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ABSTRACT

We study congruences in the coefficients of modular and other automorphic forms. Ramanujan
famously found congruences for the partition function like p(5n + 4) = 0 (mod 5). For a wide
class of modular forms, we classify the primes for which there can be analogous congruences in the
coefficients of the Fourier expansion. We have several applications. We describe the Ramanujan
congruences in the counting functions for overparitions, overpartition pairs, crank differences, and
Andrews’ two-coloured generalized Frobenius partitions. We also study Ramanujan congruences in
the Fourier coefficients of certain ratios of Eisenstein series. We also determine the exact number
of holomorphic modular forms with Ramanujan congruences when the weight is large enough.
In a chapter based on joint work with Olav Richter, we study Ramanujan congruences in the
coefficients of Jacobi forms and Siegel modular forms of degree two. Finally, the last chapter

contains a completely unrelated result about harmonic weak Maass forms.
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CHAPTER 1

INTRODUCTION

Imagine that you are at a dinner party making chit-chat with those around you. Someone will
likely ask what you do. After you respond that you’re a mathematician, there is a very short list
of standard replies from which your interlocutors will choose. You had best have a mathematical
gem prepared for this inevitable follow-up. The ideal gem for this situation will be simple to state,
offer no obvious resolution, and be charmingly beautiful. Their momentary speechlessness will give
you an opening to delve into mathematics and redeem the subject in the eyes of your companions.
Your humble narrator suggests that you employ the following:

Let p(n) denote the number of ways to write n as a non-increasing sum of non-negative integers.

Ramanujan famously established the congruences

p(bn+4) =0 mod 5,
p(Tn+5)=0 mod 7, (1.0.1)
p(1ln+6) =0 mod 11,

and noted that there does not appear to be any other prime for which the partition function has
equally simple congruences. However it took over eight decades until Ahlgren and Boylan [1] proved
that (1.0.1) are indeed the only congruences of the form p(¢n+b) =0 mod ¢. The striking elegance

of (1.0.1) makes one wonder if this phenomenon occurs elsewhere, and if so, how common it is.

1.1 Partitions and their variants

The partitions counted by p(n) have been studied since Euler and continue to reveal their mysteries.
A graceful tool in the study of partitions is the Ferrers diagram. For example, consider the partition
12 =5+4+442+1 whose Ferrers diagram is the left side of Figure 1.1. The conjugate of a partition
is obtained by interchanging the rows and the columns of the Ferrers diagram. The two Ferrers
diagrams in Figure 1.1 are conjugates of each other. Frobenius wanted a way to write partitions so

that it was immediately obvious what the conjugate was. A Frobenius partition of n is a sum

T r
n:r+2ai+2bi
i=1 i=1



Figure 1.1: Ferrers diagrams of conjugate partitions

where

ar > ag > - >a >0,

by >by>--->b.>0.

An alternative representation for a Frobenius partition is the Frobenius symbol

aq as Qar
by by --- b, ’

Figure 1.2 indicates a bijective construction of a Frobenius partition from a regular partition. The
number of dots along the main diagonal becomes the number of columns r. The numbers of dots
in each row to the right of the main diagonal become the a;, while the numbers of dots in each
column below the main diagonal become the b;. Conjugating the original partition corresponds to
inverting the rows of the Frobenius symbol. Thus, the regular partition 5+ 4+ 241 has Frobenius
symbol

and the conjugate is

Andrews [4] adds an interesting twist to this construction. Let the a; and b; come from two

copies of the integers where

>4 >4 >39>31 >



[ | @ Frobenius symbol = ( 3 i >

Figure 1.2: Constructing a Frobenius symbol from a partition

For example,

41 21 41 21 42 21
, , and
31 11 31 12 22 21

are all examples of two-coloured Frobenius partitions of 12. Following Andrews, let c¢pa(n) denote
the number of two-coloured Frobenius partitions of n. The only motivation for this construction

which we offer is the following beautiful theorem of Andrews.

Theorem 1.1 ([4] Corollary 10.1 and Theorem 10.2). For all n, we have

cpa(2n+1) =0 mod 2 (1.1.1)
cpa(bn +3) =0 mod 5. (1.1.2)

In Chapter 4 we prove that these are the only simple congruences for cgs(n):

Theorem 1.2. If ¢ is a prime, then the only congruences cp2(¢n +b) =0 mod ¢ are (1.1.1) and
(1.1.2).

This thesis classifies congruences of this type for a wide class of combinatorial counting functions.
The proof of Theorem 1.2 uses the theory of modular forms. We formally introduce modular forms
in Chapter 2, but for now all that we need is that they have a Fourier series representation ) a(n)g".
We are only concerned with modular forms for which a(n) € Q. All of our applications will in fact
have a(n) € Z. Since modular forms have bounded denominators, restricting attention to those

with integral coefficients comes at no great price. A modular form ) a(n)¢™ has a Ramanugjan



congruence at b mod £ when, for all n € Z, we have
a(fn+b)=0 mod /. (1.1.3)

The statements that p(n), cé2(n), or other partition-theoretic counting functions have Ramanujan
congruences are equivalent to statements that certain associated modular forms have Ramanujan
congruences. The specific association will be made clear through several examples in Chapter 4.
Ramanujan congruences at 0 mod ¢ in modular forms are very different from Ramanujan con-
gruences at non-zero b mod £. This thesis deals with both types. The former type of Ramanujan
congruence is equivalent to the so-called U, congruences. The Uy-operator acts on modular forms

(Z a(n)q") ‘Ug = Z a(fn)q™.

We say that a modular form satisfies a Up-congruence when (3 a(n)q")|Us =0 mod ¢, i.e. when
it has a Ramanujan congruence at 0 mod ¢. On the other hand, Ramanujan congruences at b Z 0
mod ¢ have been less commonly studied. Kiming and Olsson [26] proved an important theorem

ruling them out for a particular modular form associated to the partition function. We prove:

Theorem 1.3. Let f =) a(n)q™ € My (I'1(N)) where N =1 or4, 0 <k € Z, and all a(n) € Z.
Then there are only finitely many primes £ for which f has a Ramanujan congruence at b Z 0
mod ¢. Moreover, such an £ satisfies £ < 2k — 1.

This theorem is interesting because many forms have, or are expected to have, infinitely many
primes ¢ for which there is a Ramanujan congruence at 0 mod ¢. For example, Elkies proved that
weight 2 newforms of conductor N have infinitely many Ramanujan congruences at 0 mod ¢. In
addition, if A € S12(I'1(1)) has only finitely many Ramanujan congruences at 0 mod ¢, and if
these ¢ were known, then Lehmer’s conjecture on whether 7(n) is ever zero would be resolved.

We adapt the theory behind Theorem 1.3 to apply to functions which are not holomorphic
modular forms, and to obtain better bounds on ¢. Nevertheless, in later chapters most our effort

is spent on Ramanujan congruences at 0 mod /.

1.2 Quotients of Eisenstein series

Eisenstein series are basic building blocks of modular forms. Let o,,(n) := > din d™ and define the

Bernoulli numbers By, by - = S oreo Bk%. Let ¢ = > for 7 € H. For even k > 2, set

el—1



Table 1.1: Congruences of Berndt and Yee [7]

‘ F(q) ‘ n =2 mod 3 ‘ n=4 mod 8 ‘
1/E> | a(n) =0 mod 3*
1/E; | a(n) =0 mod 32
1/E¢ | a(n) =0 mod 33 | a(n) =0 mod 72
FEy/Ey4 | a(n) =0 mod 33
Ey/FEg | a(n) =0 mod 32 | a(n) =0 mod 72
E,;/Es | a(n) =0 mod 3°
E3/Eg | a(n) =0 mod 3°

Note that Es = E4 = Eg = 1 modulo 2 and 3. Berndt and Yee [7] prove congruences for the
quotients of Eisenstein series in Table 1.1, where F(q) := ) a(n)q". An obviously necessary
requirement for the congruences in the n = 2 mod 3 column of Table 1.1 is that there are simple
congruences of the form a(3n +2) =0 mod 3. All but the first form in Table 1.1 are covered by

the following theorem.

Theorem 1.4. Let 7,5,t,b,¢ € Z where r > 0 and ¢ is prime. If ESESEL = Y a(n)q™ has a
Ramanugan congruence a(fn+0b) =0 mod ¢, then either { < 2r+8|s|+12|t|4+21 orr =s=t=0.

This theorem gives an explicit upper bound on primes ¢ for which there can be congruences of
the form a(én +b) =0 mod ¢* as in the middle column of Table 1.1. See Remark 3.15 for a slight

improvement of Theorem 1.4 in some cases.

Example 1.5. The form Eg/E}? can only have simple congruences for £ < 129. Of these, the
primes ¢ = 2 and 3 are trivial with £y = Eg = 1 mod ¢. For the remaining primes, the only

congruences are

b
a(fn+b)=0 mod 17, where (ﬁ) =-1.
Mahlburg [35] shows that for each of the forms in Table 1.1 except 1/FEs, there are infinitely
many primes ¢ such that for any i > 1, the set of n with a(n) =0 mod ¢ has arithmetic density 1.
On the other hand, our result shows that (for large enough ¢) every arithmetic progression modulo

¢ has at least one non-vanishing coefficient modulo £.

1.3 Forms with divisor supported at the cusps

We obtain precise results for meromorphic modular forms with divisor (i.e. the zeros and poles)
supported at cusps. This additional technical condition gives us much better control on the possible
Ramanujan congruences. Given a weakly holomorphic f € M} (I'1(4)) NZ[q] with k € 1Z which is
non-vanishing on the upper half plane, if k& # %, then Corollary 4.19 shows there are only finitely
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many primes ¢ for which f has a Ramanujan congruence at some b Z 0 mod ¢. The situation for
Ramanujan congruences at 0 mod £ is more intricate. We prove the finiteness of these congruences

in three of the four cases below:

keZ k€ 3Z\Z
k <3/2 | Theorem 4.14 | Theorem 4.16
k>2 Open Theorem 4.15

Theorems 4.14, 4.15, and 4.16 provide a method to find explicit bounds on the possible primes
£ for which there could be Ramanujan congruences at 0 mod ¢. One may then simply check the
finitely many possibilities to generate a list of all Ramanujan congruences for the power series in
question. Seeking Ramanujan congruences in positive, integral weight modular forms includes hard
problems such as determining when Ramanujan’s 7(n) function satisfies 7(¢) =0 mod ¢. We leave
such problems open.

Theorem 4.14 overlaps with the conclusions of Sinick [42]. Theorem 4.16 is a generalization
of Ahlgren and Boylan [1] and has the most involved proof of these three theorems. We provide
several examples. Let n(z) = ¢"/?* T[>, (1 — ¢") where ¢ = ™. Then:

Theorem 1.6. Define f := % € S9/2(T1(4)) and let f~1 = > a(n)q". The Ramanujan

congruences of f~1 are exactly

a(2n+0)=0 mod 2
a(3n+0)=0 mod 3
a(3n+1)=0 mod 3
a(®n+2)=0 mod 5
a(bn+3) =0 mod 5.

Theorem 1.7. Define f := Ligz)(gi-# € Si3/2(T1(4)) and let f~1 = > b(n)q". The Ramanujan

congruences of f~1 are exactly

b(2n+0)=0 mod 2
b(Tn+1)=0 mod 7
b(Tn+2)=0 mod 7
b(Tn+4)=0 mod 7.

Partition-theoretic functions like c¢o(n) require a bit more care since their generating functions
are not quite modular forms. In addition to 2-coloured Frobenius partitions, we also classify
congruences in overpartitions, overpartition pairs, and crank differences, as described below.

An overpartition of n is a sum of non-increasing positive integers in which the first occurrence

of an integer may be overlined. Let p(n) count the number of such overpartitions and set P(z) =



>-p(n)¢™. Background for overpartitions can be found in Corteel and Lovejoy [16]. Recently,
Mahlburg [34] has shown that the set of integers n with p(n) =0 mod 64 has arithmetic density 1,
and Kim [25] has extended this result to modulus 128. For larger primes we have a very different

situation.

Theorem 1.8. Let ¢ be an odd prime and b € Z. Then there are no Ramanujan congruences
p(fn+0b) =0 mod /.

An overpartition pair of n is a decomposition n = r + s and a pair of overpartitions, one for r
and one for s. Overpartition pairs have an important place in the theory of g-series and partitions
[28, 11, 30]. Let pp(n) denote the number of overpartition pairs of n. Bringmann and Lovejoy [11]

show that for all integers n,
pp(3n+2) =0 mod 3.

On the other hand, we show:

Theorem 1.9. Let £ > 5 be prime and b € Z. There are no Ramanujan congruences pp(fn+b) =0
mod /.

If 7 is a (regular) partition, define the crank by

)

™ it pu(m) =0
crank(m) 1= ! ()
0

v(m) — p(m) if p(m) >0,

where m; denotes the largest part of m, p(7) denotes the number of ones in 7 and v(mw) denotes
the number of parts of 7 that are strictly larger than p(w). The existence of non-Ramanujan
congruences for the crank counting function is proven by Mahlburg [35]. Let M.(n) and M,(n)
denote the number of partitions of n with even and odd crank, respectively. Choi, Kang, and
Lovejoy [15] studied the crank difference function (M, —M,)(n) and found a Ramanujan congruence
at (M, — M,)(5n+4) =0 mod 5. They ask if the methods of [26] and [1] may be adapted to prove

that there are no other Ramanujan congruences. We give a partial answer to their question.

Theorem 1.10. Let £ > 5 be prime, § := %—Zl and b Z —§ mod £. The crank difference function
has the Ramanugjan congruence (M, — M,)(¢n — 8) = 0 mod £ if and only if £ = 5. If for all
integers n, (M. — M,)({n + b) = 0 mod ¢, then for all ¢ satisfying (#) = (iz‘;), we have

(Me — My)(dn+¢) =0 mod ¢.

It is somewhat amusing that the unresolved Ramanujan congruences for crank differences are

the “easy” congruences at b Z 0 mod /.



1.4 Jacobi and Siegel forms

In joint work with Olav Richter [21], we generalize the notion of Ramanujan congruence to Ja-
cobi forms and degree 2 Siegel forms. A Siegel form has a series representation indexed over
matrices. Throughout Chapter 5 we will adopt the following notation. Let Z := (. %) be
a variable in the Siegel upper half space of degree 2, q = €2™7, ( = €27% ¢ := 2™ and
D := (2mi) 2 <4%% — ;—;) be the generalized theta operator, which acts on Fourier expansions

of Siegel modular forms as follows:

D Z CL(T)GM tr(TZ) | — Z det(T)a(T)e” tr(TZ)y
T="1tT>0 T="T>0
T even T even

where tr denotes the trace, and where the sum is over all symmetric, semi-positive definite, integral,
and even 2 x 2 matrices. Additionally, we always let £ > 5 be a prime and (for simplicity) we always

assume that the weight k is an even integer.

Definition 1.11. A Siegel modular form F = 3" a(T)e™ ¥ (T%) with (-integral rational coefficients
has a Ramanujan congruence at b mod ¢ if a(7)) =0 mod ¢ for all T with det T =b mod /.

Theorem 1.12. Let F(Z) = Z A(n,m,m)q"¢"¢"™ be a Siegel modular form of degree

n,r,me’
n,m,dnm—r2>0

2 and even weight k with (-integral rational coefficients and let b # 0 mod ¢. Then F has a

Ramanujan congruence at b mod £ if and only if

(F) = — (%) D(F) mod £, (1.4.1)

41
2

D

where (Z) 1s the Legendre symbol. Moreover, if F' has a Ramanujan congruence at b mod £ and
if there are n,r,m such that (4nm — r?)a(n,r,m) # 0, then either £ < k or £| ged(n, m)(4nm —

r)a(n,r,m).

Note that such congruences at 0 mod ¢ have already been studied in [14] and the main result
of Chapter 5 complements [14] by giving the case b Z 0 mod ¢. Theorem 1.12 combines with a
Sturm-bound type result of Poor and Yuen [37] to give an effective (i.e. finite) test for Ramanujan
congruences in degree 2 Siegel forms. In Chapter 5 we list all degree 2 Siegel forms with Ramanujan
congruences at b Z 0 mod ¢, up to weight 20.

Theorem 1.12 follows from a study of Ramanujan congruences in Jacobi forms. See Chapter 5

for the notation.

Theorem 1.13. Let ¢ € jkm where k >4, Ly, (¢) 20 mod ¢ and let b 20 mod £. If £ > k and

1 m, then ¢ does not have a Ramanujan congruence at b mod /.



1.5 The rarity of Ramanujan congruences

A common theme in all of our main theorems so far is that Ramanujan congruences seem to be
rare. Loosely speaking, if a modular form f satisfies the hypotheses of one of our earlier theorems,
then it has only finitely many Ramanujan congruences and there is a method to compute them.

This motivates the following:
Question 1.14. Can one determine the precise number of modular forms which have Ramanujan
congruences?

We answer this question in the affirmative. To state our main theorem, we need the following
notation. Let £ > 5 be prime, k € Z, and let N =1 or 4. Let M}, be the Fy-vector space obtained
by coefficient-wise reduction modulo ¢ of all holomorphic modular forms on I'1(N) with rational,

f-integral coefficients. Recall that dim M}, is easily computed for any integer k > 0. Set

5] EN=1,

dy = 2
5] ifN=4

Nl =

For any integer k > 24, write

k=C({—1)+D,

where
3<D</(+1,
and set
Ji=1+ {%J . (1.5.1)

Let X = X (N, /4, k) be as in Definition 6.22. In Sections 6.5 and 6.6 we evaluate X exactly. We will

also show that:

o I[f N =4 then X =0.

e [f N=1and /=1 mod 12 then X = 0.

e If N=1and (=5 mod12then 4 —1<X<Z+1.
e If N=1and (=7 mod12then 3 —1<X<3+1
o If N=1and (=11 mod 12 then 5 (4 —1) <X <5(%+1)

Finally, let

P (L,k,N) = {f € My : fhasa Ramam’lﬁn’ congruence at 0 mod (}|
k




be the probability (with the uniform distribution) that f € M} has a Ramanujan congruence at 0

mod ¢. The main result of this paper is that we can compute this probability exactly:

Theorem 1.15. Let £ > 5 be prime, N =1 or 4, and k > 20 be an integer. Let My, dy, C, D, J,
X, and 775 be as above. Then P (£, k,N) = ¢—dnJ—dimMp=%

Proof. This is a combination of Theorems 6.20 and 6.23. O

Example 1.16. Theorem 1.15 provides a context in which to understand results like Ahlgren
and Boylan’s [1] proof that (1.0.1) are the only Ramanujan congruences for p(n). Let A =
¢TI, (1 — ¢™)** denote the normalized, weight 12 cusp form on SLg (Z). Kiming and Olsson [26]
showed that the partition generating function Z p( )g" has a Ramanujan congruence at b mod /¢

if and only if the holomorphic modular form AT of Welght 1 has a Ramanujan congruence at

b+ ( ) Furthermore, Kiming and Olsson proved AT can only have Ramanujan congruences
at 0 mod ¢. Ahlgren and Boylan [1] later ruled out this last case. Theorem 1.15 above provides
an interesting heuristic to judge how surprising the Ahlgren and Boylan result is. The probability
that g € M,2_, has a Ramanujan congruence at 0 mod £ is given by Theorem 1.15 with C = %,
D =/¢—1,.J=0. Definition 6.22 will show that X > 0. Hence

2 _
P<£,€ 5 1,1) < 1524

for all primes ¢ > 5. For example, P (ﬁ, é22_ L 1) = 169 A very rough heuristic for an upper bound

on the probability of p(n) having a Ramanujan congruence at 0 mod ¢ for any prime ¢ > 13 is

2 _
> P<£,€Tl,1> ~0.014....

primes £>13

We surmise that it would have been somewhat surprising if the Ahlgren and Boylan result had

been false.

