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ABSTRACT

We study congruences in the coefficients of modular and other automorphic forms. Ramanujan

famously found congruences for the partition function like p(5n + 4) ≡ 0 (mod 5). For a wide

class of modular forms, we classify the primes for which there can be analogous congruences in the

coefficients of the Fourier expansion. We have several applications. We describe the Ramanujan

congruences in the counting functions for overparitions, overpartition pairs, crank differences, and

Andrews’ two-coloured generalized Frobenius partitions. We also study Ramanujan congruences in

the Fourier coefficients of certain ratios of Eisenstein series. We also determine the exact number

of holomorphic modular forms with Ramanujan congruences when the weight is large enough.

In a chapter based on joint work with Olav Richter, we study Ramanujan congruences in the

coefficients of Jacobi forms and Siegel modular forms of degree two. Finally, the last chapter

contains a completely unrelated result about harmonic weak Maass forms.
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CHAPTER 1

INTRODUCTION

Imagine that you are at a dinner party making chit-chat with those around you. Someone will

likely ask what you do. After you respond that you’re a mathematician, there is a very short list

of standard replies from which your interlocutors will choose. You had best have a mathematical

gem prepared for this inevitable follow-up. The ideal gem for this situation will be simple to state,

offer no obvious resolution, and be charmingly beautiful. Their momentary speechlessness will give

you an opening to delve into mathematics and redeem the subject in the eyes of your companions.

Your humble narrator suggests that you employ the following:

Let p(n) denote the number of ways to write n as a non-increasing sum of non-negative integers.

Ramanujan famously established the congruences

p(5n+ 4) ≡ 0 mod 5,

p(7n+ 5) ≡ 0 mod 7, (1.0.1)

p(11n+ 6) ≡ 0 mod 11,

and noted that there does not appear to be any other prime for which the partition function has

equally simple congruences. However it took over eight decades until Ahlgren and Boylan [1] proved

that (1.0.1) are indeed the only congruences of the form p(ℓn+b) ≡ 0 mod ℓ. The striking elegance

of (1.0.1) makes one wonder if this phenomenon occurs elsewhere, and if so, how common it is.

1.1 Partitions and their variants

The partitions counted by p(n) have been studied since Euler and continue to reveal their mysteries.

A graceful tool in the study of partitions is the Ferrers diagram. For example, consider the partition

12 = 5 + 4 + 2 + 1 whose Ferrers diagram is the left side of Figure 1.1. The conjugate of a partition

is obtained by interchanging the rows and the columns of the Ferrers diagram. The two Ferrers

diagrams in Figure 1.1 are conjugates of each other. Frobenius wanted a way to write partitions so

that it was immediately obvious what the conjugate was. A Frobenius partition of n is a sum

n = r +

r∑

i=1

ai +

r∑

i=1

bi

1



Figure 1.1: Ferrers diagrams of conjugate partitions

where

a1 > a2 > · · · > ar ≥ 0,

b1 > b2 > · · · > br ≥ 0.

An alternative representation for a Frobenius partition is the Frobenius symbol

(
a1 a2 · · · ar

b1 b2 · · · br

)
.

Figure 1.2 indicates a bijective construction of a Frobenius partition from a regular partition. The

number of dots along the main diagonal becomes the number of columns r. The numbers of dots

in each row to the right of the main diagonal become the ai, while the numbers of dots in each

column below the main diagonal become the bi. Conjugating the original partition corresponds to

inverting the rows of the Frobenius symbol. Thus, the regular partition 5+4+2+1 has Frobenius

symbol

(
4 2

3 1

)

and the conjugate is

(
3 1

4 2

)
.

Andrews [4] adds an interesting twist to this construction. Let the ai and bi come from two

copies of the integers where

· · · > 42 > 41 > 32 > 31 > · · · .

2



a1 = 4

a2 = 2

b1 = 3

b2 = 1

r = 2

Frobenius symbol =

(
4 2
3 1

)

Figure 1.2: Constructing a Frobenius symbol from a partition

For example,

(
41 21

31 11

)
,

(
41 21

31 12

)
, and

(
42 21

22 21

)

are all examples of two-coloured Frobenius partitions of 12. Following Andrews, let cφ2(n) denote

the number of two-coloured Frobenius partitions of n. The only motivation for this construction

which we offer is the following beautiful theorem of Andrews.

Theorem 1.1 ([4] Corollary 10.1 and Theorem 10.2). For all n, we have

cφ2(2n + 1) ≡ 0 mod 2 (1.1.1)

cφ2(5n + 3) ≡ 0 mod 5. (1.1.2)

In Chapter 4 we prove that these are the only simple congruences for cφ2(n):

Theorem 1.2. If ℓ is a prime, then the only congruences cφ2(ℓn + b) ≡ 0 mod ℓ are (1.1.1) and

(1.1.2).

This thesis classifies congruences of this type for a wide class of combinatorial counting functions.

The proof of Theorem 1.2 uses the theory of modular forms. We formally introduce modular forms

in Chapter 2, but for now all that we need is that they have a Fourier series representation
∑
a(n)qn.

We are only concerned with modular forms for which a(n) ∈ Q. All of our applications will in fact

have a(n) ∈ Z. Since modular forms have bounded denominators, restricting attention to those

with integral coefficients comes at no great price. A modular form
∑
a(n)qn has a Ramanujan

3



congruence at b mod ℓ when, for all n ∈ Z, we have

a(ℓn+ b) ≡ 0 mod ℓ. (1.1.3)

The statements that p(n), cφ2(n), or other partition-theoretic counting functions have Ramanujan

congruences are equivalent to statements that certain associated modular forms have Ramanujan

congruences. The specific association will be made clear through several examples in Chapter 4.

Ramanujan congruences at 0 mod ℓ in modular forms are very different from Ramanujan con-

gruences at non-zero b mod ℓ. This thesis deals with both types. The former type of Ramanujan

congruence is equivalent to the so-called Uℓ congruences. The Uℓ-operator acts on modular forms

via

(∑
a(n)qn

) ∣∣∣∣Uℓ =
∑

a(ℓn)qn.

We say that a modular form satisfies a Uℓ-congruence when (
∑
a(n)qn)

∣∣Uℓ ≡ 0 mod ℓ, i.e. when

it has a Ramanujan congruence at 0 mod ℓ. On the other hand, Ramanujan congruences at b 6≡ 0

mod ℓ have been less commonly studied. Kiming and Olsson [26] proved an important theorem

ruling them out for a particular modular form associated to the partition function. We prove:

Theorem 1.3. Let f =
∑
a(n)qn ∈ Mk (Γ1(N)) where N = 1 or 4, 0 ≤ k ∈ Z, and all a(n) ∈ Z.

Then there are only finitely many primes ℓ for which f has a Ramanujan congruence at b 6≡ 0

mod ℓ. Moreover, such an ℓ satisfies ℓ ≤ 2k − 1.

This theorem is interesting because many forms have, or are expected to have, infinitely many

primes ℓ for which there is a Ramanujan congruence at 0 mod ℓ. For example, Elkies proved that

weight 2 newforms of conductor N have infinitely many Ramanujan congruences at 0 mod ℓ. In

addition, if ∆ ∈ S12(Γ1(1)) has only finitely many Ramanujan congruences at 0 mod ℓ, and if

these ℓ were known, then Lehmer’s conjecture on whether τ(n) is ever zero would be resolved.

We adapt the theory behind Theorem 1.3 to apply to functions which are not holomorphic

modular forms, and to obtain better bounds on ℓ. Nevertheless, in later chapters most our effort

is spent on Ramanujan congruences at 0 mod ℓ.

1.2 Quotients of Eisenstein series

Eisenstein series are basic building blocks of modular forms. Let σm(n) :=
∑

d|n d
m and define the

Bernoulli numbers Bk by t
et−1 =

∑∞
k=0Bk

tk

k! . Let q = e2πiτ for τ ∈ H. For even k ≥ 2, set

Ek(τ) := 1 − 2k

Bk

∞∑

n=1

σk−1(n)qn.

4



Table 1.1: Congruences of Berndt and Yee [7]

F (q) n ≡ 2 mod 3 n ≡ 4 mod 8

1/E2 a(n) ≡ 0 mod 34

1/E4 a(n) ≡ 0 mod 32

1/E6 a(n) ≡ 0 mod 33 a(n) ≡ 0 mod 72

E2/E4 a(n) ≡ 0 mod 33

E2/E6 a(n) ≡ 0 mod 32 a(n) ≡ 0 mod 72

E4/E6 a(n) ≡ 0 mod 33

E2
2/E6 a(n) ≡ 0 mod 35

Note that E2 ≡ E4 ≡ E6 ≡ 1 modulo 2 and 3. Berndt and Yee [7] prove congruences for the

quotients of Eisenstein series in Table 1.1, where F (q) :=
∑
a(n)qn. An obviously necessary

requirement for the congruences in the n ≡ 2 mod 3 column of Table 1.1 is that there are simple

congruences of the form a(3n + 2) ≡ 0 mod 3. All but the first form in Table 1.1 are covered by

the following theorem.

Theorem 1.4. Let r, s, t, b, ℓ ∈ Z where r ≥ 0 and ℓ is prime. If Er
2E

s
4E

t
6 =

∑
a(n)qn has a

Ramanujan congruence a(ℓn+b) ≡ 0 mod ℓ, then either ℓ ≤ 2r+8|s|+12|t|+21 or r = s = t = 0.

This theorem gives an explicit upper bound on primes ℓ for which there can be congruences of

the form a(ℓn+ b) ≡ 0 mod ℓk as in the middle column of Table 1.1. See Remark 3.15 for a slight

improvement of Theorem 1.4 in some cases.

Example 1.5. The form E6/E
12
4 can only have simple congruences for ℓ ≤ 129. Of these, the

primes ℓ = 2 and 3 are trivial with E4 ≡ E6 ≡ 1 mod ℓ. For the remaining primes, the only

congruences are

a(ℓn+ b) ≡ 0 mod 17, where

(
b

17

)
= −1.

Mahlburg [35] shows that for each of the forms in Table 1.1 except 1/E2, there are infinitely

many primes ℓ such that for any i ≥ 1, the set of n with a(n) ≡ 0 mod ℓi has arithmetic density 1.

On the other hand, our result shows that (for large enough ℓ) every arithmetic progression modulo

ℓ has at least one non-vanishing coefficient modulo ℓ.

1.3 Forms with divisor supported at the cusps

We obtain precise results for meromorphic modular forms with divisor (i.e. the zeros and poles)

supported at cusps. This additional technical condition gives us much better control on the possible

Ramanujan congruences. Given a weakly holomorphic f ∈M !
k(Γ1(4)) ∩ Z[[q]] with k ∈ 1

2Z which is

non-vanishing on the upper half plane, if k 6= 1
2 , then Corollary 4.19 shows there are only finitely

5



many primes ℓ for which f has a Ramanujan congruence at some b 6≡ 0 mod ℓ. The situation for

Ramanujan congruences at 0 mod ℓ is more intricate. We prove the finiteness of these congruences

in three of the four cases below:

k ∈ Z k ∈ 1
2Z\Z

k ≤ 3/2 Theorem 4.14 Theorem 4.16

k ≥ 2 Open Theorem 4.15

Theorems 4.14, 4.15, and 4.16 provide a method to find explicit bounds on the possible primes

ℓ for which there could be Ramanujan congruences at 0 mod ℓ. One may then simply check the

finitely many possibilities to generate a list of all Ramanujan congruences for the power series in

question. Seeking Ramanujan congruences in positive, integral weight modular forms includes hard

problems such as determining when Ramanujan’s τ(n) function satisfies τ(ℓ) ≡ 0 mod ℓ. We leave

such problems open.

Theorem 4.14 overlaps with the conclusions of Sinick [42]. Theorem 4.16 is a generalization

of Ahlgren and Boylan [1] and has the most involved proof of these three theorems. We provide

several examples. Let η(z) = q1/24
∏∞

n=1(1 − qn) where q = e2πiz. Then:

Theorem 1.6. Define f := η6(z)η6(4z)
η3(2z)

∈ S9/2(Γ1(4)) and let f−1 =
∑
a(n)qn. The Ramanujan

congruences of f−1 are exactly

a(2n + 0) ≡ 0 mod 2

a(3n + 0) ≡ 0 mod 3

a(3n + 1) ≡ 0 mod 3

a(5n + 2) ≡ 0 mod 5

a(5n + 3) ≡ 0 mod 5.

Theorem 1.7. Define f := η14(z)η6(4z)
η7(2z)

∈ S13/2(Γ1(4)) and let f−1 =
∑
b(n)qn. The Ramanujan

congruences of f−1 are exactly

b(2n + 0) ≡ 0 mod 2

b(7n + 1) ≡ 0 mod 7

b(7n + 2) ≡ 0 mod 7

b(7n + 4) ≡ 0 mod 7.

Partition-theoretic functions like cφ2(n) require a bit more care since their generating functions

are not quite modular forms. In addition to 2-coloured Frobenius partitions, we also classify

congruences in overpartitions, overpartition pairs, and crank differences, as described below.

An overpartition of n is a sum of non-increasing positive integers in which the first occurrence

of an integer may be overlined. Let p(n) count the number of such overpartitions and set P (z) =

6



∑
p(n)qn. Background for overpartitions can be found in Corteel and Lovejoy [16]. Recently,

Mahlburg [34] has shown that the set of integers n with p(n) ≡ 0 mod 64 has arithmetic density 1,

and Kim [25] has extended this result to modulus 128. For larger primes we have a very different

situation.

Theorem 1.8. Let ℓ be an odd prime and b ∈ Z. Then there are no Ramanujan congruences

p(ℓn+ b) ≡ 0 mod ℓ.

An overpartition pair of n is a decomposition n = r + s and a pair of overpartitions, one for r

and one for s. Overpartition pairs have an important place in the theory of q-series and partitions

[28, 11, 30]. Let pp(n) denote the number of overpartition pairs of n. Bringmann and Lovejoy [11]

show that for all integers n,

pp(3n+ 2) ≡ 0 mod 3.

On the other hand, we show:

Theorem 1.9. Let ℓ ≥ 5 be prime and b ∈ Z. There are no Ramanujan congruences pp(ℓn+b) ≡ 0

mod ℓ.

If π is a (regular) partition, define the crank by

crank(π) :=




π1 if µ(π) = 0,

ν(π) − µ(π) if µ(π) > 0,

where π1 denotes the largest part of π, µ(π) denotes the number of ones in π and ν(π) denotes

the number of parts of π that are strictly larger than µ(π). The existence of non-Ramanujan

congruences for the crank counting function is proven by Mahlburg [35]. Let Me(n) and Mo(n)

denote the number of partitions of n with even and odd crank, respectively. Choi, Kang, and

Lovejoy [15] studied the crank difference function (Me−Mo)(n) and found a Ramanujan congruence

at (Me −Mo)(5n+4) ≡ 0 mod 5. They ask if the methods of [26] and [1] may be adapted to prove

that there are no other Ramanujan congruences. We give a partial answer to their question.

Theorem 1.10. Let ℓ ≥ 5 be prime, δ := ℓ2−1
24 and b 6≡ −δ mod ℓ. The crank difference function

has the Ramanujan congruence (Me − Mo)(ℓn − δ) ≡ 0 mod ℓ if and only if ℓ = 5. If for all

integers n, (Me − Mo)(ℓn + b) ≡ 0 mod ℓ, then for all c satisfying
(

b+δ
ℓ

)
=
(

c+δ
ℓ

)
, we have

(Me −Mo)(ℓn+ c) ≡ 0 mod ℓ.

It is somewhat amusing that the unresolved Ramanujan congruences for crank differences are

the “easy” congruences at b 6≡ 0 mod ℓ.
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1.4 Jacobi and Siegel forms

In joint work with Olav Richter [21], we generalize the notion of Ramanujan congruence to Ja-

cobi forms and degree 2 Siegel forms. A Siegel form has a series representation indexed over

matrices. Throughout Chapter 5 we will adopt the following notation. Let Z := ( τ z
z τ ′ ) be

a variable in the Siegel upper half space of degree 2, q := e2πiτ , ζ := e2πiz , q′ := e2πiτ ′

, and

D := (2πi)−2
(
4 ∂

∂ τ
∂

∂ τ ′ − ∂2

∂ z2

)
be the generalized theta operator, which acts on Fourier expansions

of Siegel modular forms as follows:

D




∑

T= tT≥0
T even

a(T )eπi tr(TZ)


 =

∑

T= tT≥0
T even

det(T )a(T )eπi tr(TZ),

where tr denotes the trace, and where the sum is over all symmetric, semi-positive definite, integral,

and even 2×2 matrices. Additionally, we always let ℓ ≥ 5 be a prime and (for simplicity) we always

assume that the weight k is an even integer.

Definition 1.11. A Siegel modular form F =
∑
a(T )eπi tr(TZ) with ℓ-integral rational coefficients

has a Ramanujan congruence at b mod ℓ if a(T ) ≡ 0 mod ℓ for all T with detT ≡ b mod ℓ.

Theorem 1.12. Let F (Z) =
∑

n,r,m∈Z
n,m,4nm−r2≥0

A(n, r,m)qnζrq′m be a Siegel modular form of degree

2 and even weight k with ℓ-integral rational coefficients and let b 6≡ 0 mod ℓ. Then F has a

Ramanujan congruence at b mod ℓ if and only if

D
ℓ+1
2 (F ) ≡ −

(
b

ℓ

)
D(F ) mod ℓ, (1.4.1)

where
(
·
ℓ

)
is the Legendre symbol. Moreover, if F has a Ramanujan congruence at b mod ℓ and

if there are n, r,m such that (4nm − r2)a(n, r,m) 6= 0, then either ℓ ≤ k or ℓ| gcd(n,m)(4nm −
r2)a(n, r,m).

Note that such congruences at 0 mod ℓ have already been studied in [14] and the main result

of Chapter 5 complements [14] by giving the case b 6≡ 0 mod ℓ. Theorem 1.12 combines with a

Sturm-bound type result of Poor and Yuen [37] to give an effective (i.e. finite) test for Ramanujan

congruences in degree 2 Siegel forms. In Chapter 5 we list all degree 2 Siegel forms with Ramanujan

congruences at b 6≡ 0 mod ℓ, up to weight 20.

Theorem 1.12 follows from a study of Ramanujan congruences in Jacobi forms. See Chapter 5

for the notation.

Theorem 1.13. Let φ ∈ J̃k,m where k ≥ 4, Lm (φ) 6≡ 0 mod ℓ and let b 6≡ 0 mod ℓ. If ℓ > k and

ℓ ∤ m, then φ does not have a Ramanujan congruence at b mod ℓ.
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1.5 The rarity of Ramanujan congruences

A common theme in all of our main theorems so far is that Ramanujan congruences seem to be

rare. Loosely speaking, if a modular form f satisfies the hypotheses of one of our earlier theorems,

then it has only finitely many Ramanujan congruences and there is a method to compute them.

This motivates the following:

Question 1.14. Can one determine the precise number of modular forms which have Ramanujan

congruences?

We answer this question in the affirmative. To state our main theorem, we need the following

notation. Let ℓ ≥ 5 be prime, k ∈ Z, and let N = 1 or 4. Let Mk be the Fℓ-vector space obtained

by coefficient-wise reduction modulo ℓ of all holomorphic modular forms on Γ1(N) with rational,

ℓ-integral coefficients. Recall that dimMk is easily computed for any integer k ≥ 0. Set

dN :=





⌊
ℓ
12

⌋
if N = 1,

⌊
ℓ
2

⌋
if N = 4.

For any integer k ≥ 2ℓ, write

k = C(ℓ− 1) +D,

where

3 ≤ D ≤ ℓ+ 1,

and set

J := 1 +

⌊
C −D + 1

ℓ

⌋
. (1.5.1)

Let X = X (N, ℓ, k) be as in Definition 6.22. In Sections 6.5 and 6.6 we evaluate X exactly. We will

also show that:

• If N = 4 then X = 0.

• If N = 1 and ℓ ≡ 1 mod 12 then X = 0.

• If N = 1 and ℓ ≡ 5 mod 12 then J
3 − 1 ≤ X ≤ J

3 + 1.

• If N = 1 and ℓ ≡ 7 mod 12 then J
2 − 1 ≤ X ≤ J

2 + 1.

• If N = 1 and ℓ ≡ 11 mod 12 then 5
(

J
6 − 1

)
≤ X ≤ 5

(
J
6 + 1

)
.

Finally, let

P (ℓ, k,N) :=
|{f ∈Mk : f has a Ramanujan congruence at 0 mod ℓ}|

|Mk|
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be the probability (with the uniform distribution) that f ∈ Mk has a Ramanujan congruence at 0

mod ℓ. The main result of this paper is that we can compute this probability exactly:

Theorem 1.15. Let ℓ ≥ 5 be prime, N = 1 or 4, and k ≥ 2ℓ be an integer. Let Mk, dN , C, D, J ,

X, and Pk
ℓ be as above. Then P (ℓ, k,N) = ℓ−dN J−dimMD−X.

Proof. This is a combination of Theorems 6.20 and 6.23.

Example 1.16. Theorem 1.15 provides a context in which to understand results like Ahlgren

and Boylan’s [1] proof that (1.0.1) are the only Ramanujan congruences for p(n). Let ∆ =

q
∏∞

n=1 (1 − qn)24 denote the normalized, weight 12 cusp form on SL2 (Z). Kiming and Olsson [26]

showed that the partition generating function
∑
p(n)qn has a Ramanujan congruence at b mod ℓ

if and only if the holomorphic modular form ∆
ℓ2−1
24 of weight ℓ2−1

2 has a Ramanujan congruence at

b+
(

ℓ2−1
24

)
. Furthermore, Kiming and Olsson proved ∆

ℓ2−1
24 can only have Ramanujan congruences

at 0 mod ℓ. Ahlgren and Boylan [1] later ruled out this last case. Theorem 1.15 above provides

an interesting heuristic to judge how surprising the Ahlgren and Boylan result is. The probability

that g ∈M ℓ2−1
2

has a Ramanujan congruence at 0 mod ℓ is given by Theorem 1.15 with C = ℓ−1
2 ,

D = ℓ− 1, J = 0. Definition 6.22 will show that X ≥ 0. Hence

P
(
ℓ,
ℓ2 − 1

2
, 1

)
≤ ℓ−⌊ ℓ+11

12 ⌋

for all primes ℓ ≥ 5. For example, P
(
ℓ, ℓ2−1

2 , 1
)

= 1
169 . A very rough heuristic for an upper bound

on the probability of p(n) having a Ramanujan congruence at 0 mod ℓ for any prime ℓ ≥ 13 is

∑

primes ℓ≥13

P
(
ℓ,
ℓ2 − 1

2
, 1

)
≈ 0.014 . . . .

We surmise that it would have been somewhat surprising if the Ahlgren and Boylan result had

been false.

1.6 Applications of mock modular forms

A harmonic weak Maass form can be written as a sum of a holomorphic part and a nonholomorphic

part, essentially an integral of a modular form which is called the shadow. Bringmann and Lovejoy

[10], Bringmann, Ono, and Rhoades [13], and Bringmann [9] have found Maass forms whose holo-

morphic parts are related to the overpartition rank, the M2-rank for partitions without repeated

odd parts, and the full rank of 2-marked Durfee symbols. Zagier [47, Section 5] formulates a general

principle (which is used in [10], [13] and [9]) to produce weakly holomorphic modular forms from

Maass forms. Extracting an arithmetic progression of exponents which does not intersect the sup-

port of the shadow yields a modular form. The current work is focused on arithmetic progressions

for which Zagier’s principle does not apply. We study the Maass forms of [10], [13] and [9] and

10



compute their nonholomorphic parts explicitly. Linear relations among these nonholomorphic parts

imply that the corresponding generating functions are in fact weakly holomorphic modular forms.

(Similar work was carried out in [3] for the rank of usual partitions.) This provides a framework

for a general phenomenon, special cases of which are illustrated in recent works by Lovejoy and

Osburn [31, 32] who showed that certain rank difference generating functions modulo t = 3 and 5

are weakly holomorphic modular forms. We determine the modularity properties of rank difference

functions for all primes t ≥ 5 (and in principle for most composites too) and for more complicated

combinations of the rank functions.

Recall that an overpartition of n is a partition in which the first appearance of a part may be

overlined. The rank of an overpartition is the largest part minus the number of parts. Let p(n) be

the number of overpartitions of n and N(r, t, n) be the number of overpartitions of n whose rank

is congruent to r mod t. Bringmann and Lovejoy [10] show that

∞∑

n=0

(
N(r, t, n) − 1

t
p(n)

)
qn (1.6.1)

is the holomorphic part of a weak Maass form. Define the rank difference function

Rrs(d) =
∑

n≡d(t)

(
N(r, t, n) −N(s, t, n)

)
qn. (1.6.2)

Lovejoy and Osburn [31] compute closed forms of such functions for t = 3 and 5. From their

computations, it is clear that some of these Rrs(d) are weakly holomorphic modular forms. Using

the fact that the nonholomorphic part corresponding to (1.6.2) is supported on terms whose expo-

nents are negative squares, Bringmann and Lovejoy [10] show that Rrs(d) is a weakly holomorphic

modular form when
(
−d
t

)
= −1. We determine exactly when it is a modular form in the other half

of the cases. (Recall that by conjugation [29], N(r, t, n) = N(t− r, t, n).)

Theorem 1.17. Let t ≥ 5 be prime and 0 ≤ s < r ≤ t−1
2 . If

(
−d
t

)
= −1, then Rrs(d) is a weight

1
2 weakly holomorphic modular form on Γ1(16t

3). Otherwise, let d′ be such that d′2 ≡ −d mod t

and 0 ≤ d′ ≤ t−1
2 . Then Rrs(d) is a weakly holomorphic modular form exactly when one of the

following is true:

1. s > 2d′ or s > t− 2d′,

2. 2|r − s, r < 2d′, and r < t− 2d′.

In the cases t = 3, 5, Lovejoy and Osburn’s [31] closed forms for those Rrs(d) which are not

modular contain (non-modular) Lambert series. For fixed d, these Lambert series are integer

multiples of each other. We show that this is a general phenomenon. For any t ≥ 3, in those cases

when Rrs(d) is not itself a weakly holomorphic modular form, it differs from one by a multiple of

a fixed mock modular form which is independent of r and s. By mock modular form we mean the

holomorphic part of a weak Maass form.
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Theorem 1.18. Suppose that t ≥ 5 is prime and that 0 ≤ d < t. There is a fixed mock modular

form Fd,t such that for every pair (r, s) there is an integer −4 ≤ n ≤ 4 such that Rrs(d) − nFd,t is

a weight 1
2 weakly holomorphic modular form on Γ1(16t

3).

