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Abstract 

This work presents an error estimation framework for a mixed displacement-pressure finite 

element method for nearly incompressible elasticity that is based on variational multiscale 

concepts. The displacement field is decomposed into coarse scales captured by the finite element 

mesh and fine scales representing the part of the physics unresolved by the mesh. This solution 

field decomposition addresses the artificial length scales resulting from discretization of a 

continuum problem at the variational level to produce a stabilized method equipped with 

naturally derived error estimators. Two error estimators are proposed. The first employs a 

representation by bubble functions that arises consistently during the development of the 

stabilized method and is computed by a simple, direct post-solution evaluation. The second 

involves solving the fine scale error equation through localization to overlapping patches spread 

across the domain. The performance of the stabilized method and the error estimators is 

investigated through numerical convergence tests conducted for two model problems on uniform 

and distorted meshes. The sharpness and robustness of the estimators is observed to be consistent 

across the simulations performed.
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Chapter 1: Introduction  

Numerical methods are commonly employed to solve problems of engineering interest, and the 

finite element method has been invariably employed because of its mathematical robustness and 

its versatility of implementation. The general philosophy of the finite element method is to use 

the notion of discretization to subdivide the problem into simpler subregions, called elements, 

coupled with a simple set of shape functions to approximate the form of the true solution to the 

problem. Typically, this limited set of functions can capture the features of the solution that are 

larger than the diameter of any single element while they do a poor job at representing the finer 

features of the solution that fall within an element. Although the mesh can be refined and more 

functions can be added to this approximation set, certain components of the true solution may 

still be lost. This phenomenon is discretization error: the inability of a finite set of functions to 

represent an otherwise arbitrary function; this trait is universal among all numerical methods. 

Therefore, the two most important features of a finite element formulation are its ability to 

minimize the discretization error in the approximate solution computed on a given mesh and its 

ability to provide a measure of the error in the computed solution. This second feature is known 

as the field of a posteriori error estimation. 

A variety of techniques has been and continues to be investigated that attempt to quantify the 

level of accuracy in numerically computed solutions. Historically, the investigation of error 

estimation began with a focus on elliptical boundary value problems as studied by Babuška and 

Rheinbolt [7]. Significant contributions following this work were presented by Zienkiewicz and 

Zhu [58] and Eriksson and Johnson [25]. As the field evolved, work was also conducted on 

mixed formulations for fluid and solid mechanics, of which representative sources include 

[16,55]. Fairly comprehensive reviews of error estimation are contained in the works of 

Ainsworth and Oden [2,3], Babuška and Strouboulis [10], and Verfürth [56]. 

Almost all frameworks for error estimation can be placed into one of three major categories 

based on the manner by which the error is evaluated: 

1) Explicit Methods: These methods invoke equations involving the residuals of a governing 

equation evaluated in element interiors and across element boundaries. Typically the 
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finite element solution is employed directly without any additional projections or 

equation solving. While these estimators are relatively simple to compute, the 

expressions often include problem-dependent constants that can be approximated using 

dual problems [26]. These methods, also called residual-based methods, were proposed 

by Babuška and Rheinbolt [9]; later works include [6,13]. 

2) Implicit Methods: These techniques employ the finite element solution indirectly by 

posing residual-driven problems to be solved for the error. Often, a global error equation 

is approximated through localization to subdomains consisting of either individual 

elements or clusters of elements, respectively termed the Element Residual Method 

(ERM) and the Subdomain Residual Method (SRM). These methods offset increased 

complexity by providing improved levels of robustness. Some of the pioneering work 

was conducted by Babuška and Rheinbolt [7,8] and by Bank and Weiser [12]; more 

recent works include extensions to linear elasticity by Parés et al. [50] and Carstensen 

and Thiele [20]. 

3) Recovery-based Methods: These methods focus on post-processing the numerical 

solution to produce an enhanced reference solution. Typically, the difference between the 

discontinuous gradient field obtained directly from the finite element solution and a 

smoothed gradient field obtained through a projection operation is computed to provide 

an error estimate. These methods often inherit superconvergence properties from the 

smoothing projections. Fundamental contributions were provided by Zienkiewicz and 

Zhu [58,59], followed by [60,61]; more recent studies have conducted studies on  

irregular meshes [57] and used the estimators to evaluate quantities of interest [39].  

Almost all of the above works focus on computing the error only after the numerical solution has 

been obtained. One of the first attempts to account for the effects of fine scales on a coarse 

approximation is presented by Oden in [49]. In their study of the advection-diffusion-reaction 

equation, they segregated the basis functions into coarse scale functions and fine scale functions 

by invoking the concept of mesh hierarchy. Then, they combined the fine scale functions with a 

secondary independent bilinear form to inspire the development of optimal coarse mesh trial and 

test functions. The resulting stiffness matrix was symmetric and well-conditioned, properties 

which do not hold for the standard formulations of advection-dominated problems. They also 

suggested that the fine scales represent the relative error between the optimal coarse mesh 
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solution and the solution obtained on a refined mesh. Thus, the incorporation of fine scales 

resulted in improved algorithmic properties and also provided a means to quantify the accuracy 

of a solution. 

The concept of introducing a scale separation directly into the variational form for the purpose of 

modeling subgrid effects was made rigorous by Hughes in [35,38] and is referred to as the 

variational multiscale method (VMS). In this novel approach, a decomposition is applied to 

separate the solution field into resolved scales, which are captured by a given mesh, and 

unresolved scales, the finer features giving rise to discretization error, from the outset. This 

decomposition is introduced into the variational structure of the desired problem and gives rise to 

separate equations for the resolved and unresolved scales. This system of variational equations 

serves as a launching point for the derivation of enhanced numerical methods. 