1.6 Applications of mock modular forms

A harmonic weak Maass form can be written as a sum of a holomorphic part and a nonholomorphic
part, essentially an integral of a modular form which is called the shadow. Bringmann and Lovejoy
[10], Bringmann, Ono, and Rhoades [13], and Bringmann [9] have found Maass forms whose holo-
morphic parts are related to the overpartition rank, the Ms-rank for partitions without repeated
odd parts, and the full rank of 2-marked Durfee symbols. Zagier [47, Section 5] formulates a general
principle (which is used in [10], [13] and [9]) to produce weakly holomorphic modular forms from
Maass forms. Extracting an arithmetic progression of exponents which does not intersect the sup-
port of the shadow yields a modular form. The current work is focused on arithmetic progressions

for which Zagier’s principle does not apply. We study the Maass forms of [10], [13] and [9] and

10



compute their nonholomorphic parts explicitly. Linear relations among these nonholomorphic parts
imply that the corresponding generating functions are in fact weakly holomorphic modular forms.
(Similar work was carried out in [3] for the rank of usual partitions.) This provides a framework
for a general phenomenon, special cases of which are illustrated in recent works by Lovejoy and
Osburn [31, 32] who showed that certain rank difference generating functions modulo ¢ = 3 and 5
are weakly holomorphic modular forms. We determine the modularity properties of rank difference
functions for all primes ¢t > 5 (and in principle for most composites too) and for more complicated
combinations of the rank functions.

Recall that an overpartition of n is a partition in which the first appearance of a part may be
overlined. The rank of an overpartition is the largest part minus the number of parts. Let p(n) be
the number of overpartitions of n and N(r,¢,n) be the number of overpartitions of n whose rank

is congruent to r mod ¢. Bringmann and Lovejoy [10] show that

oo

> (N(Tﬂfan) - %ﬂm) q" (1.6.1)

n=0

is the holomorphic part of a weak Maass form. Define the rank difference function

Rps(d) = > (N(r,t,n) — N(s,t,n)) ¢". (1.6.2)
n=d(t)

Lovejoy and Osburn [31] compute closed forms of such functions for ¢t = 3 and 5. From their
computations, it is clear that some of these R,s(d) are weakly holomorphic modular forms. Using
the fact that the nonholomorphic part corresponding to (1.6.2) is supported on terms whose expo-
nents are negative squares, Bringmann and Lovejoy [10] show that R,s(d) is a weakly holomorphic

d

modular form when (_T) = —1. We determine exactly when it is a modular form in the other half

of the cases. (Recall that by conjugation [29], N(r,t,n) = N(t —r,t,n).)

Theorem 1.17. Lett > 5 be prime and 0 < s < r < % If (_Td) = —1, then R,s(d) is a weight
% weakly holomorphic modular form on T'1(16t3). Otherwise, let d be such that d”* = —d mod t
and 0 < d' < % Then R,s(d) is a weakly holomorphic modular form exactly when one of the

following is true:
1. s>2d ors>t—2d,
2. 2r—s,r<2d, andr <t—2d.

In the cases t = 3,5, Lovejoy and Osburn’s [31] closed forms for those R,s(d) which are not
modular contain (non-modular) Lambert series. For fixed d, these Lambert series are integer
multiples of each other. We show that this is a general phenomenon. For any ¢ > 3, in those cases
when R,s(d) is not itself a weakly holomorphic modular form, it differs from one by a multiple of
a fixed mock modular form which is independent of r and s. By mock modular form we mean the

holomorphic part of a weak Maass form.
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Theorem 1.18. Suppose that t > 5 is prime and that 0 < d < t. There is a fizred mock modular
form Fy such that for every pair (r,s) there is an integer —4 < n < 4 such that R.s(d) — nkgy is
a weight % weakly holomorphic modular form on T'y(16t3).

As an example for ¢ = 17, although neither Ro6(8) nor Rg7(8) are modular, their difference is.

Analogous statements for non-prime t are also possible. Our key Theorems 7.3, 7.5, and 7.8
hold for composite ¢. In addition, the modularity of arbitrary linear combinations of (1.6.1), along
with (1.6.3) and (1.6.5) to follow, may be determined precisely using these key theorems.

The Ms-rank of a partition A without repeated odd parts is [I(\)/2] — n(\), where [()) is the
largest part and n(\) is the number of parts. Let Na(n) denote the number of such partitions and
let No(r,t,n) be the number of such partitions with rank congruent to » mod ¢. Details of the
Ms-rank can be found in [32]. It follows from a result of Bringmann, Ono and Rhoades [9, Theorem

4.2] that the My-rank generating function,

o)

1
> <N2<r,t,n> - ;Nz<n>> ¢! (1.6.3)
n=0
is the holomorphic part of a weak Maass form. We show that the nonholomorphic part differs
from that corresponding to the usual partition rank generating function by a twist. Hence, we
find relations analogous to [3]. Lovejoy and Osburn [32] have also found closed forms for the rank

differences

Tps(d)= > (Na(r,t,n) — Na(s,t,n)) ¢*" " (1.6.4)
n=d mod t
for ¢ = 3 and 5. The modularity of these functions for arbitrary ¢ is described by the following
theorem, where f; := 2t/ ged(t, 4).

Theorem 1.19. For any t > 2 and any r and s, T,s(d) is a weight % weakly holomorphic modular
form on Ty (20 f}t) exactly when 8d —1 # —(2r £1)2, —(2s £ 1)?> mod ¢.

There is also an analogue of Theorem 1.18.

Theorem 1.20. Suppose that t > 2 is prime and that 0 < d < t. There is a fixred mock modular
form Fy; such that for every pair (r,s) there is an integer —3 < n < 3 such that T,s(d) — nkFyy is
a weight % weakly holomorphic modular form on T'1(210ft).

For example, if ¢ = 17 then T;(0) is not modular, but Tp;(0) + 3715(0) is. We may take
Fo7 = T15(0).

To define the 2-marked Durfee symbol, we first recall that the Durfee square of a partition is the
largest square of nodes in the Ferrers graph. The Durfee symbol consists of two rows of numbers,
plus a subscript. The first row describes the columns to the right of the Durfee square, while the

second row describes the rows below the Durfee square. The subscript indicates the side length of
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the Durfee square. For example,

G 1:§
21/,

is a partition of 42 +3 4+ 14+ 1+ 2+ 1 = 24. In a 2-marked Durfee symbol each entry is labelled

with a subscript of either 1 or 2 according to the rules:
1. The sequence of parts and the sequence of subscripts in each row are non-increasing.
2. The subscript 1 occurs in the first row.

3. If M is the largest part in the first row with subscript 1, then all parts in the second row with
subscript 1 lie in [1,M], and with subscript 2 lie in [M,S], where S is the side length of the

Durfee square.

For a 2-marked Durfee symbol §, define the full rank FR(J) by
FR(0) := p1(d) +2p2(9)
where

7i(6) — Bi(0) =1 fori=1,

pi(0) == ‘
7;(0) — B3;i(9) for i = 2,

with 7;(0) and §;(d) denoting the number of entries in the top and bottom rows, respectively, of
0 with subscript i. Let NFy(m,n) denote the number of 2-marked Durfee symbols for n with
full rank m. Let NFy(r,t,n) denote the number of 2-marked Durfee symbols for n with full rank
congruent to r mod ¢. Finally, let Dy(n) denote the number of 2-marked Durfee symbols related
to n. Bringmann [9, Theorem 1.1] showed that there is a weak Maass form whose holomorphic
part contains the generating function for 2-marked Durfee symbols. Using work of Bringmann and
Omno on the partition function [12], in Section 5 we explicitly compute the nonholomorphic part of

a Maass form whose holomorphic part is

[e.e]

3 (NFg(r,t,n) - %Dg(ﬂ)) 2, (1.6.5)

n=0

This is the most complicated example of the three we consider. The contrast between the examples
in each of the last three sections of this thesis illustrates the varying complexity of some of these

counting functions.
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CHAPTER 2

PRELIMINARIES

Throughout this thesis, N = 1 or 4. This will always indicate the level of a congruence subgroup.
Furthermore, ¢ € Z will always denote a prime. Unless explicitly noted otherwise, we always take
¢ > 5. This chapter contains definitions and background required in the rest of this thesis. It is
adapted from [19, 20].

2.1 Modular forms over C and Z)

T (N) = {( CC‘ Z > € SL, (Z)

Elements of SLy (Z) act on H = HUQU {oc} via fractional linear transformations:

(ab>:ﬁ—>ﬁ
c d

ar+b
ct+d

As usual,

a=d=1 mod N,
c=0 mod N |

T =

and on meromorphic functions f : H — C via

a b\ ks foT+Db
k<c d>'_(CT+d) f<CT+d>'

Definition 2.1. A meromorphic modular form of integral weight k € Z on I'1(N) is a meromorphic

f(7)

b
function f : H — C such that for all ( ¢ p > € I'y(N) we have
c

F(E50) = e v atse)

and such that f is meromorphic at all of the cusps of I'; (V). A meromorphic modular form is weakly

holomorphic if it is holomorphic at all 7 € H. A meromorphic modular form is a holomorphic
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modular form, or simply a modular form, if it is holomorphic at all 7 € H and at all cusps.
Let My, (I'1(N),C) denote the space of all weight & (holomorphic) modular forms on I';(N). Let
M; (I'1(N),C) denote the space of all weight k weakly holomorphic modular forms on I'; (V).

To recall the definition of half-integral weight modular forms, we need the following notation.
Define (%) as follows. If d is an odd prime, then let (5) be the usual Legendre symbol. For positive
odd d, extend the definition of (%) multiplicatively. For negative odd d, let

(E).: (m) ifd < 0and ¢> 0,
d/- _%) if d <0 and ¢ < 0.

Also, let <%> = 1. For odd d, define

1 ifd=1 mod 4,
1 ifd=3 mod 4.

Definition 2.2. Suppose that 0 < A € Z. A meromorphic modular form of half-integral weight

b
A+ $ on I'1(4) is a meromorphic function f: H — C such that for all ¢ J ) € I'1(4) we have
c

() = () e s

and such that f is meromorphic at the cusps 0, % and 1. Let M, 1 (T'1(N),C) denote the space of
all weight A + 1 (holomorphic) modular forms on I'; (V).

Any f(7) € My (I'1(N),C) has a Fourier expansion f(7) = > > ;a(n)q™ where ¢ = ™" with
7 € H, and a(n) € C. We identify a modular form with its Fourier expansion at infinity. For any

prime £, let
r
Z(g) = {; S Q‘EJ(S}
denote the localization of Z at the prime ideal ¢Z. We write
M. (Fl(N), Z(@)) = My (I'1(IV),C) N Z(@) [[q]]

for the Z-module of level N, holomorphic modular forms with rational, ¢-integral coefficients.

More generally, if R is any subring of C then define
My, (Fl(N),R) = Mj, (Pl(N),(C) N R[[q]]
Definition 2.3. Let ¢ be prime. We say that a(n) : Z — Z;) has a Ramanugan congruence at b
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mod ¢ if for all n € Z we have

a(fn+b)=0 mod /.

We say that a Laurent series ) a(n)q" € Z[q] has a Ramanujan congruence at b mod £ if a(n)

has a Ramanujan congruence at b mod /.

2.2 Basic examples of modular forms

We recall some well-known modular forms which we will need in the sequel. Let oy_1(n) =

2 dn d*~! and define the Bernoulli numbers By, via 5 = > 7%, Bk%k!.

the Eisenstein series

Eisenstein series generate the space of level one modular forms, i.e.

My (T1(1),C) = (B EL) sit6j—k

For k£ > 4 even, recall

The weight 2 Eisenstein series Es plays a special role in the theory. It is called quasi-modular and

it satisfies the slightly different transformation rule

E, <“T +Z> = (e + P Bo(r) — (e + ).

CcT +

Let n(1) := ¢"/** [[2%,(1 — ¢") and recall that

_ Bi(r) - Bi()

Alr) : 1728

=n*(r)

T(n)q" € Mz (I'(1),Z) .

1

S
I

Level one modular forms of even integral weight k£ > 0 have a particularly nice basis. Write

k =12r 4+ s where s = 0,4,6, 8,10, or 14. Then
My (T1(1),C) = (BB A",
The salient features of the basis vectors

EsEgr—ZiAi — qi+ - Z[[q]]

16
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are that they have distinct orders at oo and that the coefficients are all integral.

Three important modular forms of level four are

8 T
B(r)i= 2k € My ((,2),
F _778(47')_ 9 D2 € M, (Ts(4). 7,
(T) = ,’74(27_) —ZO-I( n+ )q € 2( 1( )7 )7

Let (1) = Z]O'io q(j+1/2)2. The expansions of F' and 08 at the cusps % and 0 are

o

7l ( - ) — 63(r) € 2y la)

6B ( - ) = v(r) € Zla"],

and

_ 8 T
o)l ( N ) — it € Lol

0 —1 i .
03(T)h < Lo ) = —593(7/4) € iZglq""],

Remark 2.4. Let f € My, (I'1(4),Z)) be non-zero where k € Z. Then
f € My('1(4),C) = Mp(To(4), X%, C)

and the valence formula for I'g(4) shows that the total number of zeros of f is

1—];[1“0(1) :To4)] =

o | F

In particular ordg f + ord; /5 f + orde f < k/2 with equality exactly when f is non-vanishing on
the upper half plane.

Note that ordg(E) = 1, ords(F) = 1, ord;5(63) = 1/2, and that these are the only zeros of
these forms.
Since dim My, (I'1(4),C) = 1+ |k/2], one sees that

Moy, (T1(4),C) = (E*"F')io1,.. ks (2.2.2)
Mag+1 (T1(4),C) = 05(E* " F")io1,....k;



where for each 0 < ¢ < k we have

EFMiF =g 4 ... e Z]q],
OREF TR =g+ .- € Z[q].

In particular, these have the same salient properties (distinct orders at infinity and integral coef-
ficients) as the basis (2.2.1). In Chapter 4 we shall construct more nuanced bases with specified

orders of vanishing at the cusps of I'y(4).

2.3 Modular forms over F,

Let My, (T'1(N),Fy) be the Fy-vector space obtained via coefficient-wise reduction modulo £ of every
form in My (T'1(N),Z)). That is,

My (T(N),Fy) := {Z a(n)q" € Fyq] ‘ 3f € My (T1(N),Z)) with Za(n)q" =f mod E} :
If f € Z[q], then denote its reduction modulo £ by
(f mod ¢) € Fy[q]

or

7 S Fg[[q]].

Our point of view is that My, (I';(N), Fy) is a distinguished subset of Fy[¢]. In other words, elements
of My, (I'1(N),F;) do not “remember” which form they came from. For any f € M, (I'1(N),Fy),
there is an equivalence class of forms in M (Fl(N ), Z(Z)) which reduce to f, however f is not itself

that equivalence class.
Lemma 2.5. For any 0 < k € Z and any prime £ > 5, we have
dim(c Mk (Pl(N), (C) = dimm Mk (Fl(N), Fg) .

Proof. Depending on the level N = 1 or 4, the basis (2.2.1) or (2.2.2) reduces to a linearly inde-
pendent set over F,. Hence dimc My, (I'1(N),C) < dimp, My, (I'1(N),Fy). The reverse inequality is
obvious from the definition of M (I'1(N),Fy). O

For details on the statements contained in this paragraph, see Swinnerton-Dyer [45]. The
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Kummer congruences imply that Ey_1, Fyi1 € My (Fl(N), Z(Z)) and furthermore that

Ef—l = 17
Eyi1 = Eo.

There are polynomials A(Q, R), B(Q, R) € Z|Q, R] such that

A(E47 E6) = Ef—la
B(E4, Eg) = Egq1.

Reduce the coefficients of these polynomials modulo ¢ to get A, B € Fy[Q, R]. Then A has no

repeated factor and is prime to B. Furthermore, there is a natural isomorphism of Fs-algebras

~ P My (T1(1), Fy) (2.3.1)

via () — E4 and R — FEg.
In a similar fashion, Tupan [46] proves that there is a polynomial C(X,Y) € Z[X,Y] such

that C(03, F) = Ey_1, and further provides an explicit structural isomorphism showing

Fo[X,Y]
S e . My (T'1(4), Fy) (2.3.2)
caon-17, B,

via X — 6y and Y — F. Combining these two situations, we see that in both level N =1 or 4, if
7 € M (Pl(N),Fg) then

F=Ei1f € Myyo—1 (T1(N),Fy).

Lemma 2.6. Suppose f € My, (T1(N),F;) and g € My, (T1(N),Fy). If f =G # 0 then ky = ko
mod ¢ — 1.

Thus multiplication by Ey_; give a chain of vector space inclusions
My (T'1(N),Fe) < Mgto—1 (D1(N), Fe) < My o1y (D1(N), Fe) < My g3y (D1(N), Fe) <

When we would like to emphasize that My (I'1(N),Fy) < M1 (T1(N),Fy), we may write
Ey 1My, (T1(N),Fe) < Mypyg—1 (D1(N),Fy).
For f =3 a(n)q" € My (I'1(N),Fy), we define the filtration

w (7) := inf {k/ : 7 € My (Fl(N),Fg)} .

If f € My (T'1(N),Z) reduces to f,then w (f) :==w (f). For f =327 ja(n)q" € My (I'1(N),Fy),
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we also define the order at the infinite cusp
orde (f) :=inf{n:a(n) #0 mod ¢}.
When N = 4, we define the order of f at the cusps 1/2 and 0 as follows. Choose any f €

— 1 0 0 -1
Mj; (T'1(4), Z ) such that f reduces to f. Write fy, < 5 1 > =3 ,b(n/2)g™? and f|s, ( Lo > =

i* 57 e(n)g™* and define

ordy o (f) :=inf{n/2:b(n/2) 0 mod ¢}
ordg (f) :==inf{n:c(n) 0 mod ¢}.

It follows that for any of the cusps s we have
ord, (f) > ord, (f). (2.3.3)
Remark 2.7. For any cusp s, ordg (f) is well-defined in the sense that if a power series Y a(n)q" €

F¢lq] is congruent to both f(r) € My, (I'1(4),Z) and g(7) € Myipe—1) (T'1(4),Z()), then by

Lemma 2.6,

Fr)EZ (1) = g(7) + £h(7)

for some h(1) € My pm(—1) (F1(4),Z(Z)). Now

FOE A lksme ( - ) = I ( - ) EP(7)

and

(9(7) + (7)) |ktm(e—1) ( ; (1) > = 9(T)|k4m(e-1) ( ; (1) > + €h(T) |kt m(e-1) < ; (1) )

10
EQ(T)|k+m(Z—1) ( 9 1 ) mod /.

The situation for the cusp 0 is similar.

Define U, on power series by
(Z a(ﬂ)Q") U= _a(tn)q".
Lemma 2.8. Iff € M; (Pl(N),IFg), then f’Ug € M (Pl(N),IFg)
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Proof. Working modulo ¢, we have f|U, = f|T; where Ty is a Hecke operator which is well known
to map Mk (Fl(N),Z(Z)) —>Mk (Fl(N),Z(Z)) |

2.4 Ramanujan’s differential operator

Define the operator
1 d d

“ omiar  Ydg
Although it does not map modular forms to modular forms, if f € M, (I‘l(N), Z(Z)) then 120 f —
kEsf € My o (Fl(N),Z(Z)). Along these lines, define

R(f) = <@f — 1—]<:2E2f> Ey 1+ %Eg_Hf € Myip11 (Pl(N),Z(g)) R (2.4.1)

so that R(f) = ©f. The definition of R(f) implicitly depends on the weight of f. We recursively
define

R{ := R(f),
R} == R(R]_}) € Myyier1) (T1(N), Zp))

so that

R/ =oif. (2.4.2)

(3

A short computation (for example [42] Lemma 4.2) shows that

RDlksesry = (O(71) = $5BalF16)) Bect + 45 Bena(1e) oas
= R(f[x)-

Lemma 2.9. If f € M, (F1(4),Z(Z)), then for every cusp s € {0,1/2,00} and i > 1, we have
ordg (R{) > ords(f).

Proof. First recall that for k > 2, Fy, = 1+ O(q). Hence ords Ex = 0. For the cusp s = oo, by
(2.4.1), we have

ordeo (R(f)) > min{ord (O f), ords (f) + 1}
> ordoo (f).
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0 -1
For the cusp s =0, set v = <1 0 > By (2.4.3), we have

ordo(R(f)) =4 ordes (R(f)lk+6+17)
> 4min{ordes (O(f k7)), ordeo (f[xy) + 1}
>4 ordeo (f[k7)
= ordo(f).

Similarly ord /5(R(f)) > ordyo(f). For all cusps s, iteration yields ords(RZf ) > ords(f). Equation
(2.3.3) gives the conclusion. O

Lemmas 2.10 and 2.11 below are due to Swinnerton-Dyer [45] who proved the statements for

level N = 1. The generalization to level N = 4 may be found in, for example, [2].