As an example for t = 17, although neither R26(8) nor R67(8) are modular, their difference is.

Analogous statements for non-prime t are also possible. Our key Theorems 7.3, 7.5, and 7.8

hold for composite t. In addition, the modularity of arbitrary linear combinations of (1.6.1), along

with (1.6.3) and (1.6.5) to follow, may be determined precisely using these key theorems.

The M2-rank of a partition λ without repeated odd parts is ⌈l(λ)/2⌉ − n(λ), where l(λ) is the

largest part and n(λ) is the number of parts. Let N2(n) denote the number of such partitions and

let N2(r, t, n) be the number of such partitions with rank congruent to r mod t. Details of the

M2-rank can be found in [32]. It follows from a result of Bringmann, Ono and Rhoades [9, Theorem

4.2] that the M2-rank generating function,

∞∑

n=0

(
N2(r, t, n) − 1

t
N2(n)

)
q8n−1 (1.6.3)

is the holomorphic part of a weak Maass form. We show that the nonholomorphic part differs

from that corresponding to the usual partition rank generating function by a twist. Hence, we

find relations analogous to [3]. Lovejoy and Osburn [32] have also found closed forms for the rank

differences

Trs(d) =
∑

n≡d mod t

(N2(r, t, n) −N2(s, t, n)) q8n−1 (1.6.4)

for t = 3 and 5. The modularity of these functions for arbitrary t is described by the following

theorem, where ft := 2t/ gcd(t, 4).

Theorem 1.19. For any t ≥ 2 and any r and s, Trs(d) is a weight 1
2 weakly holomorphic modular

form on Γ1(2
10f4

t t) exactly when 8d− 1 6≡ −(2r ± 1)2,−(2s± 1)2 mod t.

There is also an analogue of Theorem 1.18.

Theorem 1.20. Suppose that t ≥ 2 is prime and that 0 ≤ d < t. There is a fixed mock modular

form Fd,t such that for every pair (r, s) there is an integer −3 ≤ n ≤ 3 such that Trs(d) − nFd,t is

a weight 1
2 weakly holomorphic modular form on Γ1(2

10f4
t t).

For example, if t = 17 then T01(0) is not modular, but T01(0) + 3T15(0) is. We may take

F0,17 = T15(0).

To define the 2-marked Durfee symbol, we first recall that the Durfee square of a partition is the

largest square of nodes in the Ferrers graph. The Durfee symbol consists of two rows of numbers,

plus a subscript. The first row describes the columns to the right of the Durfee square, while the

second row describes the rows below the Durfee square. The subscript indicates the side length of
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the Durfee square. For example,

(
3 1 1

2 1

)

4

is a partition of 42 + 3 + 1 + 1 + 2 + 1 = 24. In a 2-marked Durfee symbol each entry is labelled

with a subscript of either 1 or 2 according to the rules:

1. The sequence of parts and the sequence of subscripts in each row are non-increasing.

2. The subscript 1 occurs in the first row.

3. If M is the largest part in the first row with subscript 1, then all parts in the second row with

subscript 1 lie in [1,M ], and with subscript 2 lie in [M ,S], where S is the side length of the

Durfee square.

For a 2-marked Durfee symbol δ, define the full rank FR(δ) by

FR(δ) := ρ1(δ) + 2ρ2(δ)

where

ρi(δ) :=




τi(δ) − βi(δ) − 1 for i = 1,

τi(δ) − βi(δ) for i = 2,

with τi(δ) and βi(δ) denoting the number of entries in the top and bottom rows, respectively, of

δ with subscript i. Let NF2(m,n) denote the number of 2-marked Durfee symbols for n with

full rank m. Let NF2(r, t, n) denote the number of 2-marked Durfee symbols for n with full rank

congruent to r mod t. Finally, let D2(n) denote the number of 2-marked Durfee symbols related

to n. Bringmann [9, Theorem 1.1] showed that there is a weak Maass form whose holomorphic

part contains the generating function for 2-marked Durfee symbols. Using work of Bringmann and

Ono on the partition function [12], in Section 5 we explicitly compute the nonholomorphic part of

a Maass form whose holomorphic part is

∞∑

n=0

(
NF2(r, t, n) − 1

t
D2(n)

)
q24n−1. (1.6.5)

This is the most complicated example of the three we consider. The contrast between the examples

in each of the last three sections of this thesis illustrates the varying complexity of some of these

counting functions.
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CHAPTER 2

PRELIMINARIES

Throughout this thesis, N = 1 or 4. This will always indicate the level of a congruence subgroup.

Furthermore, ℓ ∈ Z will always denote a prime. Unless explicitly noted otherwise, we always take

ℓ ≥ 5. This chapter contains definitions and background required in the rest of this thesis. It is

adapted from [19, 20].

2.1 Modular forms over C and Z(ℓ)

As usual,

Γ1(N) :=

{(
a b

c d

)
∈ SL2 (Z)

∣∣∣∣∣
a ≡ d ≡ 1 mod N,

c ≡ 0 mod N

}
.

Elements of SL2 (Z) act on H = H ∪ Q ∪ {∞} via fractional linear transformations:

(
a b

c d

)
: H → H

τ 7→ aτ + b

cτ + d

and on meromorphic functions f : H → C via

f(τ)

∣∣∣∣∣
k

(
a b

c d

)
:= (cτ + d)−kf

(
aτ + b

cτ + d

)
.

Definition 2.1. A meromorphic modular form of integral weight k ∈ Z on Γ1(N) is a meromorphic

function f : H → C such that for all

(
a b

c d

)
∈ Γ1(N) we have

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

and such that f is meromorphic at all of the cusps of Γ1(N). A meromorphic modular form is weakly

holomorphic if it is holomorphic at all τ ∈ H. A meromorphic modular form is a holomorphic
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modular form, or simply a modular form, if it is holomorphic at all τ ∈ H and at all cusps.

Let Mk (Γ1(N),C) denote the space of all weight k (holomorphic) modular forms on Γ1(N). Let

M !
k (Γ1(N),C) denote the space of all weight k weakly holomorphic modular forms on Γ1(N).

To recall the definition of half-integral weight modular forms, we need the following notation.

Define
(

c
d

)
as follows. If d is an odd prime, then let

(
c
d

)
be the usual Legendre symbol. For positive

odd d, extend the definition of
(

c
d

)
multiplicatively. For negative odd d, let

( c
d

)
:=





(
c
|d|

)
if d < 0 and c > 0,

−
(

c
|d|

)
if d < 0 and c < 0.

Also, let
(

0
±1

)
= 1. For odd d, define

ǫd :=





1 if d ≡ 1 mod 4,

i if d ≡ 3 mod 4.

Definition 2.2. Suppose that 0 ≤ λ ∈ Z. A meromorphic modular form of half-integral weight

λ+ 1
2 on Γ1(4) is a meromorphic function f : H → C such that for all

(
a b

c d

)
∈ Γ1(4) we have

f

(
aτ + b

cτ + d

)
=
( c
d

)2λ+1
ǫ−1−2λ
d (cτ + d)λ+ 1

2 f(τ)

and such that f is meromorphic at the cusps 0, 1
2 and 1. Let Mλ+ 1

2
(Γ1(N),C) denote the space of

all weight λ+ 1
2 (holomorphic) modular forms on Γ1(N).

Any f(τ) ∈ Mk (Γ1(N),C) has a Fourier expansion f(τ) =
∑∞

n=0 a(n)qn where q = e2πiτ with

τ ∈ H, and a(n) ∈ C. We identify a modular form with its Fourier expansion at infinity. For any

prime ℓ, let

Z(ℓ) :=

{
r

s
∈ Q

∣∣∣∣ℓ ∤ s

}

denote the localization of Z at the prime ideal ℓZ. We write

Mk

(
Γ1(N),Z(ℓ)

)
:= Mk (Γ1(N),C) ∩ Z(ℓ)[[q]]

for the Z(ℓ)-module of level N , holomorphic modular forms with rational, ℓ-integral coefficients.

More generally, if R is any subring of C then define

Mk (Γ1(N), R) := Mk (Γ1(N),C) ∩R[[q]].

Definition 2.3. Let ℓ be prime. We say that a(n) : Z → Z(ℓ) has a Ramanujan congruence at b
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mod ℓ if for all n ∈ Z we have

a(ℓn+ b) ≡ 0 mod ℓ.

We say that a Laurent series
∑
a(n)qn ∈ Z(ℓ)[[q]] has a Ramanujan congruence at b mod ℓ if a(n)

has a Ramanujan congruence at b mod ℓ.

2.2 Basic examples of modular forms

We recall some well-known modular forms which we will need in the sequel. Let σk−1(n) =
∑

d|n d
k−1 and define the Bernoulli numbers Bk via t

et−1 =
∑∞

k=0Bk
tk

k! . For k ≥ 4 even, recall

the Eisenstein series

Ek(τ) = 1 − 2k

Bk

∞∑

k=1

σk−1(n)qn ∈Mk (Γ1(1),Q) .

Eisenstein series generate the space of level one modular forms, i.e.

Mk (Γ1(1),C) = 〈Ei
4E

j
6〉4i+6j=k

The weight 2 Eisenstein series E2 plays a special role in the theory. It is called quasi-modular and

it satisfies the slightly different transformation rule

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) −

6ic

π
(cτ + d).

Let η(τ) := q1/24
∏∞

n=1(1 − qn) and recall that

∆(τ) :=
E3

4(τ) − E2
6(τ)

1728

= η24(τ)

=

∞∑

n=1

τ(n)qn ∈M12 (Γ1(1),Z) .

Level one modular forms of even integral weight k ≥ 0 have a particularly nice basis. Write

k = 12r + s where s = 0, 4, 6, 8, 10, or 14. Then

Mk (Γ1(1),C) = 〈EsE
2r−2i
6 ∆i〉ri=0. (2.2.1)

The salient features of the basis vectors

EsE
2r−2i
6 ∆i = qi + · · · ∈ Z[[q]]

16



are that they have distinct orders at ∞ and that the coefficients are all integral.

Three important modular forms of level four are

E(τ) :=
η8(τ)

η4(2τ)
∈M2 (Γ1(4),Z) ,

F (τ) :=
η8(4τ)

η4(2τ)
=
∑

n≥0

σ1(2n + 1)q2n+1 ∈M2 (Γ1(4),Z) ,

θ2
0(τ) :=

η10(2τ)

η4(τ)η4(4τ)
=

(
∑

n∈Z

qn2

)2

∈M1 (Γ1(4),Z) .

Let ψ(τ) =
∑∞

j=0 q
(j+1/2)2 . The expansions of F and θ2

0 at the cusps 1
2 and 0 are

F (τ)|2
(

1 0

2 1

)
= θ4

0(τ) ∈ Z(ℓ)[[q]],

θ2
0(τ)|1

(
1 0

2 1

)
= ψ2(τ) ∈ Z(ℓ)[[q

1/2]],

and

F (τ)|2
(

0 −1

1 0

)
= − 1

64

η8(τ/4)

η4(τ/2)
∈ Z(ℓ)[[q

1/4]],

θ2
0(τ)|1

(
0 −1

1 0

)
= − i

2
θ2
0(τ/4) ∈ iZ(ℓ)[[q

1/4]],

Remark 2.4. Let f ∈Mk

(
Γ1(4),Z(ℓ)

)
be non-zero where k ∈ Z. Then

f ∈Mk(Γ1(4),C) = Mk(Γ0(4), χ
k
−1,C)

and the valence formula for Γ0(4) shows that the total number of zeros of f is

k

12
[Γ0(1) : Γ0(4)] =

k

2
.

In particular ord0 f + ord1/2 f + ord∞ f ≤ k/2 with equality exactly when f is non-vanishing on

the upper half plane.

Note that ord0(E) = 1, ord∞(F ) = 1, ord1/2(θ
2
0) = 1/2, and that these are the only zeros of

these forms.

Since dimMk (Γ1(4),C) = 1 + ⌊k/2⌋, one sees that

M2k (Γ1(4),C) = 〈Ek−iF i〉i=0,1,...,k, (2.2.2)

M2k+1 (Γ1(4),C) = θ2
0〈Ek−iF i〉i=0,1,...,k,
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where for each 0 ≤ i ≤ k we have

Ek−iF i = qi + · · · ∈ Z[[q]],

θ2
0E

k−iF i = qi + · · · ∈ Z[[q]].

In particular, these have the same salient properties (distinct orders at infinity and integral coef-

ficients) as the basis (2.2.1). In Chapter 4 we shall construct more nuanced bases with specified

orders of vanishing at the cusps of Γ1(4).

2.3 Modular forms over Fℓ

Let Mk (Γ1(N),Fℓ) be the Fℓ-vector space obtained via coefficient-wise reduction modulo ℓ of every

form in Mk

(
Γ1(N),Z(ℓ)

)
. That is,

Mk (Γ1(N),Fℓ) :=

{∑
a(n)qn ∈ Fℓ[[q]]

∣∣∣∣ ∃f ∈Mk

(
Γ1(N),Z(ℓ)

)
with

∑
a(n)qn ≡ f mod ℓ

}
.

If f ∈ Z(ℓ)[[q]], then denote its reduction modulo ℓ by

(f mod ℓ) ∈ Fℓ[[q]]

or

f ∈ Fℓ[[q]].

Our point of view is that Mk (Γ1(N),Fℓ) is a distinguished subset of Fℓ[[q]]. In other words, elements

of Mk (Γ1(N),Fℓ) do not “remember” which form they came from. For any f ∈ Mk (Γ1(N),Fℓ),

there is an equivalence class of forms in Mk

(
Γ1(N),Z(ℓ)

)
which reduce to f , however f is not itself

that equivalence class.

Lemma 2.5. For any 0 ≤ k ∈ Z and any prime ℓ ≥ 5, we have

dimC Mk (Γ1(N),C) = dimFℓ
Mk (Γ1(N),Fℓ) .

Proof. Depending on the level N = 1 or 4, the basis (2.2.1) or (2.2.2) reduces to a linearly inde-

pendent set over Fℓ. Hence dimCMk (Γ1(N),C) ≤ dimFℓ
Mk (Γ1(N),Fℓ). The reverse inequality is

obvious from the definition of Mk (Γ1(N),Fℓ).

For details on the statements contained in this paragraph, see Swinnerton-Dyer [45]. The
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Kummer congruences imply that Eℓ−1, Eℓ+1 ∈Mk

(
Γ1(N),Z(ℓ)

)
and furthermore that

Eℓ−1 = 1,

Eℓ+1 = E2.

There are polynomials A(Q,R), B(Q,R) ∈ Z(ℓ)[Q,R] such that

A(E4, E6) = Eℓ−1,

B(E4, E6) = Eℓ+1.

Reduce the coefficients of these polynomials modulo ℓ to get A,B ∈ Fℓ[Q,R]. Then A has no

repeated factor and is prime to B. Furthermore, there is a natural isomorphism of Fℓ-algebras

Fℓ[Q,R]

A− 1
≃

∞⊕

k=0

Mk (Γ1(1),Fℓ) (2.3.1)

via Q→ E4 and R→ E6.

In a similar fashion, Tupan [46] proves that there is a polynomial C(X,Y ) ∈ Z(ℓ)[X,Y ] such

that C(θ4
0, F ) = Eℓ−1, and further provides an explicit structural isomorphism showing

Fℓ[X,Y ]

C(X4, Y ) − 1
≃

⊕

0≤k∈ 1
2

Z

Mk (Γ1(4),Fℓ) (2.3.2)

via X → θ0 and Y → F . Combining these two situations, we see that in both level N = 1 or 4, if

f ∈Mk (Γ1(N),Fℓ) then

f = Eℓ−1f ∈Mk+ℓ−1 (Γ1(N),Fℓ) .

Lemma 2.6. Suppose f ∈ Mk1 (Γ1(N),Fℓ) and g ∈ Mk2 (Γ1(N),Fℓ). If f = g 6= 0 then k1 ≡ k2

mod ℓ− 1.

Thus multiplication by Eℓ−1 give a chain of vector space inclusions

Mk (Γ1(N),Fℓ) ≤Mk+ℓ−1 (Γ1(N),Fℓ) ≤Mk+2(ℓ−1) (Γ1(N),Fℓ) ≤Mk+3(ℓ−1) (Γ1(N),Fℓ) ≤ · · · .

When we would like to emphasize that Mk (Γ1(N),Fℓ) ≤ Mk+ℓ−1 (Γ1(N),Fℓ), we may write

Eℓ−1Mk (Γ1(N),Fℓ) ≤Mk+ℓ−1 (Γ1(N),Fℓ).

For f =
∑∞

n=0 a(n)qn ∈Mk (Γ1(N),Fℓ), we define the filtration

ω
(
f
)

:= inf
{
k′ : f ∈Mk′ (Γ1(N),Fℓ)

}
.

If f ∈Mk

(
Γ1(N),Z(ℓ)

)
reduces to f , then ω (f) := ω

(
f
)
. For f =

∑∞
n=0 a(n)qn ∈Mk (Γ1(N),Fℓ),
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we also define the order at the infinite cusp

ord∞

(
f
)

:= inf {n : a(n) 6≡ 0 mod ℓ} .

When N = 4, we define the order of f at the cusps 1/2 and 0 as follows. Choose any f ∈

Mk

(
Γ1(4),Z(ℓ)

)
such that f reduces to f . Write f |k

(
1 0

2 1

)
=
∑∞

n=0 b(n/2)q
n/2 and f |k

(
0 −1

1 0

)
=

ik
∑∞

n=0 c(n)qn/4 and define

ord1/2

(
f
)

:= inf {n/2 : b(n/2) 6≡ 0 mod ℓ}
ord0

(
f
)

:= inf {n : c(n) 6≡ 0 mod ℓ} .

It follows that for any of the cusps s we have

ords

(
f
)
≥ ords (f) . (2.3.3)

Remark 2.7. For any cusp s, ords

(
f
)

is well-defined in the sense that if a power series
∑
a(n)qn ∈

Fℓ[[q]] is congruent to both f(τ) ∈ Mk

(
Γ1(4),Z(ℓ)

)
and g(τ) ∈ Mk+m(ℓ−1)

(
Γ1(4),Z(ℓ)

)
, then by

Lemma 2.6,

f(τ)Em
ℓ−1(τ) = g(τ) + ℓh(τ)

for some h(τ) ∈Mk+m(ℓ−1)

(
Γ1(4),Z(ℓ)

)
. Now

f(τ)Em
ℓ−1(τ)|k+m(ℓ−1)

(
1 0

2 1

)
= f(τ)|k

(
1 0

2 1

)
Em

ℓ−1(τ)

≡ f(τ)|k
(

1 0

2 1

)
mod ℓ

and

(g(τ) + ℓh(τ))|k+m(ℓ−1)

(
1 0

2 1

)
= g(τ)|k+m(ℓ−1)

(
1 0

2 1

)
+ ℓh(τ)|k+m(ℓ−1)

(
1 0

2 1

)

≡ g(τ)|k+m(ℓ−1)

(
1 0

2 1

)
mod ℓ.

The situation for the cusp 0 is similar.

Define Uℓ on power series by

(∑
a(n)qn

)
|Uℓ =

∑
a(ℓn)qn.

Lemma 2.8. If f ∈Mk (Γ1(N),Fℓ), then f |Uℓ ∈Mk (Γ1(N),Fℓ)
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Proof. Working modulo ℓ, we have f |Uℓ = f |Tℓ where Tℓ is a Hecke operator which is well known

to map Mk

(
Γ1(N),Z(ℓ)

)
→Mk

(
Γ1(N),Z(ℓ)

)
.

2.4 Ramanujan’s differential operator

Define the operator

Θ :=
1

2πi

d

dτ
= q

d

dq
.

Although it does not map modular forms to modular forms, if f ∈ Mk

(
Γ1(N),Z(ℓ)

)
then 12Θf −

kE2f ∈Mk+2

(
Γ1(N),Z(ℓ)

)
. Along these lines, define

R(f) :=

(
Θf − k

12
E2f

)
Eℓ−1 +

k

12
Eℓ+1f ∈Mk+ℓ+1

(
Γ1(N),Z(ℓ)

)
, (2.4.1)

so that R(f) = Θf . The definition of R(f) implicitly depends on the weight of f . We recursively

define

Rf
1 := R(f),

Rf
i := R(Rf

i−1) ∈Mk+i(ℓ+1)

(
Γ1(N),Z(ℓ)

)
,

so that

Rf
i = Θif. (2.4.2)

A short computation (for example [42] Lemma 4.2) shows that

R(f)|k+ℓ+1γ =

(
Θ(f |kγ) −

k

12
E2(f |kγ)

)
Eℓ−1 +

k

12
Eℓ+1(f |kγ)

= R(f |kγ).
(2.4.3)

Lemma 2.9. If f ∈ Mk

(
Γ1(4),Z(ℓ)

)
, then for every cusp s ∈ {0, 1/2,∞} and i ≥ 1, we have

ords

(
Rf

i

)
≥ ords(f).

Proof. First recall that for k ≥ 2, Ek = 1 + O(q). Hence ord∞Ek = 0. For the cusp s = ∞, by

(2.4.1), we have

ord∞(R(f)) ≥ min{ord∞(Θf), ord∞(f) + 1}
≥ ord∞(f).
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For the cusp s = 0, set γ =

(
0 −1

1 0

)
. By (2.4.3), we have

ord0(R(f)) = 4 ord∞ (R(f)|k+ℓ+1γ)

≥ 4min{ord∞(Θ(f |kγ)), ord∞(f |kγ) + 1}
≥ 4 ord∞(f |kγ)
= ord0(f).

Similarly ord1/2(R(f)) ≥ ord1/2(f). For all cusps s, iteration yields ords(R
f
i ) ≥ ords(f). Equation

(2.3.3) gives the conclusion.

Lemmas 2.10 and 2.11 below are due to Swinnerton-Dyer [45] who proved the statements for

level N = 1. The generalization to level N = 4 may be found in, for example, [2].

Lemma 2.10. Suppose N = 1 or 4, that ℓ ≥ 5 is prime, and f ∈Mk (Γ1(N),Fℓ). Then

ω (Θf) ≤ ω (f) + ℓ+ 1 (2.4.4)

with equality if and only if ω(f) 6≡ 0 mod ℓ. Furthermore, if Θf 6≡ 0 mod ℓ then there is an s ≥ 0

such that

ω (Θf) = ω (f) + ℓ+ 1 − s (ℓ− 1) . (2.4.5)

and we have s = 0 if and only if ω
(
f
)
≡ 0 mod ℓ.

Proof. By Equation (2.4.1) we see that (2.4.4) holds. The statement about equality follows from the

explicit isomorphisms (2.3.1) and (2.3.2). Lemma 2.6 shows that the statement about s holds.

We also have:

Lemma 2.11. Suppose N = 1 or 4. For all i ≥ 1, we have ω
(
f

i
)

= iω
(
f
)
.

The following lemma follows from (2.3.1) and (2.3.2).

Lemma 2.12. Suppose ℓ ≥ 5 is prime, N = 1 or 4, k ∈ Z, f, g ∈ Mk, and ω(f) < ω(g). Then

ω(f + g) = ω(g).
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CHAPTER 3

THE TATE CYCLE

In this chapter we work exclusively in characteristic ℓ ≥ 5. All equalities of (reduced) modular

forms are in the ring Fℓ[[q]]. To ease the notation, we drop the tildes from f ∈ Mk (Γ1(N),Fℓ).

The material in this chapter has appeared in [19] and [20]. Sections 3.1 and 3.2 contain technical

machinery used in all of the author’s work on Ramanujan congruences. Section 3.3 contains the

main result of [20].

3.1 The Tate cycle

Consider the action of Θ on f =
∑

n≥0 a(n)qn ∈Mk

(
Γ1(N),Z(ℓ)

)
. We have

Θf ≡
∑

n≥0

a(n)nqn ≡
∑

ℓ∤n

a(n)nqn mod ℓ.

Thus the coefficients of the image Θf always vanish along the arithmetic progression a(nℓ+ 0) ≡ 0

mod ℓ. For future reference we package this into a remark.

Remark 3.1. For any f ∈Mk

(
Γ1(N),Z(ℓ)

)
, the form Θf has a Ramanujan congruence at 0 mod ℓ.

Fermat’s little theorem easily implies that for any f =
∑
a(n)qn ∈Mk

(
Γ1(N),Z(ℓ)

)
, we have

Θℓf ≡
∑

a(n)nℓqn ≡
∑

a(n)nqn ≡ Θf mod ℓ

and

Θℓ−1f ≡
∑

a(n)nℓ−1qn ≡
∑

ℓ∤n

a(n)qn mod ℓ. (3.1.1)

Thus for all i ≥ 1, we have Θi+ℓ−1f = Θif . We say that the sequence Θf,Θ2f, . . . ,Θℓ−1f is the

Tate cycle of f . Note that f itself is not necessarily in its own Tate cycle. In light of Remark 3.1,

the only way that we can have f ∈
{

Θf,Θ2f, . . . ,Θℓ−1f
}

is if f has a Ramanujan congruence at

0 mod ℓ. Furthermore, by (3.1.1) we see that f will be in its Tate cycle if and only if Θℓ−1f = f .

We expand on these remarks slightly in the following lemma.
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Lemma 3.2. Let N = 1 or 4 and ℓ ≥ 5 be prime. Let f =
∑
a(n)qn ∈ Mk

(
Γ1(N),Z(ℓ)

)
. The

following are equivalent:

(1) The form f has a Ramanujan congruence at 0 mod ℓ.

(2) The form f is in its own Tate cycle.

(3) We have Θℓ−1f = f .

(4) We have f |Uℓ = 0.

Furthermore, (f |Uℓ)
ℓ = f − Θℓ−1f .

Proof. Notice that

f − Θℓ−1f ≡
∑

n∈Z

a(n)qn −
∑

ℓ∤n

a(n)qn ≡
∑

ℓ|n

a(n)qn ≡
∑

n∈Z

a(nℓ)qnℓ mod ℓ

≡
(
∑

n∈Z

a(nℓ)qn

)ℓ

≡
(
f
∣∣Uℓ

)ℓ
mod ℓ.