One of the applications of this method is to use the fine scale component either as an a posteriori 

error estimator or as a driving component for adaptive meshing algorithms. In [24], Elsheik et al. 

recast the classical techniques of the ERM and the SRM in a unified manner by starting from the 

fine scale equation and applying localization to solve the equation over elements or subdomains. 

They illustrated the performance of the framework for the Poisson problem and discussed 

conceptual benefits such as relaxation assumptions on boundary conditions for the subdomains. 

The performance of the fine scales as a residual-based error estimator has been studied by Hauke 

et al. in the context of the transport equation [31,32]. Their approach was to represent the fine 

scales using residual-free bubble functions to evaluate the error in various norms at the element 

level and across the domain in order to drive mesh adaptivity. While beginning with one-

dimensional domains, the method has been extended to higher order elements and to higher 

dimensions [30,33]. Finally, Larson and Målqvist employed the variational multiscale method to 

develop an adaptive framework to solve problems possessing multiple scales [40,41,42]. They 

solved the variational system of equations in a staggered fashion and localized the fine scale 

equation on patches which are refined automatically as the error in both scales is monitored. 

Another area of computational mechanics where VMS has led to significant contributions is 

stabilized methods. In particular, the model problem which we have selected for our study is the 

mixed formulation of elasticity, which is often the subject of stabilized methods. This 

formulation introduces a pressure field alongside the displacement field in order to model 
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incompressible phenomenon characterizing the behavior of rubber-like materials and metals 

undergoing plastic deformation. While this mixed formulation can overcome the volumetric-

locking exhibited by the classical pure displacement method, it is also subject to the LBB inf-sup 

condition [5], which is a mathematical statement of the reduced stability of the pressure field. 

This numerical deficiency is manifested when certain combinations of displacement and pressure 

interpolations are employed and leads to unphysical pressure oscillations. Therefore, careful 

attention must be paid to design stable frameworks to avoid pathologic behavior. Further 

treatment of mixed formulations is given by Brezzi and Fortin [17]; other enlightening 

discussions are given in [14,15]. Out of the many remedies for instability which have been 

proposed, some focus on developing stable interpolation combinations for particular elements 

while others focus on enhancing the underlying numerical framework. A sampling of stable 

elements is contained in the following references: [22,34,4,53]. Noteworthy advancements of the 

latter approach include Brezzi and Pitkäranta [19] and Hughes et al. [37,27]. In recent years, 

stabilized formulations have been pursued through the application of the variational multiscale 

method to the mixed form of elasticity and the Stokes flow problem, which are form-equivalent 

in the incompressible limit. In [21], Codina presented equivalence between two methods for 

stabilizing the Stokes problem: pressure gradient projections and orthogonal sub-grid scales. For 

the second method, Codina employed a stabilization matrix in the fine scale equation which is 

approximated with mesh-dependent constants. In [46] and [48], Masud and co-workers applied 

the variational multiscale method to the mixed form of linear elasticity and derived the structure 

of the stabilization matrix τ  by employing bubble functions to represent the fine scales. 

The purpose of this thesis is to present an error estimation framework for a mixed displacement-

pressure finite element method that is based on variational multiscale concepts. Herein, a 

decomposition of the displacement field into coarse and fine scales serves as a point of departure 

for developing a stabilized solution procedure and subsequently generating natural a posteriori 

error estimators. As mentioned previously, the same fine scale features which are not captured by 

a crude discretization also tend to contribute to instability and locking phenomenon. The 

proposed formulation provides a mechanism to model these subgrid effects through residual or 

error based terms that arise consistently during the derivation of the fine scale equation. This 

mechanism ensures consistency and increases the accuracy of the formulation when the model 

for the fine scales is substituted back into the coarse scale problem, overcoming the lack of 
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stability in the standard Galerkin method. Once the coarse solution is obtained, the model for the 

subgrid effects can be revisited to evaluate the fine scales or error in the solution. The most 

obvious procedure is to simply compute the fine scales using the same approximation invoked 

for the purpose of stabilization, yielding an explicit error estimator. However, the fine scale 

equation could also be solved again using alternative representations of the fine scale component 

of displacement, leading to a class of implicit error estimators. Therefore, this method aims to 

both remedy the numerical deficiencies of the pure displacement formulation and quantify 

discretization error together within a unified, consistent framework through the modeling of fine 

scale effects. 

We begin our discussion by posing the strong form of elasticity followed by a mixed form and 

the corresponding standard Galerkin form in Chapter 2. Next, we describe the application of the 

Hughes variational multiscale method to the standard Galerkin form and the resulting fine scale 

equation in Chapter 3.  Chapter 4 provides a derivation of the stabilized form from the fine scale 

equation; Chapter 5 describes two methods for using the fine scale equation as a mechanism for 

estimating the discretization error. Finally, Chapter 6 presents numerical results for two standard 

benchmark problems, and conclusions are drawn in Chapter 7. 
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Chapter 2: Governing Equations  

2.1 Strong Form 

Let sdnΩ ⊂R be an open bounded domain with a piece-wise smooth boundary Γ , where sd 2n ≥

is the number of spatial dimensions. The boundary Γ is divided into two subsets gΓ and hΓ  on 

which Dirchlet and Neumann conditions are applied, respectively, and these subsets satisfy 

,g h g hΓ ∪Γ = Γ Γ ∩Γ = ∅ . With these definitions, the governing equations of linear elasticity 

are: 

 in ∇ ⋅ Ω0σ + b =  (2.1) 

 on gΓu = g  (2.2) 

 on h⋅ Γσ n = h  (2.3) 

where sd: nΩ →u R represents the displacement field, σ is the Cauchy stress tensor, b  is the 

body force, g  is the prescribed displacement, h  is the prescribed traction, and n  is the unit 

outward normal on Γ . An isotropic constitutive model is assumed, where the relationship 

between σ  and u  is given as: 