Lemma 2.10. Suppose N =1 or 4, that £ > 5 is prime, and f € My (U'1(N),F;). Then
wOf) <w(f)+0+1 (2.4.4)

with equality if and only if w(f) £ 0 mod £. Furthermore, if ©f # 0 mod ¢ then there is an s > 0
such that

wOf) =w(f)+l+1—s(—1). (2.4.5)

and we have s = 0 if and only if w (7) =0 mod 4.

Proof. By Equation (2.4.1) we see that (2.4.4) holds. The statement about equality follows from the
explicit isomorphisms (2.3.1) and (2.3.2). Lemma 2.6 shows that the statement about s holds. [

We also have:
Lemma 2.11. Suppose N =1 or 4. For alli > 1, we have w (72> =iw (7)
The following lemma follows from (2.3.1) and (2.3.2).

Lemma 2.12. Suppose { > 5 is prime, N =1 or 4, k € Z, f,g € My, and w(f) < w(g). Then
w(f +g) =w(g).
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CHAPTER 3

THE TATE CYCLE

In this chapter we work exclusively in characteristic ¢ > 5. All equalities of (reduced) modular
forms are in the ring Fy[¢q]. To ease the notation, we drop the tildes from f € My (I'1(N),Fy).
The material in this chapter has appeared in [19] and [20]. Sections 3.1 and 3.2 contain technical
machinery used in all of the author’s work on Ramanujan congruences. Section 3.3 contains the

main result of [20].

3.1 The Tate cycle

Consider the action of © on f =} -ja(n)g" € My (T1(N),Z)). We have

of = Za(n)nq" = Z a(n)ng"” mod /.

n>0 Un

Thus the coefficients of the image O f always vanish along the arithmetic progression a(nf+0) =0

mod ¢. For future reference we package this into a remark.
Remark 3.1. For any f € My (Fl(N), Z(Z)), the form O f has a Ramanujan congruence at 0 mod /.
Fermat’s little theorem easily implies that for any f = > a(n)¢" € M (Fl(N ), Z(Z)), we have

o'f = Za(n)nzqn = Za(n)nq“ =0Of mod/
and

o lf = Za(n)nz_lq" = Za(n)q" mod /. (3.1.1)

Un

Thus for all i > 1, we have Qi+¢-1f — @i f. We say that the sequence O f,02f, ..., 01 is the
Tate cycle of f. Note that f itself is not necessarily in its own Tate cycle. In light of Remark 3.1,
the only way that we can have f € {@_f, O2f, ..., 0 1f } is if f has a Ramanujan congruence at

0 mod ¢. Furthermore, by (3.1.1) we see that f will be in its Tate cycle if and only if @¢-1f = f.

We expand on these remarks slightly in the following lemma.
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Lemma 3.2. Let N =1 or 4 and £ > 5 be prime. Let f =Y a(n)q" € My, (L1(N),Zy). The
following are equivalent:

(1) The form f has a Ramanujan congruence at 0 mod .
(2) The form f is in its own Tate cycle.
(3) We have O-1f = f.

(4) We have f|U; = 0.

Furthermore, (f|Uy)" = f —©F-1f.

Proof. Notice that

foetlf= Z a(n)g” — Z a(n)q" = Za(n)q" = Z a(nf)g™ mod ¢
nez Un Ln nez
¢
= <Z a(nﬁ)q") = (f‘Ug)Z mod /.
neZ

Hence, (3) and (4) are equivalent and the “furthermore” statement is true. Moreover, (1), (2), and

(3) are equivalent by the remarks in the paragraph before the statement of Lemma 3.2. ]

With s > 0 as in Lemma 2.10, we have

w(f)+1 mod ¢ ifw(f)#0 mod/
s+1 mod/ ifw(f)=0 mod ¢

w(Of) =

and so by Lemma 2.10 the filtration usually rises by £+1 at each step of the Tate cycle. Occasionally,
the filtration will fall. If 4 is such that w(©'!f) < w(O'f) + £ + 1, then call ©'f a high point and
Ot f a low point of the Tate cycle. An analysis as in Jochnowitz [24, Section 7] gives the following

lemma which characterizes the rise-and-fall pattern of the filtration in the Tate cycle.

Lemma 3.3. Let £ > 5 be prime and A,B € Z with 1 < B < /. If f € Map: (Fl(N),Z(g)) 8 in
its own Tate cycle with w(f) = AL+ B € Z , then © f # 0. Furthermore:

(1) We have B # 1.

(2) The Tate cycle has a single low point if and only if some term in the cycle (which will be the

low point) has filtration congruent to 2 modulo £.

(8) FEither there is one low point in the Tate cycle or there are two low points in the Tate cycle.

(4) For all j > 1 we have w (€711 f) £ w (07 f) + 2.
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(5) If f is a low point of its Tate cycle and if there are two low points, then the first high point has
filtration

wO By =(A-B+1+1),
the other low point has filtration
w (@f—BHf) = Al+(L+3—B),
and the last high point has filtration

w(072f) = (A+ B -2t

Proof. Since w(f) = Al + B # —oo, we deduce f # 0. Since f is in its own Tate cycle, 0 Z f =
O~'f mod ¢ and so Of Z0 mod /.
(1) f w(f) =1 mod ¢, then by Lemma 2.10, for 0 <7 < ¢ — 1 we have

w@O'f) =w(f) +i(l+1)=1+i mod L.

That is, w(f) < w(Of) < --- < w(O 1) and so f # OF1f.

(2) If some point g of a Tate cycle has w(g) =2 mod ¢, then by Lemma 2.10, for 0 < </ —2
we have w(0%g) = w(g) +i({+1) =2+1i mod . Then g,...,02g are £ — 1 distinct elements of
the cycle. Hence, the next iteration must be @Z——lg = g. Therefore g is a low point and there are
no other low points. Conversely, if there is only one drop, then there must be £ — 2 increases in the
filtration before the single fall. Then by Lemma 2.10 the low point must have filtration 2 mod Z.
Note that in the case of a single drop in filtration, the s in (2.4.5) is s = ¢ + 1.

(3) Suppose there is more than one high point. Let g denote a low point of the Tate cycle of
f and label the high points ©%g,...,0%g where t > 2. Then since § = @Z——lg is a low point, we
have iy = £ — 2. In order to examine the change in filtration between consecutive high points, it is
convenient to let i;41 =43 +¢ — 1. By Lemma 2.10 and part (2) above, for each 1 < j <t we have
sj > 2 such that

Then 741 —i; = —s; mod £. Considering the full Tate cycle,

w(g) =w(Olg) =w(g) + (L =1)(L+1) =D s;(t—1)

Jj=1

and so we see that ) s; = ¢+ 1. Since t > 2, for 1 < j <t we deduce ij41 —i; = ¢ — s; from the

previous congruence. Now ¢ — 1 = E;Zl(ij+1 —ij) =t =) s; =t¢ — ({+ 1) which implies t = 2.
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(4) By Lemma 2.10, w(©711 f) = w(©7 f) + 2 implies w(©7f) = 0 mod £. Then w(©IF1f) =2
mod ¢. As in the proof of part (2), the filtration increases ¢ — 2 more times before falling. Hence
w(@IFH=2£) > (BT f) and so OFf # ©it-1f which implies ©7f is not in its Tate cycle, a

contradiction.

(5) This part simply collects what we already know. We use the notation from the proof of
part (3) above. Since w(f) = B mod ¢, by Lemma 2.10, i1 = £ — B. The values of s; are found by
recalling s; + s2 = ¢+ 1 and iy — i3 = £ — s from the proof of part (3). Lemma 2.10 provides the
filtrations. O

Remark 3.4. By part (5) of the above lemma, if f is a low point of its Tate cycle, it will be the

lowest of two low points exactly when 3 < B < £ and

B</{+3-B

or equivalently when 3 < B < “’73. If fis a low point with B = % then both low points have

the same filtration. Conversely, if f is one of two low points, each with the same filtration, then

_ {43
B =43,

3.2 A reformulation of Ramanujan congruences

The following wonderful lemma has been extracted from the proof of Proposition 3 of Kiming and
Olsson [26].

Lemma 3.5. Let N =1 or 4 and ¢ > 5 be prime. A modular form f € Mj (Fl(N),Z(Z)) with
Of #0 has a congruence at b % 0 mod ¢ if and only if @HTlf =— (%) Of mod /.

Proof. Note that (Z_il) = (—=1)*"'% mod . Since O satisfies the product rule,

=1y . '

et <q_bf> = Z< ; )(—b)f_l_lq_b(alf mod ¢
=0

> bigTPe N mod

=0

/-1
Vg 4+ 0 PO f mod £
i=1

A congruence at b 0 mod ¢ is thus equivalent to 0 = Zf;ll b~1=ig=*0'f mod ¢, and hence to
0= Zf;ll b~17'©'f mod ¢. By Lemma 2.10, for 1 < i < Z_Tl we have

WO f) = WO F f) = w(f) +2i mod £ — 1.
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By Lemma 2.10 and by (2.3.1) or (2.3.2) as appropriate, the only way for the given sum to be zero
isifforalllgigz_Tl,

B f 4 bS5 F = 0 mod ¢,

which happens if and only if for each ¢

O3 f= b ef=— <%> O'f mod ¢

which happens if and only if

0% E—(%)@f mod £. O

Remark 3.6. By the previous lemma, if f € My (I‘l(N ),Z(Z)) has a Ramanujan congruence at b

mod ¢, then it has a Ramanujan congruence at all ¢ mod ¢ such that (%) = (%).

We now take a brief diversion from the main theory to explain a construction motivated by
Lemma 3.5 and Remark 3.6. For any f € My (I'1(N),Fy) and any prime ¢ > 5, set

for=f—0"1f € My oy (T1(N),Fy),
Firi= % (@f—lf n @“’Tlf) € My, oy (T1(N),Fy), (3.2.1)
o= % <@é_1f - @e%lf> € M2y (I (IN), Fy).

Clearly f = fo+ fr1+ f-1 and if f = > a(n)q", then for s = 0, £1, one finds that

fo= Y a(n)g™ (3.2.2)

Hence f; has Ramanujan congruences at all b with (%) % s.

Example 3.7. Take / = 11 and A € My (I'1(1),Z). Recall E4FEs =1 mod 11. Set

f(] = E23 + 10E§2 € Mj3o (Fl(l), Z) R
fi1:=5EP +5EPES + TEYES + 5EPE? + 9B + 2E]EL° + 5ESEL® + 6B € M3y (11(1),2)
fo1:=5EP +6EPES + AEY ES + TEPER? + EPPEY + 9E]EL® + 6 ESER + 6E2 € Mysy (T1(1),7Z).

Although we have omitted the calculations which show that these f; match (3.2.1), it is easily
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checked that they sum to A:

Jo+ fa+fa

= 1EP + 1NEP*ES + 1NEF ES + 12E.°ES* + 10E2EY + 11E{EL® + 11ESE® + 22E22
= EPEP - EPEY mod 11

= FE} — F? mod 11

=A mod 11.

Furthermore, the fs are supported on the appropriate arithmetic progressions:

fo=q¢" +9¢*2+ -+ mod 11,
Fi1=q+106° + 268 + ¢° + 9¢° + 9¢'% + 4¢" + 10¢"° + 7¢'0 + 2% +10¢* + ---  mod 11,
fo1=9¢% 4+ 2¢° + 997 4+ 9¢'° + 4¢" + 9¢'7 + 4¢"® +2¢*' + -+ mod 11.

Returning to the main line of development, the following lemmas illustrate how the existence

of Ramanujan congruences constrains the structure of the Tate cycle.

Lemma 3.8. Let £ > 5 be prime, b 2 0 mod ¢, and k € Z. Suppose f € My (Fl(N),Z(g)) has
a Ramanujan congruence at b mod ¢ and ©f Z 0 mod ¢. Then the Tate cycle of f has two low
points. Furthermore, if ©'f is a high point, then

WO ) =w@f) + (£ +1) - <e+71> (1) = 6%3 mod /.

41

Proof. By Lemma 3.5, w (O f) = w(© 2 f). Hence, the filtration is not monotonically increasing
between O f and ot f, so there must be a fall in filtration (and hence a low point) somewhere in
the first half of the Tate cycle. We also have w(@HTlf) =w(Of) =w (@éf) and so by the same
reasoning there must be a low point somewhere in the second half of the Tate cycle. By Lemma 3.3,
there are exactly two low points in the Tate cycle. Lemma 2.10 gives

w(@f)zw(@”Tlf) —w(Of) + (%) (C+1)—s(f—1)

“’Tl. By the same reasoning, the fall in filtration for the second half of

the Tate cycle must also have s = “Tl.

for some s > 1. Hence s =

The lemma follows. O

Lemma 3.9. Let £ > 5 be prime and k € Z. Suppose f € My (Fl(N),Z(g)) has a Ramanujan
congruence at b Z 0 mod (. If w(f) = Al + B where 1 < B </{—1, then

2 2
Proof. Since B # 0, we have w(Of) = (A+ 1){ + (B + 1). From the proof of Lemma 3.8, the Tate
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cycle has a high point before @Zizlf. By Lemma 3.8, the high point is @7 f with 1 < i < %. Hence
we have
w@'fy=Al+B+i(l+1)=B+i=0 mod /.
{+1

Together with the restrictions on B and 4, this congruence implies that B +i = £ and B > =-.
Also, by Lemma 2.10 the high point has filtration

wOTPf) =w(f)+ (- B)(L+1)
= (A+L—B+1)L

Lemma 3.8 implies that the corresponding low point has filtration

w(©BHL ) = <A ~B+ HT?)) {+ <€+T3> .

The fact that w(©~BF1f) > 0 implies the second inequality. O

A consequence of the above lemma is that for any integral-weight, holomorphic modular form
with integral coefficients, there are only finitely many primes ¢ for which there are Ramanujan

congruences at some b mod /.

Proof of Theorem 1.3. Suppose f € My (I'1(N),Z) has a Ramanujan congruence at b Z 0 mod ¢
where £ > 5. Now k > w(f) = AL+ B > B for some 0 < B < ¢ — 1. By the first inequality of

Lemma 3.9,

+1

k>B>
- = 2

The conclusion follows. O

3.3 Ramanujan congruences in quotients of Eisenstein series

The theory of reduced modular forms can be applied to study congruences in certain Laurent series

which are not the Fourier series of a holomorphic, integral weight modular form.

Lemma 3.10. Suppose that { is prime and that f =) a(n)q" and g = Y c(n)q" € Zy((q)) with
g#0 mod £. The series f has a Ramanujan congruence at b mod £ if and only if the series fg*

has a Ramanujan congruence at b mod /.

Proof. 1t suffices to consider the reductions modulo £ of the series

<Z a(n)q") <Z c(n)qen) = Z <Z c(m)a(n — Em)) q" mod /.

n m
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If a(n) vanishes when n = b mod /¢, then the inner sum on the right hand side will also vanish
for n =b mod £. The converse follows via multiplication by (3" ¢(n)q™) ¢ and a repetition of this

argument. ]

Lemma 3.11. Let a,b,c > 0 be integers and let £ > 11 be prime. Then
w(EL L EYES) = al + a + 4b + 6.

Proof. Recall the polynomials A and B from Section 2.3. Since E¢ +1EZE§ € Maptatabrée (F 1(1), Z(@)),
it suffices to show that A(Q, R) does not divide B(Q, R)*Q"R°¢. However A has no repeated factors
and is prime to B and so it suffices to show that A does not divide QR. But QR has weight 10
and Fy_1 has weight £ — 1 > 10 so this is impossible. O

If ©f =0 mod ¢ then the Tate cycle is trivial and the lemmas from the previous section are

not applicable. We dispense with this case now.

Lemma 3.12. Let f = E}ESE, where r > 0 and s,t € Z. If { is a prime such that ©f =0 mod ¢
then either f <13 orr=s=¢t =0 mod /.

Example 3.13. We have O(E FEg) =0 mod ¢ for £ = 2,3,11.
Example 3.14. We have O(FE3*E; " E; ™) =0 mod ¢ for £ =2,3,5,7,13.
Note that ©f =0 mod ¢ is equivalent to f having Ramanujan congruences at all b Z 0 mod /.

Proof of Lemma 3.12. Assume ¢ > 17 and expand f as a power series to get

f =1+ (—24r +240s — 504t)q
+ (288r® — 5760rs + 120967t — 360r + 288005
— 120960st — 26640s + 127008t> — 143640t)¢* + - - - .

If ©f =0 mod ¢, then the coefficients of ¢ and ¢ vanish modulo ¢. That is,
—24r +240s — 504t =0 mod ¢, (3.3.1)

and

28812 — 5760rs 4+ 12096rt — 360r + 28800s°
— 1209605t — 26640s + 127008t> — 143640t =0 mod £. (3.3.2)

The assumption © f =0 mod ¢ is equivalent to the statement that f has Ramanujan congruences

at all b mod ¢. Thus by Lemma 3.10, we have that Ej EZM‘SlEéM‘tl has Ramanujan congruences
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at all b # 0 mod ¢. Hence @EgEZJra“ﬂE(I;er| =0 mod ¢. By Lemmas 2.10 and 3.11 and the fact
that Fo = Eyy1 mod £, we have

w(Ep BBy = 4 45 4 6t =0 mod ¢. (3.3.3)
Solving the system of congruences given by (3.3.3) and (3.3.1) yields

Tr=—72t mod ¢, (3.34)
14s =15t mod /. (3.3.5)

Substituting (3.3.4) and (3.3.5) into 49 times (3.3.2) yields
—8255520t =0 mod £.

Since 8255520 = 2° - 3%.5.72 .13, the lemma follows. m

Proof of Theorem 1.4. We begin with the trivial observation that ESE{Ef = 1+ --- does not have
a simple congruence at 0 mod /. Hence, we assume that F}E5Ef has a simple congruence at b # 0
mod ¢, where ¢ > 5. Since Fy = Ep;1 mod ¢, EgHEZEé has a simple congruence at b mod .
Recall that our goal is to show ¢ < 2r 4 8|s| + 12|t| + 21. Hence, if ¢ < |s| or ¢ < |t| then we are
done. Thus we assume ¢ + s > 0 and £+ ¢ > 0. We also assume ¢ > 11. Lemma 3.12 allows us to
take O(ESE;EL) #0 mod ¢ (otherwise we are done). By Lemma 3.10 we see that

By E{T BT € M0y (rassory (T1(1), Zgg))

has a simple congruence at b mod ¢. We work with the form £ +1Eﬁ+sE§+t because it is holomor-

phic (with positive weight) and so our filtration apparatus is applicable. By Lemma 3.11,
w(Ey BT EST™) = (r+10) + (r + 45 + 61). (3.3.6)
We break into four cases depending on the size of r + 4s + 6t:

1. If £ < |r 4 4s 4 6t| then we are done.

2. If 0 < r+ 4s + 6t < { then by Equation (3.3.6) and the first inequality of Lemma 3.9,
% < r+4s+ 6t and we are done.

3. If r +4s + 6t = 0, then by Lemma 2.10
w(OF, BB = (r +11)0+1—§'(£ — 1)

for some 1 < s’. If £ < r + 13 then we are done, so it suffices to consider £ > r + 13. Now in
order for the filtration above to be non-negative, s’ < r+11. Now w(@ELlEﬁ“Eﬁ“) =s+1
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mod £. By Lemma 3.5, there must be a high point of the Tate cycle before R Ej +1Eﬁ+sE§+t.
Let i be the index of the first high point, so 1 <7 < %. Then

w(@iEgﬂEﬁ“EgH) =s+i=0 mod /.
Together with the restrictions on 7 and s’ (namely s’ < r+ 11 < r+ 13 < £), this congruence
implies that

s> —E i 1.
2
That is, £ < 2s’ —1 < 2r + 21 and we are done.

4. If —0 < r+4s+ 6t <0, then take B = ¢+ r + 4s + 6t and A = r + 9. Equation (3.3.6) and

the second inequality of Lemma 3.9 give

l
€+T+4s+6t§r+9+%3
which is equivalent to ¢ < 21 — 8s — 12t and we are done. O

Remark 3.15. Combining these four cases and recalling that the proof assumed £+s >0, £+t >0
and ¢ > 11, we can improve the bound in Theorem 1.4 slightly. In particular, if r 4+ 4s + 6t > 0
then

¢ <max{|s| — 1,|t| — 1,11,2r + 8s + 12t — 1},
and if r +4s + 6t < 0 then

¢ < max{|s| — 1,|t| — 1,11,21 — 8s — 12t}.
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CHAPTER 4

FORMS WITH DIVISOR SUPPORTED AT THE
CUSPS

This chapter is a mild reformulation of [19]. In this chapter we work exclusively with modular forms
of level N = 4 and so we will write Mj, for My, (I'1(4), Zy) and My, for Mj, (I'1(4),F¢). Similarly,
we will write M] instead of M} (I'y(4), L))

A divisor of a modular form on I';(4) is a formal sum over the points of the compactified

modular curve X;(4) where the coefficients are the orders of the zero or pole at the points:

div f = Z ordg f - [z].