Hence, (3) and (4) are equivalent and the “furthermore” statement is true. Moreover, (1), (2), and

(3) are equivalent by the remarks in the paragraph before the statement of Lemma 3.2.

With s ≥ 0 as in Lemma 2.10, we have

ω (Θf) ≡




ω(f) + 1 mod ℓ if ω(f) 6≡ 0 mod ℓ

s+ 1 mod ℓ if ω(f) ≡ 0 mod ℓ

and so by Lemma 2.10 the filtration usually rises by ℓ+1 at each step of the Tate cycle. Occasionally,

the filtration will fall. If i is such that ω(Θi+1f) < ω(Θif) + ℓ+ 1, then call Θif a high point and

Θi+1f a low point of the Tate cycle. An analysis as in Jochnowitz [24, Section 7] gives the following

lemma which characterizes the rise-and-fall pattern of the filtration in the Tate cycle.

Lemma 3.3. Let ℓ ≥ 5 be prime and A,B ∈ Z with 1 ≤ B ≤ ℓ. If f ∈ MAℓ+B

(
Γ1(N),Z(ℓ)

)
is in

its own Tate cycle with ω(f) = Aℓ+B ∈ Z , then Θf 6= 0. Furthermore:

(1) We have B 6= 1.

(2) The Tate cycle has a single low point if and only if some term in the cycle (which will be the

low point) has filtration congruent to 2 modulo ℓ.

(3) Either there is one low point in the Tate cycle or there are two low points in the Tate cycle.

(4) For all j ≥ 1 we have ω
(
Θj+1f

)
6= ω

(
Θjf

)
+ 2.
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(5) If f is a low point of its Tate cycle and if there are two low points, then the first high point has

filtration

ω(Θℓ−Bf) = (A−B + ℓ+ 1)ℓ,

the other low point has filtration

ω
(
Θℓ−B+1f

)
= Aℓ+ (ℓ+ 3 −B),

and the last high point has filtration

ω
(
Θℓ−2f

)
= (A+B − 2)ℓ.

Proof. Since ω(f) = Aℓ + B 6= −∞, we deduce f 6≡ 0. Since f is in its own Tate cycle, 0 6≡ f ≡
Θℓ−1f mod ℓ and so Θf 6≡ 0 mod ℓ.

(1) If ω (f) ≡ 1 mod ℓ, then by Lemma 2.10, for 0 ≤ i ≤ ℓ− 1 we have

ω(Θif) = ω(f) + i(ℓ+ 1) ≡ 1 + i mod ℓ.

That is, ω(f) < ω(Θf) < · · · < ω(Θℓ−1) and so f 6= Θℓ−1f .

(2) If some point g of a Tate cycle has ω(g) ≡ 2 mod ℓ, then by Lemma 2.10, for 0 ≤ i ≤ ℓ− 2

we have ω(Θig) = ω(g) + i(ℓ+ 1) ≡ 2 + i mod ℓ. Then g, . . . ,Θℓ−2g are ℓ− 1 distinct elements of

the cycle. Hence, the next iteration must be Θℓ−1g = g. Therefore g is a low point and there are

no other low points. Conversely, if there is only one drop, then there must be ℓ− 2 increases in the

filtration before the single fall. Then by Lemma 2.10 the low point must have filtration 2 mod ℓ.

Note that in the case of a single drop in filtration, the s in (2.4.5) is s = ℓ+ 1.

(3) Suppose there is more than one high point. Let g denote a low point of the Tate cycle of

f and label the high points Θi1g, . . . ,Θitg where t ≥ 2. Then since g = Θℓ−1g is a low point, we

have it = ℓ− 2. In order to examine the change in filtration between consecutive high points, it is

convenient to let it+1 = i1 + ℓ− 1. By Lemma 2.10 and part (2) above, for each 1 ≤ j ≤ t we have

sj ≥ 2 such that

ω(Θij+1g) = ω(Θijg) + ℓ+ 1 − sj(ℓ− 1) ≡ 1 + sj mod ℓ.

Then ij+1 − ij ≡ −sj mod ℓ. Considering the full Tate cycle,

ω(g) = ω(Θℓ−1g) = ω(g) + (ℓ− 1)(ℓ+ 1) −
t∑

j=1

sj(ℓ− 1)

and so we see that
∑
sj = ℓ+ 1. Since t ≥ 2, for 1 ≤ j ≤ t we deduce ij+1 − ij = ℓ− sj from the

previous congruence. Now ℓ− 1 =
∑t

j=1(ij+1 − ij) = tℓ−∑ sj = tℓ− (ℓ+ 1) which implies t = 2.
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(4) By Lemma 2.10, ω(Θj+1f) = ω(Θjf) + 2 implies ω(Θjf) ≡ 0 mod ℓ. Then ω(Θj+1f) ≡ 2

mod ℓ. As in the proof of part (2), the filtration increases ℓ− 2 more times before falling. Hence

ω(Θj+1+ℓ−2f) > ω(Θjf) and so Θjf 6= Θj+ℓ−1f which implies Θjf is not in its Tate cycle, a

contradiction.

(5) This part simply collects what we already know. We use the notation from the proof of

part (3) above. Since ω(f) ≡ B mod ℓ, by Lemma 2.10, i1 = ℓ−B. The values of sj are found by

recalling s1 + s2 = ℓ+ 1 and i2 − i1 = ℓ− s1 from the proof of part (3). Lemma 2.10 provides the

filtrations.

Remark 3.4. By part (5) of the above lemma, if f is a low point of its Tate cycle, it will be the

lowest of two low points exactly when 3 ≤ B ≤ ℓ and

B < ℓ+ 3 −B

or equivalently when 3 ≤ B < ℓ+3
2 . If f is a low point with B = ℓ+3

2 then both low points have

the same filtration. Conversely, if f is one of two low points, each with the same filtration, then

B = ℓ+3
2 .

3.2 A reformulation of Ramanujan congruences

The following wonderful lemma has been extracted from the proof of Proposition 3 of Kiming and

Olsson [26].

Lemma 3.5. Let N = 1 or 4 and ℓ ≥ 5 be prime. A modular form f ∈ Mk

(
Γ1(N),Z(ℓ)

)
with

Θf 6= 0 has a congruence at b 6≡ 0 mod ℓ if and only if Θ
ℓ+1
2 f ≡ −

(
b
ℓ

)
Θf mod ℓ.

Proof. Note that
(ℓ−1

i

)
≡ (−1)ℓ−1−i mod ℓ. Since Θ satisfies the product rule,

Θℓ−1
(
q−bf

)
≡

ℓ−1∑

i=0

(
ℓ− 1

i

)
(−b)ℓ−1−iq−bΘif mod ℓ

≡
ℓ−1∑

i=0

bℓ−1−iq−bΘif mod ℓ

≡ bℓ−1q−bf +

ℓ−1∑

i=1

bℓ−1−iq−bΘif mod ℓ.

A congruence at b 6≡ 0 mod ℓ is thus equivalent to 0 ≡ ∑ℓ−1
i=1 b

ℓ−1−iq−bΘif mod ℓ, and hence to

0 ≡∑ℓ−1
i=1 b

ℓ−1−iΘif mod ℓ. By Lemma 2.10, for 1 ≤ i ≤ ℓ−1
2 we have

ω(Θif) ≡ ω(Θi+ ℓ−1
2 f) ≡ ω(f) + 2i mod ℓ− 1.
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By Lemma 2.10 and by (2.3.1) or (2.3.2) as appropriate, the only way for the given sum to be zero

is if for all 1 ≤ i ≤ ℓ−1
2 ,

bℓ−1−iΘif + bℓ−1−(i+ ℓ−1
2

)Θi+ ℓ−1
2 f ≡ 0 mod ℓ,

which happens if and only if for each i

Θi+ ℓ−1
2 f ≡ −b ℓ−1

2 Θif ≡ −
(
b

ℓ

)
Θif mod ℓ

which happens if and only if

Θ
ℓ+1
2 f ≡ −

(
b

ℓ

)
Θf mod ℓ.

Remark 3.6. By the previous lemma, if f ∈ Mk

(
Γ1(N),Z(ℓ)

)
has a Ramanujan congruence at b

mod ℓ, then it has a Ramanujan congruence at all c mod ℓ such that
(

c
ℓ

)
=
(

b
ℓ

)
.

We now take a brief diversion from the main theory to explain a construction motivated by

Lemma 3.5 and Remark 3.6. For any f ∈Mk (Γ1(N),Fℓ) and any prime ℓ ≥ 5, set

f0 := f − Θℓ−1f ∈Mk+ℓ2−1 (Γ1(N),Fℓ) ,

f+1 :=
1

2

(
Θℓ−1f + Θ

ℓ−1
2 f
)
∈Mk+ℓ2−1 (Γ1(N),Fℓ) , (3.2.1)

f−1 :=
1

2

(
Θℓ−1f − Θ

ℓ−1
2 f
)
∈Mk+ℓ2−1 (Γ1(N),Fℓ) .

Clearly f = f0 + f+1 + f−1 and if f =
∑
a(n)qn, then for s = 0,±1, one finds that

fs =
∑

“

n
p

”

=s

a(n)qn. (3.2.2)

Hence fs has Ramanujan congruences at all b with
(

b
ℓ

)
6= s.

Example 3.7. Take ℓ = 11 and ∆ ∈M12 (Γ1(1),Z). Recall E4E6 ≡ 1 mod 11. Set

f0 := E33
4 + 10E22

6 ∈M132 (Γ1(1),Z) ,

f+1 := 5E33
4 + 5E24

4 E6
6 + 7E21

4 E8
6 + 5E15

4 E12
6 + 9E12

4 E14
6 + 2E9

4E
16
6 + 5E6

4E
18
6 + 6E22

6 ∈M132 (Γ1(1),Z) ,

f−1 := 5E33
4 + 6E24

4 E6
6 + 4E21

4 E8
6 + 7E15

4 E12
6 +E12

4 E14
6 + 9E9

4E
16
6 + 6E6

4E
18
6 + 6E22

6 ∈M132 (Γ1(1),Z) .

Although we have omitted the calculations which show that these fs match (3.2.1), it is easily
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checked that they sum to ∆:

f0 + f+1 + f−1

= 11E33
4 + 11E24

4 E6
6 + 11E21

4 E8
6 + 12E15

4 E12
6 + 10E12

4 E14
6 + 11E9

4E
16
6 + 11E6

4E
18
6 + 22E22

6

≡ E15
4 E12

6 −E12
4 E14

6 mod 11

≡ E3
4 − E2

6 mod 11

≡ ∆ mod 11.

Furthermore, the fs are supported on the appropriate arithmetic progressions:

f0 ≡ q11 + 9q22 + · · · mod 11,

f+1 ≡ q + 10q3 + 2q4 + q5 + 9q9 + 9q12 + 4q14 + 10q15 + 7q16 + 2q20 + 10q23 + · · · mod 11,

f−1 ≡ 9q2 + 2q6 + 9q7 + 9q10 + 4q13 + 9q17 + 4q18 + 2q21 + · · · mod 11.

Returning to the main line of development, the following lemmas illustrate how the existence

of Ramanujan congruences constrains the structure of the Tate cycle.

Lemma 3.8. Let ℓ ≥ 5 be prime, b 6≡ 0 mod ℓ, and k ∈ Z. Suppose f ∈ Mk

(
Γ1(N),Z(ℓ)

)
has

a Ramanujan congruence at b mod ℓ and Θf 6≡ 0 mod ℓ. Then the Tate cycle of f has two low

points. Furthermore, if Θif is a high point, then

ω(Θi+1f) = ω(Θif) + (ℓ+ 1) −
(
ℓ+ 1

2

)
(ℓ− 1) ≡ ℓ+ 3

2
mod ℓ.

Proof. By Lemma 3.5, ω (Θf) = ω(Θ
ℓ+1
2 f). Hence, the filtration is not monotonically increasing

between Θf and Θ
ℓ+1
2 f , so there must be a fall in filtration (and hence a low point) somewhere in

the first half of the Tate cycle. We also have ω(Θ
ℓ+1
2 f) = ω (Θf) = ω

(
Θℓf

)
and so by the same

reasoning there must be a low point somewhere in the second half of the Tate cycle. By Lemma 3.3,

there are exactly two low points in the Tate cycle. Lemma 2.10 gives

ω (Θf) = ω
(
Θ

ℓ+1
2 f
)

= ω (Θf) +

(
ℓ− 1

2

)
(ℓ+ 1) − s(ℓ− 1)

for some s ≥ 1. Hence s = ℓ+1
2 . By the same reasoning, the fall in filtration for the second half of

the Tate cycle must also have s = ℓ+1
2 . The lemma follows.

Lemma 3.9. Let ℓ ≥ 5 be prime and k ∈ Z. Suppose f ∈ Mk

(
Γ1(N),Z(ℓ)

)
has a Ramanujan

congruence at b 6≡ 0 mod ℓ. If ω(f) = Aℓ+B where 1 ≤ B ≤ ℓ− 1, then

ℓ+ 1

2
≤ B ≤ A+

ℓ+ 3

2
.

Proof. Since B 6= 0, we have ω(Θf) = (A+ 1)ℓ+ (B + 1). From the proof of Lemma 3.8, the Tate
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cycle has a high point before Θ
ℓ+1
2 f . By Lemma 3.8, the high point is Θif with 1 ≤ i ≤ ℓ−1

2 . Hence

we have

ω(Θif) = Aℓ+B + i(ℓ+ 1) ≡ B + i ≡ 0 mod ℓ.

Together with the restrictions on B and i, this congruence implies that B + i = ℓ and B ≥ ℓ+1
2 .

Also, by Lemma 2.10 the high point has filtration

ω(Θℓ−Bf) = ω(f) + (ℓ−B)(ℓ+ 1)

= (A+ ℓ−B + 1)ℓ.

Lemma 3.8 implies that the corresponding low point has filtration

ω(Θℓ−B+1f) =

(
A−B +

ℓ+ 3

2

)
ℓ+

(
ℓ+ 3

2

)
.

The fact that ω(Θℓ−B+1f) ≥ 0 implies the second inequality.

A consequence of the above lemma is that for any integral-weight, holomorphic modular form

with integral coefficients, there are only finitely many primes ℓ for which there are Ramanujan

congruences at some b mod ℓ.

Proof of Theorem 1.3. Suppose f ∈ Mk (Γ1(N),Z) has a Ramanujan congruence at b 6≡ 0 mod ℓ

where ℓ ≥ 5. Now k ≥ ω(f) = Aℓ + B ≥ B for some 0 ≤ B ≤ ℓ − 1. By the first inequality of

Lemma 3.9,

k ≥ B ≥ ℓ+ 1

2
.

The conclusion follows.

3.3 Ramanujan congruences in quotients of Eisenstein series

The theory of reduced modular forms can be applied to study congruences in certain Laurent series

which are not the Fourier series of a holomorphic, integral weight modular form.

Lemma 3.10. Suppose that ℓ is prime and that f =
∑
a(n)qn and g =

∑
c(n)qn ∈ Z(ℓ)((q)) with

g 6≡ 0 mod ℓ. The series f has a Ramanujan congruence at b mod ℓ if and only if the series fgℓ

has a Ramanujan congruence at b mod ℓ.

Proof. It suffices to consider the reductions modulo ℓ of the series

(∑
a(n)qn

)(∑
c(n)qℓn

)
≡
∑

n

(
∑

m

c(m)a(n − ℓm)

)
qn mod ℓ.
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If a(n) vanishes when n ≡ b mod ℓ, then the inner sum on the right hand side will also vanish

for n ≡ b mod ℓ. The converse follows via multiplication by (
∑
c(n)qn)−ℓ and a repetition of this

argument.

Lemma 3.11. Let a, b, c ≥ 0 be integers and let ℓ > 11 be prime. Then

ω(Ea
ℓ+1E

b
4E

c
6) = aℓ+ a+ 4b+ 6c.

Proof. Recall the polynomials A andB from Section 2.3. SinceEa
ℓ+1E

b
4E

c
6 ∈Maℓ+a+4b+6c

(
Γ1(1),Z(ℓ)

)
,

it suffices to show that A(Q,R) does not divide B(Q,R)aQbRc. However A has no repeated factors

and is prime to B and so it suffices to show that A does not divide QR. But QR has weight 10

and Eℓ−1 has weight ℓ− 1 > 10 so this is impossible.

If Θf ≡ 0 mod ℓ then the Tate cycle is trivial and the lemmas from the previous section are

not applicable. We dispense with this case now.

Lemma 3.12. Let f = Er
2E

s
4E

t
6 where r ≥ 0 and s, t ∈ Z. If ℓ is a prime such that Θf ≡ 0 mod ℓ

then either ℓ ≤ 13 or r ≡ s ≡ t ≡ 0 mod ℓ.

Example 3.13. We have Θ(E4E6) ≡ 0 mod ℓ for ℓ = 2, 3, 11.

Example 3.14. We have Θ(E144
2 E−15

4 E−14
6 ) ≡ 0 mod ℓ for ℓ = 2, 3, 5, 7, 13.

Note that Θf ≡ 0 mod ℓ is equivalent to f having Ramanujan congruences at all b 6≡ 0 mod ℓ.

Proof of Lemma 3.12. Assume ℓ ≥ 17 and expand f as a power series to get

f = 1 +
(
− 24r + 240s − 504t

)
q

+
(
288r2 − 5760rs + 12096rt− 360r + 28800s2

− 120960st − 26640s + 127008t2 − 143640t
)
q2 + · · · .

If Θf ≡ 0 mod ℓ, then the coefficients of q and q2 vanish modulo ℓ. That is,

−24r + 240s − 504t ≡ 0 mod ℓ, (3.3.1)

and

288r2 − 5760rs + 12096rt− 360r + 28800s2

− 120960st − 26640s + 127008t2 − 143640t ≡ 0 mod ℓ. (3.3.2)

The assumption Θf ≡ 0 mod ℓ is equivalent to the statement that f has Ramanujan congruences

at all b mod ℓ. Thus by Lemma 3.10, we have that Er
2E

s+ℓ|s|
4 E

t+ℓ|t|
6 has Ramanujan congruences
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at all b 6≡ 0 mod ℓ. Hence ΘEr
2E

s+ℓ|s|
4 E

t+ℓ|t|
6 ≡ 0 mod ℓ. By Lemmas 2.10 and 3.11 and the fact

that E2 ≡ Eℓ+1 mod ℓ, we have

ω(Er
ℓ+1E

s+ℓ|s|
4 E

t+ℓ|t|
6 ) ≡ r + 4s+ 6t ≡ 0 mod ℓ. (3.3.3)

Solving the system of congruences given by (3.3.3) and (3.3.1) yields

7r ≡ −72t mod ℓ, (3.3.4)

14s ≡ 15t mod ℓ. (3.3.5)

Substituting (3.3.4) and (3.3.5) into 49 times (3.3.2) yields

−8255520t ≡ 0 mod ℓ.

Since 8255520 = 25 · 34 · 5 · 72 · 13, the lemma follows.

Proof of Theorem 1.4. We begin with the trivial observation that Er
2E

s
4E

t
6 = 1+ · · · does not have

a simple congruence at 0 mod ℓ. Hence, we assume that Er
2E

s
4E

t
6 has a simple congruence at b 6≡ 0

mod ℓ, where ℓ ≥ 5. Since E2 ≡ Eℓ+1 mod ℓ, Er
ℓ+1E

s
4E

t
6 has a simple congruence at b mod ℓ.

Recall that our goal is to show ℓ ≤ 2r + 8|s| + 12|t| + 21. Hence, if ℓ < |s| or ℓ < |t| then we are

done. Thus we assume ℓ+ s ≥ 0 and ℓ+ t ≥ 0. We also assume ℓ > 11. Lemma 3.12 allows us to

take Θ(Er
2E

s
4E

t
6) 6≡ 0 mod ℓ (otherwise we are done). By Lemma 3.10 we see that

Er
ℓ+1E

ℓ+s
4 Eℓ+t

6 ∈M(r+10)ℓ+(r+4s+6t)

(
Γ1(1),Z(ℓ)

)

has a simple congruence at b mod ℓ. We work with the form Er
ℓ+1E

ℓ+s
4 Eℓ+t

6 because it is holomor-

phic (with positive weight) and so our filtration apparatus is applicable. By Lemma 3.11,

ω(Er
ℓ+1E

ℓ+s
4 Eℓ+t

6 ) = (r + 10)ℓ+ (r + 4s+ 6t). (3.3.6)

We break into four cases depending on the size of r + 4s + 6t:

1. If ℓ ≤ |r + 4s+ 6t| then we are done.

2. If 0 < r + 4s + 6t < ℓ then by Equation (3.3.6) and the first inequality of Lemma 3.9,
ℓ+1
2 ≤ r + 4s+ 6t and we are done.

3. If r + 4s+ 6t = 0, then by Lemma 2.10

ω(ΘEr
ℓ+1E

ℓ+s
4 Eℓ+t

6 ) = (r + 11)ℓ+ 1 − s′(ℓ− 1)

for some 1 ≤ s′. If ℓ ≤ r + 13 then we are done, so it suffices to consider ℓ > r + 13. Now in

order for the filtration above to be non-negative, s′ ≤ r+11. Now ω(ΘEr
ℓ+1E

ℓ+s
4 Eℓ+t

6 ) ≡ s′+1
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mod ℓ. By Lemma 3.5, there must be a high point of the Tate cycle before Θ
ℓ+1
2 Er

ℓ+1E
ℓ+s
4 Eℓ+t

6 .

Let i be the index of the first high point, so 1 ≤ i ≤ ℓ−1
2 . Then

ω(ΘiEr
ℓ+1E

ℓ+s
4 Eℓ+t

6 ) ≡ s′ + i ≡ 0 mod ℓ.

Together with the restrictions on i and s′ (namely s′ ≤ r+ 11 < r+ 13 < ℓ), this congruence

implies that

s′ ≥ ℓ+ 1

2
.

That is, ℓ ≤ 2s′ − 1 ≤ 2r + 21 and we are done.

4. If −ℓ < r + 4s+ 6t < 0, then take B = ℓ+ r + 4s + 6t and A = r + 9. Equation (3.3.6) and

the second inequality of Lemma 3.9 give

ℓ+ r + 4s + 6t ≤ r + 9 +
ℓ+ 3

2

which is equivalent to ℓ ≤ 21 − 8s− 12t and we are done.

Remark 3.15. Combining these four cases and recalling that the proof assumed ℓ+ s ≥ 0, ℓ+ t ≥ 0

and ℓ > 11, we can improve the bound in Theorem 1.4 slightly. In particular, if r + 4s + 6t > 0

then

ℓ ≤ max{|s| − 1, |t| − 1, 11, 2r + 8s+ 12t− 1},

and if r + 4s+ 6t ≤ 0 then

ℓ ≤ max{|s| − 1, |t| − 1, 11, 21 − 8s− 12t}.
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CHAPTER 4

FORMS WITH DIVISOR SUPPORTED AT THE

CUSPS

This chapter is a mild reformulation of [19]. In this chapter we work exclusively with modular forms

of level N = 4 and so we will write Mk for Mk

(
Γ1(4),Z(ℓ)

)
and Mk for Mk (Γ1(4),Fℓ). Similarly,

we will write M !
k instead of M !

k

(
Γ1(4),Z(ℓ)

)
.

A divisor of a modular form on Γ1(4) is a formal sum over the points of the compactified

modular curve X1(4) where the coefficients are the orders of the zero or pole at the points:

div f =
∑

[x]∈X1(4)

ordx f · [x].

We restrict attention to meromorphic modular forms whose divisors are supported at the cusps 0,

1/2, and ∞. This technical condition provides key information about the Tate cycle. The most

interesting (and the most computationally involved) case is when the meromorphic modular form

has negative, half-integer weight. In the next section, we associate to any meromorphic modular

form a holomorphic, integral weight modular form with equivalent Ramanujan congruences.

4.1 Examples of associated holomorphic, integral weight modular forms

In this section we associate modular forms to many common, combinatorial generating functions.

The associated forms will have equivalent Ramanujan congruences. The method is quite general.

Our key tool is Lemma 3.10. Recall that q = e2πiτ and

η(τ) = q1/24
∞∏

n=1

(1 − qn) .

For d = 1, 2, 4, we have η(dτ)24 = ∆(dτ) ∈M12. Furthermore

div ∆(τ) = 4 · [0] + 1 ·
[
1

2

]
+ 1 · [∞],

div ∆(2τ) = 2 · [0] + 2 ·
[
1

2

]
+ 2 · [∞],

div ∆(4τ) = 1 · [0] + 1 ·
[
1

2

]
+ 4 · [∞].
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Since 24 | ℓ2−1 when ℓ ≥ 5, the strategy is to use Lemma 3.10 to replace occurrences of η(dτ)−1 with

η(dτ)ℓ
2−1 and occurrences of η(dτ) with η(dτ)(ℓ

2−1)(ℓ−1). This changes neither the filtration modulo

ℓ, nor the Ramanujan congruences. As illustrated in the examples below, since multiplication by

powers of q merely shifts the location of Ramanujan congruences, we can associate a holomorphic,

integral weight modular form with equivalent Ramanujan congruences to any product of the form

qr
∞∏

n=1

(1 − qn)s (1 − q2n
)t (

1 − q4n
)u

where r, s, t, u ∈ Z. Set

δ = δℓ :=
ℓ2 − 1

24
.

Example 4.1. The overpartition generating function is

P (τ) =
∑

p(n)qn =
∞∏

n=1

(
1 + qn

1 − qn

)
=
η(2τ)

η(τ)2
.

By Lemma 3.10, P (τ) has the same Ramanujan congruences as

fP := η(2τ)(ℓ−1)(ℓ2−1)η(τ)2(ℓ
2−1) = ∆(2τ)(ℓ−1)δℓ∆(τ)2δℓ ∈M (ℓ−1)(ℓ+1)2

2

.

Note that

div fP = (2(ℓ− 1)δℓ + 8δℓ) · [0] + (2(ℓ− 1)δℓ + 2δℓ) ·
[
1

2

]
+ (2(ℓ− 1)δℓ + 2δℓ) · [∞]

= δℓ (2ℓ+ 6) · [0] + δℓ (2ℓ) ·
[
1

2

]
+ δℓ (2ℓ) · [∞].