 ( ) ( )( )1
2

T= = ∇ ∇ε ε u u+ u  (2.4) 

 ( ) ( )tr 2λ µ  σ = ε u + ε u  (2.5) 

where ε is the linearized strain tensor, λ and µ  are the Lame parameters, and I is the second-

order identity tensor. In the above and throughout this work, these conventions are used for 

vector and tensor operators: ( )∇ ⋅  represents the gradient, ( )∇ ⋅ ⋅ is the divergence, ( )∆ ⋅ is the 

Laplacian, ( )tr ⋅ is the trace, and ( )T⋅ is the transpose. As a function of the Young’s modulus E 

and Poisson’s ratio ν for the material, the Lame parameters are given as 

 
( )( ) ( )

,
1 2 1 2 1

E E

v

νλ µ
ν ν

= =
− + +

 (2.6) 

To represent significant resistance to volume change exhibited by incompressible materials, the 

value of ν is taken nearly 0.5, which implies that λ → ∞ . This unbounded value of λ  becomes a 



7 
 

source of numerical instability for standard displacement-based finite elements that manifests 

itself as volumetric locking [36]. To combat the unsatisfactory performance of the pure 

displacement formulation near the incompressible limit, an independent pressure field is 

introduced, which gives rise to the following mixed constitutive law and associated kinematic 

constraint: 

 ( )2p µσ = I + ε u  (2.7) 

 p λ∇ ⋅u =  (2.8) 

where :p Ω → ℝ denotes the pressure field. While p  does not correspond exactly to the 

hydrostatic stress, which is ( )tr 3σ = σ , it does reflect the volumetric behavior of the material. 

Substituting (2.7) into (2.1) and (2.3) results in a set of governing equations capable of modeling 

the incompressible limit: 

 ( )( )2 in p µ∇ ∇⋅ Ω0+ ε u + b =  (2.9) 

 in p λ∇ ⋅ Ωu =  (2.10) 

 on gΓu = g  (2.11) 

 ( )2 on hp µ  ⋅ Γ I + ε u n = h  (2.12) 

Both the displacement field u  and the pressure field p  are taken as unknowns to be determined 

in the solution process, and they must satisfy these equations at every point in Ω  as well as 

satisfy the boundary conditions on Γ . 

2.2 Weak Form 

For the purpose of computing approximate solutions to boundary value problems such as 

elasticity, the governing equations are typically transformed into an equivalent expression called 

the weak or variational form. The general procedure is to relax the condition of pointwise 

satisfaction by multiplying each expression by a weighting function and integrating over the 

domainΩ  , thereby allowing the solution to satisfy the governing equations in an integral sense. 

Therefore, this technique is called the method of weighted residuals, and details of its application 

can be bound in any standard finite element analysis textbook [36]. 
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An important ingredient of this procedure is to select proper spaces of functions to which the trial 

solution and weighting functions belong. The function spaces appropriate for the displacement 

and pressure trial solutions and weighting functions are: 

 ( )( ){ }sd1 ,  on 
n

gH= ∈ Ω ΓS u u u = g  (2.13) 

 ( )( ){ }sd1 ,  on 
n

gH= ∈ Ω Γ0V w w w =  (2.14) 

 ( ){ }2p p L= ∈ ΩP  (2.15) 

where ( )2L Ω  and ( )1H Ω are standard Hilbertian-Sobolev spaces. The weak form corresponding 

to the governing equations can be expressed as: Find , p∈ ∈S Pu such that for all ,q∈ ∈V Pw : 

 ( ): 2 d d d
h

p µ
Ω Ω Γ

 ∇ Ω = ⋅ Ω + ⋅ Γ ∫ ∫ ∫w I + ε u w b w h  (2.16) 

 ( )d 0q p λ
Ω

∇ ⋅ − Ω =∫ u  (2.17) 

The next step in the classical approach is to extract finite dimensional subspaces of the trial and 

weighting function spaces on which the weak form is solved numerically to obtain an 

approximate solution; this process of restricting the infinite dimensional problem to a finite 

dimensional problem is called discretization. 

While the standard weak form given in (2.16) and (2.17) is well-posed in the continuum setting, 

the process of discretization gives rise to non-trivial issues that need further consideration. First, 

the discretized form must satisfy the Ladyzenskaya–Babuška–Brezzi (LBB) inf-sup condition to 

ensure uniqueness and stability of the pressure field [5]. Various discussions of this criterion and 

its implications for numerical methods are included in [17,15]. This condition imposes additional 

constraints that a combination of displacement field and pressure field interpolations must satisfy 

in order to produce solutions which do not possess spurious oscillations in the pressure field. In 

particular, simple combinations such as equal-order polynomial interpolations may produce 

unstable discrete solutions [17,36]. 

Discretization also introduces an arbitrary filter that limits the resolution to which the solution 

fields can be determined. For example, the trial functions generated from a finite element mesh 

typically approximate well the characteristics of the true solution which span multiple elements 

but are unable to capture significant variations in the solution within a single element. Those 
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features of the continuum solution that are larger than the characteristic element length are 

resolvable scales, and smaller features are unresolved or subgrid scales. The inability of a given 

mesh to capture the subgrid scales results in discretization error. 
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Chapter 3: Variational Multiscale Method  

In order to address the aspects of discretization discussed in Chapter 2, we employ the variational 

multiscale method as first proposed by Hughes [35,38].  The philosophy of this method is to 

assume that the primal field can be separated into components of varying scale and then 

substitute this decomposition directly into the weak form. While the continuum solution does not 

inherently possess scales, an artificial scale separation is induced by the limited resolution 

capacity of a spatial discretization. The variational multiscale method provides a mechanism to 

account for those features which would otherwise be lost in the numerical approximation. The 

motivation for using this method is two-fold: the derivation of a stabilized formulation and the 

development of an error-estimation framework. In the first case, assumptions are made on the 

form of the fine scale components in order to derive an expression to be injected into the coarse 

scale weak form with the goal of reducing the portion of the true solution lost to discretization 

error and thereby returning stability to the formulation. In the second case, an expression for the 

fine scales emanating from the weak form is evaluated using the computed numerical solution 

for the coarse scale in order to quantify the fine scales as a measure of the error. 