[z]€X1(4)

We restrict attention to meromorphic modular forms whose divisors are supported at the cusps 0,
1/2, and oo. This technical condition provides key information about the Tate cycle. The most
interesting (and the most computationally involved) case is when the meromorphic modular form
has negative, half-integer weight. In the next section, we associate to any meromorphic modular

form a holomorphic, integral weight modular form with equivalent Ramanujan congruences.

4.1 Examples of associated holomorphic, integral weight modular forms

In this section we associate modular forms to many common, combinatorial generating functions.
The associated forms will have equivalent Ramanujan congruences. The method is quite general.
Our key tool is Lemma 3.10. Recall that ¢ = e>™7 and

n(r)=¢" [ 1 -q").
n=1

For d = 1,2,4, we have n(dr)** = A(dr) € Mij2. Furthermore

divA(r) = 4-0] +1- % 1),
divA(27)=2-[0]+2- %- + 2 - [oo],
divA(4r)=1-[0] +1- %- +4 - [o0]
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Since 24 | 2—1 when £ > 5, the strategy is to use Lemma 3.10 to replace occurrences of n(dr)~! with

(¢=1)(€=1)  This changes neither the filtration modulo

n(dr)*~1 and occurrences of n(dr) with n(dr)
£, nor the Ramanujan congruences. As illustrated in the examples below, since multiplication by
powers of g merely shifts the location of Ramanujan congruences, we can associate a holomorphic,

integral weight modular form with equivalent Ramanujan congruences to any product of the form

o0
¢ [[a-a (1-e®) (1-¢™)"
n=1

where r, s, t, u € Z. Set

21

0 =0y := 1

Example 4.1. The overpartition generating function is

o T (14+q" 27
o ~[1(155) 5

n=1

By Lemma 3.10, P(7) has the same Ramanujan congruences as
fﬁ — 7](27_)(6—1)(22—1)?7(7_)2(62—1) _ A(zT)(é—l)aeA(T)zae c M((ﬂ)gﬂ)%
Note that
div fr = (200 — 1)50 + 857) - [0] + (2(£ — 1)3¢ + 25) - H (200 = 1)5 + 267) - [9]
— 5, (20 +6) - [0] + 6 (20) - B] +60(20) - [od).

Example 4.2. The overpartition pair generating function is

Sr (1+qm\? n(2r)?
- Ymonr - T] (75) - 22

vt n(r)

By Lemma 3.10, PP(7) has the same Ramanujan congruences as
2 _ 2_ —
fpp = n@r)PEVE (D = A@2r)H VAT € Mg_1y41)2-
Note that

div f5 = 6 (40 + 12) - [0] + 6 (40) - H + 6, (40) - [0
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Example 4.3. By [15], the crank difference generating function is

n>0 n=1

By Lemma 3.10, when ¢ > 5 this has a congruence at b mod /¢ if and only if

302 —1)(0— ny 2(62—1
(1-g¢ )3@ 1)(6—1) (1 q2 ) ( )
n=1

3(5271)(571”4(@271) 3(5271)(571”4(11271

_ ) > 2 __ _ 2 32_1
=q 24 q 24 H (1 _ q")3(£ 1)(£-1) (1 _ q2n) ( )
n=1

3([271)(z71)+4(z271)

=q 51 A(T)3(£—1)55A(27_)25g
— q—355(f—1)—455A(T)3(Z—1)5ZA(27_)255

has a congruence at b mod ¢ which happens if and only if
fC’D = A(T)s(g_l)élA(2T)25z S M(Bl*l)(5271)
G -l)

has a congruence at b+ 30y (¢ — 1) +46, mod ¢, which happens if and only if fop has a congruence
at b+ 0y, mod £. Note that

1
div fop = 8¢ (126 — 8) - [0] + 6, (3¢ + 1) - H + 5, (304 1) - [o).
Example 4.4. Equation (10.6) of [4] says that the generating function of c¢a(n) is

Oo(T
CPy(1) = q—l/(1]+1727)2'

2_
Now C®5 will have a congruence at b mod ¢ if and only if (q_1/1290(7')£_177(7')2)e " has a congru-

ence at b mod ¢. This happens if and only if foe, = 90(7')(4_1)(52_1)77(7')2(52_1) € M_1)+1)2/2

has a congruence at b+ 20 mod /.
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4.2 Lifting data to characteristic zero

Consider the forms

*(27)

8
PO = Ty = Snn + 0™ €,
2 n'%(27) 2 i
) = i ~ (%q ) <

Note that ordg(E) = 1, ords(F) = 1, ord; 2(63) = 1/2, and that these are the only zeros of these
forms. Recall that since dim My (T'1(4),C) = 1+ |k/2], we have

Moy, = (B* " F')izo1... (4.2.1)
Mapir = 05 (E* " FYi—o 1, ks

as Zy-modules, where the basis vectors EF=iF" = ¢ + ... have rising orders at co. The following

modification (partially) arranges for ascending orders at the other cusps as well. Set
G:=0; =FE+16F € M,

and fix non-negative integers moo, Mg, my /2 such that mee +mg +my /3 < k. Define the following

submodules of Ma; depending on T = (Mo, Mo, M1 /2, 2K):

V™ = {f € Myy| for all cusps s,ords f > mg}
= Emo Fmoo Gml/z M2(k—m0—moo—m1/2)

— (Ek—moo—m1/2—2Fmoo+sz1/2 >i:0,1,...,k—mo—moo—m1/2 ,

WE = (E*Fico1, me1, (4.2.2)
Wi = (EFFY, 04, met,
1%/2 (EmoFk_mo_iGi>i:0,1,...m1/2—1,

so that each W™ has my basis forms, each with distinct order at s. In particular,
Wsm c {f € M2k| ords f < ms}'

In addition, each form in (4.2.2) has a different order at co. It follows that (4.2.2) has k linearly

independent basis vectors and

My = V™ @ WE @ Wi @ W,
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as a Zy-module. We have the following lifting result.

Proposition 4.5. Let moo, mo, my /2, k be non-negative integers satisfying moo + mo + myjp < k.
Set T = (Moo, Mo, M1 /2,2k). Let V™ and the W be submodules of Moy as in (4.2.2).
(a) If f € Moy, has ord,(f) > mg for all cusps s, then we can write f = g + th, where g € V'™
and h e W & W' @ Wlm/2.
(b) If f' € Maogs1 has ords(f') > ms for all cusps s, then f' = 02f for some f € Moy with
ordy(f) > mg for all cusps s. (Recall myo € Z.) There are g € V™ and h € Wi & W & Wi,

such that f' = 03g + L03h.

Proof. Write f = g+ hoo + ho + hy/s, where g € V™ and hy € W[". We show each hy = 0. (It is
important to do this in the correct order.) Suppose ho, = Ei;g_l a; EF'F' with a; € L. It any

a; Z0 mod ¢, then let t be the least such i. In this case, hoo = asq* + --- mod ¢ has order ¢t. By

construction V™ & W & I/Vlm/2 only contains forms of order at least m, at the infinite cusp. Hence
Moo < Ordeg (f) = ordeo (@) =1 < Meo,

a contradiction. Thus A, = 0.
Now consider hg = E;ioo_l b, E'F*— with b; € Ly 1f any b; Z 0 mod /, then let ¢t be the least
such i. Then ordg(hg) =t < mg — 1. Since V™ @ VVlm/2 only contains forms with order at least mq

at zero and since heo = 0, we have
mg < ordg (?) = ordg (h_o) =1 < my,
a contradiction. Thus hg = 0. An analogous argument shows that if hy /2 # 0, then

my e < ordy s (f) = ordy s (hi2) < mqjs,

another contradiction. For part (b), recall that any f’ € Moy must have ordy /o f' € Z + % and
hence is divisible by 3. Apply part (a) to f = f'/0% € Moy. O

We have the following Sturm-style result.

Corollary 4.6. (a) Let f € My and ordy (7) + orde, (7) + ordy /5 (7) > k. Then for all cusps s,
ordg (?) = +o00 and f =0.

(b) Let f € Mapiq and ordg (f) + ordes (f) + ordy /o (f) > k+1/2. Then for all cusps s,
ordg (?) = +o00 and f =0.

Proof. (a) Suppose f # 0. For each cusp s, choose integers 0 < m, < ord, (7) such that mg +
Moo + Mg = k. Set M = (Moo, Mo, My/9,2k) and apply Proposition 4.5. Write f = g + (h,
with g € V" and h € W & W @ Wl"/bz. For the parameters in m, dim V™ = 1. Therefore,
g = cEMVFMG™/2 € Myy, for some c € Z(;). We now have a contradiction since for any cusp s,

ords(f) = ords(g) = ms, contrary to our assumption that > ords(f) > k.
(b) Apply part (a) to f/0% € Moy. O
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In the next section we use the following proposition to lift a low point of a Tate cycle — a

mod ¢ object — to a characteristic zero modular form with high orders of vanishing at the cusps.

Proposition 4.7. Let k' and i be positive integers.

(a) Given f € Moy, let 2k = w(O'f) and ms = ordy f for each cusp s. Setm = (Moos Mo, My /2, 2K).
Then there is g € V'™ such that ©'f = 3.

(b) Given f € Moyyq, let 2k + 1 = w(O'f) and ms = |ords f| for each cusp s. Set m =

(moo,mo,ml/g, 2k). Then there is g € V™ such that G—Zf = 68—9.

Proof. Lemma 2.9 implies that for each cusp s, ords (R_f) > ords(f) > ms. In the even weight

case, apply Proposition 4.5 (a) to deduce ©'f = le = g mod ¢ for some g € V™. In the odd
weight case use Proposition 4.5 (b). O

4.3 Congruences in holomorphic forms which vanish only at the cusps

This section considers modular forms which vanish only at the cusps. This condition implies a lot
about the Tate cycle. To begin with, if f € Mj, ©f # 0, and f vanishes only at the cusps but
is not congruent to a cusp form, then f|U, # 0. This follows from the more general proposition

below:

Proposition 4.8. Letk € Z, let f € My, be non-zero, and suppose that for some cusp s, ords(f) =0
mod ¢. Then f|U; # 0.

Proof. Since ordg (?) = 0 mod /, we have that ord,(©f) > ord, (?) because © Kkills the leading

10 0 —1 10
term in the Fourier expansion at s. To be more precise, let v = ( 01 > , ( Lo > or < 5 1 >

depending on whether s = 00,0 or 1/2, respectively. Set ¢ = 4 if s =0 and ¢ = 1 otherwise. (Thus

¢ is the width of the cusp s.) By examining the orders of the summands in (2.4.3), we have
ord, (R_{> = ¢-ords (R{\;H_g“’y) > 1+ ord, f.

By the proof of Lemma 2.9, ord, <R{_1) > ordg <R_{) > 1+ ord, f. Thus by Remark 2.7 it is
impossible for R]_, = F. That is, (f|Us)! = f — ©F1f #0. O

Proposition 4.9. Suppose that k € Z, that f € My, that f vanishes only at the cusps, and that
Of #0. Then fori >0, we have w(O'f) > w(f) = k. In particular, if f is a member of its own
Tate cycle, then f is a low point. If f is not a member of its own Tate cycle, then Of is a low

point.

Proof. Since f € My, obviously w(f) < k. By Remark 2.4, we have
ordg f + orde f +ordy o f = k/2.
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Thus by Corollary 4.6, we have w(f) > k and equality follows. For any ¢ > 1 and for all cusps s,
by Lemma 2.9, ord, <le> > ordg(f). Hence ordy <RZC> + ordgo (R{) + ord /9 (R{) > k/2. By
Corollary 4.6 we must have w(©'f) > k.

Suppose f is not a member of its own Tate cycle and, for the sake of contradiction, that
©Ff = Off is not a low point. There are two possibilities: either w(f) =0 mod ¢ or w(f) #0
mod /.

Ifw(f) =0 mod ¢, then we have w(Of) = w(f)+L+1—s({—1) with s > 1. Sincew(Of) > w(f),
we deduce that s =1 and w(Of) = w(f) +2 =2 mod ¢. By Lemma 3.3 (2) the Tate cycle has a
single low point with filtration 2 mod ¢ and the low point must then be O f.

On the other hand, if w(f) # 0 mod ¢, then since ©°f is not a low point, we have
W(f) +e+1=w(Of) =w(Of) =w(© 1 f) +{+1.

In particular w(©°1f) = w(f) = k. However in this case dim V™ = 1. Therefore ©71f is a
constant multiple of f which contradicts the assumption that f is not in its Tate cycle (since ©

commutes with scalar multiplication). O

The following two corollaries show the differences between congruences at b Z 0 mod ¢ and at
0 mod /.

Corollary 4.10. Suppose that k € Z, that f € My, and that f vanishes only at the cusps. Suppose
further that ©f # 0 and that w(f) = Al + B, with 1 < B < {. If f has a congruence at b Z 0
mod £, then either

1. B= “Tl and f does not have a congruence at 0 mod ¢, or
2. B= “73 and f does have a congruence at O mod .

Proof. 1f f does not have a congruence at 0 mod ¢, then by Lemma 3.2, f is not a member of
its Tate cycle. By Proposition 4.9, w(©f) = (A + 1){ + (B + 1) is a low point. By Lemma 3.8,
B+1= % mod /.

Similarly, if f does have a congruence at 0 mod /, it is a low point of its Tate cycle by Propo-
sition 4.9. Now by Lemma 3.8, B = “73 mod /. U

Corollary 4.11. Suppose that k € Z, that f € My, that f vanishes only at the cusps, and that
Of #0. Suppose further that w(f) = Al + B where 1 < B< /(. If B> %, then f|Up # 0.

Proof. 1t f|U, = 0, then f is a member of its Tate cycle. Proposition 4.9 implies f is the lowest
low point of its cycle, but Remark 3.4 shows that the lowest low point must have 1 < B < %. O

The following two corollaries eliminate the chance for Ramanujan congruences at all but finitely
many primes ¢ in half-integral weight forms vanishing only at the cusps, and in the inverses of

integral-weight forms vanishing only at the cusps, respectively.
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Corollary 4.12. Let A € N, let f € My, /2, and suppose that f vanishes only at the cusps. If
A > 1, then f has no congruences for £ > 2 X+1. If A\ =0, then f is a scalar multiple of 0y = Eq"z

and clearly has congruences at b mod ¢ where (%) =—1.

Proof. In the case A > 2, by Lemma 3.10 it suffices to show f‘*! € M, (A+1/2)(¢+1) has no congruences.
Since f*! vanishes only at the cusps and has integer weight, Proposition 4.9 implies that w(f1) =
(“Tl) (2\ 4 1). It follows that w(f*!) = % mod ¢. Now if £ > 2\ 41, then it suffices to take
B = % < £ in Corollaries 4.10 and 4.11.

If A=0or 1, then f is not a cusp form and Proposition 4.8 precludes congruences at 0 mod /.
By Corollary 4.10, in the subcase A\ = 1 there are no congruences at all. The subcase A = 0 is

obvious. O

Corollary 4.13. Let k € Z and let f € M. If f vanishes only at the cusps, then f~' has no

congruences for any prime £ > 2k + 3.

Proof. By Lemma 3.10, the power series f~! has the same congruences as f‘~! € My(4—1). Since
1 vanishes only at the cusps, Proposition 4.9 guarantees that its weight and filtration agree.
That is, w(f*') = k(¢ — 1) = £ — k mod ¢. Now if we assume that ¢ > 2k + 3, then we get
% <l —k < (. Take B =/ —k in Corollaries 4.10 and 4.11. O

The congruences of the inverse of a half-integral weight modular form are a bit trickier to find,
but will always yield to an extension of the Ahlgren-Boylan technique which we illustrate in the

following section.

4.4 Ramanujan congruences in weakly holomorphic forms with divisor
supported at the cusps

Let k € %Z. Suppose f € M,L (T'1(4),Z) has divisor supported at the cusps. That is

div f = mg - [0] + M - [00] +my /s - E}
where
mo =ordy f € Z,
Moo = 0rdes [ € 7Z,
myp =ordyg f € iZ.
In fact, there is some ¢ € Z such that
f=cE™Fmg)", (4.4.1)
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Without loss of generality, we assume ¢ = 1. Note that k = 2mq + 2me + 2my 5 € %Z. Define

0 ifkeZ
5= (4.4.2)
1 ifkeiZ\Z
and
k%:k+3£§3-eezw. (4.4.3)
For a prime /¢, set
¢
ﬁ::f(EF%—ﬂ e M., (4.4.4)

By Lemma 3.10, the forms f and f;, have the same Ramanujan congruences for the prime ¢. If
¢ > max {|mg|, |meo|,4|my 2|}, then f; € My is holomorphic and our Tate cycle machinery is
applicable.

We will now prove the finiteness of the primes ¢ for which f has a Ramanujan congruence at 0

mod £ for three cases which depend on k.

4m1/2

Theorem 4.14. Let £ > 5 be prime, 1 > k € Z, and mo, Moo, 4my o € Z. Let f := E™MOF™>0, €
M} (T'1(4),Z). If f has a Ramanujan congruence at 0 mod ¢, then

¢ < max {|mol, [msol, 4|my 2|, |2k — 3,3} .

Proof. Assume ¢ > max {|mo|, |moo|, 4|my 2|, |2k — 3|,3} and let f; € My, be as in (4.4.2-4.4.4).
Then k' = k + 5¢. Since —¢ < 2k — 3, we have

-3
- —— <1
(2 ><k

¢
M+{?<H§M+L (4.4.5)

and hence

If f has a Ramanujan congruence at 0 mod ¢ then by Lemma 3.10 so does fy. Since fy has divisor
supported at the cusps, by Proposition 4.9, we have that f; is the lowest low point of its Tate cycle
and w(fy) = k’. By Lemma 3.3 (1), we have k&’ # 5¢ + 1. Write ¥’ = A0 + B’ where 1 < B’ < /.
Then by (4.4.5) we have % < B </, contrary to Remark 3.4. O

Theorem 4.15. Let £ > 5 be prime, % < k € %Z\Z, and mo, Moo, 4myjp € Z. Let [ :=
dmy /o

Emopreef € M,'C (T'1(4),Z). If f has a Ramanujan congruence at 0 mod ¢, then

t< max{|m0|, |moo|74|m1/2|7 |2k7 - 3|73} :
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Proof. Assume ¢ > max {|mo|, |moo|,4/m 2|, |2k — 3|,3} and let f; € My, be as in (4.4.2-4.4.4).
Then k' = k + %E. Since 2k — 3 < ¢, we have

5 {+3
Sk 2
2~ < 2
and hence
14
40+ <%3> <k <50+1.
Continue as in the proof of Theorem 4.14. O

The proof of the next theorem is more involved.

Theorem 4.16. Let % > ke %Z\Z, and mo, Moo, 4my/y € Z. Let

4m1/2

fi=EmF™=0,"""* ¢ M (T'1(4),Z).

Then there are only finitely many primes £ such that f has a Ramanujan congruence at 0 mod £.

Moreover, the provides a method to find all such ¢. The method is illustrated through several

examples in the next section.

Proof. Assume ¢ > max {|mol, [moc|,4|mq/2|,5 — 2k,3} and let f; € My be as in (4.4.2-4.4.4).
Here k' = k + %6. Assume that f has a Ramanujan congruence at 0 mod ¢. If we also had ©f =0
mod £ then we would have f =0 mod ¢, contrary to the choice of f. By Lemma 3.10 we have that
fe has a congruence at 0 mod ¢ and © f, 20 mod ¢. Since f, has divisor supported at the cusps,
by Proposition 4.9 we have that fy is the lowest low point of its Tate cycle and that w(f,) = k.

-5 3
) — < —

Since —¢ < 2k — 5, we have

and hence
M+§<H§M+Q?. (4.4.6)
Since k' € Z, we have 40 + 3 < k' < 40 + %. Define B’ by the equation
K =40+ B

By Lemma 3.3, the other low point is

w (O F ) =40+ (€43~ B) =K + (0 +3-2B).
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By Proposition 4.7, there is g € Myyy (p43—pr) such that O!-B'+1f, = g mod ¢ and such that for
all cusps s we have ords g > ord; f;. In particular, g/f; € My13_op. Now

2k' = 2B’ =2k mod /.