Example 4.2. The overpartition pair generating function is

PP (τ) =
∑

pp(n)qn =
∞∏

n=1

(
1 + qn

1 − qn

)2

=
η(2τ)2

η(τ)4
.

By Lemma 3.10, PP (τ) has the same Ramanujan congruences as

fPP := η(2τ)2(ℓ−1)(ℓ2−1)η(τ)4(ℓ
2−1) = ∆(2τ)2(ℓ−1)δℓ∆(τ)4δℓ ∈M(ℓ−1)(ℓ+1)2 .

Note that

div fP = δℓ (4ℓ+ 12) · [0] + δℓ (4ℓ) ·
[
1

2

]
+ δℓ (4ℓ) · [∞].
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Example 4.3. By [15], the crank difference generating function is

CD(τ) :=
∑

n≥0

(Me(n) −Mo(n)) qn =
∞∏

n=1

(1 − qn)3

(1 − q2n)2
.

By Lemma 3.10, when ℓ ≥ 5 this has a congruence at b mod ℓ if and only if

∞∏

n=1

(1 − qn)3(ℓ
2−1)(ℓ−1) (1 − q2n

)2(ℓ2−1)

= q
3(ℓ2−1)(ℓ−1)+4(ℓ2−1)

24 q−
3(ℓ2−1)(ℓ−1)+4(ℓ2−1)

24

∞∏

n=1

(1 − qn)3(ℓ
2−1)(ℓ−1) (1 − q2n

)2(ℓ2−1)

= q−
3(ℓ2−1)(ℓ−1)+4(ℓ2−1)

24 ∆(τ)3(ℓ−1)δℓ∆(2τ)2δℓ

= q−3δℓ(ℓ−1)−4δℓ∆(τ)3(ℓ−1)δℓ∆(2τ)2δℓ

has a congruence at b mod ℓ which happens if and only if

fCD := ∆(τ)3(ℓ−1)δℓ∆(2τ)2δℓ ∈M (3ℓ−1)(ℓ2−1)
2

has a congruence at b+3δℓ (ℓ− 1)+4δℓ mod ℓ, which happens if and only if fCD has a congruence

at b+ δℓ mod ℓ. Note that

div fCD = δℓ (12ℓ− 8) · [0] + δℓ (3ℓ+ 1) ·
[
1

2

]
+ δℓ (3ℓ+ 1) · [∞].

Example 4.4. Equation (10.6) of [4] says that the generating function of cφ2(n) is

CΦ2(τ) =
θ0(τ)

q−1/12η(τ)2
.

Now CΦ2 will have a congruence at b mod ℓ if and only if
(
q−1/12θ0(τ)

ℓ−1η(τ)2
)ℓ2−1

has a congru-

ence at b mod ℓ. This happens if and only if fCΦ2 := θ0(τ)
(ℓ−1)(ℓ2−1)η(τ)2(ℓ

2−1) ∈ M(ℓ−1)(ℓ+1)2/2

has a congruence at b+ 2δ mod ℓ.
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4.2 Lifting data to characteristic zero

Consider the forms

E(τ) :=
η8(τ)

η4(2τ)
∈M2,

F (τ) =
η8(4τ)

η4(2τ)
=
∑

n≥0

σ1(2n+ 1)q2n+1 ∈M2,

θ2
0(τ) =

η10(2τ)

η4(τ)η4(4τ)
=

(
∑

n∈Z

qn2

)2

∈M1.

Note that ord0(E) = 1, ord∞(F ) = 1, ord1/2(θ
2
0) = 1/2, and that these are the only zeros of these

forms. Recall that since dimMk (Γ1(4),C) = 1 + ⌊k/2⌋, we have

M2k = 〈Ek−iF i〉i=0,1,...,k, (4.2.1)

M2k+1 = θ2
0〈Ek−iF i〉i=0,1,...,k,

as Z(ℓ)-modules, where the basis vectors Ek−iF i = qi + · · · have rising orders at ∞. The following

modification (partially) arranges for ascending orders at the other cusps as well. Set

G := θ4
0 = E + 16F ∈M2

and fix non-negative integers m∞,m0,m1/2 such that m∞ +m0 +m1/2 ≤ k. Define the following

submodules of M2k depending on m = (m∞,m0,m1/2, 2k):

V m := {f ∈M2k| for all cusps s, ords f ≥ ms}
= Em0Fm∞Gm1/2M2(k−m0−m∞−m1/2)

= 〈Ek−m∞−m1/2−iFm∞+iGm1/2〉i=0,1,...,k−m0−m∞−m1/2
,

Wm
∞ := 〈Ek−iF i〉i=0,1,...m∞−1, (4.2.2)

Wm
0 := 〈EiF k−i〉i=0,1,...m0−1,

Wm
1/2 := 〈Em0F k−m0−iGi〉i=0,1,...m1/2−1,

so that each Wm
s has ms basis forms, each with distinct order at s. In particular,

Wm
s ⊆ {f ∈M2k| ords f < ms}.

In addition, each form in (4.2.2) has a different order at ∞. It follows that (4.2.2) has k linearly

independent basis vectors and

M2k = V m ⊕Wm
∞ ⊕Wm

0 ⊕Wm
1/2
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as a Z(ℓ)-module. We have the following lifting result.

Proposition 4.5. Let m∞,m0,m1/2, k be non-negative integers satisfying m∞ +m0 +m1/2 ≤ k.

Set m = (m∞,m0,m1/2, 2k). Let V m and the Wm
s be submodules of M2k as in (4.2.2).

(a) If f ∈ M2k has ords(f) ≥ ms for all cusps s, then we can write f = g + ℓh, where g ∈ V m

and h ∈Wm
0 ⊕Wm

∞ ⊕Wm
1/2.

(b) If f ′ ∈ M2k+1 has ords(f ′) ≥ ms for all cusps s, then f ′ = θ2
0f for some f ∈ M2k with

ords(f) ≥ ms for all cusps s. (Recall m1/2 ∈ Z.) There are g ∈ V m and h ∈ Wm
0 ⊕Wm

∞ ⊕Wm
1/2

such that f ′ = θ2
0g + ℓθ2

0h.

Proof. Write f = g + h∞ + h0 + h1/2, where g ∈ V m and hs ∈ Wm
s . We show each hs = 0. (It is

important to do this in the correct order.) Suppose h∞ =
∑m∞−1

i=0 aiE
k−iF i with ai ∈ Z(ℓ). If any

ai 6≡ 0 mod ℓ, then let t be the least such i. In this case, h∞ ≡ atq
t + · · · mod ℓ has order t. By

construction V m⊕Wm
0 ⊕Wm

1/2 only contains forms of order at least m∞ at the infinite cusp. Hence

m∞ ≤ ord∞

(
f
)

= ord∞

(
h∞
)

= t < m∞,

a contradiction. Thus h∞ = 0.

Now consider h0 =
∑m0−1

i=0 biE
iF k−i with bi ∈ Z(ℓ). If any bi 6≡ 0 mod ℓ, then let t be the least

such i. Then ord0(h0) = t ≤ m0 − 1. Since V m ⊕Wm
1/2 only contains forms with order at least m0

at zero and since h∞ = 0, we have

m0 ≤ ord0

(
f
)

= ord0

(
h0

)
= t < m0,

a contradiction. Thus h0 = 0. An analogous argument shows that if h1/2 6= 0, then

m1/2 ≤ ord1/2

(
f
)

= ord1/2

(
h1/2

)
< m1/2,

another contradiction. For part (b), recall that any f ′ ∈ M2k+1 must have ord1/2 f
′ ∈ Z + 1

2 and

hence is divisible by θ2
0. Apply part (a) to f = f ′/θ2

0 ∈M2k.

We have the following Sturm-style result.

Corollary 4.6. (a) Let f ∈ M2k and ord0

(
f
)

+ ord∞

(
f
)

+ ord1/2

(
f
)
> k. Then for all cusps s,

ords

(
f
)

= +∞ and f = 0.

(b) Let f ∈ M2k+1 and ord0

(
f
)

+ ord∞

(
f
)

+ ord1/2

(
f
)
> k + 1/2. Then for all cusps s,

ords

(
f
)

= +∞ and f = 0.

Proof. (a) Suppose f 6= 0. For each cusp s, choose integers 0 ≤ ms ≤ ords

(
f
)

such that m0 +

m∞ + m1/2 = k. Set m = (m∞,m0,m1/2, 2k) and apply Proposition 4.5. Write f = g + ℓh,

with g ∈ V m and h ∈ Wm
0 ⊕ Wm

∞ ⊕Wm
1/2. For the parameters in m, dimV m = 1. Therefore,

g = cEm0Fm∞Gm1/2 ∈ M2k, for some c ∈ Z(ℓ). We now have a contradiction since for any cusp s,

ords(f) = ords(g) = ms, contrary to our assumption that
∑

ords(f) > k.

(b) Apply part (a) to f/θ2
0 ∈M2k.
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In the next section we use the following proposition to lift a low point of a Tate cycle – a

mod ℓ object – to a characteristic zero modular form with high orders of vanishing at the cusps.

Proposition 4.7. Let k′ and i be positive integers.

(a) Given f ∈M2k′, let 2k = ω(Θif) and ms = ords f for each cusp s. Set m = (m∞,m0,m1/2, 2k).

Then there is g ∈ V m such that Θif = g.

(b) Given f ∈ M2k′+1, let 2k + 1 = ω(Θif) and ms = ⌊ords f⌋ for each cusp s. Set m =

(m∞,m0,m1/2, 2k). Then there is g ∈ V m such that Θif = θ2
0g.

Proof. Lemma 2.9 implies that for each cusp s, ords

(
Rf

i

)
≥ ords(f) ≥ ms. In the even weight

case, apply Proposition 4.5 (a) to deduce Θif ≡ Rf
i ≡ g mod ℓ for some g ∈ V m. In the odd

weight case use Proposition 4.5 (b).

4.3 Congruences in holomorphic forms which vanish only at the cusps

This section considers modular forms which vanish only at the cusps. This condition implies a lot

about the Tate cycle. To begin with, if f ∈ Mk, Θf 6= 0, and f vanishes only at the cusps but

is not congruent to a cusp form, then f |Uℓ 6= 0. This follows from the more general proposition

below:

Proposition 4.8. Let k ∈ Z, let f ∈Mk be non-zero, and suppose that for some cusp s, ords(f) ≡ 0

mod ℓ. Then f |Uℓ 6= 0.

Proof. Since ords

(
f
)
≡ 0 mod ℓ, we have that ords(Θf) > ords

(
f
)

because Θ kills the leading

term in the Fourier expansion at s. To be more precise, let γ =

(
1 0

0 1

)
,

(
0 −1

1 0

)
or

(
1 0

2 1

)

depending on whether s = ∞, 0 or 1/2, respectively. Set c = 4 if s = 0 and c = 1 otherwise. (Thus

c is the width of the cusp s.) By examining the orders of the summands in (2.4.3), we have

ords

(
Rf

1

)
= c · ord∞

(
Rf

1 |k+ℓ+1γ
)
≥ 1 + ords f.

By the proof of Lemma 2.9, ords

(
Rf

ℓ−1

)
≥ ords

(
Rf

1

)
≥ 1 + ords f . Thus by Remark 2.7 it is

impossible for Rf
ℓ−1 = f . That is, (f |Uℓ)ℓ = f − Θℓ−1f 6= 0.

Proposition 4.9. Suppose that k ∈ Z, that f ∈ Mk, that f vanishes only at the cusps, and that

Θf 6= 0. Then for i ≥ 0, we have ω(Θif) ≥ ω(f) = k. In particular, if f is a member of its own

Tate cycle, then f is a low point. If f is not a member of its own Tate cycle, then Θf is a low

point.

Proof. Since f ∈Mk, obviously ω(f) ≤ k. By Remark 2.4, we have

ord0 f + ord∞ f + ord1/2 f = k/2.
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Thus by Corollary 4.6, we have ω(f) ≥ k and equality follows. For any i ≥ 1 and for all cusps s,

by Lemma 2.9, ords

(
Rf

i

)
≥ ords(f). Hence ord0

(
Rf

i

)
+ ord∞

(
Rf

i

)
+ ord1/2

(
Rf

i

)
≥ k/2. By

Corollary 4.6 we must have ω(Θif) ≥ k.

Suppose f is not a member of its own Tate cycle and, for the sake of contradiction, that

Θf = Θℓf is not a low point. There are two possibilities: either ω(f) ≡ 0 mod ℓ or ω(f) 6≡ 0

mod ℓ.

If ω(f) ≡ 0 mod ℓ, then we have ω(Θf) = ω(f)+ℓ+1−s(ℓ−1) with s ≥ 1. Since ω(Θf) ≥ ω(f),

we deduce that s = 1 and ω(Θf) = ω(f) + 2 ≡ 2 mod ℓ. By Lemma 3.3 (2) the Tate cycle has a

single low point with filtration 2 mod ℓ and the low point must then be Θf .

On the other hand, if ω(f) 6≡ 0 mod ℓ, then since Θℓf is not a low point, we have

ω(f) + ℓ+ 1 = ω(Θf) = ω(Θℓf) = ω(Θℓ−1f) + ℓ+ 1.

In particular ω(Θℓ−1f) = ω(f) = k. However in this case dimV m = 1. Therefore Θℓ−1f is a

constant multiple of f which contradicts the assumption that f is not in its Tate cycle (since Θ

commutes with scalar multiplication).

The following two corollaries show the differences between congruences at b 6≡ 0 mod ℓ and at

0 mod ℓ.

Corollary 4.10. Suppose that k ∈ Z, that f ∈Mk, and that f vanishes only at the cusps. Suppose

further that Θf 6= 0 and that ω(f) = Aℓ + B, with 1 ≤ B ≤ ℓ. If f has a congruence at b 6≡ 0

mod ℓ, then either

1. B = ℓ+1
2 and f does not have a congruence at 0 mod ℓ, or

2. B = ℓ+3
2 and f does have a congruence at 0 mod ℓ.

Proof. If f does not have a congruence at 0 mod ℓ, then by Lemma 3.2, f is not a member of

its Tate cycle. By Proposition 4.9, ω(Θf) = (A + 1)ℓ + (B + 1) is a low point. By Lemma 3.8,

B + 1 ≡ ℓ+3
2 mod ℓ.

Similarly, if f does have a congruence at 0 mod ℓ, it is a low point of its Tate cycle by Propo-

sition 4.9. Now by Lemma 3.8, B ≡ ℓ+3
2 mod ℓ.

Corollary 4.11. Suppose that k ∈ Z, that f ∈ Mk, that f vanishes only at the cusps, and that

Θf 6= 0. Suppose further that ω(f) = Aℓ+B where 1 ≤ B ≤ ℓ. If B ≥ ℓ+5
2 , then f |Uℓ 6= 0.

Proof. If f |Uℓ = 0, then f is a member of its Tate cycle. Proposition 4.9 implies f is the lowest

low point of its cycle, but Remark 3.4 shows that the lowest low point must have 1 ≤ B ≤ ℓ+3
2 .

The following two corollaries eliminate the chance for Ramanujan congruences at all but finitely

many primes ℓ in half-integral weight forms vanishing only at the cusps, and in the inverses of

integral-weight forms vanishing only at the cusps, respectively.

39



Corollary 4.12. Let λ ∈ N, let f ∈ Mλ+1/2, and suppose that f vanishes only at the cusps. If

λ ≥ 1, then f has no congruences for ℓ > 2λ+1. If λ = 0, then f is a scalar multiple of θ0 =
∑
qn2

and clearly has congruences at b mod ℓ where
(

b
ℓ

)
= −1.

Proof. In the case λ ≥ 2, by Lemma 3.10 it suffices to show f ℓ+1 ∈M(λ+1/2)(ℓ+1) has no congruences.

Since f ℓ+1 vanishes only at the cusps and has integer weight, Proposition 4.9 implies that ω(f ℓ+1) =(
ℓ+1
2

)
(2λ+ 1). It follows that ω(f ℓ+1) ≡ ℓ+2λ+1

2 mod ℓ. Now if ℓ > 2λ+ 1, then it suffices to take

B = ℓ+2λ+1
2 < ℓ in Corollaries 4.10 and 4.11.

If λ = 0 or 1, then f is not a cusp form and Proposition 4.8 precludes congruences at 0 mod ℓ.

By Corollary 4.10, in the subcase λ = 1 there are no congruences at all. The subcase λ = 0 is

obvious.

Corollary 4.13. Let k ∈ Z and let f ∈ Mk. If f vanishes only at the cusps, then f−1 has no

congruences for any prime ℓ > 2k + 3.

Proof. By Lemma 3.10, the power series f−1 has the same congruences as f ℓ−1 ∈ Mk(ℓ−1). Since

f ℓ−1 vanishes only at the cusps, Proposition 4.9 guarantees that its weight and filtration agree.

That is, ω(f ℓ−1) = k(ℓ − 1) ≡ ℓ − k mod ℓ. Now if we assume that ℓ > 2k + 3, then we get
ℓ+3
2 < ℓ− k < ℓ. Take B = ℓ− k in Corollaries 4.10 and 4.11.

The congruences of the inverse of a half-integral weight modular form are a bit trickier to find,

but will always yield to an extension of the Ahlgren-Boylan technique which we illustrate in the

following section.

4.4 Ramanujan congruences in weakly holomorphic forms with divisor

supported at the cusps

Let k ∈ 1
2Z. Suppose f ∈M !

k (Γ1(4),Z) has divisor supported at the cusps. That is

div f = m0 · [0] +m∞ · [∞] +m1/2 ·
[
1

2

]

where

m0 = ord0 f ∈ Z,

m∞ = ord∞ f ∈ Z,

m1/2 = ord1/2 f ∈ 1

4
Z.

In fact, there is some c ∈ Z such that

f = cEm0Fm∞θ
4m1/2

0 . (4.4.1)
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Without loss of generality, we assume c = 1. Note that k = 2m0 + 2m∞ + 2m1/2 ∈ 1
2Z. Define

δ :=





0 if k ∈ Z

1 if k ∈ 1
2Z\Z

(4.4.2)

and

k′ := k +
10 − δ

2
· ℓ ∈ Z>0. (4.4.3)

For a prime ℓ, set

fℓ : = f
(
EFθ2−δ

0

)ℓ
∈M !

k′ . (4.4.4)

By Lemma 3.10, the forms f and fℓ have the same Ramanujan congruences for the prime ℓ. If

ℓ > max
{
|m0|, |m∞|, 4|m1/2|

}
, then fℓ ∈ Mk′ is holomorphic and our Tate cycle machinery is

applicable.

We will now prove the finiteness of the primes ℓ for which f has a Ramanujan congruence at 0

mod ℓ for three cases which depend on k.

Theorem 4.14. Let ℓ ≥ 5 be prime, 1 ≥ k ∈ Z, and m0,m∞, 4m1/2 ∈ Z. Let f := Em0Fm∞θ
4m1/2

0 ∈
M !

k (Γ1(4),Z). If f has a Ramanujan congruence at 0 mod ℓ, then

ℓ ≤ max
{
|m0|, |m∞|, 4|m1/2|, |2k − 3|, 3

}
.

Proof. Assume ℓ > max
{
|m0|, |m∞|, 4|m1/2|, |2k − 3|, 3

}
and let fℓ ∈ Mk′ be as in (4.4.2-4.4.4).

Then k′ = k + 5ℓ. Since −ℓ < 2k − 3, we have

−
(
ℓ− 3

2

)
< k ≤ 1

and hence

4ℓ+
ℓ+ 3

2
< k′ ≤ 5ℓ+ 1. (4.4.5)

If f has a Ramanujan congruence at 0 mod ℓ then by Lemma 3.10 so does fℓ. Since fℓ has divisor

supported at the cusps, by Proposition 4.9, we have that fℓ is the lowest low point of its Tate cycle

and ω(fℓ) = k′. By Lemma 3.3 (1), we have k′ 6= 5ℓ + 1. Write k′ = A′ℓ + B′ where 1 ≤ B′ ≤ ℓ.

Then by (4.4.5) we have ℓ+3
2 < B ≤ ℓ, contrary to Remark 3.4.

Theorem 4.15. Let ℓ ≥ 5 be prime, 5
2 ≤ k ∈ 1

2Z\Z, and m0,m∞, 4m1/2 ∈ Z. Let f :=

Em0Fm∞θ
4m1/2

0 ∈M !
k (Γ1(4),Z). If f has a Ramanujan congruence at 0 mod ℓ, then

ℓ ≤ max
{
|m0|, |m∞|, 4|m1/2|, |2k − 3|, 3

}
.
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Proof. Assume ℓ > max
{
|m0|, |m∞|, 4|m1/2|, |2k − 3|, 3

}
and let fℓ ∈ Mk′ be as in (4.4.2-4.4.4).

Then k′ = k + 9
2ℓ. Since 2k − 3 < ℓ, we have

5

2
≤k < ℓ+ 3

2

and hence

4ℓ+

(
ℓ+ 3

2

)
<k′ ≤ 5ℓ+ 1.

Continue as in the proof of Theorem 4.14.

The proof of the next theorem is more involved.

Theorem 4.16. Let 3
2 ≥ k ∈ 1

2Z\Z, and m0,m∞, 4m1/2 ∈ Z. Let

f := Em0Fm∞θ
4m1/2

0 ∈M !
k (Γ1(4),Z) .

Then there are only finitely many primes ℓ such that f has a Ramanujan congruence at 0 mod ℓ.

Moreover, the provides a method to find all such ℓ. The method is illustrated through several

examples in the next section.

Proof. Assume ℓ > max
{
|m0|, |m∞|, 4|m1/2|, 5 − 2k, 3

}
and let fℓ ∈ Mk′ be as in (4.4.2-4.4.4).

Here k′ = k+ 9
2ℓ. Assume that f has a Ramanujan congruence at 0 mod ℓ. If we also had Θf ≡ 0

mod ℓ then we would have f ≡ 0 mod ℓ, contrary to the choice of f . By Lemma 3.10 we have that

fℓ has a congruence at 0 mod ℓ and Θfℓ 6≡ 0 mod ℓ. Since fℓ has divisor supported at the cusps,

by Proposition 4.9 we have that fℓ is the lowest low point of its Tate cycle and that ω(fℓ) = k′.

Since −ℓ < 2k − 5, we have

−
(
ℓ− 5

2

)
< k ≤ 3

2

and hence

4ℓ+
5

2
< k′ ≤ 4ℓ+

ℓ+ 3

2
. (4.4.6)

Since k′ ∈ Z, we have 4ℓ+ 3 ≤ k′ ≤ 4ℓ+ ℓ+3
2 . Define B′ by the equation

k′ = 4ℓ+B′.

By Lemma 3.3, the other low point is

ω
(
Θℓ−B′+1f ′

)
= 4ℓ+

(
ℓ+ 3 −B′

)
= k′ + (ℓ+ 3 − 2B′).
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By Proposition 4.7, there is g ∈ M4ℓ+(ℓ+3−B′) such that Θℓ−B′+1fℓ ≡ g mod ℓ and such that for

all cusps s we have ords g ≥ ords fℓ. In particular, g/fℓ ∈Mℓ+3−2B′ . Now

2k′ ≡ 2B′ ≡ 2k mod ℓ.

Hence by (4.4.6), we have B′ = ℓ+2k
2 and so ℓ+ 3 − 2B′ = 3− 2k ∈ 2Z≥0. Therefore, g/fℓ is in the

module M3−2k of rank 3−2k
2 + 1. The basis (2.2.2) shows that there exist ai ∈ Z(ℓ) such that

Θ
ℓ+2−2k

2 fℓ = Θℓ−B′+1fℓ

≡ g mod ℓ

≡ fℓ

(
g

fℓ

)
mod ℓ

≡ fℓ




3−2k
2∑

i=0

aiE
3−2k

2
−iF i


 mod ℓ.

(4.4.7)

Since we work modulo ℓ, we may actually take ai ∈ Z in (4.4.7).

Write

f =
∞∑

n=m∞

bnq
n ∈ Z[[q]].

Since

fℓ = f (EFθ0)
ℓ = f

(
q +O(q2)

)ℓ

= qℓf +O
(
q2ℓ+m∞

)
, (4.4.8)

by the usual rules for differentiation and (4.4.8), we have

Θ
ℓ+2−2k

2 fℓ ≡ qℓΘ
ℓ+2−2k

2 f +O
(
q2ℓ+m∞

)
mod ℓ. (4.4.9)

By (4.4.7) and (4.4.8), we have

Θ
ℓ+2−2k

2 fℓ ≡
(
qℓf +O

(
q2ℓ+m∞

))



3−2k
2∑

i=0

aiE
3−2k

2
−iF i


 mod ℓ

≡ qℓf

3−2k
2∑

i=0

aiE
3−2k

2
−iF i +O

(
q2ℓ+m∞

)
mod ℓ.

(4.4.10)

Combine (4.4.9) and (4.4.10) to get

Θ
ℓ+2−2k

2 f ≡ f

3−2k
2∑

i=0

aiE
3−2k

2
−iF i +O

(
qℓ+m∞

)
mod ℓ. (4.4.11)
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An essential part of the hypothesis is the assumption k ≤ 3
2 . This permits the following manipula-

tion:

Θ
ℓ+2−2k

2 f = Θ
3−2k

2 Θ
ℓ−1
2 f

= Θ
3−2k

2

∞∑

n=m∞

bnn
ℓ−1
2 qn

≡ Θ
3−2k

2

∞∑

n=m∞

bn

(n
ℓ

)
qn mod ℓ

≡
∞∑

n=m∞

bnn
3−2k

2

(n
ℓ

)
qn mod ℓ.

(4.4.12)

This is a key point in the argument. The dependence on ℓ (for which there are infinitely many

choices) in the number of applications of Θ has been exchanged for a dependence on finitely many

Legendre symbols.

Invert f as a Laurent series over Z and write f−1 =
∑∞

n=−m∞
cnq

n ∈ Z[1q ][[q]]. Hence by (4.4.11)

and (4.4.12),

3−2k
2∑

i=0

aiE
3−2k

2
−iF i ≡

(
∞∑

n=−m∞

cnq
n

)(
∞∑

n=m∞

bnn
3−2k

2

(n
ℓ

)
qn

)
+O

(
qℓ
)

mod ℓ (4.4.13)

Truncate the series above to keep only the first 5−2k
2 terms. The truncation of the right hand side

of (4.4.13) will have finitely many Legendre symbols. For each tuple of possible choices for the

Legendre symbols, there are unique integers ai which give equality in the truncation

3−2k
2∑

i=0

aiE
3−2k

2
−iF i =

(
∞∑

n=−m∞

cnq
n

)(
∞∑

n=m∞

bnn
3−2k

2

(n
ℓ

)
qn

)
+O

(
q

5−2k
2

)
.