3.1 Multiscale Decomposition 

We begin by describing the process of discretization in the context of the finite element method. 

Consider a partition of the domain Ω  into umeln  non-overlapping open subregions eΩ , called 

finite elements, where 1,2,...,umele n= . Let eΓ  denote the boundary of element eΩ , and let ′Ω  

and ′Γ  denote the union of element interiors and element boundaries, respectively: 

 
1

umeln
e

e=

′Ω = Ω∪  (3.1) 

 
1

umeln
e

e=

′Γ = Γ∪  (3.2) 

This partition satisfies the following closure property: 

 ( )closure ′Ω = Ω  (3.3) 

Finally, let int \′Γ = Γ Γ denote the set of element boundaries on the interior of domain Ω . 
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Now, consider a multiscale overlapping decomposition of the displacement field into coarse and 

fine scales: 

 � �
coarse scale fine scale

′= +u u u  (3.4) 

The coarse scales represent the component of the solution resolved by a given mesh, while the 

fine scales can be viewed as the relative component of error between the coarse scale and the 

exact solution; an example is given in Figure 1. In the context of the finite element method, the 

approximate solution computed using nodal shape functions plays the role of the coarse scale. 

However, since our goal is the development of a general framework, we postpone prescribing 

explicit sets of basis functions to the coarse or fine scales until later in the derivation. A similar 

decomposition is assumed for the weighting functions: 

 � �
coarse scale fine scale

′= +w w w  (3.5) 

In the most general setting, an analogous multiscale separation could be applied to the pressure 

field. However, for simplicity, we neglect the fine scale component of the pressure field for this 

discussion.  

 

Figure 1. Multiscale decomposition of the total solution into coarse and fine scales 

 

 

 

′=u u + u

u

′u
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We define the appropriate spaces for and ′u u as 

 ( ) ( ){ }0 ,  for 1,2,...,e

k e
umelC e n

Ω
= ∈ Ω ∩ ∈ Ω =S S Pu u u  (3.6) 

 ( )( ){ }sd1 ,  on 
n

gH′ ′ ′ ′= ∈ Ω Γ0S u u u =  (3.7) 

where ( )k eΩP denotes the set of complete polynomials of order k spanning eΩ . The functions 

assumed for u  are permitted to be non-smooth across element boundaries, which will be an 

important consideration during the subsequent modification of the weak form (2.16) and (2.17). 

Additionally, for completeness, the functions representing ′u are not assumed to vanish on 

element boundaries. While such an assumption is typical for stabilized variational multiscale 

methods, this generality will be important for error estimation. The relaxation that  on ′ ≠ Γ0u
 
is 

the major difference in the developments presented herein and in the study conducted in [46]. 

Similarly, the functions for the displacement weighting functions are 

 ( ) ( ){ }0 ,  for 1,2,...,e

k e
umelC e n

Ω
= ∈ Ω ∩ ∈ Ω =V V Pw w w  (3.8) 

 ′ ′=V�S  (3.9) 

These spaces must satisfy  and ′ ′= ⊕ = ⊕S�S S V�V V , namely that the spaces are linearly 

independent. This ensures that the decomposition of u  given in (3.4) is uniquely defined. 

Furthermore, the strain tensor ε  may be decomposed into coarse and fine scale components due 

to its linearity with respect to displacements. To simplify notation, the coarse and fine scale 

components will be represented by ε  and ′ε , respectively: 

 ( ) ( )( )1
2

T= = ∇ ∇ε ε u u + u  (3.10) 

 ( ) ( )( )1
2

T′ ′ ′ ′ ′= = ∇ ∇ε ε u u + u  (3.11) 

3.2 Multiscale Variational Problem 

We now substitute the decomposed trial solutions and weighting functions of expressions (3.4) 

and (3.5) into the weak form (2.16) and (2.17) to give the multiscale variational problem: 

 ( ) ( ) ( ) ( ): 2 d d d
h

p µ
′ ′Ω Ω Γ

′ ′ ′ ′ ∇ Ω = ⋅ Ω + ⋅ Γ ∫ ∫ ∫w + w I + ε u + u w + w b w + w h  (3.12) 

 ( )( )d 0q p λ
′Ω

′∇ ⋅ − Ω =∫ u + u  (3.13) 
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By observing that the above equations are linear with respect to the displacement weighting 

function, (3.12) and (3.13) can be separated into a coarse scale problem and fine scale problem: 

Coarse Scale Problem C  

 ( ): 2 d d d
h

p µ
′ ′Ω Ω Γ

′ ∇ Ω = ⋅ Ω + ⋅ Γ ∫ ∫ ∫w I + ε u + u w b w h  (3.14) 

 ( )( )d 0q p λ
′Ω

′∇ ⋅ + − Ω =∫ u u  (3.15) 

Fine Scale Problem F  

 ( ): 2 d d d
h

p µ
′ ′Ω Ω Γ

′ ′ ′ ′ ∇ Ω = ⋅ Ω + ⋅ Γ ∫ ∫ ∫w I + ε u + u w b w h  (3.16) 

We now focus on the fine scale equation F . This equation is infinite dimensional since no 

particular form has been assumed for the fine scale functions. Our goal will be to analyze (3.16) 

and extract a generalized representation for the fine scales which will serve as a reference point 

for developing a stabilized formulation and subsequently the error estimators. 