Hence by (4.4.6), we have B’ = % and so £ + 3 — 2B’ = 3 — 2k € 2Z>(. Therefore, g/ f; is in the
module Ms5_o of rank % + 1. The basis (2.2.2) shows that there exist a; € Z(g) such that

®Z+22—2k o= @é_B/'Hfg
=g mod/
= f 9 mod ¢
= Je 7, (4.4.7)

3—2k

=
= fy Z aiE3722k iR mod /.
i=0

Since we work modulo ¢, we may actually take a; € Z in (4.4.7).

Write
f= _i bng" € Z[q].
Since
fe =1 (BF6o) = f (g + 0<q2>>£ =g +0 (), (44.8)

by the usual rules for differentiation and (4.4.8), we have

422k

fi=d' 075 f 10 () mod (. (4.4.9)

£4+2—-2k
2

©

By (4.4.7) and (4.4.8), we have

3—2k
2 i

OuEE = (qff +0 (g2 > N BT F| mod ¢
=0

- (4.4.10)
= qéf Z a,~E37221c “F 40 <q2€+moo) mod /.
i=0
Combine (4.4.9) and (4.4.10) to get
32k
0" =13 @B 40 <q£+m°o) mod £. (4.4.11)
i=0
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An essential part of the hypothesis is the assumption k < % This permits the following manipula-
tion:

4422k £—1

o F =05 0T f

00

=" n:i:;m bn <%) q¢" mod /¢ (4.412)
= i bnnga% (%) q" mod /.

n=mMeo

This is a key point in the argument. The dependence on ¢ (for which there are infinitely many
choices) in the number of applications of © has been exchanged for a dependence on finitely many

Legendre symbols.

Invert f as a Laurent series over Z and write f~' =3 >° _ ¢,q" € Z[%][[q]]. Hence by (4.4.11)
and (4.4.12),
3-2k
2 3—2k . . > > 3-2k [N ,
Z a; B2 'F'= Z cnq” Z b,n 2 <Z> qg" | +0 (q > mod ¢ (4.4.13)
=0 n=—Meo N=Moo

Truncate the series above to keep only the first % terms. The truncation of the right hand side
of (4.4.13) will have finitely many Legendre symbols. For each tuple of possible choices for the

Legendre symbols, there are unique integers a; which give equality in the truncation

% 3-2k . . > s 3-2k /M 5—2k
S aror (5 ar) (5 (@)r) v (i)
=0 n=—meo N=Meoo

Lemma 4.17 (to follow) proves that there must be some coefficient of ¢ at which OUA2-2K)/2 £, and
g from (4.4.7) are not equal, only congruent. The difference between these two coefficients must be
divisible by ¢. (The prime ¢ must also satisfy the choices for the Legendre symbols.) Hence, there
can only be finitely many primes ¢ such that f has a Ramanujan congruence at 0 mod ¢. In the
next section, the proofs of Theorems 1.6, 1.7, 1.10, and 1.2 give explicit examples of these types of

calculations. O

Lemma 4.17. Let 3/2 > k € %Z\Z and £ > 5 — 2k be prime. For any non-zero f € M, o, and
2
non-zero g € Ms_op, we have QUH2=2K)/2f £ ¢

Proof. We adapt Atkin and Garvan’s [6] Proposition 3.3 to suit our specific needs. The quasi-
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modular form ©¢+2-2k)/2 ¢ ig of the form

£4+2—2k
2

QU2 () = 3™ [(r)Ei(r),

=0

where f; € M%Z_kﬁ_%. Assume ¢(7) = ij(T)Eg(T) and apply 7 — 7. Recall Ey(507) =
(47 +1)2By(1) — (47 + 1). Letting o := —2Z we have for all 7 € H,

m )

£4+2—-2k
2 ) 7
(47 + 13 %g(r) = (4t + 1)%é_k+2_2]fj(7-) ((47' +1)2Fo(7) + a4t + 1)> ,
§=0
and hence for all 7 € H,
Lbio—k j
0=(r+1)*g(r)— > @r+1)" > < )w—s fi(T)Es(1)
m=5¢+1 Ogjfgﬁj%;gﬁ §

0<s<j
j:lTw+2—k+s—m

Since g(7), f;(7) and Ey(7) are all invariant under 7 +— 7 + 1, the polynomial

Lo k
2 j .

S CEED DEELY IS SR () O
m=>50+1 0§j§f+22*2k

0<s<j
j:lTw+2—k+s—m

has infinitely many zeros z = 47+ 1,47+ 5,474 9, .... Therefore the coefficients must be zero. By
the assumption ¢ > 5 — 2k, we have 3 — 2k < 5 + 1 and hence the index m is never 3 — 2k. Hence

9(7' ) = (0 contrary to assumption. 0
We now turn to Ramanujan congruences at b # 0 mod /.

Lemma 4.18. Let £ > 5 be prime, b Z 0 mod /¢, k € %Z, and mo, Moo, 4my /5 € Z. Let f 1=
EmOmeHSml/z € M]L (I'1(4),Z). Then f has a Ramanujan congruence at b mod ¢ only if:

e f also has a Ramanujan congruence at 0 mod ¢ and ¢ | 2k(2k — 3), or
e [ does not have a Ramanujan congruence at 0 mod ¢ and £ | 2k(2k — 1).

Moreover, if k = 0 and f has a Ramanujan congruence atb mod ¥, then ¢ divides ged (mo, Moo, 4m1/2).
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Proof. Assume f has a Ramanujan congruence at b mod ¢. By Lemma 3.10, we know that

— pplmolt plmoclegtimiszl _ 3 o
g:= fEMOCF N eMk+£(\mo|+\moo\+4\m1/2|)

has the same Ramanujan congruences modulo ¢ as f. Note that

g = EImol(t£1) prlmoc|(¢1) paim o] (¢£1)

where the signs of the £1 terms depend on the signs of the corresponding m. Thus

9 € My o(jimol+1moc | +41ma ]

is indeed holomorphic and of integral weight. For convenience, denote the weight of g by
K=k 4 £ (Imo| + [moo| 4+ 4|my s2]) -

Notice that g = ¢l|E) ... £ 0 mod ¢. Thus, as in the proof of Proposition 4.9, by Remark 2.4
and Corollary 4.6 we deduce that w(g) > k’. Clearly ¥’ > w(g) and so w(g) = k. If |k’ then ¢|2k
and the bulleted conclusions are true. Thus, we assume £ { k' = w(g). Hence by Lemma 2.10, we
deduce that ©g Z 0 mod ¢ and Corollary 4.10 applies. Since

k/EH—?) mod / <= 2k'=2k=/(+3 mod{ <= [ |2k -3,

and

41
k,E% mod ¢ < 2k'=2k=/(+1 mod/( < (]|2k—1,

the bulleted conclusions follow by Corollary 4.10.

If k=0, then ¥ =0 mod ¢. If ©g # 0 mod ¢, then by Corollary 4.10 we have ¢|3, contrary
to choice of £ > 5. Thus ©g =0 mod ¢. However, by (2.4.3) this implies that for all v € SLy (Z),
we have O(g|y) =0 mod ¢. Hence,

1 O = miy/2 e ) = mo
(4, (1 9)) =owmr 1m0 ot

0 -1
(. ()

Thus ¢ divides each of mg, Mmoo, and 4my /5. O

@(q%+~-) =0 mod /.

Corollary 4.19. Let % #k € %Z. Suppose 1 # [ := EmOmeﬁgml/z € M (T'1(4),Z). Then there
are only finitely many primes £ for which f has a Ramanujan congruence at some b % 0 mod /.

Proof. Suppose k # 0, %, % If ¢ is prime and f has a Ramanujan congruence at b Z 0 mod /¢, then

46



by Lemma 4.18, we deduce that £ is one of the finitely many prime divisors of 6k(2k—3)(2k—1) # 0.

Suppose k = 0. Since f # 1, at least one of mg, Mmoo, and my , is non-zero. Hence
ged (mo, Mmoo, 4my 2) € Z\ {0}

If £ is prime and f has a Ramanujan congruence at b # 0 mod ¢, then by Lemma 4.18 we deduce
that ¢ is one of the finitely many prime divisors of 6 ged (mo, Moo, 4N /2).

Suppose k = 3/2. By Theorem 4.16, there are only finitely many primes for which there is a
Ramanujan congruence at 0 mod ¢. For any other prime /¢, if f has a Ramanujan congruence at
b #% 0 mod £ then by Lemma 4.18 we deduce that ¢ is one of the finitely many prime divisors of
6k(2k —1). O

4.5 Proofs of Theorems 1.6-1.10 and 1.3

Proof of Theorem 1.6. The cusp forms of least weight on I'1(4) are scalar multiples of
f=6FF € 59/2(F1(4)). (4.5.1)

By Lemma 3.10 the series f~! will have a congruence at b mod ¢ if and only if f~! has one at
b mod ¢. Since w(f 1) = %(6 -1) = Z_Tg mod /¢, by Corollary 4.10 there can be congruences at
b# 0 mod ¢ only if £ =3 or 5.

In the first case, the Sturm bound [44] implies that only a short computation is needed to
see that f2 = —0Of2 mod 3 and so 2 = ©2f2 mod 3. By Lemma 3.5, f~! has congruences at 0
mod 3 and 1 mod 3. In the second case, a finite computation shows that f~! only has congruences
for £ =5 at 2 mod 5 and 3 mod 5. Although our machinery does not apply for £ = 2, a short
calculation shows f~! has a congruence at 0 mod 2. An inspection of the coefficients of ¢*, ¢'3 and
¢?? in f~! shows there are no congruences for £ = 7,11,13. We now move on to £ > 17.

Suppose f¢~! has a congruence at 0 mod ¢. The rest of this proof follows the proof of Theo-
rem 4.16 and so we only provide the explicit calculations. Now f¢~! is a low point of its Tate cycle
and, by Lemma 3.3(5), the other low point is w(@H%fg_l) = w(f* 1) + 12. Hence

6
@”%fe_l = fé_l <Z aiEﬁ_iFi> mod /,

=0

implying

6
o5 fl= ft (Z a,EG_iFi) +0(¢" 1) mod . (4.5.2)

=0
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Invert f as a power series with integer coefficients to get
F71 = ¢+ 6+ 24¢ + 80¢® + 240¢° + 660¢" + 1696¢° 4 4128¢° + 9615¢" + 21560¢° + O(¢?).
We compute

£+11

02 fl= (—) ®0°%f~! mod ¢

l
—1 —1 2 2 3 3 4

=\ ) +24g+ (5 )5120¢° + { ) 174960¢" + 2703360q (4.5.3)
- <%> 26500000¢° + O(¢q®%) mod .

For each of the 2% choices of signs for the Legendre symbols, a computer can easily compute the
integers a; in Equation (4.5.2). Comparing the coefficients of ¢5,¢%, and ¢° in Equation (4.5.2)
leads to a contradiction. For example, suppose ¢ satisfies (_T}) = (%) = — (%) = — (%) = 1. One
computes that ag = 1, a1 = 42, as = 612, ag = 8656, a4 = —76608, a5 = 1074912, ag = —15155584.

Hence the right side of Equation (4.5.2) is

g '+ 24q + 5120¢% — 174960¢> + 2703360¢* — 26500000¢° — 29891712¢° — 911605665¢"
— 2744268800¢° — 18190442184¢° — 596622912004 — 254616837584¢' + O(¢'?),

whereas the left side may be computed as in Equation (4.5.3):

g '+ 24q + 5120¢% — 1749604 + 2703360¢* — 26500000¢° — 192595968¢° + 1131195135¢"
+ 5651824640¢° 4 24858684216¢° — 985920000004 + 3588757411364 + O(q¢'?).

The £+ come from (%) and (%) Since these power series are congruent modulo ¢, so are the
coefficients of ¢® and ¢®. But —29891712 = —192595968 mod ¢ implies ¢ = 2,3,11,13 or 2963,
while —2744268800 = 5651824640 mod ¢ implies £ = 2,5, 7 or 117133. Since we’ve assumed £ > 17,

we have reached a contradiction. O

Proof of Theorem 1.7. Let g = §yE*F € S13/2(4). Now ¢~ will have a congruence at b mod ¢
if and only if g1 does. Since w(gt™!) = é‘%
congruences with b Z 0 mod ¢ if £ = 2 or 7. For ¢ = 7, one checks that ©%¢5 = —©¢% and by

Lemma 3.5, g% and hence g~! have congruences at 1,2,4 mod 7.

mod ¢, Corollary 4.10 implies there can only be

Elementary calculations show no congruences for 0 mod ¢ when 3 < ¢ < 13. For [ > 17, if g*~!

has a congruence at 0 mod ¢, then it is the lowest low point of its Tate cycle and the other low

point is w(@%gg_l) = w(g*~!) + 16. Analogously to Theorem 1.6, we have

8
0% g = g1 <Z b,-E8—"F"> +0(¢") mod ¢.

1=0
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In the case where (‘T}) = (%) = (%) = (%) = (%) = —1, solving for the b; yields by = —1,
by = =50, by = —T788, by = —175024, by = —26446064, b5 = 539142592, bg = —13397175040,
by = 271206416128, and bg = —5171059369600. Examining the coefficients of ¢%,...,¢'? in both
sides of the previous equivalence precludes all possible primes £ > 17. The situation for each of the

2% choices for the Legendre symbols is similar. O

Proof of Theorem 1.8. The prime 3 may be checked by direct computation and so we let £ >
5 be prime. Recall fp from Example 4.1. Since ordy fp = orde E = 200y = 0 mod ¢, by

Proposition 4.8 there is no congruence at 0 mod /. Since w(fp) = % mod ¢, by Corollary 4.10
there can only be congruences at ¢ mod £ if % = % mod ¢ which never happens for ¢ > 5. [

Proof of Theorem 1.9. Let £ > 5 be prime. Recall fpp from Example 4.2. Since ordy fpp =

orde fpp = 446y = 0 mod ¢, by Proposition 4.8 there is no congruence at 0 mod /. Since

1 =&t
1=5

mod ¢ which never happens for ¢ > 5. O

w(fpp) = —1 mod ¢, by Corollary 4.10 there can only be congruences at a mod ¢ if

Proof of Theorem 1.10. Recall fop from Example 4.3. Since fop vanishes only at the cusps, by
Proposition 4.9, w(f) = (62_1)# = “Tl mod /.

The fact that w(fep) = “’Tl mod ¢ is unfortunate. This is the only time that Corollary 4.10
does not rule out congruences at b Z 0 mod ¢. However, Lemma 3.5 guarantees that if C'D(z)

has a congruence at b mod ¢, then in fact CD(z) has a congruence at all ¢ mod ¢ such that
(%) = (<F%)
‘ )

We now apply the method of the proof of Theorem 4.16 to find all ¢ such that fop has a
congruence at 0 mod ¢. Assume fop|Us = 0 mod ¢. Then fop is a low point of its Tate cycle
and by Lemma 3.3, the other low point has filtration w(fcp) + 2. Hence by Proposition 4.7,

Z+1 = .

(©2 fep)/fecp € Ms. Since

1- 3_
fCD—q8 <5H q >+O<Z+5+ZTZ> mod /,

and since O is linear and satisfies the product rule, we obtain

@”TlfCD =q 0% < 6H 1—q > —I—O< Z+6+238Z> mod /.

Thus (@HT1 fep)/ fop is congruent to

+ (4.5.4)
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Since this is congruent to a weight two form, and since the basis form F = ¢+ 4¢> +-- - , lacks a ¢>
term, we compare the coefficients of q in SFE =55 (1—q+24¢%>+---) and in Equation (4.5.4)

£4+1

to deduce 246 % =75 % — 9(6 + 1) "4 2(6 + 2)27 mod ¢. Multiplying by 24“71, we find

—17 <_7}> = -207 <2€3> +94 (4;) mod £. (4.5.5)

That is, 17 = £207 £ 94 mod ¢. If ¢ > 5, then this implies that ¢ is one of 5,13,53 and 71.
However, only 5 and 53 satisfy (4.5.5). By the equivalences above, f having a congruence at 0
mod £ is equivalent to the crank difference function having a congruence at b mod ¢ with 24b = 1
mod £. For the primes 5 and 53, this means b = 4 and 42, respectively. We have recovered the
congruence at 4 mod 5 of [15]. Calculations reveal that the coefficient of ¢*? precludes a congruence
at 42 mod 53. O

Proof of Theorem 1.2. Calculations show there is no congruence for £ = 3. Thus we take ¢ > 5

prime. Recall fog, from Example 4.4. Since fce, vanishes only at the cusps, Proposition 4.9

_ (=DE+1)? e
= 2

implies that w(fce,) = = mod £. By Corollary 4.10, there are no congruences at

b# 0 mod ¢ when ¢ > 5.
Suppose fcao, has a congruence at 0 mod ¢. Then by Proposition 4.9, fce, is a low point

of its Tate cycle and by Lemma 3.3 the other low point has filtration w(fce,) + 4. Hence
3

(072 fce,)/fow, € My by Proposition 4.7. We compute

fC<I>2 = q2590(2) H(l _ q2n)—2 +0 <q5+25> mod ¢
f5$2 = q—25 _ 4q—25+1 + 7q—25+2 o 12q—25+3 4. mod e

and
0% frp, = (20) T ¢® +4(20 + 1) 2 P 1 9(26 +2)F P2 £ 2026 +3) F P 4. mod L.
Hence we compute

(0% fow,) fab, = (20)F + (- 4(25) S 426+1)F ) g
—16(26 + 1) +9(26 + 2)%) 2 (4.5.6)

+(
+(—12020) % + 2820+ 1) —36(20 +2) % +20(20 +3) %) ¢
+
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Recalling our basis (4.2.1), we conclude

L
2

( B fC%) foa, = 20)F (12(25)
+ (—9(25)

£+3
2

Multiplying the coefficients of ¢* in both (4.5.6) and (4.5.7) by 125" leads to

0=100(—1)%" — 84(11) %" — 36(23) 2" +20(35) %" mod ¢

=100 <_71> — 10164 (%) — 19044 ( > + 24500 ( > mod /¢

= +100 £ 10164 £ 19044 £ 24500 mod /.

The only primes ¢ > 5 satisfying (4.5.9) are 5,13,19,31,59,97,131,601, and 6701.

(4.5.7)

(4.5.8)

(4.5.9)

It is easily

checked that only ¢ = 5 satisfies (4.5.8). That is, we have recovered the congruence (1.1.2) and

proved there are no others.
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CHAPTER 5

RAMANUJAN CONGRUENCES IN SIEGEL AND
JACOBI FORMS

This chapter represents joint work with Olav Richter. It appears in essentially the same form

n [21], although Theorem 1.12 and its proof have been rephrased.

5.1 Congruences and filtrations of Jacobi forms

A Jacobi form on SLy (Z) is a holomorphic function ¢(7, z) : H x C — C satisfying the transforma-

tions

afr—l—b z . k27rimcz a b
o(amra) = 0o V( d>€SL2<Z>

and
& (2 + AT+ p) = e 2TV g (2 ) YA pez

and having a Fourier expansion of the form

sr)=3 Y cnn)enoriea,
n=0

=2 G
The numbers k and m are non-negative integers called the weight and index, respectively. Write
q = e*™" and ¢ = €?™*. Let Ji, be the vector space of Jacobi forms of even weight k and index
m. For details on Jacobi forms, see Eichler and Zagier [22].
The theory of reduced Jacobi forms is analogous to the theory of reduced modular forms that

we have been using thus far. The heat operator

o 02
L N—2 . .
L, := (2mi) <8mm—a7_ —8z2>

is a natural tool in the theory of Jacobi forms and plays an important role in this section. In
particular, if ¢ =Y ¢(n,r)q"(", then

Lyg = Lp(¢) = Z(4nm —rHe(n, r)g"C". (5.1.1)
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Set

Tim = {¢ mod £ : ¢(1,2) € Jpm N Zpy[¢, ¢ Ylal]}

where Zg) := Z¢ N Q denotes the local ring of (-integral rational numbers. If ¢ € jk’m, then we
denote its filtration modulo ¢ by

Q(9) =inf {k: ¢ mod £ € Ty}

Recall the following facts on Jacobi forms modulo ¢:

Proposition 5.1 (Sofer [43]). Let ¢(7,2) € Jim NZ[¢, ¢ Y[q]] and (T,2) € it NZ[¢, ¢ Y[[q]]
such that 0 2 ¢ =1 mod . Then k=k' mod £ —1 and m = m’.