Lemma 4.17 (to follow) proves that there must be some coefficient of q at which Θ(ℓ+2−2k)/2fℓ and

g from (4.4.7) are not equal, only congruent. The difference between these two coefficients must be

divisible by ℓ. (The prime ℓ must also satisfy the choices for the Legendre symbols.) Hence, there

can only be finitely many primes ℓ such that f has a Ramanujan congruence at 0 mod ℓ. In the

next section, the proofs of Theorems 1.6, 1.7, 1.10, and 1.2 give explicit examples of these types of

calculations.

Lemma 4.17. Let 3/2 ≥ k ∈ 1
2Z\Z and ℓ > 5 − 2k be prime. For any non-zero f ∈ Mk+ 9

2
ℓ and

non-zero g ∈M3−2k, we have Θ(ℓ+2−2k)/2f 6= g.

Proof. We adapt Atkin and Garvan’s [6] Proposition 3.3 to suit our specific needs. The quasi-
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modular form Θ(ℓ+2−2k)/2f is of the form

Θ(ℓ+2−2k)/2f(τ) =

ℓ+2−2k
2∑

j=0

fj(τ)E
j
2(τ),

where fj ∈ M 11
2

ℓ−k+2−2j . Assume g(τ) =
∑
fj(τ)E

j
2(τ) and apply τ 7→ τ

4τ+1 . Recall E2(
τ

4τ+1 ) =

(4τ + 1)2E2(τ) − 24i
π (4τ + 1). Letting α := −24i

π , we have for all τ ∈ H,

(4τ + 1)3−2kg(τ) =

ℓ+2−2k
2∑

j=0

(4τ + 1)
11
2

ℓ−k+2−2jfj(τ)

(
(4τ + 1)2E2(τ) + α(4τ + 1)

)j

,

and hence for all τ ∈ H,

0 = (4τ + 1)3−2kg(τ) −
11ℓ
2

+2−k∑

m=5ℓ+1

(4τ + 1)m




∑

0≤j≤ ℓ+2−2k
2

0≤s≤j
j= 11ℓ

2
+2−k+s−m

(
j

s

)
αj−sfj(τ)E

s
2(τ)




.

Since g(τ), fj(τ) and E2(τ) are all invariant under τ 7→ τ + 1, the polynomial

z3−2kg(τ) −
11ℓ
2

+2−k∑

m=5ℓ+1

zm




∑

0≤j≤ ℓ+2−2k
2

0≤s≤j
j= 11ℓ

2
+2−k+s−m

(
j

s

)
αj−sfj(τ)E

s
2(τ)




has infinitely many zeros z = 4τ +1, 4τ +5, 4τ +9, . . . . Therefore the coefficients must be zero. By

the assumption ℓ > 5− 2k, we have 3− 2k < 5ℓ+ 1 and hence the index m is never 3− 2k. Hence

g(τ) = 0 contrary to assumption.

We now turn to Ramanujan congruences at b 6≡ 0 mod ℓ.

Lemma 4.18. Let ℓ ≥ 5 be prime, b 6≡ 0 mod ℓ, k ∈ 1
2Z, and m0,m∞, 4m1/2 ∈ Z. Let f :=

Em0Fm∞θ
4m1/2

0 ∈M !
k (Γ1(4),Z). Then f has a Ramanujan congruence at b mod ℓ only if:

• f also has a Ramanujan congruence at 0 mod ℓ and ℓ | 2k(2k − 3), or

• f does not have a Ramanujan congruence at 0 mod ℓ and ℓ | 2k(2k − 1).

Moreover, if k = 0 and f has a Ramanujan congruence at b mod ℓ, then ℓ divides gcd
(
m0,m∞, 4m1/2

)
.
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Proof. Assume f has a Ramanujan congruence at b mod ℓ. By Lemma 3.10, we know that

g := fE|m0|ℓF |m∞|ℓθ
4|m1/2|ℓ

0 ∈M !
k+ℓ(|m0|+|m∞|+4|m1/2|)

has the same Ramanujan congruences modulo ℓ as f . Note that

g = E|m0|(ℓ±1)F |m∞|(ℓ±1)E4|m1/2|(ℓ±1)

where the signs of the ±1 terms depend on the signs of the corresponding m. Thus

g ∈Mk+ℓ(|m0|+|m∞|+4|m1/2|)

is indeed holomorphic and of integral weight. For convenience, denote the weight of g by

k′ := k + ℓ
(
|m0| + |m∞| + 4|m1/2|

)
.

Notice that g ≡ q|m∞|(ℓ±1)+· · · 6≡ 0 mod ℓ. Thus, as in the proof of Proposition 4.9, by Remark 2.4

and Corollary 4.6 we deduce that ω(g) ≥ k′. Clearly k′ ≥ ω(g) and so ω(g) = k′. If ℓ|k′ then ℓ|2k
and the bulleted conclusions are true. Thus, we assume ℓ ∤ k′ = ω(g). Hence by Lemma 2.10, we

deduce that Θg 6≡ 0 mod ℓ and Corollary 4.10 applies. Since

k′ ≡ ℓ+ 3

2
mod ℓ ⇐⇒ 2k′ ≡ 2k ≡ ℓ+ 3 mod ℓ ⇐⇒ ℓ | 2k − 3,

and

k′ ≡ ℓ+ 1

2
mod ℓ ⇐⇒ 2k′ ≡ 2k ≡ ℓ+ 1 mod ℓ ⇐⇒ ℓ | 2k − 1,

the bulleted conclusions follow by Corollary 4.10.

If k = 0, then k′ ≡ 0 mod ℓ. If Θg 6≡ 0 mod ℓ, then by Corollary 4.10 we have ℓ|3, contrary

to choice of ℓ ≥ 5. Thus Θg ≡ 0 mod ℓ. However, by (2.4.3) this implies that for all γ ∈ SL2 (Z),

we have Θ(g|γ) ≡ 0 mod ℓ. Hence,

Θ

(
g

∣∣∣∣
k′

(
1 0

2 1

))
≡ Θ (qm1/2 + · · · ) ≡ 0 mod ℓ,

Θ

(
g

∣∣∣∣
k′

(
0 −1

1 0

))
≡ Θ

(
q

m0
4 + · · ·

)
≡ 0 mod ℓ.

Thus ℓ divides each of m0, m∞, and 4m1/2.

Corollary 4.19. Let 1
2 6= k ∈ 1

2Z. Suppose 1 6= f := Em0Fm∞θ
4m1/2

0 ∈ M !
k (Γ1(4),Z). Then there

are only finitely many primes ℓ for which f has a Ramanujan congruence at some b 6≡ 0 mod ℓ.

Proof. Suppose k 6= 0, 1
2 ,

3
2 . If ℓ is prime and f has a Ramanujan congruence at b 6≡ 0 mod ℓ, then
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by Lemma 4.18, we deduce that ℓ is one of the finitely many prime divisors of 6k(2k−3)(2k−1) 6= 0.

Suppose k = 0. Since f 6= 1, at least one of m0, m∞, and m1/2 is non-zero. Hence

gcd
(
m0,m∞, 4m1/2

)
∈ Z\ {0} .

If ℓ is prime and f has a Ramanujan congruence at b 6≡ 0 mod ℓ, then by Lemma 4.18 we deduce

that ℓ is one of the finitely many prime divisors of 6 gcd
(
m0,m∞, 4m1/2

)
.

Suppose k = 3/2. By Theorem 4.16, there are only finitely many primes for which there is a

Ramanujan congruence at 0 mod ℓ. For any other prime ℓ, if f has a Ramanujan congruence at

b 6≡ 0 mod ℓ then by Lemma 4.18 we deduce that ℓ is one of the finitely many prime divisors of

6k(2k − 1).

4.5 Proofs of Theorems 1.6-1.10 and 1.3

Proof of Theorem 1.6. The cusp forms of least weight on Γ1(4) are scalar multiples of

f := θ0FE ∈ S9/2(Γ1(4)). (4.5.1)

By Lemma 3.10 the series f−1 will have a congruence at b mod ℓ if and only if f ℓ−1 has one at

b mod ℓ. Since ω(f ℓ−1) = 9
2(ℓ − 1) ≡ ℓ−9

2 mod ℓ, by Corollary 4.10 there can be congruences at

b 6≡ 0 mod ℓ only if ℓ = 3 or 5.

In the first case, the Sturm bound [44] implies that only a short computation is needed to

see that f2 ≡ −Θf2 mod 3 and so f2 ≡ Θ2f2 mod 3. By Lemma 3.5, f−1 has congruences at 0

mod 3 and 1 mod 3. In the second case, a finite computation shows that f−1 only has congruences

for ℓ = 5 at 2 mod 5 and 3 mod 5. Although our machinery does not apply for ℓ = 2, a short

calculation shows f−1 has a congruence at 0 mod 2. An inspection of the coefficients of q7, q13 and

q22 in f−1 shows there are no congruences for ℓ = 7, 11, 13. We now move on to ℓ ≥ 17.

Suppose f ℓ−1 has a congruence at 0 mod ℓ. The rest of this proof follows the proof of Theo-

rem 4.16 and so we only provide the explicit calculations. Now f ℓ−1 is a low point of its Tate cycle

and, by Lemma 3.3(5), the other low point is ω(Θ
ℓ+11

2 f ℓ−1) = ω(f ℓ−1) + 12. Hence

Θ
ℓ+11

2 f ℓ−1 ≡ f ℓ−1

(
6∑

i=0

aiE
6−iF i

)
mod ℓ,

implying

Θ
ℓ+11

2 f−1 ≡ f−1

(
6∑

i=0

aiE
6−iF i

)
+O(qℓ−1) mod ℓ. (4.5.2)
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Invert f as a power series with integer coefficients to get

f−1 = q−1 + 6 + 24q + 80q2 + 240q3 + 660q4 + 1696q5 + 4128q6 + 9615q7 + 21560q8 +O(q9).

We compute

Θ
ℓ+11

2 f−1 ≡
( ·
ℓ

)
⊗ Θ6f−1 mod ℓ

≡
(−1

ℓ

)
q−1 + 24q +

(
2

ℓ

)
5120q2 +

(
3

ℓ

)
174960q3 + 2703360q4 (4.5.3)

+

(
5

ℓ

)
26500000q5 +O(q6) mod ℓ.

For each of the 24 choices of signs for the Legendre symbols, a computer can easily compute the

integers ai in Equation (4.5.2). Comparing the coefficients of q6, q8, and q9 in Equation (4.5.2)

leads to a contradiction. For example, suppose ℓ satisfies
(
−1
ℓ

)
=
(

2
ℓ

)
= −

(
3
ℓ

)
= −

(
5
ℓ

)
= 1. One

computes that a0 = 1, a1 = 42, a2 = 612, a3 = 8656, a4 = −76608, a5 = 1074912, a6 = −15155584.

Hence the right side of Equation (4.5.2) is

q−1 + 24q + 5120q2 − 174960q3 + 2703360q4 − 26500000q5 − 29891712q6 − 911605665q7

− 2744268800q8 − 18190442184q9 − 59662291200q10 − 254616837584q11 +O(q12),

whereas the left side may be computed as in Equation (4.5.3):

q−1 + 24q + 5120q2 − 174960q3 + 2703360q4 − 26500000q5 − 192595968q6 ± 1131195135q7

+ 5651824640q8 + 24858684216q9 − 98592000000q10 ± 358875741136q11 +O(q12).

The ± come from
(

7
ℓ

)
and

(
11
ℓ

)
. Since these power series are congruent modulo ℓ, so are the

coefficients of q6 and q8. But −29891712 ≡ −192595968 mod ℓ implies ℓ = 2, 3, 11, 13 or 2963,

while −2744268800 ≡ 5651824640 mod ℓ implies ℓ = 2, 5, 7 or 117133. Since we’ve assumed ℓ ≥ 17,

we have reached a contradiction.

Proof of Theorem 1.7. Let g = θ0E
2F ∈ S13/2(4). Now g−1 will have a congruence at b mod ℓ

if and only if gℓ−1 does. Since ω(gℓ−1) ≡ ℓ−13
2 mod ℓ, Corollary 4.10 implies there can only be

congruences with b 6≡ 0 mod ℓ if ℓ = 2 or 7. For ℓ = 7, one checks that Θ4g6 ≡ −Θg6 and by

Lemma 3.5, g6 and hence g−1 have congruences at 1, 2, 4 mod 7.

Elementary calculations show no congruences for 0 mod ℓ when 3 ≤ ℓ ≤ 13. For l ≥ 17, if gℓ−1

has a congruence at 0 mod ℓ, then it is the lowest low point of its Tate cycle and the other low

point is ω(Θ
ℓ+15

2 gℓ−1) = ω(gℓ−1) + 16. Analogously to Theorem 1.6, we have

Θ
ℓ+15

2 g−1 ≡ g−1

(
8∑

i=0

biE
8−iF i

)
+O(qℓ) mod ℓ.
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In the case where
(
−1
ℓ

)
=
(

2
ℓ

)
=
(

3
ℓ

)
=
(

5
ℓ

)
=
(

7
ℓ

)
= −1, solving for the bi yields b0 = −1,

b1 = −50, b2 = −788, b3 = −175024, b4 = −26446064, b5 = 539142592, b6 = −13397175040,

b7 = 271206416128, and b8 = −5171059369600. Examining the coefficients of q8, . . . , q12 in both

sides of the previous equivalence precludes all possible primes ℓ ≥ 17. The situation for each of the

25 choices for the Legendre symbols is similar.

Proof of Theorem 1.8. The prime 3 may be checked by direct computation and so we let ℓ ≥
5 be prime. Recall fP from Example 4.1. Since ord∞ fP = ord∞ fP = 2ℓδℓ ≡ 0 mod ℓ, by

Proposition 4.8 there is no congruence at 0 mod ℓ. Since ω(fP ) ≡ ℓ−1
2 mod ℓ, by Corollary 4.10

there can only be congruences at a mod ℓ if ℓ−1
2 ≡ ℓ+1

2 mod ℓ which never happens for ℓ ≥ 5.

Proof of Theorem 1.9. Let ℓ ≥ 5 be prime. Recall fPP from Example 4.2. Since ord∞ fPP =

ord∞ fPP = 4ℓδℓ ≡ 0 mod ℓ, by Proposition 4.8 there is no congruence at 0 mod ℓ. Since

ω(fPP ) ≡ −1 mod ℓ, by Corollary 4.10 there can only be congruences at a mod ℓ if −1 ≡ ℓ+1
2

mod ℓ which never happens for ℓ ≥ 5.

Proof of Theorem 1.10. Recall fCD from Example 4.3. Since fCD vanishes only at the cusps, by

Proposition 4.9, ω(f) = (ℓ2−1)(3ℓ−1)
2 ≡ ℓ+1

2 mod ℓ.

The fact that ω(fCD) ≡ ℓ+1
2 mod ℓ is unfortunate. This is the only time that Corollary 4.10

does not rule out congruences at b 6≡ 0 mod ℓ. However, Lemma 3.5 guarantees that if CD(z)

has a congruence at b mod ℓ, then in fact CD(z) has a congruence at all c mod ℓ such that(
b+δ

ℓ

)
=
(

c+δ
ℓ

)
.

We now apply the method of the proof of Theorem 4.16 to find all ℓ such that fCD has a

congruence at 0 mod ℓ. Assume fCD|Uℓ ≡ 0 mod ℓ. Then fCD is a low point of its Tate cycle

and by Lemma 3.3, the other low point has filtration ω(fCD) + 2. Hence by Proposition 4.7,

(Θ
ℓ+1
2 fCD)/fCD ∈M2. Since

fCD ≡ q
ℓ3−ℓ

8

(
qδ
∏ (1 − qn)3

(1 − q2n)2

)
+O

(
qℓ+δ+ ℓ3−ℓ

8

)
mod ℓ,

and since Θ is linear and satisfies the product rule, we obtain

Θ
ℓ+1
2 fCD ≡ q

ℓ3−ℓ
8 Θ

ℓ+1
2

(
qδ
∏ (1 − qn)3

(1 − q2n)2

)
+O

(
qℓ+δ+ ℓ3−ℓ

8

)
mod ℓ.

Thus (Θ
ℓ+1
2 fCD)/fCD is congruent to

Θ
ℓ+1
2 (qδ − 3qδ+1 + 2qδ+2 + · · · ) ·

(
qδ − 3qδ+1 + 2qδ+2 + · · ·

)−1
mod ℓ

≡ δ
ℓ+1
2 +

(
3δ

ℓ+1
2 − 3(δ + 1)

ℓ+1
2

)
q+ (4.5.4)

(
7δ

ℓ+1
2 − 9(δ + 1)

ℓ+1
2 + 2(δ + 2)

ℓ+1
2

)
q2 + · · · mod ℓ.
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Since this is congruent to a weight two form, and since the basis form F = q+ 4q3 + · · · , lacks a q2

term, we compare the coefficients of q2 in δ
ℓ+1
2 E = δ

ℓ+1
2 (1− q+ 24q2 + · · · ) and in Equation (4.5.4)

to deduce 24δ
ℓ+1
2 ≡ 7δ

ℓ+1
2 − 9(δ + 1)

ℓ+1
2 + 2(δ + 2)

ℓ+1
2 mod ℓ. Multiplying by 24

ℓ+1
2 , we find

−17

(−1

ℓ

)
≡ −207

(
23

ℓ

)
+ 94

(
47

ℓ

)
mod ℓ. (4.5.5)

That is, 17 ≡ ±207 ± 94 mod ℓ. If ℓ ≥ 5, then this implies that ℓ is one of 5, 13, 53 and 71.

However, only 5 and 53 satisfy (4.5.5). By the equivalences above, f having a congruence at 0

mod ℓ is equivalent to the crank difference function having a congruence at b mod ℓ with 24b ≡ 1

mod ℓ. For the primes 5 and 53, this means b = 4 and 42, respectively. We have recovered the

congruence at 4 mod 5 of [15]. Calculations reveal that the coefficient of q42 precludes a congruence

at 42 mod 53.

Proof of Theorem 1.2. Calculations show there is no congruence for ℓ = 3. Thus we take ℓ ≥ 5

prime. Recall fCΦ2 from Example 4.4. Since fCΦ2 vanishes only at the cusps, Proposition 4.9

implies that ω(fCΦ2) = (ℓ−1)(ℓ+1)2

2 ≡ ℓ−1
2 mod ℓ. By Corollary 4.10, there are no congruences at

b 6≡ 0 mod ℓ when ℓ ≥ 5.

Suppose fCΦ2 has a congruence at 0 mod ℓ. Then by Proposition 4.9, fCΦ2 is a low point

of its Tate cycle and by Lemma 3.3 the other low point has filtration ω(fCΦ2) + 4. Hence

(Θ
ℓ+3
2 fCΦ2)/fCΦ2 ∈M4 by Proposition 4.7. We compute

fCΦ2 ≡ q2δθ0(z)
∏

(1 − q2n)−2 +O
(
qℓ+2δ

)
mod ℓ

≡ q2δ + 4q2δ+1 + 9q2δ+2 + 20q2δ+3 + · · · mod ℓ

f−1
CΦ2

≡ q−2δ − 4q−2δ+1 + 7q−2δ+2 − 12q−2δ+3 + · · · mod ℓ

and

Θ
ℓ+3
2 fCΦ2 ≡ (2δ)

ℓ+3
2 q2δ + 4(2δ + 1)

ℓ+3
2 q2δ+1 + 9(2δ + 2)

ℓ+3
2 q2δ+2 + 20(2δ + 3)

ℓ+3
2 q2δ+3 + · · · mod ℓ.

Hence we compute

(
Θ

ℓ+3
2 fCΦ2

)
f−1

CΦ2
≡ (2δ)

ℓ+3
2 +

(
−4(2δ)

ℓ+3
2 + 4(2δ + 1)

ℓ+3
2

)
q

+
(
7(2δ)

ℓ+3
2 − 16(2δ + 1)

ℓ+3
2 + 9(2δ + 2)

ℓ+3
2

)
q2 (4.5.6)

+
(
−12(2δ)

ℓ+3
2 + 28(2δ + 1)

ℓ+3
2 − 36(2δ + 2)

ℓ+3
2 + 20(2δ + 3)

ℓ+3
2

)
q3

+ · · · mod ℓ.
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Recalling our basis (4.2.1), we conclude

(
Θ

ℓ+3
2 fCΦ2

)
f−1

CΦ2
≡ (2δ)

ℓ+3
2 E2 +

(
12(2δ)

ℓ+3
2 + 4(2δ + 1)

ℓ+3
2

)
EF

+
(
−9(2δ)

ℓ+3
2 + 16(2δ + 1)

ℓ+3
2 + 9(2δ + 2)

ℓ+3
2

)
F 2. (4.5.7)

Multiplying the coefficients of q3 in both (4.5.6) and (4.5.7) by 12
ℓ+3
2 leads to

0 ≡ 100(−1)
ℓ+3
2 − 84(11)

ℓ+3
2 − 36(23)

ℓ+3
2 + 20(35)

ℓ+3
2 mod ℓ

≡ 100

(−1

ℓ

)
− 10164

(
11

ℓ

)
− 19044

(
23

ℓ

)
+ 24500

(
35

ℓ

)
mod ℓ (4.5.8)

≡ ±100 ± 10164 ± 19044 ± 24500 mod ℓ. (4.5.9)

The only primes ℓ ≥ 5 satisfying (4.5.9) are 5, 13, 19, 31, 59, 97, 131, 601, and 6701. It is easily

checked that only ℓ = 5 satisfies (4.5.8). That is, we have recovered the congruence (1.1.2) and

proved there are no others.
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CHAPTER 5

RAMANUJAN CONGRUENCES IN SIEGEL AND

JACOBI FORMS

This chapter represents joint work with Olav Richter. It appears in essentially the same form

in [21], although Theorem 1.12 and its proof have been rephrased.

5.1 Congruences and filtrations of Jacobi forms

A Jacobi form on SL2 (Z) is a holomorphic function φ(τ, z) : H×C → C satisfying the transforma-

tions

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k e

2πimcz
cτ+d φ (τ, z) ∀

(
a b

c d

)
∈ SL2 (Z)

and

φ (τ, z + λτ + µ) = e−2πim(λ2τ+2λz)φ (τ, z) ∀λ, µ ∈ Z

and having a Fourier expansion of the form

φ (τ, z) =

∞∑

n=0

∑

r∈Z
r2≤4mn

c(n, r)e2πi(nτ+rz).

The numbers k and m are non-negative integers called the weight and index, respectively. Write

q = e2πiτ and ζ = e2πiz. Let Jk,m be the vector space of Jacobi forms of even weight k and index

m. For details on Jacobi forms, see Eichler and Zagier [22].

The theory of reduced Jacobi forms is analogous to the theory of reduced modular forms that

we have been using thus far. The heat operator

Lm := (2πi)−2

(
8πim

∂

∂τ
− ∂2

∂z2

)

is a natural tool in the theory of Jacobi forms and plays an important role in this section. In

particular, if φ =
∑
c(n, r)qnζr, then

Lmφ := Lm(φ) =
∑

(4nm− r2)c(n, r)qnζr. (5.1.1)

52



Set

J̃k,m :=
{
φ mod ℓ : φ(τ, z) ∈ Jk,m ∩ Z(ℓ)[ζ, ζ

−1][[q]]
}
,

where Z(ℓ) := Zℓ ∩ Q denotes the local ring of ℓ-integral rational numbers. If φ ∈ J̃k,m, then we

denote its filtration modulo ℓ by

Ω
(
φ
)

:= inf
{
k : φ mod ℓ ∈ J̃k,m

}
.

Recall the following facts on Jacobi forms modulo ℓ:

Proposition 5.1 (Sofer [43]). Let φ(τ, z) ∈ Jk,m ∩Z[ζ, ζ−1][[q]] and ψ(τ, z) ∈ Jk′,m′ ∩Z[ζ, ζ−1][[q]]

such that 0 6≡ φ ≡ ψ mod ℓ. Then k ≡ k′ mod ℓ− 1 and m = m′.

Proposition 5.2 ([40]). If φ(τ, z) ∈ Jk,m ∩ Z[ζ, ζ−1][[q]], then Lmφ mod ℓ ∈ J̃k+ℓ+1,m. Moreover,

we have

Ω (Lmφ) ≤ Ω (φ) + ℓ+ 1,

with equality if and only if ℓ ∤ (2Ω (φ) − 1)m.

We will now explore Ramanujan congruences for Jacobi forms.

Definition 5.3. For φ(τ, z) =
∑

c(n, r)qnζr ∈ J̃k,m, we say that φ has a Ramanujan congruence

at b mod ℓ if c(n, r) ≡ 0 mod ℓ whenever 4nm− r2 ≡ b mod ℓ.

Equation (5.1.1) implies that a Jacobi form φ has a Ramanujan congruence at 0 mod ℓ if and

only if Lℓ−1
m φ ≡ φ mod ℓ. More generally, φ has a Ramanujan congruence at b mod ℓ if and only

if

Lℓ−1
m

(
q−

b
4mφ

)
≡ q−

b
4mφ mod ℓ.

Ramanujan congruences at 0 mod ℓ for Jacobi forms have been considered in [39, 40]. The following

proposition determines when Ramanujan congruences at b 6≡ 0 mod ℓ for Jacobi forms exist.

Compare the next proposition with Lemma 3.5.

Proposition 5.4. Let φ ∈ J̃k,m and b 6≡ 0 mod ℓ. Then φ has a Ramanujan congruence at b

mod ℓ if and only if L
ℓ+1
2

m φ ≡ −
(

b
ℓ

)
Lmφ mod ℓ.