3.3 Additional Notation 

Before proceeding, we will define additional notation that will be used in subsequent derivations. 

As noted previously, the coarse component of displacement u  is permitted to be non-smooth 

across element boundaries; therefore, its derivatives may experience discontinuities. For the 

benefit of the reader, we shall elaborate on the proper application of integration by parts to fields 

experiencing discontinuities. For example, suppose that we wish to evaluate the following 

integral over a domain composed of two elements +Ω  and −Ω : 

 : d : d : d
+ −

+ + − −

Ω Ω Ω
∇ Ω = ∇ Ω + ∇ Ω∫ ∫ ∫w ε w ε w ε  (3.17) 

where w  is a displacement weighting function and ε  is the linear strain tensor, and the ± 

superscript designates the element from which the decorated quantity is derived, as shown in 

Figure 2. A straightforward application of the divergence theorem (integration by parts) to each 

term on the right-hand side of (3.17) gives 

 ( ) ( ): d d d
+ + +

+ + + + + + +

Ω Ω Γ
∇ Ω = − ⋅ ∇ ⋅ Ω + ⋅ ⋅ Ω∫ ∫ ∫w ε w ε w ε n  (3.18) 

 ( ) ( ): d d d
− − −

− − − − − − −

Ω Ω Γ
∇ Ω = − ⋅ ∇ ⋅ Ω + ⋅ ⋅ Ω∫ ∫ ∫w ε w ε w ε n  (3.19) 
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Figure 2. Depiction of unit outward normals on element interface 

Along the shared interface boundary between the domains, iΓ , the two boundary integrals may 

be combined: 

 ( ) ( )d d d
i i i

+ −

+ + + − − − + + − −

Γ ∩Γ Γ ∩Γ Γ
 ⋅ ⋅ Ω + ⋅ ⋅ Ω = ⋅ ⋅ + ⋅ Ω ∫ ∫ ∫w ε n w ε n w ε n ε n  (3.20) 

where we have used the fact that + −= =w w w on iΓ  because w  is continuous everywhere in  

Ω . Considering the term in brackets and defining + −= = −n n n , we observe that 

 ( )
+ + − − + + − +

+ −

⋅ + ⋅ = ⋅ − ⋅

= − ⋅

� � � �

�

ε n ε n ε n ε n

ε ε n
 (3.21) 

which vanishes only if + −ε = ε , which is not true when the strain field is discontinuous. This 

quantity represents the “jump” in the value of strain across element boundaries and is commonly 

expressed using the jump operator, denoted by � �  ⋅ , which is defined as 

 � � ( )+ −⋅ = − ⋅� �ε n ε ε n  (3.22) 

We point out that (3.22) is invariant under a reassignment of the ± designations, and therefore 

represents a unique quantity. To conclude, we combine (3.18) - (3.22) into (3.17) and remove the 

superscripts to obtain: 

 ( ) ( ) � �: d d d d
iΩ Ω Γ Γ

∇ Ω = − ⋅ ∇ ⋅ Ω + ⋅ ⋅ Ω + ⋅ ⋅ Ω∫ ∫ ∫ ∫w ε w ε w ε n w ε n  (3.23) 
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3.4 Analysis of Fine Scale Problem 

Returning to the fine scale problem F  and using the expressions for the components of strain 

(3.10) and (3.11), those terms depending only upon the fine scale quantities can be isolated from 

the coarse scale quantities: 

 ( ) [ ]: 2 d : 2 d d d
h

pµ µ
′ ′ ′Ω Ω Ω Γ

′ ′ ′ ′ ′∇ Ω = − ∇ Ω + ⋅ Ω + ⋅ Γ∫ ∫ ∫ ∫w ε w I + ε w b w h  (3.24) 

Integration by parts will now be applied to the first term on the right-hand side of this equation. 

Because the fine scale functions do not vanish on ′Γ , this operation will give rise to boundary 

integrals; the result is: 

 [ ] ( ) [ ]: 2 d 2 d 2 dp p pµ µ µ
′ ′ ′Ω Ω Γ

′ ′ ′ − ∇ Ω = ⋅ ∇ ∇ ⋅ Ω − ⋅ ⋅ Γ ∫ ∫ ∫w I + ε w + ε w I + ε n� �
� 	  (3.25) 

Although the pressure field p  is continuous in the present formulation, we point out that the 

jump term appearing in (3.25) arises in a consistent fashion from integration by parts and would 

accommodate more general formulations involving discontinuous approximations for p . 

Recalling from (3.7) that  on g
′ Γ0u = , we may substitute (3.25) into F  to obtain the following 

result: 

 

( ) ( )
[ ]{ }

[ ]
int

: 2 d 2 d d

2 d

2 d

h

p

p

p

µ µ

µ

µ

′ ′ ′Ω Ω Ω

Γ

Γ

′ ′ ′ ′ ∇ Ω = ⋅ ∇ ∇ ⋅ Ω + ⋅ Ω 

′+ ⋅ − ⋅ Γ

′− ⋅ ⋅ Γ

∫ ∫ ∫

∫

∫

w ε w + ε w b

w h I + ε n

w I + ε n� �
� 	

 (3.26) 

We now make the important observation that the right-hand side of (3.26) is entirely a function 

of the residual of the Euler-Lagrange equations (2.9) with respect to the coarse scale 

displacement and boundary residuals representing the satisfaction of the traction boundary 

condition (2.12) and point-wise continuity of the stress field across ′Γ . To clarify, we introduce 

the following definitions: 