Proposition 5.2 ([40]). If ¢(7,2) € Jem NZ[C, ¢ Y([q]], then Ly¢ mod £ € jk+g+17m. Moreover,
we have
Q (L) < Q(6) +£+1,
with equality if and only if £ 1 (2Q(p) — 1) m.
We will now explore Ramanujan congruences for Jacobi forms.

Definition 5.3. For ¢(r,z2) = Zc(n,r)q"ﬁr € jk’m, we say that ¢ has a Ramanujan congruence

at b mod / if ¢(n,7) =0 mod £ whenever 4nm —r2 =b mod /.

Equation (5.1.1) implies that a Jacobi form ¢ has a Ramanujan congruence at 0 mod ¢ if and
only if L‘~1¢ = ¢ mod £. More generally, ¢ has a Ramanujan congruence at b mod ¢ if and only
if

Lfn_l (q_ﬁqﬁ) = q_ﬁgb mod /.
Ramanujan congruences at 0 mod ¢ for Jacobi forms have been considered in [39, 40]. The following

proposition determines when Ramanujan congruences at b % 0 mod ¢ for Jacobi forms exist.

Compare the next proposition with Lemma 3.5.

Proposition 5.4. Let ¢ € jkm and b £ 0 mod £. Then ¢ has a Ramanujan congruence at b
041
mod £ if and only if L, ¢ = — (%) L,,¢ mod /.

Proof. If ¢ € Zp)[¢, ¢ ][lql] and f € Zy)[ql], then Ly (fé) = Lin(f)¢ + fLm(¢). This implies

v (o) = 3 () e () e



In particular, ¢ has a Ramanujan congruence at b Z 0 mod ¢ if and only if

-1
0=> s""7"Li ¢ mod . (5.1.2)

i=1

We now rewrite the L¢ ¢ appearing in (5.1.2) using a standard decomposition of even weight
Jacobi forms. See §8 and §9 of [22] for full details and also for the corresponding result for Jacobi

forms of odd weight. Every even weight ¢ € Jj.,,, can be written as

¢= fild-21) (do1)", (5.1.3)
j=0
where
G_21(T,2) == (C—2+C ) + (22 +8¢ —12+8 " —2C ) g+
and

$01(7,2) == (C+10+¢71) + (10¢% — 64¢ + 108 — 64¢ ™ +10¢™2) g + - --

are weak Jacobi forms with integer coefficients of index 1 and weights —2 and 0, respectively,

and where each f; € My 2;(I'1(1),C) is uniquely determined. For any m > 1, the set 7 :=
. . m

{(b]_ 21901 } - is linearly independent over F,. In fact, the coefficients of ¢" of the elements of 7~

are linearly independent for the following reason: Let X := ¢ —24¢~!. It suffices to show that S :=
{Xm=I(X +12) };n:o is linearly independent over Fy. But X™ 7 (X +12)) = X™+ ...+ 12/ X™7
and one finds that S is linearly independent over Fy since 12 is invertible. Returning to (5.1.3), if ¢
has /-integral rational coefficients, then so do all of the f;’s, since otherwise there is some ¢ > 1 such
that 0 = ('¢ = >0 (€' f;) (¢—2,1)? (¢0,1)™ 7 mod { is a non-trivial linear independence relation
for 7, contrary to what we have just shown.

By Proposition 5.2, for every i there exists 1; € Jj1(¢41),m such that Li ¢ =1; mod £. Hence

there exist Fj; € Myyir41)+2) (Fl(l),Z(Z)) such that
Li¢=pi=> Fij(¢_21)(¢01)™ 7 mod (
§=0

and hence (5.1.2) is equivalent to

m -1 ' _ '

0=>" <Z bé_l_le’,j) (p—21) (¢0,1)™™7 mod L.

j=0 \i=1

By the linear independence of the elements of 7', we deduce that (5.1.2) is equivalent to
-1

Z bg_l_iFM =0 mod/
i=1
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for every j. Elliptic modular forms modulo ¢ have a natural direct sum decomposition (see Section
3 of [45] or Theorem 2 of [41]) graded by their weights modulo ¢ — 1. Thus (5.1.2) is equivalent to

0= bg_l_iFiJ' + b(g /2= ZF +(6-1)/2,5 mod /

and hence also

b
Fi—l—(@—l)/Q,j = — <z> E,] mod ¢

for all()gjgmandlgigé . This implies, for all 1 <1 g%,

We conclude that

which completes the proof. O

By (5.1.1), LY., ¢ = L;,¢ mod . We call L,,¢,L2,¢,..., L5 ¢ the heat cycle of ¢ and we say
that ¢ is in its own heat cycle whenever L-1¢ = ¢ mod ¢. Assume L,,¢ # 0 mod £ and £ { m.
By Proposition 5.2, applying L,, to ¢ increases the filtration of ¢ by £+ 1 except when Q(¢) = ”1
mod £. If (LZ gb) = “’—1 mod ¢, then call Li ¢ a high point and Lit'¢ a low point of the heat
cycle. By Propositions 5.1 and 5.2,

QL) =Q(Li,¢) +€+1—s(t—1) (5.1.4)

where s > 1 if and only if L? ¢ is a high point and s = 0 otherwise. The structure of the heat cycle
of a Jacobi form is similar to the structure of the theta cycle of a modular form (see Lemma 3.3).

We will now prove a few basic properties:
Lemma 5.5. Let ¢ € jk’m with £+ m a prime such that Ly,¢ Z0 mod /.

1. Ifj > 1, then Q (Lz'nqs) £ 53 mod ¢,

2. The heat cycle of ¢ has a single low point if and only if there is some j > 1 with Q (L{MJS) =

“'75 mod £. Furthermore, L%QS is the low point.
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3. Ifj > 1, then Q (Lz'n“qs) £Q (Lm) +o.
4. The heat cycle of ¢ either has one or two high points.
Proof. 1. If Q <L£n¢) = 73 mod ¢, then by (5.1.4) for 1 <n < ¢ — 1 we have

Q (L") = Q(L1,¢) +n(f+1).

In particular, Lif Z_lqﬁ e Lgnqﬁ mod ¢, which is impossible.

2. If Q (L%qﬁ) £5 mod ¢, then by (5.1.4), for 1 < n < £ — 2 we have

Q (L) = Q(L),¢) +n(l+1)
and
Q(L4,0) = @ (L57716) = Q (Liyg) + (€= 1)(E+1) = (¢~ 1)

where s must be £ + 1 and there can be no other low point. On the other hand, if there is a
single low point, then the filtration must increase £ — 2 consecutive times. The only way this

is possible is if the low point has filtration ”5 mod /.

3. By Proposition 5.2, (2 <L¥n+1¢) = Q (Lfngb) + 2 can only happen when () <L¥n¢> = “’Tl
mod ¢. Suppose 2 <L¥n+1¢) =Q <L¥n¢> +2= % mod ¢. By part (2), this implies that the
filtration increases £ — 2 more times before falling. Hence Lir é_lqﬁ e Li@b mod £, which is

impossible.

4. Suppose there are t > 2 high points Lf%,qﬁ where 1 < i3 < -+- <4 </¢—1. By (5.1.4) and
part (3) above, there are s; > 2 such that

Q(L30) = (Liho) + €41 5500 - 1). (5.1.5)

Hence
t
Q(Lm¢):Q(Lfn¢):Q(Lm¢)+( 1) =Y s 1),
7=1

and so ) s; = £+ 1. By (5.1.5), Q (Lf%,“ ) = % + 14 s; mod ¢ and so there will be
¢ —1 — s; increases before the next fall. That is, for 1 < j <, 441 —i; = £ — s; where we

take 4411 =41 + ¢ — 1 for convenience. Thus

t t
C=1 =gy —iy =Y (i1 —1j) =Y (L—s5)=tl—(L+1),
j=1

Jj=1
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ie, t = 2. We conclude that the heat cycle of ¢ has at most two (i.e., one or two) high
points. O

The following Corollary of Proposition 5.4 is a key ingredient in the proof of Proposition 1.13

below.

Corollary 5.6. If ¢ € jkm has a Ramanujan congruence at b Z 0 mod ¢ and L;,¢ Z 0 mod ¢,
then the heat cycle of ¢ has two low points which both have filtration congruent to 2 mod /.

41 41
Proof. Since L,? ¢ = — (%) L, mod ¢, we have € (Lm2 ¢> =Q(Lno) =0 (Lf;qu). Hence there
is a fall in the first half of the heat cycle and in the second half of the heat cycle. Furthermore,

after a low point, the filtration increases Z—Ts times and then falls once. Thus, the filtration of the

low points is 2 mod Z. O
We now prove our main theorem for Jacobi forms.

Proof of Theorem 1.13. Assume that ¢ has a Ramanujan congruence at b mod ¢. First suppose
k=52, Then Q(¢) = & and so we must have s > 1 in (5.1.4). Since we need Q (L,,¢) > 0, we
must have s = 1 and hence Q (L,¢) = “75. But by Lemma 5.5 (2), this implies there is only one
low point, contrary to Corollary 5.6.

Now suppose k # %. Then Q (L,,¢) = k+ £+ 1. There must be a low point of the heat cycle
with filtration either £ + ¢+ 1 or k. By Corollary 5.6, either ¥k +1 =2 mod £ or £k = 2 mod /.

Both of these alternatives are impossible since £ > k > 4. O

5.2 Proof of Theorem 1.12

We employ the Fourier-Jacobi expansion of a Siegel modular form (as in [14]) to prove Theorem
1.12. Let M éz) denote the vector space of Siegel modular forms of degree 2 and even weight k (for

details on Siegel modular forms, see for example Freitag [23] or Klingen [27]). Set
Méz) = {F mod ¢ : F(Z) = Za(T)e’ri"(TZ) € Méz) where a(T') € Z(Z)} .

Recall the following two theorems on Siegel modular forms modulo ¢:

Theorem 5.7 (Nagaoka [36]). There exists an E € M ﬁ)l with C-integral rational coefficients such

that E =1 mod £. Furthermore, if Fi € M,g) and F» € Mlg) have £-integral rational coefficients
where 0 Z Fy = Fy mod ¢, then k1 = ko mod £ — 1.

Theorem 5.8 (Bocherer and Nagaoka [8]). If F' € M® | then D(F) € Mlﬁ)@rl'

Thus, the reduced Siegel forms have an arithmetic analogous to reduced modular and Jacobi

forms.
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Proof of Theorem 1.12. Let F € M 152) be as in Theorem 1.12 with Fourier-Jacobi expansion

F(r,2z,7) g Om(T, 2)e 27”"”

ie., ¢ € Jym. Let b # 0 mod ¢. Then F has a Ramanujan congruence at b mod ¢ if and only
if for all m, ¢, has a Ramanujan congruence at . By Proposition 5.4, it is equivalent that for all

m, we have

1 b
L.} ¢m = — <z> L, ¢y, mod /,

which is equivalent to (1.4.1), since

Now we turn to the second part of Theorem 1.12. Suppose F' has a congruence at b Z 0 mod ¢,
¢ >k, and ¢ { gcd(n, m)(4nm — r?)A(n,r,m) for some fixed n,r,m. Note that k > 4, since F is
non-constant.

If £1 m, then by Proposition 1.13, L;,¢,,, =0 mod ¢. But this contradicts the fact that L,¢n,
has a coefficient (4nm — r?)A(n,r,m) 0 mod /.

On the other hand, if £ n, then since F(7,z2,7") = F(7,2,7) we have A(n,r,m) = A(m,r,n).
But now L, ¢, has a coefficient (4nm —1r2)A(n,r,m) £ 0 mod ¢, contrary to Proposition 1.13. O

Theorems 5.7 and 5.8 imply that for any F' € M, (2), we have

NS (5.2.1)

b
G:=D% (F)+ (Z) D(F) € M( )
Theorem 1.12 states that F € M, l£2) has a Ramanujan congruence at b Z 0 mod ¢ if and only if
G =0 mod /¢ in (5.2.1). One can apply the following analog of Sturm’s theorem for Siegel modular
forms of degree 2 to verify that G = 0 mod ¢ in (5.2.1) for concrete examples of Siegel modular

forms.

Theorem 5.9 (Poor and Yuen [37]). Let F =Y a(T)e™ " (T%) ¢ M}gz) be such that for all T with
dyadic trace w(T) < % one has that a(T') € Z) and a(T) =0 mod . Then F'=0 mod ¢.

Remark 5.10. If T = (¢ %) > 0 is Minkowski reduced (i.e., 2|b| < a < ¢), then w(T) = a + ¢ — |b).
For more details on the dyadic trace w(T"), see Poor and Yuen [38].

The following table gives all Ramanujan congruences at b # 0 mod ¢ for Siegel cusp forms of
weight 20 or less when ¢ > 5. Let Ey4, Fg, x10, and x12 denote the usual generators of Méz) of
weights 4, 6, 10, and 12, respectively, where the Eisenstein series E4 and Eg are normalized by
a((99)) =1 and where the cusp forms x19 and x12 are normalized by a ((?1)) = 1. Cris Poor and

David Yuen kindly provided Fourier coefficients up to dyadic trace w(1") = 74 of the basis vectors
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for M,g2) with & < 20. We used Magma to check that G = 0 mod ¢ in (5.2.1) for each of the
forms in Table 5.1 below. It is not difficult to verify that (up to scalar multiplication) no further

Ramanujan congruences at b % 0 mod £ exist for Siegel cusp forms of weights 20 or less.

Table 5.1: Siegel forms of weight < 20 with Ramanujan congruences at b Z 0 mod ¢

b#%0 mod ¢
X12 b=1,4 mod5 and b=2,6,7,810 mod 11
Esxi2 b=1,4 mod 5
Eyx12 — Esx10 b=3,5,6 mod 7
Egx12 b=1,4 mod5
E7x10 + TEex12 b=1,2,4,8,9, 13,15 16 mod 17
Eix12 b=1,4 mod5
2o + 2E2x12 — 2E4Egx10 b=23,8,10,12,13,14,15,18 mod 19

Remark 5.11. For x3, + 2E3x12 — 2E4EgX10 modulo 19 we have G € ]\72(32] in (5.2.1) and we really

do need Fourier coefficients up to dyadic trace w(T') = %, i.e., up to 74 in Theorem 5.9 to prove

that G =0 mod 19.

Remark 5.12. For Siegel modular forms in the Maass Spezialschar one could decide the existence and
non-existence of their Ramanujan congruences also using Propositions 5.4 and 1.13 in combination
with Maass’ lift [33] (see also §6 of [22]). However, Theorem 1.12 is an essential tool in establishing
such results for Siegel modular forms that are not in the Maass Spezialschar, such as E3y12 and

2o + 2E%x12 — 2E4Egx10 for example.
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CHAPTER 6

THE RARITY OF RAMANUJAN CONGRUENCES

Throughout this section, work exclusively in characteristic £. To ease the notation, we write My, to
denote M (Fl(N ),Z(g)). Unless explicitly stated otherwise, all of the lemmas and statements in
this chapter are valid for N = 1 or 4. The author expects to publish the material in this chapter
as [18].

6.1 The plan for the proof of Theorem 1.15

The subset of M, consisting of forms with Ramanujan congruences at 0 mod £ is in fact a subspace
of M. For reasons to be explained in Section 6.2, we denote this subspace by IT}). Since My, is in

fact a finite set, we have

|ITk | gdim ITy,

P Lk N) = o = G

(6.1.1)

The key is to determine the dimension, or more precisely the codimension, of IT). This turns out
to be surprisingly intricate and employs several main ideas. An important tool is Ramanujan’s
0= qd% operator which encapsulates the notion of Ramanujan congruences via the so-called Tate
cycle. In Sections 6.2 and 6.3, we use the © operator to decompose M}, into many pieces of known
dimension, most of which are either disjoint from [T} or contained in I7T;. One of these pieces can
only be understood after a detailed study of the kernel of ©; see Section 6.4. Finally, Sections 6.5

and 6.6 contain the dimension calculations required to compute P (¢, k, N) exactly.

6.2 Fundamental subspaces

The following lemma is an elementary fact from linear algebra.

Lemma 6.1. Let V < W < M, be a chain of subspaces. Then there exists a space V= such that
W=VaVt

60



By Lemmas 2.6 and 2.10, we have the following fundamental linear maps:

Eg_l : Mk — Mk+£—1 (6.2.1)
@ . Mk — Mk+g+1. (622)

It is no exaggeration to say that this chapter is devoted to studying the images of these two maps.
Consider first (6.2.1). If k > ¢ — 1 then E;_1Mj_y,1 is an intrinsic! subspace of M. That is,

Ey 1My o1 ={f€Mp:w(f)<k—0+1} < M.

The Ey_1 notation is merely a bookkeeping device to remind us that My, < Mj. Occasionally
we dispense with writing E,_;. This subspace inclusion is so important for us that we reiterate it

in the following remark.

Remark 6.2. Recall that Lemma 6.1 guarantees the existence of a subspace W such that
My =E; 1My 1 ©W. (6.2.3)

Furthermore, for any f € My, we have f € Fy_1My_,11 if and only if f has filtration w(f) < k.
Hence, if 0 # f € W, then w(f) = k. The converse is of course false.
The subspace W from Remark 6.2 is not intrinsic. The key Lemmas 6.3 and 6.4 below show

that we can always choose W in (6.2.3) so that it has nice properties related to the image of ©.

Recall (6.2.2) and define the intrinsic subspaces

K, := ker (@ My — Mk—l-f—l-l) = f e M, : f = Zanq" s (6.2.4)
ln
IT}, = ker (@H — B M MkMz_l) =dfeMf=> au"}. (6.2.5)
Un

By Lemma 3.2, IT}, is the set of all forms with a Ramanujan congruence at 0 mod ¢. Equivalently,
it is the set of all forms in their own Tate cycle. We refer to it as the “In Tate” space. It is clear

from the definitions that for any k& we have
O : My — ITyyo1
and
KyNIT, =0.

The next two lemmas relate the images of the maps Ey,_; and ©.

!By intrinsic subspace, we mean a space which is uniquely and canonically defined. In practice, this means we do
not appeal to Lemma 6.1 to define the subspace.
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Lemma 6.3. Suppose 20 < k Z 1 mod £. For any W < My_ys_1 such that My_p_1 = Ey_1 My_9p®
W, we have My = Ey_1My_¢11 & OW. Moreover, OW < IT.

Proof. Consider the commutative diagram below.

B,
My_9p —— My_y 1 ——— FEp 1My o ®@W
@l l@

My _pp1 —— My

Ep 1

Suppose 0 # f € W. By Remark 6.2, w(f) =k —¢—1%# 0 mod ¢. Hence Lemma 2.10 implies
that w(©f) = k. Thus Of & Ey_1My_s+1. We conclude that Ey_1 My_p1 NOW = 0, and hence
that we have a direct sum Ey_1My_s11 G OW < M. We have also shown that Oy is injective. It

is clear that F,_q is injective. Now

dim (Ey_1My_p11 ® OW) =dim Ey_1 My_p11 + dim OW
=dim Mg_y11 +dim W
= dim My_p+1 + (dim My_p—1 — dim My_o¢)
= dim My,

where the last equality follows from an elementary calculation (see Lemmas 6.19 and 6.21). It
follows that My = FEy 1 My_g11 ® OW. The last statement of the lemma is immediate since the

image of © is always contained in an I'T space. O

Lemma 6.4. Suppose k =1 mod £. For any W < My, such that My, = Ey_1My_¢11 W, we have
wnIT;, =0.

Proof. By Remark 6.2, any 0 # f € W has w(f) = k =1 mod ¢. By Lemma 3.3 (1), we know
that f & ITj. O

6.3 The main decomposition

We now have the tools to give our main decomposition of M} into subspaces with specified Tate

cycle structures.

Definition 6.5. If 0 < k < 2¢ or Kk =1 mod ¢, then define My, to be any subspace My, < My
such that

My = Ep 1 My_p11 ® M.

If K> 20 and k£ # 1 mod ¢ then recursively define My, := OMy_;_1,.
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Note that for 0 < k < ¢ — 1 we have My, = M}, since the only negative weight holomorphic
modular form is 0. When £ — 1 < k < 2¢ or kK = 1 mod ¢, the choice of My, is not canonical.
For k > 2¢ and k Z#1 mod ¢, the space My, is uniquely determined by the lower weight “starred”
spaces Mj, with j < k.