Proof. If φ ∈ Z(ℓ)[ζ, ζ
−1][[q]] and f ∈ Z(ℓ)[[q]], then Lm(fφ) = Lm(f)φ+ fLm(φ). This implies

Lℓ−1
m

(
q−

b
4mφ

)
=

ℓ−1∑

i=0

(
ℓ− 1

i

)
Lℓ−1−i

m

(
q−

b
4m

)
Li

mφ

=

ℓ−1∑

i=0

(
ℓ− 1

i

)
(−b)ℓ−1−i q−

b
4mLi

mφ

≡ q−
b

4m

ℓ−1∑

i=0

bℓ−1−iLi
mφ mod ℓ.
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In particular, φ has a Ramanujan congruence at b 6≡ 0 mod ℓ if and only if

0 ≡
ℓ−1∑

i=1

bℓ−1−iLi
mφ mod ℓ. (5.1.2)

We now rewrite the Li
mφ appearing in (5.1.2) using a standard decomposition of even weight

Jacobi forms. See §8 and §9 of [22] for full details and also for the corresponding result for Jacobi

forms of odd weight. Every even weight φ ∈ Jk,m can be written as

φ =

m∑

j=0

fj(φ−2,1)
j(φ0,1)

m−j , (5.1.3)

where

φ−2,1(τ, z) :=
(
ζ − 2 + ζ−1

)
+
(
−2ζ2 + 8ζ − 12 + 8ζ−1 − 2ζ−2

)
q + · · ·

and

φ0,1(τ, z) :=
(
ζ + 10 + ζ−1

)
+
(
10ζ2 − 64ζ + 108 − 64ζ−1 + 10ζ−2

)
q + · · ·

are weak Jacobi forms with integer coefficients of index 1 and weights −2 and 0, respectively,

and where each fj ∈ Mk+2j (Γ1(1),C) is uniquely determined. For any m ≥ 1, the set T :={
φj
−2,1φ

m−j
0,1

}m

j=0
is linearly independent over Fℓ. In fact, the coefficients of q0 of the elements of T

are linearly independent for the following reason: Let X := ζ−2+ζ−1. It suffices to show that S :={
Xm−j(X + 12)j

}m

j=0
is linearly independent over Fℓ. But Xm−j(X+12)j = Xm + · · ·+12jXm−j ,

and one finds that S is linearly independent over Fℓ since 12 is invertible. Returning to (5.1.3), if φ

has ℓ-integral rational coefficients, then so do all of the fj’s, since otherwise there is some t ≥ 1 such

that 0 ≡ ℓtφ ≡ ∑m
j=0

(
ℓtfj

)
(φ−2,1)

j(φ0,1)
m−j mod ℓ is a non-trivial linear independence relation

for T , contrary to what we have just shown.

By Proposition 5.2, for every i there exists ψi ∈ Jk+i(ℓ+1),m such that Li
mφ ≡ ψi mod ℓ. Hence

there exist Fi,j ∈Mk+i(ℓ+1)+2j

(
Γ1(1),Z(ℓ)

)
such that

Li
mφ ≡ ψi ≡

m∑

j=0

Fi,j(φ−2,1)
j(φ0,1)

m−j mod ℓ

and hence (5.1.2) is equivalent to

0 ≡
m∑

j=0

(
ℓ−1∑

i=1

bℓ−1−iFi,j

)
(φ−2,1)

j(φ0,1)
m−j mod ℓ.

By the linear independence of the elements of T , we deduce that (5.1.2) is equivalent to

ℓ−1∑

i=1

bℓ−1−iFi,j ≡ 0 mod ℓ
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for every j. Elliptic modular forms modulo ℓ have a natural direct sum decomposition (see Section

3 of [45] or Theorem 2 of [41]) graded by their weights modulo ℓ− 1. Thus (5.1.2) is equivalent to

0 ≡ bℓ−1−iFi,j + b(ℓ−1)/2−iFi+(ℓ−1)/2,j mod ℓ

and hence also

Fi+(ℓ−1)/2,j ≡ −
(
b

ℓ

)
Fi,j mod ℓ

for all 0 ≤ j ≤ m and 1 ≤ i ≤ ℓ−1
2 . This implies, for all 1 ≤ i ≤ ℓ−1

2 ,

L
i+ ℓ−1

2
m φ ≡

m∑

j=0

Fi+ ℓ−1
2

,j(φ−2,1)
j(φ0,1)

m−j

≡
m∑

j=0

−
(
b

ℓ

)
Fi,j(φ−2,1)

j(φ0,1)
m−j

≡ −
(
b

ℓ

)
Li

mφ mod ℓ.

We conclude that

L
ℓ+1
2

m φ ≡ −
(
b

ℓ

)
Lmφ mod ℓ,

which completes the proof.

By (5.1.1), Lℓ
mφ ≡ Lmφ mod ℓ. We call Lmφ,L

2
mφ, . . . , L

ℓ−1
m φ the heat cycle of φ and we say

that φ is in its own heat cycle whenever Lℓ−1
m φ ≡ φ mod ℓ. Assume Lmφ 6≡ 0 mod ℓ and ℓ ∤ m.

By Proposition 5.2, applying Lm to φ increases the filtration of φ by ℓ+1 except when Ω(φ) ≡ ℓ+1
2

mod ℓ. If Ω
(
Li

mφ
)
≡ ℓ+1

2 mod ℓ, then call Li
mφ a high point and Li+1

m φ a low point of the heat

cycle. By Propositions 5.1 and 5.2,

Ω
(
Li+1

m φ
)

= Ω
(
Li

mφ
)

+ ℓ+ 1 − s(ℓ− 1) (5.1.4)

where s ≥ 1 if and only if Li
mφ is a high point and s = 0 otherwise. The structure of the heat cycle

of a Jacobi form is similar to the structure of the theta cycle of a modular form (see Lemma 3.3).

We will now prove a few basic properties:

Lemma 5.5. Let φ ∈ J̃k,m with ℓ ∤ m a prime such that Lmφ 6≡ 0 mod ℓ.

1. If j ≥ 1, then Ω
(
Lj

mφ
)
6≡ ℓ+3

2 mod ℓ.

2. The heat cycle of φ has a single low point if and only if there is some j ≥ 1 with Ω
(
Lj

mφ
)
≡

ℓ+5
2 mod ℓ. Furthermore, Lj

mφ is the low point.
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3. If j ≥ 1, then Ω
(
Lj+1

m φ
)
6= Ω

(
Lj

mφ
)

+ 2.

4. The heat cycle of φ either has one or two high points.

Proof. 1. If Ω
(
Lj

mφ
)
≡ ℓ+3

2 mod ℓ, then by (5.1.4) for 1 ≤ n ≤ ℓ− 1 we have

Ω
(
Lj+n

m φ
)

= Ω
(
Lj

mφ
)

+ n(ℓ+ 1).

In particular, Lj+ℓ−1
m φ 6≡ Lj

mφ mod ℓ, which is impossible.

2. If Ω
(
Lj

mφ
)
≡ ℓ+5

2 mod ℓ, then by (5.1.4), for 1 ≤ n ≤ ℓ− 2 we have

Ω
(
Lj+n

m φ
)

= Ω
(
Lj

mφ
)

+ n(ℓ+ 1)

and

Ω
(
Lj

mφ
)

= Ω
(
Lj+ℓ−1

m φ
)

= Ω
(
Lj

mφ
)

+ (ℓ− 1)(ℓ+ 1) − s(ℓ− 1)

where s must be ℓ+ 1 and there can be no other low point. On the other hand, if there is a

single low point, then the filtration must increase ℓ− 2 consecutive times. The only way this

is possible is if the low point has filtration ℓ+5
2 mod ℓ.

3. By Proposition 5.2, Ω
(
Lj+1

m φ
)

= Ω
(
Lj

mφ
)

+ 2 can only happen when Ω
(
Lj

mφ
)

≡ ℓ+1
2

mod ℓ. Suppose Ω
(
Lj+1

m φ
)

= Ω
(
Lj

mφ
)

+ 2 ≡ ℓ+5
2 mod ℓ. By part (2), this implies that the

filtration increases ℓ − 2 more times before falling. Hence Lj+ℓ−1
m φ 6≡ Lj

mφ mod ℓ, which is

impossible.

4. Suppose there are t ≥ 2 high points L
ij
mφ where 1 ≤ i1 < · · · < it ≤ ℓ − 1. By (5.1.4) and

part (3) above, there are sj ≥ 2 such that

Ω
(
L

ij+1
m φ

)
= Ω

(
L

ij
mφ
)

+ ℓ+ 1 − sj(ℓ− 1). (5.1.5)

Hence

Ω (Lmφ) = Ω
(
Lℓ

mφ
)

= Ω (Lmφ) + (ℓ− 1)(ℓ+ 1) −
t∑

j=1

sj(ℓ− 1),

and so
∑
sj = ℓ + 1. By (5.1.5), Ω

(
L

ij+1
m φ

)
≡ ℓ+1

2 + 1 + sj mod ℓ and so there will be

ℓ − 1 − sj increases before the next fall. That is, for 1 ≤ j ≤ t, ij+1 − ij = ℓ − sj where we

take it+1 = i1 + ℓ− 1 for convenience. Thus

ℓ− 1 = it+1 − i1 =

t∑

j=1

(ij+1 − ij) =

t∑

j=1

(ℓ− sj) = tℓ− (ℓ+ 1),
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i.e., t = 2. We conclude that the heat cycle of φ has at most two (i.e., one or two) high

points.

The following Corollary of Proposition 5.4 is a key ingredient in the proof of Proposition 1.13

below.

Corollary 5.6. If φ ∈ J̃k,m has a Ramanujan congruence at b 6≡ 0 mod ℓ and Lmφ 6≡ 0 mod ℓ,

then the heat cycle of φ has two low points which both have filtration congruent to 2 mod ℓ.

Proof. Since L
ℓ+1
2

m φ ≡ −
(

b
ℓ

)
Lmφ mod ℓ, we have Ω

(
L

ℓ+1
2

m φ

)
= Ω (Lmφ) = Ω

(
Lℓ

mφ
)
. Hence there

is a fall in the first half of the heat cycle and in the second half of the heat cycle. Furthermore,

after a low point, the filtration increases ℓ−3
2 times and then falls once. Thus, the filtration of the

low points is 2 mod ℓ.

We now prove our main theorem for Jacobi forms.

Proof of Theorem 1.13. Assume that φ has a Ramanujan congruence at b mod ℓ. First suppose

k = ℓ+1
2 . Then Ω (φ) = ℓ+1

2 and so we must have s ≥ 1 in (5.1.4). Since we need Ω (Lmφ) ≥ 0, we

must have s = 1 and hence Ω (Lmφ) = ℓ+5
2 . But by Lemma 5.5 (2), this implies there is only one

low point, contrary to Corollary 5.6.

Now suppose k 6= ℓ+1
2 . Then Ω (Lmφ) = k+ ℓ+ 1. There must be a low point of the heat cycle

with filtration either k + ℓ + 1 or k. By Corollary 5.6, either k + 1 ≡ 2 mod ℓ or k ≡ 2 mod ℓ.

Both of these alternatives are impossible since ℓ > k ≥ 4.

5.2 Proof of Theorem 1.12

We employ the Fourier-Jacobi expansion of a Siegel modular form (as in [14]) to prove Theorem

1.12. Let M
(2)
k denote the vector space of Siegel modular forms of degree 2 and even weight k (for

details on Siegel modular forms, see for example Freitag [23] or Klingen [27]). Set

M̃
(2)
k :=

{
F mod ℓ : F (Z) =

∑
a(T )eπi tr(TZ) ∈M

(2)
k where a(T ) ∈ Z(ℓ)

}
.

Recall the following two theorems on Siegel modular forms modulo ℓ:

Theorem 5.7 (Nagaoka [36]). There exists an E ∈M
(2)
ℓ−1 with ℓ-integral rational coefficients such

that E ≡ 1 mod ℓ. Furthermore, if F1 ∈ M
(2)
k1

and F2 ∈ M
(2)
k2

have ℓ-integral rational coefficients

where 0 6≡ F1 ≡ F2 mod ℓ, then k1 ≡ k2 mod ℓ− 1.

Theorem 5.8 (Böcherer and Nagaoka [8]). If F ∈ M̃
(2)
k , then D(F ) ∈ M̃

(2)
k+ℓ+1.

Thus, the reduced Siegel forms have an arithmetic analogous to reduced modular and Jacobi

forms.
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Proof of Theorem 1.12. Let F ∈M
(2)
k be as in Theorem 1.12 with Fourier-Jacobi expansion

F (τ, z, τ ′) =
∞∑

m=0

φm(τ, z)e2πimτ ′

,

i.e., φm ∈ Jk,m. Let b 6≡ 0 mod ℓ. Then F has a Ramanujan congruence at b mod ℓ if and only

if for all m, φm has a Ramanujan congruence at b. By Proposition 5.4, it is equivalent that for all

m, we have

L
ℓ+1
2

m φm ≡ −
(
b

ℓ

)
Lmφm mod ℓ,

which is equivalent to (1.4.1), since

D(F ) =

∞∑

m=0

Lm (φm(τ, z)) e2πimτ ′

.

Now we turn to the second part of Theorem 1.12. Suppose F has a congruence at b 6≡ 0 mod ℓ,

ℓ > k, and ℓ ∤ gcd(n,m)(4nm − r2)A(n, r,m) for some fixed n, r,m. Note that k ≥ 4, since F is

non-constant.

If ℓ ∤ m, then by Proposition 1.13, Lmφm ≡ 0 mod ℓ. But this contradicts the fact that Lmφm

has a coefficient (4nm− r2)A(n, r,m) 6≡ 0 mod ℓ.

On the other hand, if ℓ ∤ n, then since F (τ, z, τ ′) = F (τ ′, z, τ) we have A(n, r,m) = A(m, r, n).

But now Lnφn has a coefficient (4nm− r2)A(n, r,m) 6≡ 0 mod ℓ, contrary to Proposition 1.13.

Theorems 5.7 and 5.8 imply that for any F ∈ M̃
(2)
k , we have

G := D
ℓ+1
2 (F ) +

(
b

ℓ

)
D(F ) ∈ M̃

(2)

k+
(ℓ+1)2

2

. (5.2.1)

Theorem 1.12 states that F ∈ M̃
(2)
k has a Ramanujan congruence at b 6≡ 0 mod ℓ if and only if

G ≡ 0 mod ℓ in (5.2.1). One can apply the following analog of Sturm’s theorem for Siegel modular

forms of degree 2 to verify that G ≡ 0 mod ℓ in (5.2.1) for concrete examples of Siegel modular

forms.

Theorem 5.9 (Poor and Yuen [37]). Let F =
∑
a(T )eπi tr(TZ) ∈ M

(2)
k be such that for all T with

dyadic trace w(T ) ≤ k
3 one has that a(T ) ∈ Z(ℓ) and a(T ) ≡ 0 mod ℓ. Then F ≡ 0 mod ℓ.

Remark 5.10. If T =
(

a b
b c

)
> 0 is Minkowski reduced (i.e., 2|b| ≤ a ≤ c), then w(T ) = a+ c− |b|.

For more details on the dyadic trace w(T ), see Poor and Yuen [38].

The following table gives all Ramanujan congruences at b 6≡ 0 mod ℓ for Siegel cusp forms of

weight 20 or less when ℓ ≥ 5. Let E4, E6, χ10, and χ12 denote the usual generators of M
(2)
k of

weights 4, 6, 10, and 12, respectively, where the Eisenstein series E4 and E6 are normalized by

a (( 0 0
0 0 )) = 1 and where the cusp forms χ10 and χ12 are normalized by a (( 2 1

1 2 )) = 1. Cris Poor and

David Yuen kindly provided Fourier coefficients up to dyadic trace w(T ) = 74 of the basis vectors
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for M
(2)
k with k ≤ 20. We used Magma to check that G ≡ 0 mod ℓ in (5.2.1) for each of the

forms in Table 5.1 below. It is not difficult to verify that (up to scalar multiplication) no further

Ramanujan congruences at b 6≡ 0 mod ℓ exist for Siegel cusp forms of weights 20 or less.

Table 5.1: Siegel forms of weight ≤ 20 with Ramanujan congruences at b 6≡ 0 mod ℓ

b 6≡ 0 mod ℓ

χ12 b ≡ 1, 4 mod 5 and b ≡ 2, 6, 7, 8, 10 mod 11

E4χ12 b ≡ 1, 4 mod 5

E4χ12 − E6χ10 b ≡ 3, 5, 6 mod 7

E6χ12 b ≡ 1, 4 mod 5

E2
4χ10 + 7E6χ12 b ≡ 1, 2, 4, 8, 9, 13, 15, 16 mod 17

E2
4χ12 b ≡ 1, 4 mod 5

χ2
10 + 2E2

4χ12 − 2E4E6χ10 b ≡ 2, 3, 8, 10, 12, 13, 14, 15, 18 mod 19

Remark 5.11. For χ2
10 + 2E2

4χ12 − 2E4E6χ10 modulo 19 we have G ∈ M̃
(2)
220 in (5.2.1) and we really

do need Fourier coefficients up to dyadic trace w(T ) = 220
3 , i.e., up to 74 in Theorem 5.9 to prove

that G ≡ 0 mod 19.

Remark 5.12. For Siegel modular forms in the Maass Spezialschar one could decide the existence and

non-existence of their Ramanujan congruences also using Propositions 5.4 and 1.13 in combination

with Maass’ lift [33] (see also §6 of [22]). However, Theorem 1.12 is an essential tool in establishing

such results for Siegel modular forms that are not in the Maass Spezialschar, such as E2
4χ12 and

χ2
10 + 2E2

4χ12 − 2E4E6χ10 for example.
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CHAPTER 6

THE RARITY OF RAMANUJAN CONGRUENCES

Throughout this section, work exclusively in characteristic ℓ. To ease the notation, we write Mk to

denote Mk

(
Γ1(N),Z(ℓ)

)
. Unless explicitly stated otherwise, all of the lemmas and statements in

this chapter are valid for N = 1 or 4. The author expects to publish the material in this chapter

as [18].

6.1 The plan for the proof of Theorem 1.15

The subset of Mk consisting of forms with Ramanujan congruences at 0 mod ℓ is in fact a subspace

of Mk. For reasons to be explained in Section 6.2, we denote this subspace by ITk. Since Mk is in

fact a finite set, we have

P (ℓ, k,N) =
|ITk|
|Mk|

=
ℓdim ITk

ℓdimMk
. (6.1.1)

The key is to determine the dimension, or more precisely the codimension, of ITk. This turns out

to be surprisingly intricate and employs several main ideas. An important tool is Ramanujan’s

Θ = q d
dq operator which encapsulates the notion of Ramanujan congruences via the so-called Tate

cycle. In Sections 6.2 and 6.3, we use the Θ operator to decompose Mk into many pieces of known

dimension, most of which are either disjoint from ITk or contained in ITk. One of these pieces can

only be understood after a detailed study of the kernel of Θ; see Section 6.4. Finally, Sections 6.5

and 6.6 contain the dimension calculations required to compute P (ℓ, k,N) exactly.

6.2 Fundamental subspaces

The following lemma is an elementary fact from linear algebra.

Lemma 6.1. Let V ≤ W ≤ Mk be a chain of subspaces. Then there exists a space V ⊥ such that

W = V ⊕ V ⊥.
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By Lemmas 2.6 and 2.10, we have the following fundamental linear maps:

Eℓ−1 : Mk →֒Mk+ℓ−1 (6.2.1)

Θ : Mk →Mk+ℓ+1. (6.2.2)

It is no exaggeration to say that this chapter is devoted to studying the images of these two maps.

Consider first (6.2.1). If k ≥ ℓ− 1 then Eℓ−1Mk−ℓ+1 is an intrinsic1 subspace of Mk. That is,

Eℓ−1Mk−ℓ+1 = {f ∈Mk : ω(f) ≤ k − ℓ+ 1} ≤Mk.

The Eℓ−1 notation is merely a bookkeeping device to remind us that Mk−ℓ+1 ≤ Mk. Occasionally

we dispense with writing Eℓ−1. This subspace inclusion is so important for us that we reiterate it

in the following remark.

Remark 6.2. Recall that Lemma 6.1 guarantees the existence of a subspace W such that

Mk = Eℓ−1Mk−ℓ+1 ⊕W. (6.2.3)

Furthermore, for any f ∈ Mk, we have f ∈ Eℓ−1Mk−ℓ+1 if and only if f has filtration ω(f) < k.

Hence, if 0 6≡ f ∈W , then ω(f) = k. The converse is of course false.

The subspace W from Remark 6.2 is not intrinsic. The key Lemmas 6.3 and 6.4 below show

that we can always choose W in (6.2.3) so that it has nice properties related to the image of Θ.

Recall (6.2.2) and define the intrinsic subspaces

Kk := ker (Θ : Mk →Mk+ℓ+1) =



f ∈Mk : f =

∑

ℓ|n

anq
n



 , (6.2.4)

ITk := ker
(
Θℓ−1 − Eℓ+1

ℓ−1 : Mk →Mk+ℓ2−1

)
=



f ∈Mk : f =

∑

ℓ∤n

anq
n



 . (6.2.5)

By Lemma 3.2, ITk is the set of all forms with a Ramanujan congruence at 0 mod ℓ. Equivalently,

it is the set of all forms in their own Tate cycle. We refer to it as the “In Tate” space. It is clear

from the definitions that for any k we have

Θ : Mk → ITk+ℓ+1

and

Kk ∩ ITk = 0.

The next two lemmas relate the images of the maps Eℓ−1 and Θ.

1By intrinsic subspace, we mean a space which is uniquely and canonically defined. In practice, this means we do

not appeal to Lemma 6.1 to define the subspace.
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Lemma 6.3. Suppose 2ℓ ≤ k 6≡ 1 mod ℓ. For any W ≤Mk−ℓ−1 such that Mk−ℓ−1 = Eℓ−1Mk−2ℓ⊕
W , we have Mk = Eℓ−1Mk−ℓ+1 ⊕ ΘW . Moreover, ΘW ≤ ITk.

Proof. Consider the commutative diagram below.

Mk−2ℓ
Eℓ−1−−−−→ Mk−ℓ−1 Eℓ−1Mk−2ℓ ⊕W

Θ

y
yΘ

Mk−ℓ+1 −−−−→
Eℓ−1

Mk

Suppose 0 6= f ∈ W . By Remark 6.2, ω(f) = k − ℓ − 1 6≡ 0 mod ℓ. Hence Lemma 2.10 implies

that ω(Θf) = k. Thus Θf 6∈ Eℓ−1Mk−ℓ+1. We conclude that Eℓ−1Mk−ℓ+1 ∩ ΘW = 0, and hence

that we have a direct sum Eℓ−1Mk−ℓ+1 ⊕ΘW ≤Mk. We have also shown that Θ|W is injective. It

is clear that Eℓ−1 is injective. Now

dim (Eℓ−1Mk−ℓ+1 ⊕ ΘW ) = dimEℓ−1Mk−ℓ+1 + dimΘW

= dimMk−ℓ+1 + dimW

= dimMk−ℓ+1 + (dimMk−ℓ−1 − dimMk−2ℓ)

= dimMk,

where the last equality follows from an elementary calculation (see Lemmas 6.19 and 6.21). It

follows that Mk = Eℓ−1Mk−ℓ+1 ⊕ ΘW . The last statement of the lemma is immediate since the

image of Θ is always contained in an IT space.

Lemma 6.4. Suppose k ≡ 1 mod ℓ. For any W ≤Mk such that Mk = Eℓ−1Mk−ℓ+1⊕W , we have

W ∩ ITk = 0.

Proof. By Remark 6.2, any 0 6= f ∈ W has ω(f) = k ≡ 1 mod ℓ. By Lemma 3.3 (1), we know

that f 6∈ ITk.

6.3 The main decomposition

We now have the tools to give our main decomposition of Mk into subspaces with specified Tate

cycle structures.

Definition 6.5. If 0 ≤ k < 2ℓ or k ≡ 1 mod ℓ, then define Mk∗ to be any subspace Mk∗ ≤ Mk

such that

Mk = Eℓ−1Mk−ℓ+1 ⊕Mk∗.

If k ≥ 2ℓ and k 6≡ 1 mod ℓ then recursively define Mk∗ := ΘMk−ℓ−1∗.
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Note that for 0 ≤ k < ℓ − 1 we have Mk∗ = Mk since the only negative weight holomorphic

modular form is 0. When ℓ − 1 ≤ k < 2ℓ or k ≡ 1 mod ℓ, the choice of Mk∗ is not canonical.

For k ≥ 2ℓ and k 6≡ 1 mod ℓ, the space Mk∗ is uniquely determined by the lower weight “starred”

spaces Mj∗ with j < k.

By this definition and Lemma 6.3, for all k we have

Mk = Eℓ−1Mk−ℓ+1 ⊕Mk∗. (6.3.1)

In particular,

dimMk∗ = dimMk − dimMk−ℓ+1, (6.3.2)

which allows us to compute dimMk∗.

We now recursively decompose the original, un-starred space Mk into a direct sum of starred

spaces. Write

k = C(ℓ− 1) +D

where

3 ≤ D ≤ ℓ+ 1

and iteratively apply (6.3.1) to get

Mk = MC(ℓ−1)+D

= MC(ℓ−1)+D∗ ⊕ Eℓ−1M(C−1)(ℓ−1)+D

= MC(ℓ−1)+D∗ ⊕ Eℓ−1M(C−1)(ℓ−1)+D∗ ⊕ E2
ℓ−1M(C−2)(ℓ−1)+D

= · · ·

=

(
C⊕

i=1

EC−i
ℓ−1 Mi(ℓ−1)+D∗

)
⊕ EC

ℓ−1MD.