 ( )2p µ′Ω = ∇ ∇ ⋅ +r + ε b  (3.27) 

 [ ]2
h

p µΓ − ⋅r = h I + ε n  (3.28) 

 [ ]
int

2p µΓ = − ⋅r I + ε n� �
� 	  (3.29) 

Substituting these definitions into (3.26) gives: 
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Fine Scale Equation rF  

 ( )
int

int

: 2 d d d d
h

h

µ ′Ω Γ Γ′ ′Ω Ω Γ Γ
′ ′ ′ ′ ′∇ Ω = ⋅ Ω + ⋅ Γ + ⋅ Γ∫ ∫ ∫ ∫w ε w r w r w r  (3.30) 

This compact form represents a paradigm for both the construction of a stabilized formulation 

and of error estimators for the coarse scale quantities. Since all terms depending on the fine scale 

trial displacement functions have been isolated on the left-hand side of (3.30), we can see that the 

fine scales are in essence driven by the residuals of the coarse scale variables. Thus, the fine 

scales vanish exactly under the conditions expected: when the coarse scale exactly satisfies the 

governing equations and the residuals identically vanish everywhere in Ω . This fact is central to 

the consistency of the resultant stabilized formulation in Section 4 and to the validatity of the 

error estimators in Section 5. 

3.5 Analytical Solution of Fine Scale Equation 

To conclude our analysis of rF , we invoke the theory of Green’s functions for linear partial 

differential equations (PDEs) in order to derive a general expression for ′u . Details of Green’s 

functions can be found in many textbooks on PDEs [29,54]. The fundamental concept is the 

following: given the strong form of a PDE, the solution can be immediately written down in an 

integral expression using only the associated Green’s function and supplied problem data. For 

example, consider the following strong form: 

 ( ) ( ) for , 0 for u f u= − ∈ Ω = ∈ ∂ΩL x x x  (3.31) 

where L  is a linear differential operator and ( )f x  is a forcing function. Then the exact solution 

is given by 

 ( ) ( ) ( ), d for u g f
Ω

= − Ω ∈ Ω∫x x y y x  (3.32) 

where ( ),g x y  is the Green’s function of operator L , which can be found by solving the 

following equation: 

 ( )( ) ( ) ( )* , for , , 0 for g gδ= − − ∈ Ω = ∈ ∂ΩL x y x y x x y x  (3.33) 

where ( )δ ⋅  is the Dirac-delta function and *L  is the adjoint of L . This general theory holds for 

vector-valued PDEs as well and can be applied to analyze the fine scale problem. Considering 

the form of (3.30), we can write the associated strong form as: 
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 ( )2 in µ ′Ω′ ′∇ ⋅ − Ωε = r  (3.34) 

 [ ]2 on 
h hµ Γ′ ⋅ − Γε n = r  (3.35) 

 � �
int int2 on µ Γ′ ⋅ − Γε n = r  (3.36) 

 on gΓ0u =  (3.37) 

The first two equations (3.34) and (3.35) show that ′u  is driven by the coarse scale residuals of 

the equilibrium equation (2.9) and the traction boundary condition (2.12); the third equation 

states that the jump in the fine scale stresses should balance the jump in coarse scale stresses. 

In lieu of (3.32), the exact expression for the fine scale solution ′u  is given by 

 
( ) ( ) ( ) ( ) ( )

( ) ( )
int

int

, d , d

, d

h
h

′Ω Γ′Ω Γ

ΓΓ

′ ′ ′= − ⋅ Ω − ⋅ Γ

′− ⋅ Γ

∫ ∫

∫

y y

y

u x g x y r y g x y r y

g x y r y
 (3.38) 

In the above, ( ),′g x y  is the Green’s function for the fine scale problem, in this case a second 

order tensor. 

While the concept of a Green’s function is fairly straightforward, deriving a closed-form 

expression for ( ),′g x y  is often much harder than directly finding the solution for ′u . However, 

in their discussion of the variational multiscale method, Hughes observed that the modeling 

assumptions applied to ′u  can ultimately be linked to making approximations to the form of 

( ),′g x y  [38]. Also, by analyzing the form of (3.38) and considering ′u  as the error between u  

and u , we may infer that each of the residual terms 
int

,  , and 
h′Ω Γ Γr r r  acts as a source of error, 

while the Green’s function ( ),′g x y  serves as a distributor of error. For certain classes of 

problems such as nodally-exact formulations for one-dimensional boundary value problems, 

( ),′g x y  has been linked to so-called residual-free bubbles [18]. This fact was utilized by Hauke 

et al. in their error estimation techniques using the fine scales [31]. Therefore, our subsequent 

derivations using the fine scale equation can be viewed in light of making approximations to the 

Green’s function.
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Chapter 4: Stabilized Formulation  

The main objective of this section is to use the fine scale equation Fr  to determine an analytical 

expression for ′u  that can be substituted into the coarse scale problem C . This will be 

accomplished by making simplifying assumptions on the functional form of the fine scales. This 

functional form will be substituted into (3.30) in order to rearrange and solve for ′u . This 

technique is more insightful than directly approximating ′g  in (3.38). In this way, the explicit 

appearance of ′u  as an independent field will be removed from C ; however, the presence of 

additional terms will implicitly account for their effects, thereby stabilizing the resulting 

modified coarse scale problem. These derivations follow along the lines of the derivation in 

[46,48]. 