By this definition and Lemma 6.3, for all k£ we have

My =FEp_ 1 Mg_pir1 B My,. (6.3.1)
In particular,
dim Mj, = dim My, — dim Mj_g41, (6.3.2)

which allows us to compute dim M,.
We now recursively decompose the original, un-starred space M into a direct sum of starred

spaces. Write
k=C({—-1)+D
where
3<D</i+1
and iteratively apply (6.3.1) to get

My = Mcw-1)+p
= Mcu-1)+p+ ® Ee-1Mc_1)-1)+D

= Mc—1)+px ® Bec1M(c_1)e—1)+px @ Ef_ 1 M(c_2)e—1)+D (6.33)

c
= (@ Egc__llMi(é—l)-I—D*) ® Ef \Mp.
=1

For each of the M;(_1y4p, terms in (6.3.3), if i(/ — 1) + D =1 mod ¢, then by Lemma 6.4 we
have M;p_1)4p« N ITp = 0. If i({ — 1)+ D #1 mod ¢ and i(¢ — 1) + D > 2/, then by Lemma 6.3
and the map (6.2.1) we have that M;y_1)+ps < ITjy—1)4p < IT}. This motivates the following

regrouping of the summands from (6.3.3):

Definition 6.6. Let k = C({ — 1) + D with 3 < D < ¢+ 1 as above. Define

WY = @ Ezc_llMi(é—l)—i—D*,
1<<C
i({—1)+D=1 mod ¢
2<i(l—1)+D
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Wy = &P B Mie—1)4+Ds
1<i<C
i({—1)+D#1 mod ¢
2<i(6—1)+D

W = D  EL Mgy | @ B Mp,
1<i<C
i(0—1)+D<20

so that by (6.3.3), we have
My, = Wi o Wi o Wy, (6.3.4)

Remark 6.7. Before continuing, we sketch the proof of our main theorem. Section 6.4 will define a
space OTyrp—1 (“Out Tate”) such that Wf =1I1Ty p_1® 0Ty p_1. Then we will use Lemmas 6.8
and 6.9 below to show that

k
W
N

M, = Wlk SOl p 1 ITiip 1 @Wzk.

complementary to [T}, 1Ty,

Proving Theorem 1.15 requires computing Pf which, by the previous equation and (6.1.1), means
that we need to compute dim M —dim I7T};, = dim Wlk—l—dim OTypyp—1- Lemma 6.16 gives dim OTy, p_1.
Sections 6.5 and 6.6 use (6.3.2) to compute dim W§. For the remainder of this section we study
the Wk.

Lemma 6.8. Let k=C({ —1)+ D with3 < D < £+ 1 and let W} be as in Definition 6.6. There
are 1 + L%J direct summands in W§. Furthermore, W 0 ITy, = 0.

Proof. Let J be the set of subscripts appearing in the definition of Wlk That is, J is defined by
the equation (ignoring E;_1)

Wi =D M.
JjeJ

Thus

J={j€ZFier1<i<C,j=il—1)+D,j>20j=1 mod/}.

Since i = D — 1 mod ¢, we see that the possible ¢ are of the form i = D — 1 + t£. In particular,

C-D+1

j:{jez'atez,ogtg ,jze(t(£—1)+D—1)+1}. (6.3.5)

Hence we have | 7| = 1+ | <=2+ |, (We remark that the quantity J = |7| appears in (1.5.1) and
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the statement of Theorem 1.15.)

Now suppose 0 # f € Wlk Write f = Zjej fj where f; € Mj.. Let jo be the largest index
such that f;, # 0. By Lemma 2.12, we have w(f) = w(fj,) =jo =1 mod ¢. By Lemma 3.3(1), we
have f & IT; and hence we conclude that Ty N Wlk =0. O

Lemma 6.9. Let W¥ be as in Definition 6.6. Then Wk < ITy.

Proof. Recalling that © : My_y,_1 — IT}, we deduce by Definition 6.5 that each of the summands
in W} is contained in ITy. O

Our last major challenge is to compute dim (I/V?f‘C NI Tk). We study W?f“ until the end of Sec-
tion 6.4.

Lemma 6.10. Let k and W:f be as in Definition 6.6. If 3 < D < {, then W:f = Eec__llMHD_l. If
D =/7+1 then ng“ = Egc_leH and Wf NIT, =0.

Proof. If 3 < D < (, then W§¥ = Ef"My_1)yp. ® EY ;Mp. By (6.3.1), we have W§ =
Ezc__llM(g_l)JrD as desired.

If D=/¢+1, theni({ —1)+ D > 2¢ for all 1 <¢ < C. Thus the direct sum indexed by 7 in the
definition of Wf is empty and ng“ = My41. Suppose that f € My NIT. Then by Lemma 3.3(1),
we cannot have w(f) = ¢+ 1. Thus f € M. If the level is N = 1, then My = 0 and the conclusion
holds. Otherwise, N = 4 and M5 is spanned by

and

o0
F = 201(2n+1)q2n+1 :q++(£+1)qz
n=0
If f =aF +bF, then since f € ITy, we must have ¢ = 0. But then we must also have b = 0. Thus
f =0 and the conclusion that W:f N ITy = 0 follows. O

6.4 The kernel of ©

In this section we study the spaces Wf via an in-depth examination of the kernel of ©. In particular,
we will decompose W?f into two subspaces, one contained in IT} and the other (which we will call
OTy+p—1) having trivial intersection with ITy. We will determine the dimension of each of these
subspaces. The case when D = £+ 1 is a bit unusual and has been dealt with in Lemma 6.10. For
the remainder of this section, we assume that 3 < D < / so that W:f = Myip_1.

By Lemma 2.10 the map (Efﬂ — @Z_1> takes Mgy p—1 into Mpyp_1)4@—1)@+1)- In fact, the

image is contained in a much smaller (and lower weight) subspace.
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Lemma 6.11. Let 3 < D < {. Recall the notation from (6.2.1), (6.2.2), (6.2.4), and (6.2.5). Then
(Eﬁll - 96_1) :Myyp1— Kip-
Proof. Let f € Myyp_1. Since ©/f = ©f mod ¢, we have
o (Eﬁf;f—@f—lf) —Of—0'f =0

and hence (Effllf — @Z_lf) € K(4yp—1)+(e—1)(¢+1)- Suppose (Effllf — @Z_lf) # 0. Then by
Lemma 2.6, w(E, "1 f —O01f) = ((+ D — 1)+ (£ — 1)(£ + 1) — t({ — 1) for some ¢t > 0. By
Lemma 2.10, the fact that Effll f — 6% 1fis in the kernel of © implies that

l+D-1)+{l—-1){f+1)—t({—1)=0 mod ¢
Thust =2 —D mod ¢. Since 3 < D </, we deduce that t = ¢+ 2 — D + s/, for some s > 0. Now

WESf -0 ) =0+ D -1+ -1)(+1)—t(l—-1)

—¢(D—(t—1)s). (641)

Filtrations of non-zero forms are non-negative and so D > (¢ — 1)s. But D < ¢ and so there are

three cases:
o If s =0, then w(E 11 f — ©1f) =(D.
e Ifs=1and D=/¢—1, then w(E, " f—01f)=0.
o If s=1and D =¢, then w(E, 1 f— 01 f) =
In any case, (Effllf —01f) e Kip. O

Definition 6.12. For D in the range 3 < D < /, let OTyyp_1 be any complementary subspace
such that

Myp1=1T;p-1©OTypip1. (6.4.2)
By Lemma 6.11 we have an injection
(Effll - @Z_1> : 0Ty p—1 — K¢p.
Lemma 6.13. Let 3 < D < (. The injection Efi’ll — et OTyyp—1 — Kyp factors as

(B - 01) () = (v
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where Uy : OTypyp_1 — Mp and (')Z :Mp — Kyp. Hence
dim OT[+D_1 < dim MD < dim KgD. (643)

Proof. Suppose 0 # f € OTyyp_1. The factorization Effll f—01f=(f ‘Ug)z is immediate from
Lemma 3.2. By Lemma 2.8, we have that Uy : My, p_1 — Myyp_1. By Lemma 2.11,

o (1100 = g (100" ) = 7w (BT —07).

By the computation of w (ngll f—0OrLf > at the end of the proof of Lemma 6.11, we deduce that
w (f|Ur) < D and hence f|U, € Mp.

If f € Mp, then f* € Myp. By considering the action on coefficients, we see that the map (')Z
in fact takes f € Mp to Kyp.

The statement about the dimensions is true because these maps are injective. O

We will now show that we have equality in (6.4.3) by decomposing M;p as in (6.3.3):

=
Mp = EB E}_ Myp_ie—1y = WP & WiP & WyP. (6.4.4)
i=0

Lemma 6.14. Suppose that 3 < D < {. Then

WP = B 1 M(p_1yp414 (6.4.5)
WiP < ITip (6.4.6)
WiP = EP "My p_a. (6.4.7)

Proof. Since ¢D = D(¢{ — 1) + D, we have that ¢ = D — 1 is the only index which appears in the
direct sum defining W{” and so W{P = Ey 1 M(p_1ye41+- This proves (6.4.5). Now (6.4.6) and
(6.4.7) are immediate from Lemmas 6.9 and 6.10. O

Lemma 6.15. Let 3 < D < {. Then (WfD &) ITgD) NKyp=0.

Proof. Since any two of WfD , I'Typ, and Kyp have trivial intersection, it suffices to show that
WP N (ITyp & Kep) = 0.
Suppose 0 # f € WP = Ey 1M p_1ye415- Then w(f) = (D —1)£+1, and by Lemma 2.10 we have

wOf)=w(f)+¢+1=1¢D+2.
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If f=g+ h where g € ITyp and h € Kyp, then by Lemmas 2.10 and 3.3(4), we have
w(Of) =w(©g + Oh) =w(Og) #{D +2

which contradicts the previous equation. O
Lemma 6.16. Let 3 < D < /{. Then dim OTyyp_1 = dim Mp = dim Kyp.
Proof. Recall (6.4.2), the decomposition (6.4.4) and Lemma 6.14, which give

Myp = WP @ WiP @ wiP

= WP @ WyP @ BT My p_y
= fD © WQZD ) Eé[i_llfT“_D_l @EZD__llOTg_,_D_l.

<ITyp

NKyp=0

In the last equation above, all but the last summand EZD_ _llOT ?+(p—1) has trivial intersection with
the kernel of © by Lemma 6.15. Hence, dim Kyp < dim OTy; (p_1). Therefore we have equality
throughout (6.4.3). O

Corollary 6.17. Let 3 < D < (. Then K;p = (Mp)".

Proof. By Lemma 6.16, we have equality in (6.4.3) and hence the maps appearing in Lemma 6.13

are all bijections. O

Proposition 6.18. Let ¢ > 5 be prime and k = C({ — 1) + D > 2¢ where 3 < D < /{+ 1. Suppose
N =1 or4. If W} is as in Definition 6.6, then

P (,k,N) = ¢~ dimWi—dimMp,
Proof. Suppose 3 < D < /. Then by Lemma 6.10 and Definition 6.12, we have
W4 = Mpyp-1=ITpsp-1®OTp4p-1.
By (6.3.4), we thus have
My = (Wf & OTpip-1) & (ITpp-1 & Wy).

The (C — 1)st iterate of the inclusion map (6.2.1) shows ITy1p_1 < IT¢(—1)4p = T} and hence
by Lemma 6.9 we have [Ty, p_1 ® I/VQ’LC < IT;,.
We now prove that we actually have the equality ITy1p_1 & Wzk = IT}: Suppose

0# fe (WfeOTyp_i)NITy.
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Then f = g+ h for some g € WF and h € OTyyp_1. If g # 0, then by Lemma 2.12, we
have w(f) = w(g) = 1 mod ¢. But now Lemma 3.3(1) implies that f ¢ ITy, a contradiction.
On the other hand, if ¢ = 0, then f = h € OTy;p_1. By the definition of OTy p_1, we have
f &Il p_1 < IT,. We conclude that

(W ® OTyyp—1) NIT; = 0.
So

dim My, > dim (W} & OTyp_1) + dim I
> dim (Wlk ©® OT[+D_1) + dim (ITg+D_1 ® WQIC)
> Mk7

and hence (ITZ+D_1 @ WQR) = ITy.
Now recall that by (6.1.1), we have

P, k,N)= % _ ¢~ (dim My—dim ITy,) _ p— dilek—dimOTHD,l_

Lemma 6.16 yields the desired conclusion.
The case when D = £+ 1 is similar. By Lemma 6.10 we have 0 = I/V?fC NITy =11y p_1. In the
proof above, replace “OTy,p_1” with ng“ = Mypy. [l

6.5 Dimension counts for level N =4

In this section we assume the level is N = 4 and we determine dim My, for any k, and dim W} for
k > 2¢. In the next section we will compute the more complicated case N = 1. Recall that for
N =4, we have dim M), = L%J + 1 for all £ > 0.

Lemma 6.19. Let N =4 and £ > 5 be prime. For k > { — 1, we have dim My, = Z_Tl.

Proof. By (6.3.2), for k > ¢ — 1 we have

dim My, = dim My — dim My_p11

() (=)

-1

2 )
which is independent of k. O

Theorem 6.20 (Main Theorem for N = 4.). Let £ > 5 be prime, N =4, and k = C({—1)+D > 2¢
where 3 < D < ¢+ 1. The probability P (¢,k,4) that f € My has a Ramanujan congruence at 0
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mod £ is
Pk, 4) = ¢~ (SO -[3] 1,

Proof. Since dim Mp = L%J + 1, in light of Proposition 6.18 it suffices to compute dim WF. By
Lemma 6.8, there are J =1+ L%J direct summands in the definition of Wlk By Lemma 6.19,
L

each summand has dimension %1 Hence dim W = J (%) O

6.6 Dimension counts for level N =1

The idea behind the dimension computations in this section is simple. Inlevel N =1,if k> ¢ —1
then by (6.3.2) we have that

dim My, = dim M — dim My_p11 =~ — — =

Hence,
dim My ypy1, — dim My, = 0.
The exact value of dim My, will depend on kK mod 12 and ¢ mod 12. Write

k= 12k + k1,
0 =120y + 04,

where k; € {0,2,4,6,8,10} and ¢; € {1,5,7,11}. Table 6.1 lists dim My, for each of the resulting
24 cases. We illustrate with one example: Suppose k1 = 6 and ¢; = 5. Then

dim My, = dim M}y — dim My_p41
= dim My2gy+6 — dim Mgy —ro) 42
= (ko + 1) — (ko — £p)
=0y + 1.

Table 6.1: Dimension of My, when k> /¢ —1and N =1

6\ 0 2] 4 | 6 | 8 [10]
1 Ly Lo Lo Ly Ly Ly
5 bo+ 1| £y Lo by+1 Lo A
7 bo+1 | by | bg+1 Lo bo+11 £y
11 bo+2 | by | bog+1 | bog+1 | Log+1] £y
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Lemma 6.21. For N =1, { > 5 prime, and k > 2¢, we have dim My, = dim My_,_14.
Proof. A case by case analysis using Table 6.1 shows that this is true. O

By Lemma 6.8, Wlk is a direct sum of J =1+ L%J spaces of the form M;y_1),p.. By
Table 6.1,

dim Mi(f—l)—i—D* =4y + {07 1, or 2}

14

- {EJ +{0,1, or 2}.

Hence,

dim W > J L_éJ .

This motivates the following definition of the quantity X which appears in the statement of Theo-

rem 1.15.

Definition 6.22. Let ¢ > 5 be prime and k = C({ — 1) + D > 2¢ where 3 < D < ¢+ 1. Suppose
N =1or4. If Jis as in (1.5.1), and W} is as in Definition 6.6, then set

X=X (N, (k)

= dim Wf — (1 + {%D %J

:dimwl’f—JL—éJ.

The proof of Theorem 6.20 showed that X (4, ¢, k) = 0.

Theorem 6.23 (Main Theorem for N = 1). Let £ > 5 be a prime and let k =C({ —1)+ D > 2/
be even, where 3< D < {4+ 1. For N=1and J =1+ L%J, we have

P (f, ]{7, 1) — E—JL%J—.’{—dimMD’
where

1. if £=1 mod 12 then X =0,

2. if =5 mod 12 then X = || + 0§ with

1 4fJ=1 mod3and D=2 mod 6
0=<¢1 ifJ=2 mod3and D=2,4 mod6

0 otherwise
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3. if £=T7 mod 12 then X = L%J + § with

5 1 ifJ=1 mod2and D=2 mod4

0 otherwise

4. if £ =11 mod 12 then X =5 L%J + 9 with § € {0,1,2,3,4,5}. The term 0 is computable in
terms of J mod 6 and D mod 12, but is omitted for the sake of brevity.

Proof. In light of Proposition 6.18, we only need to compute dim Wlk . We only do the case £ =5
mod 12 since the rest are analogous. Recall from the proof of Lemma 6.8 that J denotes the set

of indices appearing in the definition of WF. From (6.3.5), every j € J is of the form

() :€<t(€—1)+D— 1) +1
for 0 <t < L%J. Since £ =5 mod 12, we get

j(t) =8(t+1)+5D mod 12. (6.6.1)
We see from Table 6.1 that for any ¢,

dim M; 4. = £o + {0 or 1}.
Notice that for any two consecutive t,t + 1, we have
dim Mj ), + dim M4y, = 2o + {0 or 1}
and for any three consecutive t,t + 1,t + 2, we have
dim M4y, + dim Mj (g4 1), + dim Mj49). = 36 + 1.

Thus,

dim WF = (1 + {%J) by + {(1 ha LZ_?HJ)J +{0or 1} (6.6.2)

=J L—ZJ + EJ + {0 or 1}.

Furthermore, from Table 6.1 and (6.6.1) we see that the {0 or 1} in (6.6.2) is 1 exactly when either

of the following occur:

o (14 [“=2*]) =1 mod 3 and j(0) =8+ 5D =0 mod 6.

o (1+Lc_?+1J)E2 mod 3 and j(0) =8+ 5D =0 or 4 mod 6.
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The conclusion follows by Proposition 6.18 and Definition 6.22.
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CHAPTER 7

APPLICATIONS OF MOCK MODULAR FORMS

This chapter has been previously published in [17].

7.1 Notations

We recall the definition of a harmonic weak Maass form of half-integral weight k € %Z. Letting
z =z + 1y € C, the hyperbolic Laplacian of weight k is

0? 0? 0 0
e 2 . .
A = —y <—8x2 + —8y2> + iky (—(% + Z_8y> .
For d odd, define

1 ifd=1 mod 4,
1 ifd=3 mod 4.

A harmonic weak Maass form of weight k£ on the congruence subgroup I' C TI'g(4) is a smooth
function f : H — C such that:

C

1. For all A = (a Z) el f(Az) = (5)% EJ%(CZ +d)Ff(z).

2. Apf=0.
3. f(z) has at most linear exponential growth at all of the cusps.

For a positive integer N = 0 mod 4, the C-vector space of harmonic weak Maass forms of weight
k on I'1(N) is denoted Mk(N)

A harmonic weak Maass form is the sum of a holomorphic part and a nonholomorphic part.
See Zagier [47] for a nice overview. The harmonic weak Maass forms that we will consider have
nonholomorphic parts given by the integral of a cusp form (the shadow of the Maass form). Thus,
the Fourier expansions for the nonholomorphic parts will only have negative powers of ¢. Recalling

that the incomplete Gamma function is defined by
oo
INa,x) = / e~ ‘t*at,
x
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the Fourier expansion for a weak Maass form f(z) of the type we consider is

oo o0

F) =3 am)g + > bm)T(L — k,drny)g ",
n=1

n=ng

where the first (resp. second) summand is called the holomorphic (resp. nonholomorphic) part of

f(2).
We will need some fundamental operators on these forms. For any positive integer ¢, define the

U(¢) operator by its action on the Fourier coefficients:

f()|U) = Z a(ln)q" + Z b(ln)I'(1 — k,4mny)g".

Lemma 7.1 ([3], Lemma 2.1). Suppose that N,{ are positive integers with 4|N. Define £y :=
IL,i¢ prime p: let € be the conductor of Q(V¥0), and set N' :=1em(N, Ly, £1). Then the operator U({)
maps My(N) to My(N').

We may also twist a Maass form by a Dirichlet character x. The effect in terms of the Fourier

expansion is
fR)@x=> x(na(n)g"+ > x(=n)b(n)T(1 — k,4wny)q "

Lemma 7.2 ([3], Lemma 2.2). Suppose that N is a positive integer with 4N, that f(z) € My(N),

and that x is a Dirichlet character modulo r. Set N’ := lem(Nr,r%). Then f ® x € Mp(N').