(6.3.3)

For each of the Mi(ℓ−1)+D∗ terms in (6.3.3), if i(ℓ− 1) +D ≡ 1 mod ℓ, then by Lemma 6.4 we

have Mi(ℓ−1)+D∗ ∩ ITk = 0. If i(ℓ− 1) +D 6≡ 1 mod ℓ and i(ℓ− 1) +D ≥ 2ℓ, then by Lemma 6.3

and the map (6.2.1) we have that Mi(ℓ−1)+D∗ ≤ ITi(ℓ−1)+D →֒ ITk. This motivates the following

regrouping of the summands from (6.3.3):

Definition 6.6. Let k = C(ℓ− 1) +D with 3 ≤ D ≤ ℓ+ 1 as above. Define

W k
1 :=

⊕

1≤i≤C
i(ℓ−1)+D≡1 mod ℓ

2ℓ≤i(ℓ−1)+D

EC−i
ℓ−1 Mi(ℓ−1)+D∗,
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W k
2 :=

⊕

1≤i≤C
i(ℓ−1)+D 6≡1 mod ℓ

2ℓ≤i(ℓ−1)+D

EC−i
ℓ−1 Mi(ℓ−1)+D∗,

W k
3 :=




⊕

1≤i≤C
i(ℓ−1)+D<2ℓ

EC−i
ℓ−1 Mi(ℓ−1)+D∗


⊕ EC

ℓ−1MD,

so that by (6.3.3), we have

Mk = W k
1 ⊕W k

2 ⊕W k
3 . (6.3.4)

Remark 6.7. Before continuing, we sketch the proof of our main theorem. Section 6.4 will define a

space OTℓ+D−1 (“Out Tate”) such that W k
3 = ITℓ+D−1 ⊕OTℓ+D−1. Then we will use Lemmas 6.8

and 6.9 below to show that

Mk = W k
1 ⊕

W k
3︷ ︸︸ ︷

OTℓ+D−1︸ ︷︷ ︸
complementary to ITk

︸ ︷︷ ︸
ITk

⊕ ITℓ+D−1 ⊕W k
2 .

Proving Theorem 1.15 requires computing Pk
ℓ which, by the previous equation and (6.1.1), means

that we need to compute dimMk−dim ITk = dimW k
1 +dimOTℓ+D−1. Lemma 6.16 gives dimOTℓ+D−1.

Sections 6.5 and 6.6 use (6.3.2) to compute dimW k
1 . For the remainder of this section we study

the W k
i .

Lemma 6.8. Let k = C(ℓ− 1) +D with 3 ≤ D ≤ ℓ+ 1 and let W k
1 be as in Definition 6.6. There

are 1 +
⌊

C−D+1
ℓ

⌋
direct summands in W k

1 . Furthermore, W k
1 ∩ ITk = 0.

Proof. Let J be the set of subscripts appearing in the definition of W k
1 . That is, J is defined by

the equation (ignoring Eℓ−1)

W k
1 =

⊕

j∈J

Mj∗.

Thus

J = {j ∈ Z|∃i ∈ Z, 1 ≤ i ≤ C, j = i(ℓ− 1) +D, j ≥ 2ℓ, j ≡ 1 mod ℓ} .

Since i ≡ D − 1 mod ℓ, we see that the possible i are of the form i = D − 1 + tℓ. In particular,

J =

{
j ∈ Z

∣∣∣∣∃t ∈ Z, 0 ≤ t ≤ C −D + 1

ℓ
, j = ℓ

(
t(ℓ− 1) +D − 1

)
+ 1

}
. (6.3.5)

Hence we have |J | = 1 +
⌊

C−D+1
ℓ

⌋
. (We remark that the quantity J = |J | appears in (1.5.1) and
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the statement of Theorem 1.15.)

Now suppose 0 6= f ∈ W k
1 . Write f =

∑
j∈J fj where fj ∈ Mj∗. Let j0 be the largest index

such that fj0 6= 0. By Lemma 2.12, we have ω(f) = ω(fj0) = j0 ≡ 1 mod ℓ. By Lemma 3.3(1), we

have f 6∈ ITk and hence we conclude that ITk ∩W k
1 = 0.

Lemma 6.9. Let W k
2 be as in Definition 6.6. Then W k

2 ≤ ITk.

Proof. Recalling that Θ : Mk−ℓ−1 → ITk, we deduce by Definition 6.5 that each of the summands

in W k
2 is contained in ITk.

Our last major challenge is to compute dim
(
W k

3 ∩ ITk

)
. We study W k

3 until the end of Sec-

tion 6.4.

Lemma 6.10. Let k and W k
3 be as in Definition 6.6. If 3 ≤ D ≤ ℓ, then W k

3 = EC−1
ℓ−1 Mℓ+D−1. If

D = ℓ+ 1 then W k
3 = EC

ℓ−1Mℓ+1 and W k
3 ∩ ITk = 0.

Proof. If 3 ≤ D ≤ ℓ, then W k
3 = EC−1

ℓ−1 M(ℓ−1)+D∗ ⊕ EC
ℓ−1MD. By (6.3.1), we have W k

3 =

EC−1
ℓ−1 M(ℓ−1)+D as desired.

If D = ℓ+ 1, then i(ℓ− 1) +D ≥ 2ℓ for all 1 ≤ i ≤ C. Thus the direct sum indexed by i in the

definition of W k
3 is empty and W k

3 = Mℓ+1. Suppose that f ∈Mℓ+1 ∩ ITk. Then by Lemma 3.3(1),

we cannot have ω(f) = ℓ+ 1. Thus f ∈M2. If the level is N = 1, then M2 = 0 and the conclusion

holds. Otherwise, N = 4 and M2 is spanned by

E :=

(
∑

n∈Z

qn2

)4

= 1 + 8q + · · ·

and

F :=

∞∑

n=0

σ1(2n + 1)q2n+1 = q + · · · + (ℓ+ 1)qℓ · · · .

If f = aE + bF , then since f ∈ ITk, we must have a = 0. But then we must also have b = 0. Thus

f = 0 and the conclusion that W k
3 ∩ ITk = 0 follows.

6.4 The kernel of Θ

In this section we study the spaces W k
3 via an in-depth examination of the kernel of Θ. In particular,

we will decompose W k
3 into two subspaces, one contained in ITk and the other (which we will call

OTℓ+D−1) having trivial intersection with ITk. We will determine the dimension of each of these

subspaces. The case when D = ℓ+ 1 is a bit unusual and has been dealt with in Lemma 6.10. For

the remainder of this section, we assume that 3 ≤ D ≤ ℓ so that W k
3 = Mℓ+D−1.

By Lemma 2.10 the map
(
Eℓ+1

ℓ−1 − Θℓ−1
)

takes Mℓ+D−1 into M(ℓ+D−1)+(ℓ−1)(ℓ+1). In fact, the

image is contained in a much smaller (and lower weight) subspace.
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Lemma 6.11. Let 3 ≤ D ≤ ℓ. Recall the notation from (6.2.1), (6.2.2), (6.2.4), and (6.2.5). Then

(
Eℓ+1

ℓ−1 − Θℓ−1
)

: Mℓ+D−1 → KℓD.

Proof. Let f ∈Mℓ+D−1. Since Θℓf ≡ Θf mod ℓ, we have

Θ
(
Eℓ+1

ℓ−1f − Θℓ−1f
)

= Θf − Θℓf = 0

and hence
(
Eℓ+1

ℓ−1f − Θℓ−1f
)

∈ K(ℓ+D−1)+(ℓ−1)(ℓ+1). Suppose
(
Eℓ+1

ℓ−1f − Θℓ−1f
)

6= 0. Then by

Lemma 2.6, ω(Eℓ+1
ℓ−1f − Θℓ−1f) = (ℓ + D − 1) + (ℓ − 1)(ℓ + 1) − t(ℓ − 1) for some t ≥ 0. By

Lemma 2.10, the fact that Eℓ+1
ℓ−1f − Θℓ−1f is in the kernel of Θ implies that

(ℓ+D − 1) + (ℓ− 1)(ℓ+ 1) − t(ℓ− 1) ≡ 0 mod ℓ.

Thus t ≡ 2−D mod ℓ. Since 3 ≤ D ≤ ℓ, we deduce that t = ℓ+ 2−D + sℓ, for some s ≥ 0. Now

ω(Eℓ+1
ℓ−1f − Θℓ−1f) = ℓ+D − 1 + (ℓ− 1)(ℓ+ 1) − t(ℓ− 1)

= ℓ (D − (ℓ− 1)s) .
(6.4.1)

Filtrations of non-zero forms are non-negative and so D ≥ (ℓ − 1)s. But D ≤ ℓ and so there are

three cases:

• If s = 0, then ω(Eℓ+1
ℓ−1f − Θℓ−1f) = ℓD.

• If s = 1 and D = ℓ− 1, then ω(Eℓ+1
ℓ−1f − Θℓ−1f) = 0.

• If s = 1 and D = ℓ, then ω(Eℓ+1
ℓ−1f − Θℓ−1f) = ℓ.

In any case, (Eℓ+1
ℓ−1f − Θℓ−1f) ∈ KℓD.

Definition 6.12. For D in the range 3 ≤ D ≤ ℓ, let OTℓ+D−1 be any complementary subspace

such that

Mℓ+D−1 = ITℓ+D−1 ⊕OTℓ+D−1. (6.4.2)

By Lemma 6.11 we have an injection

(
Eℓ+1

ℓ−1 − Θℓ−1
)

: OTℓ+D−1 →֒ KℓD.

Lemma 6.13. Let 3 ≤ D ≤ ℓ. The injection Eℓ+1
ℓ−1 − Θℓ−1 : OTℓ+D−1 → KℓD factors as

(
Eℓ+1

ℓ−1 − Θℓ−1
)

(·) = (·|Uℓ)
ℓ
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where Uℓ : OTℓ+D−1 →MD and (·)ℓ : MD → KℓD. Hence

dimOTℓ+D−1 ≤ dimMD ≤ dimKℓD. (6.4.3)

Proof. Suppose 0 6= f ∈ OTℓ+D−1. The factorization Eℓ+1
ℓ−1f − Θℓ−1f = (f |Uℓ)

ℓ is immediate from

Lemma 3.2. By Lemma 2.8, we have that Uℓ : Mℓ+D−1 →Mℓ+D−1. By Lemma 2.11,

ω (f |Uℓ) =
1

ℓ
ω
(

(f |Uℓ)
ℓ
)

=
1

ℓ
ω
(
Eℓ+1

ℓ−1f − Θℓ−1f
)
.

By the computation of ω
(
Eℓ+1

ℓ−1f − Θℓ−1f
)

at the end of the proof of Lemma 6.11, we deduce that

ω (f |Uℓ) ≤ D and hence f |Uℓ ∈MD.

If f ∈ MD, then f ℓ ∈ MℓD. By considering the action on coefficients, we see that the map (·)ℓ

in fact takes f ∈MD to KℓD.

The statement about the dimensions is true because these maps are injective.

We will now show that we have equality in (6.4.3) by decomposing MℓD as in (6.3.3):

MℓD =

⌊ ℓD
ℓ−1⌋⊕

i=0

Ei
ℓ−1MℓD−i(ℓ−1)∗ = W ℓD

1 ⊕W ℓD
2 ⊕W ℓD

3 . (6.4.4)

Lemma 6.14. Suppose that 3 ≤ D ≤ ℓ. Then

W ℓD
1 = Eℓ−1M(D−1)ℓ+1∗ (6.4.5)

W ℓD
2 ≤ ITℓD (6.4.6)

W ℓD
3 = ED−1

ℓ−1 Mℓ+D−1. (6.4.7)

Proof. Since ℓD = D(ℓ − 1) +D, we have that i = D − 1 is the only index which appears in the

direct sum defining W ℓD
1 and so W ℓD

1 = Eℓ−1M(D−1)ℓ+1∗. This proves (6.4.5). Now (6.4.6) and

(6.4.7) are immediate from Lemmas 6.9 and 6.10.

Lemma 6.15. Let 3 ≤ D ≤ ℓ. Then
(
W ℓD

1 ⊕ ITℓD

)
∩KℓD = 0.

Proof. Since any two of W ℓD
1 , ITℓD, and KℓD have trivial intersection, it suffices to show that

W ℓD
1 ∩ (ITℓD ⊕KℓD) = 0.

Suppose 0 6= f ∈W ℓD
1 = Eℓ−1M(D−1)ℓ+1∗. Then ω(f) = (D− 1)ℓ+ 1, and by Lemma 2.10 we have

ω(Θf) = ω(f) + ℓ+ 1 = ℓD + 2.
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If f = g + h where g ∈ ITℓD and h ∈ KℓD, then by Lemmas 2.10 and 3.3(4), we have

ω(Θf) = ω(Θg + Θh) = ω(Θg) 6= ℓD + 2

which contradicts the previous equation.

Lemma 6.16. Let 3 ≤ D ≤ ℓ. Then dimOTℓ+D−1 = dimMD = dimKℓD.

Proof. Recall (6.4.2), the decomposition (6.4.4) and Lemma 6.14, which give

MℓD = W ℓD
1 ⊕W ℓD

2 ⊕W ℓD
3

= W ℓD
1 ⊕W ℓD

2 ⊕ ED−1
ℓ−1 Mℓ+D−1

= W ℓD
1 ⊕W ℓD

2 ⊕ ED−1
ℓ−1 ITℓ+D−1︸ ︷︷ ︸

≤ITℓD︸ ︷︷ ︸
∩KℓD=0

⊕ED−1
ℓ−1 OTℓ+D−1.

In the last equation above, all but the last summand ED−1
ℓ−1 OTℓ+(D−1) has trivial intersection with

the kernel of Θ by Lemma 6.15. Hence, dimKℓD ≤ dimOTℓ+(D−1). Therefore we have equality

throughout (6.4.3).

Corollary 6.17. Let 3 ≤ D ≤ ℓ. Then KℓD = (MD)ℓ.

Proof. By Lemma 6.16, we have equality in (6.4.3) and hence the maps appearing in Lemma 6.13

are all bijections.

Proposition 6.18. Let ℓ ≥ 5 be prime and k = C(ℓ− 1) +D ≥ 2ℓ where 3 ≤ D ≤ ℓ+ 1. Suppose

N = 1 or 4. If W k
1 is as in Definition 6.6, then

P (ℓ, k,N) = ℓ− dimW k
1 −dimMD .

Proof. Suppose 3 ≤ D ≤ ℓ. Then by Lemma 6.10 and Definition 6.12, we have

W k
3 = Mℓ+D−1 = ITℓ+D−1 ⊕OTℓ+D−1.

By (6.3.4), we thus have

Mk =
(
W k

1 ⊕OTℓ+D−1

)
⊕
(
ITℓ+D−1 ⊕W k

2

)
.

The (C − 1)st iterate of the inclusion map (6.2.1) shows ITℓ+D−1 ≤ ITC(ℓ−1)+D = ITk and hence

by Lemma 6.9 we have ITℓ+D−1 ⊕W k
2 ≤ ITk.

We now prove that we actually have the equality ITℓ+D−1 ⊕W k
2 = ITk: Suppose

0 6= f ∈
(
W k

1 ⊕OTℓ+D−1

)
∩ ITk.
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Then f = g + h for some g ∈ W k
1 and h ∈ OTℓ+D−1. If g 6= 0, then by Lemma 2.12, we

have ω(f) = ω(g) ≡ 1 mod ℓ. But now Lemma 3.3(1) implies that f 6∈ ITk, a contradiction.

On the other hand, if g = 0, then f = h ∈ OTℓ+D−1. By the definition of OTℓ+D−1, we have

f 6∈ ITℓ+D−1 ≤ ITk. We conclude that

(
W k

1 ⊕OTℓ+D−1

)
∩ ITk = 0.

So

dimMk ≥ dim
(
W k

1 ⊕OTℓ+D−1

)
+ dim ITk

≥ dim
(
W k

1 ⊕OTℓ+D−1

)
+ dim

(
ITℓ+D−1 ⊕W k

2

)

≥Mk,

and hence
(
ITℓ+D−1 ⊕W k

2

)
= ITk.

Now recall that by (6.1.1), we have

P (ℓ, k,N) =
|ITk|
|Mk|

= ℓ−(dimMk−dim ITk) = ℓ− dimW k
1 −dimOTℓ+D−1.

Lemma 6.16 yields the desired conclusion.

The case when D = ℓ+ 1 is similar. By Lemma 6.10 we have 0 = W k
3 ∩ ITk = ITℓ+D−1. In the

proof above, replace “OTℓ+D−1” with W k
3 = Mℓ+1.

6.5 Dimension counts for level N = 4

In this section we assume the level is N = 4 and we determine dimMk∗ for any k, and dimW k
1 for

k ≥ 2ℓ. In the next section we will compute the more complicated case N = 1. Recall that for

N = 4, we have dimMk =
⌊

k
2

⌋
+ 1 for all k ≥ 0.

Lemma 6.19. Let N = 4 and ℓ ≥ 5 be prime. For k ≥ ℓ− 1, we have dimMk∗ = ℓ−1
2 .

Proof. By (6.3.2), for k ≥ ℓ− 1 we have

dimMk∗ = dimMk − dimMk−ℓ+1

=

(⌊
k

2

⌋
+ 1

)
−
(⌊

k − ℓ+ 1

2

⌋
+ 1

)

=
ℓ− 1

2
,

which is independent of k.

Theorem 6.20 (Main Theorem for N = 4.). Let ℓ ≥ 5 be prime, N = 4, and k = C(ℓ−1)+D ≥ 2ℓ

where 3 ≤ D ≤ ℓ + 1. The probability P (ℓ, k, 4) that f ∈ Mk has a Ramanujan congruence at 0
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mod ℓ is

P (ℓ, k, 4) = ℓ−( ℓ−1
2 )(1+⌊C−D+1

ℓ ⌋)−⌊D
2 ⌋−1.

Proof. Since dimMD =
⌊

D
2

⌋
+ 1, in light of Proposition 6.18 it suffices to compute dimW k

1 . By

Lemma 6.8, there are J = 1+
⌊

C−D+1
ℓ

⌋
direct summands in the definition of W k

1 . By Lemma 6.19,

each summand has dimension ℓ−1
2 . Hence dimW k

1 = J
(

ℓ−1
2

)
.

6.6 Dimension counts for level N = 1

The idea behind the dimension computations in this section is simple. In level N = 1, if k ≥ ℓ− 1

then by (6.3.2) we have that

dimMk∗ = dimMk − dimMk−ℓ+1 ≈ k

12
− k − ℓ+ 1

12
=
ℓ− 1

12
.

Hence,

dimMk+ℓ+1∗ − dimMk∗ ≈ 0.

The exact value of dimMk∗ will depend on k mod 12 and ℓ mod 12. Write

k = 12k0 + k1,

ℓ = 12ℓ0 + ℓ1,

where k1 ∈ {0, 2, 4, 6, 8, 10} and ℓ1 ∈ {1, 5, 7, 11}. Table 6.1 lists dimMk∗ for each of the resulting

24 cases. We illustrate with one example: Suppose k1 = 6 and ℓ1 = 5. Then

dimMk∗ = dimMk − dimMk−ℓ+1

= dimM12k0+6 − dimM12(k0−ℓ0)+2

= (k0 + 1) − (k0 − ℓ0)

= ℓ0 + 1.

Table 6.1: Dimension of Mk∗ when k ≥ ℓ− 1 and N = 1

ℓ1\k1 0 2 4 6 8 10

1 ℓ0 ℓ0 ℓ0 ℓ0 ℓ0 ℓ0
5 ℓ0 + 1 ℓ0 ℓ0 ℓ0 + 1 ℓ0 ℓ0
7 ℓ0 + 1 ℓ0 ℓ0 + 1 ℓ0 ℓ0 + 1 ℓ0
11 ℓ0 + 2 ℓ0 ℓ0 + 1 ℓ0 + 1 ℓ0 + 1 ℓ0
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Lemma 6.21. For N = 1, ℓ ≥ 5 prime, and k ≥ 2ℓ, we have dimMk∗ = dimMk−ℓ−1∗.

Proof. A case by case analysis using Table 6.1 shows that this is true.

By Lemma 6.8, W k
1 is a direct sum of J = 1 +

⌊
C−D+1

ℓ

⌋
spaces of the form Mi(ℓ−1)+D∗. By

Table 6.1,

dimMi(ℓ−1)+D∗ = ℓ0 + {0, 1, or 2}

=

⌊
ℓ

12

⌋
+ {0, 1, or 2} .

Hence,

dimW k
1 ≥ J

⌊
ℓ

12

⌋
.

This motivates the following definition of the quantity X which appears in the statement of Theo-

rem 1.15.

Definition 6.22. Let ℓ ≥ 5 be prime and k = C(ℓ− 1) +D ≥ 2ℓ where 3 ≤ D ≤ ℓ+ 1. Suppose

N = 1 or 4. If J is as in (1.5.1), and W k
1 is as in Definition 6.6, then set

X :=X (N, ℓ, k)

:= dimW k
1 −

(
1 +

⌊
C −D + 1

ℓ

⌋)⌊
ℓ

12

⌋

= dimW k
1 − J

⌊
ℓ

12

⌋
.

The proof of Theorem 6.20 showed that X (4, ℓ, k) = 0.

Theorem 6.23 (Main Theorem for N = 1). Let ℓ ≥ 5 be a prime and let k = C(ℓ− 1) +D ≥ 2ℓ

be even, where 3 ≤ D ≤ ℓ+ 1. For N = 1 and J = 1 +
⌊

C−D+1
ℓ

⌋
, we have

P (ℓ, k, 1) = ℓ−J⌊ ℓ
12⌋−X−dimMD ,

where

1. if ℓ ≡ 1 mod 12 then X = 0,

2. if ℓ ≡ 5 mod 12 then X =
⌊

J
3

⌋
+ δ with

δ =





1 if J ≡ 1 mod 3 and D ≡ 2 mod 6

1 if J ≡ 2 mod 3 and D ≡ 2, 4 mod 6

0 otherwise
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3. if ℓ ≡ 7 mod 12 then X =
⌊

J
2

⌋
+ δ with

δ =





1 if J ≡ 1 mod 2 and D ≡ 2 mod 4

0 otherwise

4. if ℓ ≡ 11 mod 12 then X = 5
⌊

J
6

⌋
+ δ with δ ∈ {0, 1, 2, 3, 4, 5}. The term δ is computable in

terms of J mod 6 and D mod 12, but is omitted for the sake of brevity.

Proof. In light of Proposition 6.18, we only need to compute dimW k
1 . We only do the case ℓ ≡ 5

mod 12 since the rest are analogous. Recall from the proof of Lemma 6.8 that J denotes the set

of indices appearing in the definition of W k
1 . From (6.3.5), every j ∈ J is of the form

j(t) = ℓ
(
t(ℓ− 1) +D − 1

)
+ 1

for 0 ≤ t ≤
⌊

C−D+1
ℓ

⌋
. Since ℓ ≡ 5 mod 12, we get

j(t) ≡ 8(t+ 1) + 5D mod 12. (6.6.1)

We see from Table 6.1 that for any t,

dimMj(t)∗ = ℓ0 + {0 or 1}.

Notice that for any two consecutive t, t+ 1, we have

dimMj(t)∗ + dimMj(t+1)∗ = 2ℓ0 + {0 or 1}

and for any three consecutive t, t+ 1, t+ 2, we have

dimMj(t)∗ + dimMj(t+1)∗ + dimMj(t+2)∗ = 3ℓ0 + 1.

Thus,

dimW k
1 =

(
1 +

⌊
C −D + 1

ℓ

⌋)
ℓ0 +

⌊(
1 +

⌊
C−D+1

ℓ

⌋)

3

⌋
+ {0 or 1} (6.6.2)

= J

⌊
ℓ

12

⌋
+

⌊
J

3

⌋
+ {0 or 1}.

Furthermore, from Table 6.1 and (6.6.1) we see that the {0 or 1} in (6.6.2) is 1 exactly when either

of the following occur:

•
(
1 +

⌊
C−D+1

ℓ

⌋)
≡ 1 mod 3 and j(0) ≡ 8 + 5D ≡ 0 mod 6.

•
(
1 +

⌊
C−D+1

ℓ

⌋)
≡ 2 mod 3 and j(0) ≡ 8 + 5D ≡ 0 or 4 mod 6.
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The conclusion follows by Proposition 6.18 and Definition 6.22.
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CHAPTER 7

APPLICATIONS OF MOCK MODULAR FORMS

This chapter has been previously published in [17].

7.1 Notations

We recall the definition of a harmonic weak Maass form of half-integral weight k ∈ 1
2Z. Letting

z = x+ iy ∈ C, the hyperbolic Laplacian of weight k is

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

For d odd, define

ǫd :=





1 if d ≡ 1 mod 4,

i if d ≡ 3 mod 4.

A harmonic weak Maass form of weight k on the congruence subgroup Γ ⊂ Γ0(4) is a smooth

function f : H → C such that:

1. For all A =

(
a b

c d

)
∈ Γ, f(Az) =

(
c
d

)2k
ǫ−2k
d (cz + d)kf(z).

2. ∆kf = 0.

3. f(z) has at most linear exponential growth at all of the cusps.

For a positive integer N ≡ 0 mod 4, the C-vector space of harmonic weak Maass forms of weight

k on Γ1(N) is denoted M̃k(N).

A harmonic weak Maass form is the sum of a holomorphic part and a nonholomorphic part.

See Zagier [47] for a nice overview. The harmonic weak Maass forms that we will consider have

nonholomorphic parts given by the integral of a cusp form (the shadow of the Maass form). Thus,

the Fourier expansions for the nonholomorphic parts will only have negative powers of q. Recalling

that the incomplete Gamma function is defined by

Γ(α, x) :=

∫ ∞

x
e−ttα−1dt,
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the Fourier expansion for a weak Maass form f(z) of the type we consider is

f(z) =
∞∑

n=n0

a(n)qn +
∞∑

n=1

b(n)Γ(1 − k, 4πny)q−n,

where the first (resp. second) summand is called the holomorphic (resp. nonholomorphic) part of

f(z).

We will need some fundamental operators on these forms. For any positive integer ℓ, define the

U(ℓ) operator by its action on the Fourier coefficients:

f(z)|U(ℓ) :=
∑

a(ℓn)qn +
∑

b(ℓn)Γ(1 − k, 4πny)q−n.

Lemma 7.1 ([3], Lemma 2.1). Suppose that N, ℓ are positive integers with 4|N . Define ℓ0 :=
∏

p|ℓ prime p, let ℓ1 be the conductor of Q(
√
ℓ), and set N ′ := lcm(N, ℓ0, ℓ1). Then the operator U(ℓ)

maps M̃k(N) to M̃k(N
′).

We may also twist a Maass form by a Dirichlet character χ. The effect in terms of the Fourier

expansion is

f(z) ⊗ χ :=
∑

χ(n)a(n)qn +
∑

χ(−n)b(n)Γ(1 − k, 4πny)q−n.

Lemma 7.2 ([3], Lemma 2.2). Suppose that N is a positive integer with 4|N , that f(z) ∈ M̃k(N),

and that χ is a Dirichlet character modulo r. Set N ′ := lcm(Nr, r2). Then f ⊗ χ ∈ M̃k(N
′).