4.1 Solution to Fine Scale Equation 

Toward the goal of solving (3.30), we now make the simplifying assumption that the fine scale 

functions vanish on element boundaries, namely: 

    on ,              on ′ ′ ′ ′Γ Γ0 0u = w =  (4.1) 

One consequence of this assumption is that second and third terms on the right-hand side of 

(3.30) vanish identically, which dramatically simplifies the equation. Since the remaining terms 

are integrals over element interiors ′Ω , (3.30) can be evaluated as a sum of integrals in an 

element-by-element fashion: 

 ( ): 2 d d                  for each 1,2,...,
e e umele nµ ′ΩΩ Ω

′ ′ ′∇ Ω = ⋅ Ω =∫ ∫w ε w r  (4.2) 

This equation can now be solved independently within each element of the mesh. While a multi-

dimensional basis could be used to represent the fine scales, a single basis function typically 

provides a sufficient approximation for the purpose of stabilization. Therefore, in each element 

we represent the fine scales by the following expressions: 

 ( ) ( )    on e e

e e e
i ib u b β

Ω Ω
′ ′= → = Ωu ξ β ξ  (4.3) 

 ( ) ( )    on e e

e e e
i ib w b γ

Ω Ω
′ ′= → = Ωw ξ γ ξ  (4.4) 
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where ( )eb ξ  denotes the bubble shape function over element domain eΩ , as shown in Figure 3, 

sd1,2,...,i n= , and β  and γ  represent the scaling coefficients for the fine scale trial solutions and 

weighting functions, respectively. The following section discusses bubble functions in greater 

depth. In general, a bubble function is any interpolating or basis function that is zero on the 

entire boundary of an element. These functions are chosen to satisfy the characteristics of ′u  as 

specified by (3.7) and (4.1). 

 

Figure 3. Quadratic polynomial bubble function on a typical quadrilateral element 

Substituting these forms of ′u  and ′w  into the quantity inside the integral on the left-hand side 

of (4.2), we can derive an expression that is valid in each element of the discretization: 

 

( )( )
( ) ( )

( ) ( )
( ) ( )

1
2

1
2

1
2

: :

:

T

e e e

e e T T e e

T e e e e

b b b

b b b b

b b b b

µ µ

µ µ

′ ′ ′ ′ ′∇ ∇ + ∇

= ⊗ ∇ ⊗ ∇ + ∇ ⊗

 = ∇ ⋅∇ + ∇ ⊗ ∇ 

 = ∇ ⋅∇ + ∇ ⊗ ∇ 

w ε = w u u

γ β β

γ β γ β

γ I β

 (4.5) 

Using this expression with (4.3) and (4.4), we may rewrite (4.2) as 

 ( ) ( )d d
e e

T e e e e T eb b b b bµ µ ′ΩΩ Ω
 ∇ ⋅∇ + ∇ ⊗∇ Ω = Ω
 ∫ ∫γ I β γ r  (4.6) 

where the vectors of constant coefficients have been factored out of the integrals. Since this 

equation must be valid for all admissible weighting functions, the vector γ  must be arbitrary, 

and consequently we have 

 1−=β K R  (4.7) 

where K  and R  are defined as follows: 
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 ( ) ( )d
e

e e e eb b b bµ µ
Ω

= ∇ ⋅∇ + ∇ ⊗ ∇ Ω∫K I  (4.8) 

 d
e

eb ′ΩΩ
= Ω∫R r  (4.9) 

Substituting (4.7) into (4.3) gives an analytical expression for ′u : 

 ( ) 1
e

eb −
Ω

′ =u ξ K R  (4.10) 

Based on our assumptions, this expression is valid within each element and expresses a 

relationship between the fines scales ′u  and the coarse scale residual ′Ωr . 

Finally, in order to write (4.10) in a form analogous to traditional stabilized methods, we assume 

a projection that extracts the mean value of ′Ωr  over element interiors. From a practical 

viewpoint, on a sufficiently refined mesh, ′Ωr  will be essentially constant on the interior of each 

element. Therefore, we may approximate (4.9) by taking the residual out of the integral: 

 ( )d
e

eb ′ΩΩ
≈ Ω∫R r  (4.11) 

Making this substitution into (4.10), we arrive at a succinct expression for the fine scale 

displacement ′u  in each element: 

 e ′ΩΩ
′ =u τ r  (4.12) 

where τ  is a second-order stabilization tensor with the following form: 

 ( ) ( ) 1

d d d
e e e

e e e e e eb b b b b bµ µ
−

Ω Ω Ω
 = Ω ∇ ⋅∇ Ω + ∇ ⊗∇ Ω
 ∫ ∫ ∫τ I  (4.13) 

Therefore, under our assumptions, we conclude that ′u  is a function of the shear modulus µ , the 

bubble function eb , and the residual of the equilibrium equation ′Ωr . We can also determine the 

approximation of ′g  resulting from this method. By comparing (4.12) and (4.13) with the 

general formula for ′u  (3.38), we can deduce that our approximate fine scale Green’s function 

′gɶ  is given by the following expression: 

 
( ){ } ( ) ( )

( ) ( )

1

d d d
e e e

e e e e e eb b b b b bµ µ δ

δ

−

Ω Ω Ω
 ′ = − Ω ∇ ⋅∇ Ω + ∇ ⊗ ∇ Ω −
 

= − −

∫ ∫ ∫g x I y x

τ x y x

ɶ
 (4.14) 

Indeed, by substituting (4.14) into (3.38) and using the definition of ( )δ ⋅ , we obtain 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

int
int

, d d d

d

h
h

δ

′Ω Γ Γ′Ω Γ Γ

′Ω′Ω

′Ω

′ ′≈ − ⋅ Ω − ⋅ Γ − ⋅ Γ

= − − − ⋅ Ω  

=

∫ ∫ ∫

∫

0 0y y y

y

u x g x y r y r y r y

τ x y x r y

τ x r x

ɶ

 (4.15) 

which is exactly equation (4.12). This formula is analogous to the expression given by Hughes in 

their discussion of stabilized methods in section 7 of [38]. This approximation replaces the 

nonlocal character of ′g  within an element by a purely local one. 