We will frequently transform a Maass form by taking the subseries whose powers of ¢ lie in
an arithmetic progression d mod ¢. This returns a Maass form by the previous lemma since this

subseries is given by

% S @) @,

x modt

where ¢(t) is Euler’s totient function.

7.2 Overpartitions

We compute the nonholomorphic part of the Maass form of Bringmann and Lovejoy [10].

Theorem 7.3. Let t be odd. The function (1.6.1) is the holomorphic part of a weight % weak

Maass form on I'1(16t?) whose nonholomorphic part is

[o¢]
1
_\/EZ A(r,t,n)l <§, 47ryn2> q_"Q,
n=1
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where A(r,t,0) =0 and for 0 <r < %, 0<n< %,

(=)™ ifr=2norr=t-—2n,
A(r,t,n) = ¢ (=1)""2 ifr <2n and r <t —2n,

0 ifr>2n orr>t-—2n,

and for all r, t, and n,
A(r,t,n) = —A(r,t,n+t) = —A(r,t,—n) = A(r + t,t,n) = A(—r,t,n). (7.2.1)

Remark 7.4. Using (7.2.2) below, an equivalent formulation of this theorem is to say that the
shadow corresponding to (1.6.1) is —mi Y > | A(r,t,n)n ¢"°. Theorems 7.5 and 7.8 to follow also
have a similar reformulation.

Proof: Define O(w,q) = Y02 o > ez N(m,n)w™q" and let { = exp(2mi/t). Orthogonality of

roots of unity implies that
1 t—1 ) ) e )
2D GO a) =) N(rt.n)g"
j=0 n=0

Hence > ° ( (ryt,n) — p(" > "= E g;"j(’)(gg',q). Bringmann and Lovejoy [10, Theorem
1.1] show O({/, q) is the holomorphic part of a weak Maass form on I'; (16¢2) whose nonholomorphic
part is given as an integral of theta functions. Using this theorem, the definition [10, Equation
(1.7)], the transformation law [10, Equation (3.4)], and some algebraic manipulations we find that

the nonholomorphic part is

n(4j+1) . 100 27rz7'n2
E E rj J
Ct C2t <_>
=1 nez -z \/—ZT—FZ

n#0
The integral may be evaluated (via the changes of variable 7/ = 7 + z and 7/ = —27in?7) as
27rm-n —n?,; —n?,;
qg "1 —r —1/25, 4 "1 (1 2)
e TrAdt = ——TI"( =, 4myn” | . (7.2.2)
= /=i T—l—z \/27m2 4mn2y V2r|n| 2
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Hence the nonholomorphic part corresponding to (1.6.1) is
i/m n [ —rj n(4j+t) Jm 1 2 2
- Z Tl ZCt ey 7" tan <_> r <—,47Tyn ) qg "
—r In| ot t 2
e ) t—1
s . _ . y 1
_ NG Z ZQ rj <<;Lt(4j+t) _ <2tn(4j+t)> tan (%) T (5747@”2) q_nz
n=1 \ j=1
> 1 2
— —ﬁz:lA(r,t,n)F <§,47Tyn2> qg ™,
n=

where
9 4 ; 4jnm jm
A(r,t,n) := (—1)”“; jEZl ¢ Y sin <T> tan <T> .

The periodicity claimed in (7.2.1) follows from that of the summands of A(r,t,n). In addition,
clearly A(r,t,0) = 0. We now have

4dng —4nj )
A(rt,m) = Zg g <2t7> (d - @)
G + Cof’
—1)"%24{”’(2@‘” W () (¢, - )
2n—1
ZQ " ( 2n] Z (—1) _|_<—2m> .
k=—2n+1

We count a contribution of (—1)"” whenever 2n = +r mod ¢t and (—1)**" .2 when —2n+1 <k <
2n—1with k = r mod t. That is, we must examine how frequently r+mt € [—2n, 2n| for m € Z. By
the assumptions 0 < r < % and 0 <n < %, only r and r—t possibly lie in this interval. If r > 2n,
then n < % sor —t < —2n and we only get a contribution when r = 2n. Otherwise, r < 2n and
we always get 2(—1)""" plus possibly a contribution depending on the size of r — ¢ relative to —2n.
For example, if also 7 —t = —2n then (in addition to the contribution of 2(—1)"*" from 0 < r < 2n)
we also get (—1)™. So here A(r,t,n) = 2(—=1)"""+(=1)" = =2(=1)"+(-1)" = —(-1)" = (-=1)"*",
since t is odd and so r must be too. The other cases r —t > —2n and r —t < —2n are similar. [

The behavior of A(r,t,n) is illustrated in Table 1 for the values of A(r,17,n).

Ezample: We have A(2,17,3) — 2A(6,17,3) + A(7,17,3) = 0. Recall that we can sift out
coefficients which lie in an arithmetic progression. Then Rgg(8) — Rg7(8) is a weakly holomorphic

n* where —n? = 8 mod 17, i.e.

modular form since its nonholomorphic part only has terms with ¢~
n = £3 mod 17, and these terms vanish. In fact, Ro(—9) — R¢7(—9) is modular for any prime
t>17.

Proof of Theorem 1.17: R,s(d) is the holomorphic part of a Maass form whose nonholomorphic
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Table 7.1: The values of A(r,17,n).

"
"lo 1 2 3 4 5 6 7 8
0/]0 0 0 0 0 0 0 0 0
112 2 1. 0 0 0 0 0 0
212 2 2 2 1 0 0 0 0
312 2 2 2 2 2 1 0 0
412 2 2 2 2 2 2 2 1
502 2 2 2 2 2 2 1 0
6|12 -2 2 2 2 -1 0 0 0
712 2 2 1 0 0 0 0 0
812 -1 0 0 0 0 0 0

part is

1
=7 Z + [A(r,t,d') — A(s,t,d)| T <§,47Tyn2> q_”2 (7.2.3)
nE:I:c?ZOmOd t

By Theorem 7.3, in the first case A(r,t,d") = A(s,t,d’) = 0 and the second case is exactly when
A(r,t,d) = A(s, t,d") = £2. O

Proof of Theorem 1.18: Assume (_Td) = 1 and let d? = —d mod t with 0 < ' < L.
Consider Equation (7.2.3). If d' < %, then A(2d',t,d") — A(2d' + 1,¢,d") = +1 — 0, whereas
A(r,t,d) — A(s,t,d') € [—4,4]. Take Fy; = Rog 2q¢4+1(d). The other cases d' = %,d/ = % and

d > % are similar. O

7.3 Ms-rank of partitions with distinct odd parts

The nonholomorphic part related to Ms-rank is given by the following theorem which uses f; =
2t/ ged(t, 4).

Theorem 7.5. Lett > 2. The function (1.6.3) is the holomorphic part of a weight % weak Maass

form on T'1(2'° f}) whose nonholomorphic part is

2

1 1 Y
ﬁ Zx(n)B(r,t,n)F <§747Tyn2> q )
n=1
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where

1 ifn=1,7 mod 8,
x(n) =9 -1 ifn=3,5 modS§,

0 else,
and

€ if2r=0 modt, n=2r+e¢ mod 2t, with ¢ € {1},
B(r,t,n) = q¢€/2 if2r#0,41 modt, n=+2r +e¢ mod 2t, with e € {£1},
0 else.
Proof: Theorem 1.2 of [29] specializes to a statement about the My-rank for partitions without

repeated odd parts by restricting to » = 0 and x(A) = 0 in the notation of [29]. Hence we take
a =0 and b=c=1 in that theorem to get that

n?(_ . o2
N(w7q) = Z Ng(m,n)wmq” — Z q ( q;q )n

= — (W, ¢*/w; ¢*)n

meEZ
is the Ms-rank generating function for partitions without repeated odd parts. Replacing ¢ with —¢q
gives the function which [9, Equation (1.8)] denotes as K'(w, z), i.e. N(w,—q) = K'(w,2). As in

the proof of Theorem 7.3, we sum over roots of unity and see that

0o t—1
> <N2(r,t,n) - %NQ(n)> ()" =G K ().
n=0 j=1

Theorem 4.2 of [13] and the equation at the top of page 12 of [13] show that
- 1 n, 2fin—f2/4

> Nafrt,n) - 7NV2(n) ) (=1)"g e

n=0

is the holomorphic part of a weak Maass form on I'; (64f;*) and expresses the nonholomorphic part
in terms of an integral of a theta function. Following the method of the proof of Theorem 7.3, we
use [9, Equation 4.6], the formula for 7" on page 21 of [13] and a series of manipulations to compute

that the nonholomorphic part is

" 1 2 2
_—ﬂ' Z B(T7t7n)r <§77Tyn2ft2> q—n fi /47
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where

B(r,t,n) ZQ msm< >sin<n‘zw>.

Apply the U(f?/4) operator to get the weak Maass form

o0

3 <N2(r,t,n) - %Ng(n)>( 1)ngtn1! — Z B(r,t,n) ( ,dmyn ) -,

n=0
n odd

To eliminate the (—1)™ in the holomorphic part, twist out the arithmetic progression 15 mod 16 and
subtract from it the progression 7 mod 16. This produces the character x(n) in the nonholomorphic
part. That is,

[e.e]

1 8 1 > 1 2 _n2
S (Watrtom) = Gt ) 1 = S Bt (g dm?)
is a weak Maass form on I'y (20 f}).

Finally, we may redefine B(r,t,n) = 0 for n even. Otherwise for odd n,

B(r,t,n) ZQ & <C2t C2t > ( %ZL - Cz_tjn)
1 ZC2( n+1-2r) +<.2tn 1-2r) <2tn+1 2r) gg'lg—n—l—2r).

Since the exponents are even, we have complete sums of tth roots of unity. We count contributions
exactly when 2t|n & 1 £ 2r. Elementary considerations show that we have at most two such
contributions, that B = 0, i%, +1, and that B = £1 implies 2r =0 mod ¢t. If r =0 mod ¢ then
B = +1 exactly when n = £1 = 2r £ 1 mod 2t. If r = % mod ¢, then B = +1 exactly when
n=t+x1=2r+1 mod 2t. If 2r = £1 mod ¢, then B = 0 because the contributions will cancel.
Otherwise, B = :l:% whenever n = +2r =1 mod 2t. O

Using our notation, the corresponding result for the usual partition function computed in [3] is
that

o0

Z (N(r,t,n) — %p(n)) Un—1 _

n=0

3\

- 1
Z (r,t,n)T <§,47Tyn2> q_"2 (7.3.1)
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is a weak Maass form, where

1 ifn=1,11 mod 12
Y(n)=< -1 ifn=57 mod 12 (7.3.2)

0 else.

The Maass forms of Theorem 7.5 and (7.3.1) have very similar nonholomorphic parts and as r
varies they will satisfy the same linear relations. Hence, theorems analogous to those in [3] hold for
the Ms-rank generating function. For example, compare the following with Corollary 1.5 of that
paper.

FEzample: For t prime and 2 <7 <t — 2,

> (N (0,t,n) + 2Na(1,t,n) — 3Na(r, t,n)) ¢
8n—1#£—9,—(2r+1)2 mod ¢

is a weakly holomorphic modular form on I'y (2! ) since

B(0,t,n) +2B(1,t,n) — 3B(r,t,n)

(£1) +2(F3) +0, ifn==21 mod 2t
0+ 2(0) +0, ifn#+1,+£3,£2r +1 mod 2¢.

A useful corollary of Theorem 7.5 is

Corollary 7.6. Ift > 2, then 1 —8d # (2r £ 1)? mod t if and only if

> <N2(r,t,n) - %J\@@)) ¢l (7.3.3)

n=0
n=d mod t

s a weight % weakly holomorphic modular form on T'1(210ft).

Proof: By Theorem 7.5, (7.6) is the holomorphic part of a Maass form whose nonholomorphic

part is supported on q_”2 where —n? = d mod t. The given parameters are exactly where B
vanishes. ]
Proof of Theorem 1.19: Immediate from Corollary 7.6. O
Proof of Theorem 1.20: Analogous to Theorem 1.18. O

If we take the primitive character ¢(n) = x~!(n)y(n) with conductor 24 then we have the

following amusing theorem.

Theorem 7.7. Let t be odd with 31t. Then

> Na(3n) —p(n)\ g4n—
nz::o (Ng(r,t,?m) — N(r,t,n) — f) R
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1 a weight % weakly holomorphic modular form on T'1 (21933 f1).

Proof: Take the subseries of the Maass form of Theorem 7.5 supported on ¢ with exponents
= 23 mod 24 and then twist by ¢(n). This has the same nonholomorphic part as (7.3.1). O

7.4 2-marked Durfee symbols

Our final object of study has a nonholomorphic part whose coefficients are more complicated to

describe.

Theorem 7.8. If 0 < r < t are integers with 2,3 t t then (1.6.5) is the holomorphic part of a

weight % weak Maass form on T'1(576t*) whose nonholomorphic part is given by

- 1 2
_m nzz:lw(n)c(r?tvn)r <§74ﬂ-yn2> q_n )

where v is as in (7.8.2) and C(r,t,n) is a function defined by the following properties. For all odd

n and all r,
C(r,t,n) =C(r+tt,n)=C({t—rt,n)=C(rt,n+2t)=—-C(rt,2t —n). (7.4.1)

For all 7 € [0,t/2] and odd m € [1,t], C(F,t,n) — & € {—2,—1,0,1}. Moreover, Table 2 allows one

to determine the exact value of this quantity according to the following instructions.

Table 7.2: The function C(r,t,n) is defined using the instructions following Theorem 7.8.

— n mod 3

7 mod 3 0 1 9
0 n> 27+ 3 n>7+1 n>T+2
1 n>T A2 i <r<m—1
2 n>7+1 I <r<m—2
t-1 n>t—T+2 B <t-r<n-1
t n>t—T+1 n>t—T+2
t+1  |[A>t-T+1 T <t-F<n-2

Find the appropriate column and the two appropriate rows based on the congruence classes mod
3. For each of the corresponding table entries, if there is a set of inequalities listed, and if 7,7, ¢
satisfy those inequalities, count a contribution of -1. If the entry is blank, there is no contribution.
The only exception is @ =7 = 0 mod 3 which counts +1 when 7@ > 27 + 3. Consider for example

Table 3 which shows C(7,29,7) — 5.
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Table 7.3: The values of C(7,29,7)

9 10 11 12 13 14

8

1

1

0 -1 -1

1

0
-1
0
0
-1
0
0
-1
-1

-1

-1 -1

1

-1

-1
-1

1 -1 -1

1

-1
-1

2

-1
-1

0
-2

2

-1
-1
-1

0
-2
-1

-1
0
-1

0
-1

-1
-1

1

13
15
17
19
21

23
25
27
29

Proof: Define the full rank generating function

Ro(w,q) := Z Z NFy;(m,n)w™q".

1meZ

n=

Andrews [5] showed that for w3 # 1,

(7.4.2)

3 1) (R(wv Q) - R(w27Q))>

- w)(w

R2(w> Q) =

where

R(w,q) = Z Z N(m,n)w™q"

0meZ

n=

is the usual partition rank generating function. By (7.4.2),
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e ) t 1

Z (NFz(T,t,n) - %D2( > ZQ TJR2 Cta q)

n=0 ] 1
2j

_11‘,—1 i ; . 2
_;;Ct ! <(1_Cg)( fj—1)> (R(CgaQ)_R(Ctjv(J))

1 & ¢

55\ (@) ) ) (R R 0),

By Theorem 1.2 of [12], R(Ct] ;q) is essentially the holomorphic part of a weak Maass form. Con-

tinuing as in the proof of Theorem 7.3, we find the nonholomorphic part is

where

The periodicity claimed in (7.4.1) follows easily. Now for r =7 € [0,¢/2] and odd n =7 € [1,t] we

have

ro o 2 ~—2j ( 2nj —2nj>
7’ t, n ZC_%] ;Lt] - Cztn] . ( 2t 2t > 2 2
3]' _3]' . . 3i 34
9 — Gt (4515 - <2t]) < 5 — Co ])
nj Joo =3\ (¢2ni _ p=2n
G (Czt + Qo ) ( ot~ — Got )

2 2 —

—— E —2rj | 2t _
RSt fe e G

t 14 t t

nj —nj (2n+1)j5 (—2n+1)y (2n—1)j (=2n—1)j
_ 4+ Z C—27’] 2t C2t 52t + C C C
o 3j —3j ’

2t T 52t

For each congruence class of n mod 3, there is an appropriate grouping of the numerator terms

allowing the Cg’tj — CQ_tgj to cancel. For example, if n =0 mod 3,

(2n+1-2r)j 2n+1-2r)j (2n—1-2r)j 2n—1-2r)j nj —nj
1 ot sz, C2t C2t i — Gt
r t, n + - -,
t — ¢ 3j - 37 3j _ —3j
2t 2t 2t 2t 2t 2t
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After dividing, all of the resulting terms will have an even exponent. Hence we’ll have a collection
of n incomplete sums of tth roots of unity. Completing these sums will require adding in the j =0
terms. In effect, we subtract off 1/¢ for each of the n sums. Continuing with the n = 0 mod 3

case, C(r,t,n) — n/t will get a contribution of —1 each time

tn—r—1n—r—4,...,—n—r+2 (7.4.3)
tih—r—2n—r—5...,—n—r+1 (7.4.4)

and get a contribution of 1 each time

-7 (7.4.5)
By hypotheses on n,r we have
t>n—r—1>--->-n—-r+2>-2¢

and so one of the conditions in (7.4.3) will occur when bothn—r—1=0 mod 3andn—r—12>0
or when both n —r —1 = —t mod 3 and —n — r + 2 < —t. This gives the table entry for n = 0
mod 3, r =2 mod 3 and the entry for n =0 mod 3, r =¢ —1 mod 3. The rest of the cases are
similar. O

The restriction 2 1 ¢ in this theorem may be removed by taking a different congruence subgroup
using Theorem 1.1 of [12]. As a general indication of the utility of Theorem 7.8, we provide two
examples.

Ezample: Since 2C(3,29,25) — C(6,29,25) — C(7,29,25) = 2(—1) — (—2) — (0) = 0, we deduce
that

> [2NFy(3,29,n) — NFy(6,29,n) — NFy(7,29,n)] ¢**" !
n=3 mod 29

is a weakly holomorphic modular form on 'y (576¢°).

Ezxzample: Since
3C(6,29,21) + C(8,29,21) + C(10,29,21) — 5C(9,29,21) = 3(1) + (—1) + (—2) — 5(0),
we deduce that

> [BNFy(6,29,n) + NFy(8,29,n) + NF,(10,29,n) — 5N F5(9,29,n)] ¢**~
n=1 mod 29

is a weakly holomorphic modular form on 'y (576t5).
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Analogously with overpartitions, we define the generating functions of the full rank differences:

n+1 n+1 n
Sps(d) = Z [NFz <7”,ta 7) — NF, <3>ta 7)] q -

n=d mod t

This is the holomorphic part of a Maass form supported on q_"2 with —n? = d mod t. As noted
before, when (_Td) = —1, Sps(d) is a weakly holomorphic modular form. When (_Td) # —1, the
nonholomorphic part may still be zero. The exact situation is quite complicated and it is difficult
to express general theorems that are aesthetically pleasing. However, the following corollaries give

some idea of the types of possible conclusions.

Corollary 7.9. Let t > 5 be prime. For all r,s, Sys(0) is a weakly holomorphic modular form on
F1(576t5).

Proof: A case by case analysis of Theorem 7.8 reveals that regardless of the congruence class of
r mod 3, C(r,t,t) = 0. Hence

n+1 1 n+1 n
3 beletar) e (e

n=0 modt

is a weakly holomorphic modular form, and so S,s(0) must be too. O

Corollary 7.10. Ift = 7 then S,s(d) is a weakly holomorphic modular form exactly when one of

the following is true:
1. d=0,1,2,4, or
2. d=3,5andr s € {1,2,5,6}, or
3. d=3,5andr s € {3,4}.
Corollary 7.11. Ift =7 then

3 {NFQ <0,7,7>+NF2 (1,7, = )—2NF2 (3,7,7>]q

n=5 mod 7

18 a weakly holomorphic modular form.
Corollary 7.12. If 31t then
s n+1 n+1
NF (1,t,—— | —=NFy [ 2,t, —— "
Z[ 2 (10550 ) - v (2075 )|«
18 a weakly holomorphic modular form.

A similar statement can be made about the generating function of NFy(r,t, %) — NFy(r +
1,¢, "2—21) where 7 = 1 mod 3, except that we must twist out some arithmetic progressions as per

Theorem 7.8.
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