We will frequently transform a Maass form by taking the subseries whose powers of q lie in

an arithmetic progression d mod t. This returns a Maass form by the previous lemma since this

subseries is given by

1

φ(t)

∑

χ mod t

χ(d)f(z) ⊗ χ,

where φ(t) is Euler’s totient function.

7.2 Overpartitions

We compute the nonholomorphic part of the Maass form of Bringmann and Lovejoy [10].

Theorem 7.3. Let t be odd. The function (1.6.1) is the holomorphic part of a weight 1
2 weak

Maass form on Γ1(16t
2) whose nonholomorphic part is

−√
π

∞∑

n=1

A(r, t, n)Γ

(
1

2
, 4πyn2

)
q−n2

,
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where A(r, t, 0) = 0 and for 0 ≤ r ≤ t−1
2 , 0 < n ≤ t−1

2 ,

A(r, t, n) =





(−1)n+r if r = 2n or r = t− 2n,

(−1)n+r2 if r < 2n and r < t− 2n,

0 if r > 2n or r > t− 2n,

and for all r, t, and n,

A(r, t, n) = −A(r, t, n + t) = −A(r, t,−n) = A(r + t, t, n) = A(−r, t, n). (7.2.1)

Remark 7.4. Using (7.2.2) below, an equivalent formulation of this theorem is to say that the

shadow corresponding to (1.6.1) is −πi∑∞
n=1A(r, t, n)nqn2

. Theorems 7.5 and 7.8 to follow also

have a similar reformulation.

Proof: Define O(w, q) =
∑∞

n=0

∑
m∈ZN(m,n)wmqn and let ζt = exp(2πi/t). Orthogonality of

roots of unity implies that

1

t

t−1∑

j=0

ζ−rj
t O(ζj

t , q) =

∞∑

n=0

N(r, t, n)qn.

Hence
∑∞

n=0

(
N(r, t, n) − p(n)

t

)
qn = 1

t

∑t−1
j=1 ζ

−rj
t O(ζj

t , q). Bringmann and Lovejoy [10, Theorem

1.1] show O(ζj
t , q) is the holomorphic part of a weak Maass form on Γ1(16t

2) whose nonholomorphic

part is given as an integral of theta functions. Using this theorem, the definition [10, Equation

(1.7)], the transformation law [10, Equation (3.4)], and some algebraic manipulations we find that

the nonholomorphic part is

−π
√

2

t

t−1∑

j=1

∑

n∈Z
n 6=0

nζ−rj
t ζ

n(4j+t)
2t tan

(
jπ

t

)∫ i∞

−z

e2πiτn2

√
−i(τ + z)

dτ.

The integral may be evaluated (via the changes of variable τ ′ = τ + z and τ ′ = −2πin2τ) as

∫ i∞

−z

e2πiτn2

√
−i(τ + z)

dτ =
q−n2

i√
2πn2

∫ ∞

4πn2y
e−τ τ−1/2dt =

q−n2
i√

2π|n|
Γ

(
1

2
, 4πyn2

)
. (7.2.2)
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Hence the nonholomorphic part corresponding to (1.6.1) is

− i
√
π

t

∑

n 6=0

n

|n|




t−1∑

j=1

ζ−rj
t ζ

n(4j+t)
2t tan

(
jπ

t

)
Γ

(
1

2
, 4πyn2

)
q−n2

= − i
√
π

t

∞∑

n=1




t−1∑

j=1

ζ−rj
t

(
ζ

n(4j+t)
2t − ζ

−n(4j+t)
2t

)
tan

(
jπ

t

)
Γ

(
1

2
, 4πyn2

)
q−n2

= −√
π

∞∑

n=1

A(r, t, n)Γ

(
1

2
, 4πyn2

)
q−n2

,

where

A(r, t, n) := (−1)n+1 2

t

t−1∑

j=1

ζ−rj
t sin

(
4jnπ

t

)
tan

(
jπ

t

)
.

The periodicity claimed in (7.2.1) follows from that of the summands of A(r, t, n). In addition,

clearly A(r, t, 0) = 0. We now have

A(r, t, n) = (−1)n
1

t

t−1∑

j=0

ζ−rj
t

(
ζ4nj
2t − ζ−4nj

2t

ζj
2t + ζ−j

2t

)(
ζj
2t − ζ−j

2t

)

= (−1)n
1

t

t∑

j=0

ζ−rj
t

(
ζ
(4n−1)j
2t − ζ

(4n−3)j
2t + · · · − ζ

(−4n+1)j
2t

)(
ζj
2t − ζ−j

2t

)

= (−1)n
1

t

t∑

j=0

ζ−rj
t

(
ζ2nj
t + 2

2n−1∑

k=−2n+1

(−1)kζkj
t + ζ−2nj

t

)
.

We count a contribution of (−1)n whenever 2n ≡ ±r mod t and (−1)k+n · 2 when −2n+ 1 ≤ k ≤
2n−1 with k ≡ r mod t. That is, we must examine how frequently r+mt ∈ [−2n, 2n] form ∈ Z. By

the assumptions 0 ≤ r ≤ t−1
2 and 0 < n ≤ t−1

2 , only r and r−t possibly lie in this interval. If r ≥ 2n,

then n ≤ t−1
4 so r − t < −2n and we only get a contribution when r = 2n. Otherwise, r < 2n and

we always get 2(−1)r+n plus possibly a contribution depending on the size of r− t relative to −2n.

For example, if also r−t = −2n then (in addition to the contribution of 2(−1)r+n from 0 ≤ r ≤ 2n)

we also get (−1)n. So here A(r, t, n) = 2(−1)r+n +(−1)n = −2(−1)n +(−1)n = −(−1)n = (−1)r+n,

since t is odd and so r must be too. The other cases r− t > −2n and r− t < −2n are similar.

The behavior of A(r, t, n) is illustrated in Table 1 for the values of A(r, 17, n).

Example: We have A(2, 17, 3) − 2A(6, 17, 3) + A(7, 17, 3) = 0. Recall that we can sift out

coefficients which lie in an arithmetic progression. Then R26(8) − R67(8) is a weakly holomorphic

modular form since its nonholomorphic part only has terms with q−n2
where −n2 ≡ 8 mod 17, i.e.

n ≡ ±3 mod 17, and these terms vanish. In fact, R26(−9) − R67(−9) is modular for any prime

t ≥ 17.

Proof of Theorem 1.17: Rrs(d) is the holomorphic part of a Maass form whose nonholomorphic
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Table 7.1: The values of A(r, 17, n).

n
r

0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0
1 -2 2 -1 0 0 0 0 0 0
2 2 -2 2 -2 1 0 0 0 0
3 -2 2 -2 2 -2 2 -1 0 0
4 2 -2 2 -2 2 -2 2 -2 1
5 -2 2 -2 2 -2 2 -2 1 0
6 2 -2 2 -2 2 -1 0 0 0
7 -2 2 -2 1 0 0 0 0 0
8 2 -1 0 0 0 0 0 0 0

part is

−√
π

∞∑

n=0
−n2≡d mod t

[A(r, t, n) −A(s, t, n)] Γ

(
1

2
, 4πyn2

)
q−n2

= −√
π

∞∑

n=0
n≡±d′ mod t

±
[
A(r, t, d′) −A(s, t, d′)

]
Γ

(
1

2
, 4πyn2

)
q−n2

(7.2.3)

By Theorem 7.3, in the first case A(r, t, d′) = A(s, t, d′) = 0 and the second case is exactly when

A(r, t, d′) = A(s, t, d′) = ±2.

Proof of Theorem 1.18: Assume
(
−d
t

)
= 1 and let d′2 ≡ −d mod t with 0 ≤ d′ ≤ t−1

2 .

Consider Equation (7.2.3). If d′ < t−1
4 , then A(2d′, t, d′) − A(2d′ + 1, t, d′) = ±1 − 0, whereas

A(r, t, d′) − A(s, t, d′) ∈ [−4, 4]. Take Fd,t = R2d′,2d′+1(d). The other cases d′ = t−1
4 , d′ = t+1

4 and

d′ > t+1
4 are similar.

7.3 M2-rank of partitions with distinct odd parts

The nonholomorphic part related to M2-rank is given by the following theorem which uses ft =

2t/ gcd(t, 4).

Theorem 7.5. Let t ≥ 2. The function (1.6.3) is the holomorphic part of a weight 1
2 weak Maass

form on Γ1(2
10f4

t ) whose nonholomorphic part is

−1√
π

∞∑

n=1

χ(n)B(r, t, n)Γ

(
1

2
, 4πyn2

)
q−n2

,
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where

χ(n) =





1 if n ≡ 1, 7 mod 8,

−1 if n ≡ 3, 5 mod 8,

0 else,

and

B(r, t, n) =





ǫ if 2r ≡ 0 mod t, n ≡ 2r + ǫ mod 2t, with ǫ ∈ {±1},
ǫ/2 if 2r 6≡ 0,±1 mod t, n ≡ ±2r + ǫ mod 2t, with ǫ ∈ {±1},
0 else.

Proof: Theorem 1.2 of [29] specializes to a statement about the M2-rank for partitions without

repeated odd parts by restricting to r = 0 and χ(λ) = 0 in the notation of [29]. Hence we take

a = 0 and b = c = 1 in that theorem to get that

N (w, q) :=
∑

n≥0
m∈Z

N2(m,n)wmqn =
∑

n

qn2
(−q; q2)n

(wq2, q2/w; q2)n

is the M2-rank generating function for partitions without repeated odd parts. Replacing q with −q
gives the function which [9, Equation (1.8)] denotes as K′(w, z), i.e. N (w,−q) = K′(w, z). As in

the proof of Theorem 7.3, we sum over roots of unity and see that

∞∑

n=0

(
N2(r, t, n) − 1

t
N2(n)

)
(−q)n =

t−1∑

j=1

ζ−rj
t K′(ζj

t ; z).

Theorem 4.2 of [13] and the equation at the top of page 12 of [13] show that

∞∑

n=0

(
N2(r, t, n) − 1

t
N2(n)

)
(−1)nq2f2

t n−f2
t /4

is the holomorphic part of a weak Maass form on Γ1(64f
4
t ) and expresses the nonholomorphic part

in terms of an integral of a theta function. Following the method of the proof of Theorem 7.3, we

use [9, Equation 4.6], the formula for T on page 21 of [13] and a series of manipulations to compute

that the nonholomorphic part is

− 1√
π

∞∑

n=1
n odd

B(r, t, n)Γ

(
1

2
, πyn2f2

t

)
q−n2f2

t /4,
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where

B(r, t, n) :=
2

t

t−1∑

j=1

ζ−rj
t sin

(
jπ

t

)
sin

(
njπ

t

)
.

Apply the U(f2
t /4) operator to get the weak Maass form

∞∑

n=0

(
N2(r, t, n) − 1

t
N2(n)

)
(−1)nq8n−1 − 1√

π

∞∑

n=1
n odd

B(r, t, n)Γ

(
1

2
, 4πyn2

)
q−n2

.

To eliminate the (−1)n in the holomorphic part, twist out the arithmetic progression 15 mod 16 and

subtract from it the progression 7 mod 16. This produces the character χ(n) in the nonholomorphic

part. That is,

∞∑

n=0

(
N2(r, t, n) − 1

t
N2(n)

)
q8n−1 − 1√

π

∞∑

n=1

χ(n)B(r, t, n)Γ

(
1

2
, 4πyn2

)
q−n2

is a weak Maass form on Γ1(2
10f4

t ).

Finally, we may redefine B(r, t, n) = 0 for n even. Otherwise for odd n,

B(r, t, n) = − 1

2t

t−1∑

j=0

ζ−rj
t

(
ζj
2t − ζ−j

2t

)(
ζjn
2t − ζ−jn

2t

)

=
1

2t

t−1∑

j=0

ζ
j(−n+1−2r)
2t + ζ

j(n−1−2r)
2t − ζ

j(n+1−2r)
2t − ζ

j(−n−1−2r)
2t .

Since the exponents are even, we have complete sums of tth roots of unity. We count contributions

exactly when 2t|n ± 1 ± 2r. Elementary considerations show that we have at most two such

contributions, that B = 0,±1
2 ,±1, and that B = ±1 implies 2r ≡ 0 mod t. If r ≡ 0 mod t then

B = ±1 exactly when n ≡ ±1 ≡ 2r ± 1 mod 2t. If r ≡ t
2 mod t, then B = ±1 exactly when

n ≡ t± 1 ≡ 2r ± 1 mod 2t. If 2r ≡ ±1 mod t, then B = 0 because the contributions will cancel.

Otherwise, B = ±1
2 whenever n ≡ ±2r ± 1 mod 2t.

Using our notation, the corresponding result for the usual partition function computed in [3] is

that

∞∑

n=0

(
N(r, t, n) − 1

t
p(n)

)
q24n−1 − 1√

π

∞∑

n=1

ψ(n)B(r, t, n)Γ

(
1

2
, 4πyn2

)
q−n2

(7.3.1)
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is a weak Maass form, where

ψ(n) =





1 if n ≡ 1, 11 mod 12

−1 if n ≡ 5, 7 mod 12

0 else.

(7.3.2)

The Maass forms of Theorem 7.5 and (7.3.1) have very similar nonholomorphic parts and as r

varies they will satisfy the same linear relations. Hence, theorems analogous to those in [3] hold for

the M2-rank generating function. For example, compare the following with Corollary 1.5 of that

paper.

Example: For t prime and 2 ≤ r ≤ t− 2,

∑

8n−16≡−9,−(2r±1)2 mod t

(N2(0, t, n) + 2N2(1, t, n) − 3N2(r, t, n)) q8n−1

is a weakly holomorphic modular form on Γ1(2
10f4

t t) since

B(0, t, n) + 2B(1,t, n) − 3B(r, t, n)

=





(±1) + 2(∓1
2 ) + 0, if n ≡ ±1 mod 2t

0 + 2(0) + 0, if n 6≡ ±1,±3,±2r ± 1 mod 2t.

A useful corollary of Theorem 7.5 is

Corollary 7.6. If t ≥ 2, then 1 − 8d 6≡ (2r ± 1)2 mod t if and only if

∑

n=0
n≡d mod t

(
N2(r, t, n) − 1

t
N2(n)

)
q8n−1 (7.3.3)

is a weight 1
2 weakly holomorphic modular form on Γ1(2

10f4
t t).

Proof: By Theorem 7.5, (7.6) is the holomorphic part of a Maass form whose nonholomorphic

part is supported on q−n2
where −n2 ≡ d mod t. The given parameters are exactly where B

vanishes.

Proof of Theorem 1.19: Immediate from Corollary 7.6.

Proof of Theorem 1.20: Analogous to Theorem 1.18.

If we take the primitive character φ(n) = χ−1(n)ψ(n) with conductor 24 then we have the

following amusing theorem.

Theorem 7.7. Let t be odd with 3 ∤ t. Then

∞∑

n=0

(
N2(r, t, 3n) −N(r, t, n) − N2(3n) − p(n)

t

)
q24n−1
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is a weight 1
2 weakly holomorphic modular form on Γ1(2

1633f4
t ).

Proof: Take the subseries of the Maass form of Theorem 7.5 supported on q with exponents

≡ 23 mod 24 and then twist by φ(n). This has the same nonholomorphic part as (7.3.1).

7.4 2-marked Durfee symbols

Our final object of study has a nonholomorphic part whose coefficients are more complicated to

describe.

Theorem 7.8. If 0 ≤ r < t are integers with 2, 3 ∤ t then (1.6.5) is the holomorphic part of a

weight 1
2 weak Maass form on Γ1(576t

4) whose nonholomorphic part is given by

− 1

2
√
π

∞∑

n=1

ψ(n)C(r, t, n)Γ

(
1

2
, 4πyn2

)
q−n2

,

where ψ is as in (7.3.2) and C(r, t, n) is a function defined by the following properties. For all odd

n and all r,

C(r, t, n) = C(r + t, t, n) = C(t− r, t, n) = C(r, t, n + 2t) = −C(r, t, 2t − n). (7.4.1)

For all r ∈ [0, t/2] and odd n ∈ [1, t], C(r, t, n) − n
t ∈ {−2,−1, 0, 1}. Moreover, Table 2 allows one

to determine the exact value of this quantity according to the following instructions.

Table 7.2: The function C(r, t, n) is defined using the instructions following Theorem 7.8.

r mod 3
n mod 3

0 1 2

0 n ≥ 2r + 3 n ≥ r + 1 n ≥ r + 2

1 n ≥ r + 2 n+3
2 ≤ r ≤ n− 1

2 n ≥ r + 1 n+3
2 ≤ r ≤ n− 2

t-1 n ≥ t− r + 2 n+3
2 ≤ t− r ≤ n− 1

t n ≥ t− r + 1 n ≥ t− r + 2

t+1 n ≥ t− r + 1 n+3
2 ≤ t− r ≤ n− 2

Find the appropriate column and the two appropriate rows based on the congruence classes mod

3. For each of the corresponding table entries, if there is a set of inequalities listed, and if n, r, t

satisfy those inequalities, count a contribution of -1. If the entry is blank, there is no contribution.

The only exception is n ≡ r ≡ 0 mod 3 which counts +1 when n ≥ 2r + 3. Consider for example

Table 3 which shows C(r, 29, n) − n
29 .
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Table 7.3: The values of C(r, 29, n) − n
29 .

n
r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0
5 -1 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0
7 -1 0 0 -1 0 -1 -1 0 0 0 0 0 0 0 0
9 1 -1 -1 1 -1 -1 0 -1 -1 0 0 0 0 0 0
11 -1 0 0 -1 0 0 -1 -1 0 -1 -1 0 0 0 0
13 -1 0 0 -1 0 0 -1 0 -1 -1 0 -1 -1 0 0
15 1 -1 -1 1 -1 -1 1 -1 -1 0 -1 -1 0 -1 -1
17 -1 0 0 -1 0 0 -1 0 0 -1 -1 0 -1 -2 -1
19 -1 0 0 -1 0 0 -1 0 0 -1 0 -2 -2 0 -2
21 1 -1 -1 1 -1 -1 1 -1 -1 0 -2 -1 -1 -2 -1
23 -1 0 0 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -2 -1
25 -1 0 0 -1 0 -1 -2 0 -1 -2 0 -1 -2 0 -2
27 1 -1 -1 0 -2 -1 0 -2 -1 0 -2 -1 0 -2 -1
29 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Proof: Define the full rank generating function

R2(w, q) :=
∞∑

n=1

∑

m∈Z

NF2(m,n)wmqn.

Andrews [5] showed that for w3 6= 1,

R2(w, q) =
w2

(1 − w)(w3 − 1)
(R(w, q) −R(w2, q)), (7.4.2)

where

R(w, q) =

∞∑

n=0

∑

m∈Z

N(m,n)wmqn

is the usual partition rank generating function. By (7.4.2),
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∞∑

n=0

(
NF2(r, t, n) − 1

t
D2(n)

)
qn =

1

t

t−1∑

j=1

ζ−rj
t R2(ζ

j
t , q)

=
1

t

t−1∑

j=1

ζ−rj
t

(
ζ2j
t

(1 − ζj
t )(ζ

3j
t − 1)

)(
R(ζj

t ; q) −R(ζ2j
t ; q)

)

=
1

4t

t−1∑

j=1


 ζ−rj

t

sin
(

πj
t

)
sin
(

3πj
t

)



(
R(ζj

t ; q) −R(ζ2j
t ; q)

)
.

By Theorem 1.2 of [12], R(ζj
t ; q) is essentially the holomorphic part of a weak Maass form. Con-

tinuing as in the proof of Theorem 7.3, we find the nonholomorphic part is

− 1

2
√
π

∑

n≡1 mod 6

(−1)
n−1

6
n

|n|C(r, t, n)Γ

(
1

2
, 4πyn2

)
q−n2

= − 1

2
√
π

∞∑

n=1

ψ(n)C(r, t, n)Γ

(
1

2
, 4πyn2

)
q−n2

,

where

C(r, t, n) :=
1

t

t−1∑

j=1

ζ−rj
t

sin
(

πj
t

)
sin
(

πnj
t

)
− sin

(
2πj
t

)
sin
(

2πnj
t

)

sin
(

πj
t

)
sin
(

3πj
t

) .

The periodicity claimed in (7.4.1) follows easily. Now for r = r ∈ [0, t/2] and odd n = n ∈ [1, t] we

have

C(r, t, n) =
1

t

t−1∑

j=1

ζ−2rj
2t


ζ

nj
2t − ζ−nj

2t

ζ3j
2t − ζ−3j

2t

−

(
ζ2j
2t − ζ−2j

2t

)(
ζ2nj
2t − ζ−2nj

2t

)

(
ζj
2t − ζ−j

2t

)(
ζ3j
2t − ζ−3j

2t

)




=
1

t

t−1∑

j=1

ζ−2rj
2t


ζ

nj
2t − ζ−nj

2t

ζ3j
2t − ζ−3j

2t

−

(
ζj
2t + ζ−j

2t

)(
ζ2nj
2t − ζ−2nj

2t

)

ζ3j
2t − ζ−3j

2t




=
1

t

t−1∑

j=1

ζ−2rj
2t

[
ζnj
2t − ζ−nj

2t − ζ
(2n+1)j
2t + ζ

(−2n+1)j
2t − ζ

(2n−1)j
2t + ζ

(−2n−1)j
2t

ζ3j
2t − ζ−3j

2t

]
.

For each congruence class of n mod 3, there is an appropriate grouping of the numerator terms

allowing the ζ3j
2t − ζ−3j

2t to cancel. For example, if n ≡ 0 mod 3,

C(r, t, n) =
1

t

t−1∑

j=1

−ζ
(2n+1−2r)j
2t − ζ

(−2n+1−2r)j
2t

ζ3j
2t − ζ−3j

2t

− ζ
(2n−1−2r)j
2t − ζ

(−2n−1−2r)j
2t

ζ3j
2t − ζ−3j

2t

+
ζnj
2t − ζ−nj

2t

ζ3j
2t − ζ−3j

2t

.
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After dividing, all of the resulting terms will have an even exponent. Hence we’ll have a collection

of n incomplete sums of tth roots of unity. Completing these sums will require adding in the j = 0

terms. In effect, we subtract off 1/t for each of the n sums. Continuing with the n ≡ 0 mod 3

case, C(r, t, n) − n/t will get a contribution of −1 each time

t|n− r − 1, n − r − 4, . . . ,−n− r + 2 (7.4.3)

t|n− r − 2, n − r − 5, . . . ,−n− r + 1 (7.4.4)

and get a contribution of 1 each time

t|n− 3

2
− r,

n− 3

2
− 3 − r, . . . ,−n− 3

2
− r. (7.4.5)

By hypotheses on n, r we have

t > n− r − 1 > · · · > −n− r + 2 > −2t

and so one of the conditions in (7.4.3) will occur when both n− r− 1 ≡ 0 mod 3 and n− r− 1 ≥ 0

or when both n − r − 1 ≡ −t mod 3 and −n − r + 2 ≤ −t. This gives the table entry for n ≡ 0

mod 3, r ≡ 2 mod 3 and the entry for n ≡ 0 mod 3, r ≡ t− 1 mod 3. The rest of the cases are

similar.

The restriction 2 ∤ t in this theorem may be removed by taking a different congruence subgroup

using Theorem 1.1 of [12]. As a general indication of the utility of Theorem 7.8, we provide two

examples.

Example: Since 2C(3, 29, 25)−C(6, 29, 25)−C(7, 29, 25) = 2(−1)− (−2)− (0) = 0, we deduce

that

∑

n≡3 mod 29

[2NF2(3, 29, n) −NF2(6, 29, n) −NF2(7, 29, n)] q24n−1

is a weakly holomorphic modular form on Γ1(576t
5).

Example: Since

3C(6, 29, 21) + C(8, 29, 21) +C(10, 29, 21) − 5C(9, 29, 21) = 3(1) + (−1) + (−2) − 5(0),

we deduce that

∑

n≡1 mod 29

[3NF2(6, 29, n) +NF2(8, 29, n) +NF2(10, 29, n) − 5NF2(9, 29, n)] q24n−1

is a weakly holomorphic modular form on Γ1(576t
5).
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Analogously with overpartitions, we define the generating functions of the full rank differences:

Srs(d) =
∑

n≡d mod t

[
NF2

(
r, t,

n+ 1

24

)
−NF2

(
s, t,

n+ 1

24

)]
qn.

This is the holomorphic part of a Maass form supported on q−n2
with −n2 ≡ d mod t. As noted

before, when
(
−d
t

)
= −1, Srs(d) is a weakly holomorphic modular form. When

(
−d
t

)
6= −1, the

nonholomorphic part may still be zero. The exact situation is quite complicated and it is difficult

to express general theorems that are aesthetically pleasing. However, the following corollaries give

some idea of the types of possible conclusions.

Corollary 7.9. Let t ≥ 5 be prime. For all r, s, Srs(0) is a weakly holomorphic modular form on

Γ1(576t
5).

Proof: A case by case analysis of Theorem 7.8 reveals that regardless of the congruence class of

r mod 3, C(r, t, t) = 0. Hence

∑

n≡0 mod t

[
NF2

(
r, t,

n+ 1

24

)
− 1

t
D2

(
n+ 1

24

)]
qn

is a weakly holomorphic modular form, and so Srs(0) must be too.

Corollary 7.10. If t = 7 then Srs(d) is a weakly holomorphic modular form exactly when one of

the following is true:

1. d = 0, 1, 2, 4, or

2. d = 3, 5 and r, s ∈ {1, 2, 5, 6}, or

3. d = 3, 5 and r, s ∈ {3, 4}.

Corollary 7.11. If t = 7 then

∑

n≡5 mod 7

[
NF2

(
0, 7,

n+ 1

24

)
+NF2

(
1, 7,

n+ 1

24

)
− 2NF2

(
3, 7,

n+ 1

24

)]
qn

is a weakly holomorphic modular form.

Corollary 7.12. If 3 ∤ t then

∞∑

n=0

[
NF2

(
1, t,

n+ 1

24

)
−NF2

(
2, t,

n+ 1

24

)]
qn

is a weakly holomorphic modular form.

A similar statement can be made about the generating function of NF2(r, t,
n+1
24 ) − NF2(r +

1, t, n+1
24 ) where r ≡ 1 mod 3, except that we must twist out some arithmetic progressions as per

Theorem 7.8.
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