face recognition methods is

dimensionality estimation. The performance usually varies with the number of dimensions.

We show the best results obtained by those ordinary subspacelearning algorithms and their

tensor extensions. Since the cross validation is needed to estimate the parameterα for those

SSSL approaches, we simply set the dimensionality asc − 1 for those SSSL approaches

wherec is the number of individuals.

The main observations from the performance comparisons include:

• SSSL approach significantly outperforms the correspondingordinary subspace learn-

ing algorithm and the tensor extension with different numbers of training samples

per individual in both the two databases. The reason lies SSSL explicitly takes into
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Table 6.3: Recognition accuracy on AT&T database (mean±std-dev%)
Method G2/P8 G3/P7 G4/P6 G5/P5

Eigenface 70.7±2.7 78.9±2.3 84.2±2.1 87.9±2.5
CSA 71.3±2.6 79.9±2.2 84.8±1.9 88.1±2.5

Fisherface 75.5±3.3 86.1±1.9 91.6±1.9 94.3±1.4
2DLDA 80.4±3.0 89.8±2.1 93.5±1.7 95.8±1.2
S-LDA 85.2±2.2 92.3±1.7 95.8±1.3 97.2±1.3

Laplacianface 77.6±2.5 86.0±2.0 90.3±1.7 93.0±1.9
TSA 80.4±3.2 89.8±2.1 93.4±1.6 95.7±1.3

S-LPP 85.2±2.2 92.3±1.7 95.8±1.3 97.2±1.3

NPE 77.6±2.7 85.7±1.8 90.5±1.8 93.4±1.8
TNPE 80.4±3.0 87.6±2.2 91.5±1.7 93.7±2.3
S-NPE 84.8±2.3 92.3±1.7 95.4±1.2 96.9±0.9

MFA 75.4±3.1 86.1±1.9 91.6±1.9 94.3±1.4
TMFA 80.4±3.0 89.8±2.1 93.7±1.7 95.8±1.2
S-MFA 84.9±2.3 92.4±1.3 95.8±1.5 97.4±1.2

account the spatial relationship between the pixels in an image. The use of spa-

tial information significantly reduces the number of degrees of freedom. Therefore,

SSSL can have good performance even when there is only a smallnumber of training

samples available.

• The methods based on PCA (Eigenface and CSA) perform the worst in most the

cases. This is probably due to the fact that the PCA is unsupervised and does not

encode discriminating information.

• The tensor-based algorithms show their advantages on AT&T database while failed

gain improvement on Yale database. This suggests that the spatial relationship of

face images considered in tensor-based approach (relationbetween the pixels in the

same row or column) has its limitation. Compare to the tensor approaches, our SSSL

approach is a more natural extension of incorporating spatial information in vector-

based algorithm, which is supported by the experimental results.
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Figure 6.3: Model selection for S-LDA on AT&T database. The curve shows the accuracy
of S-LDA with respect toα/(1 + α). The solid line shows the accuracy of 2DLDA and the
dashed line shows the performance of Fisherface.

Model selection for SSSL

Theα ≥ 0 is an essential parameter in our SSSL approaches which controls the smoothness

of the estimator. We use cross validation on the training setto select this parameter in the

previous experiments. In this subsection, we take S-LDA as an example to study the impact

of parameterα on the recognition performance.

Figure (6.3) shows the performance of S-LDA as a function of the parameterα on

AT&T database. For convenience, the X-axis is plotted asα/(1+α) which is strictly in the

interval [0, 1]. Each figure has three lines. The curve shows the accuracy of S-LDA with

respect toα/(1 + α). The solid line shows the accuracy of 2DLDA and the dashed line

shows the performance of Fisherface. It is easy to see that S-LDA can achieve significantly

better performance than both 2DLDA and Fisherface over a large range ofα. Thus, the
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parameter selection is not a very crucial problem in S-LDA algorithm.
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Chapter 7

Conclusions

In this thesis, we propose a new dimensionality reduction algorithm calledSpectral Re-

gression(SR). It is based on the same variational principle that givesrise to the Laplacian

Eigenmap [4]. As a natural extension of several recent nonparametric techniques for global

nonlinear dimensionality reduction such as [68, 75, 4], SR aims at learning an embedding

function (either linear or in RKHS) which is defined everywhere (and therefore on novel

test data points). It casts the problem of learning an embedding function into a regression

framework which facilitates both efficient computation andthe use of regularization tech-

niques. The computational complexity analysis illustrates the advantage of SR over other

linear or kernel extensions of LLE and Laplacian Eigenmap [46, 7, 45].

By using the affinity graph to model both label and local neighborhood information,

SR can make efficient use of both labeled and unlabeled pointsto discover the intrinsic

discriminant structure in the data. Our theoretical analysis linked our algorithm to LDA

[40] and LPP [46] in supervised and unsupervised cases. The experimental results on clas-

sification and semi-supervised classification demonstratethe effectiveness and efficiency

of our algorithm.

Our approach provides a general framework for learning a function (either linear or in

RKHS) in graph embedding approaches. With the specific affinity graph, SR can provide a

natural out-of-sample extension of many spectral embedding algorithms like LLE, Isomap,

Laplacian Eigenmaps and spectral clustering algorithms [62].
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