4.2 Discussion of Bubble Functions 

In this section, we briefly elaborate on the characteristics of bubble functions. The minimum 

requirements for a function eb  to be a valid basis function for ′u  used for the purpose of 

stabilization is that it must belong to the following set e′S
⌢

, which is a subset of ′S : 

 ( ){ }  e
e′ ′ ′= ∀ ∉Ω0S u u x = x
⌢

 (4.16) 

This simply states that eb  is nonzero only in element eΩ  and has square-integrable first partial 

derivatives. A more detailed procedure to ensure that a bubble function satisfies the patch test is 

provided in [48]. Simple choices for bubble functions are higher-order Lagrange or hierarchical 

polynomial functions that vanish on element boundaries; however, more sophisticated functions 

are possible. Bubble functions have been used extensively over the years in the analysis of mixed 

methods to produce stable elements. One of the first such elements was the MINI element, 

proposed by Arnold et al. [4]. Discussions about bubble functions in the context of mixed 

methods and associated proofs of stability are given in [17]. Another popular class of functions is 

the residual-free bubbles, which are designed to satisfy the governing partial differential equation 

at each point in an element. A sampling of references on this topic are [11,28]. Other procedures 

for designing bubble functions were explored by Masud and Franca in the context of problems 

with multiscale source terms [44] and by Masud and Kwack in the case of the advection-

diffusion equation [45]. 

The bubble functions used for this implementation are given by the expressions shown in Table 1 

in terms of element natural coordinates ( ),ξ η . The element type abbreviations designate the 

shape of the element, either triangular (T) or quadrilateral (Q), and the number of nodes per 

element, varying between 3 and 9. 
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Table 1. Bubble functions employed for stabilization 

Element Bubble Function 

T3 ( )1ξη ξ η− −  

Q4 ( )( )2 21 1ξ η− −  

T6 ( )1ξη ξ η− −  

Q9 ( )( )2 2 2 216 1 1ξ η ξ η− −  

 
These bubble functions are fairly standard and simple polynomial functions. A nonstandard 

bubble function was used for the Q9 elements in order to satisfy the linear independence 

property and because it provided improved accuracy for the problems investigated compared to 

the following bubble function: 

 ( ) ( )( )4 41 1eb ξ η= − −ξ  (4.17) 

4.3 Solution to Coarse Scale Problem 

We will now prepare (3.14) and (3.15) for substitution of (4.12) in place of ′u  to eliminate its 

explicit appearance. To do so, we will isolate those terms involving ′u  and apply integration by 

parts wherever necessary to remove derivatives. Beginning with (3.14), we employ the 

decomposition of strain given by (3.10) and (3.11) to separate the term on the left-hand side of 

(3.14) and obtain: 

 [ ] ( ): 2 d 2 : d d d
h

p µ µ
′ ′ ′Ω Ω Ω Γ

′∇ Ω + ∇ Ω = ⋅ Ω + ⋅ Γ∫ ∫ ∫ ∫w I + ε w ε w b w h  (4.18) 

Focusing on the second term in (4.18), by recalling that    on ′ ′Γ0u =  and recalling the identity 

( ) ( ): :∇ = ∇a ε b ε a b which holds for all vector fields a and b, we may integrate by parts to 

obtain: 

 ( ) ( )2 : d 2 dµ µ
′ ′Ω Ω

′ ′ ∇ Ω = − ∇ ⋅ ⋅ Ω ∫ ∫w ε ε w u  (4.19) 

Substituting the expression for ′u  (4.12) into (4.19) gives: 

 ( ) ( )2 d 2 dµ µ ′Ω′ ′Ω Ω
′   − ∇ ⋅ ⋅ Ω = − ∇ ⋅ ⋅ Ω   ∫ ∫ε w u ε w τr  (4.20) 

Now returning to (3.15), employ the decomposition of u given by (3.4) to rewrite this equation 

as 

 ( )d d 0q p qλ
′ ′Ω Ω

′∇ ⋅ − Ω + ∇ ⋅ Ω =∫ ∫u u  (4.21) 
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Considering the second term, we may integrate by parts and substitute (4.12) to obtain: 

 d d dq q q ′Ω′ ′ ′Ω Ω Ω
′ ′∇ ⋅ Ω = − ∇ ⋅ Ω = − ∇ ⋅ Ω∫ ∫ ∫u u τr  (4.22) 

Inserting (4.20) into (4.18) and (4.22) into (4.21), the coarse scale problem C  can be written in 

the following modified form: 

Modified Coarse Scale Problem M  

 [ ] ( ): 2 d 2 d d d
h

p µ µ ′Ω′ ′ ′Ω Ω Ω Γ
 ∇ Ω − ∇ ⋅ ⋅ Ω = ⋅ Ω + ⋅ Γ ∫ ∫ ∫ ∫w I + ε ε w τr w b w h  (4.23) 

 ( )d d 0q p qλ ′Ω′ ′Ω Ω
∇⋅ − Ω − ∇ ⋅ Ω =∫ ∫u τr  (4.24) 

4.4 The HVM Form 

We may combine (4.23) and (4.24) to obtain a single expression that represents the HVM 

formulation for incompressible elasticity. Since all fine scale terms have been explicitly 

eliminated from the equations, the superimposed bars on the coarse scale terms will be dropped 

for simplicity. Rearranging the terms and introducing the expression for ′Ωr  from (3.27), we 

obtain: 

 

( ) ( )
( ) ( )

( )

: 2 d d

2 2 d

d d 2 d
h

p q p

q p

q

µ λ

µ µ

µ

′ ′Ω Ω

′Ω

′ ′Ω Γ Ω

 ∇ Ω + ∇ ⋅ − Ω 

   − ∇ + ∇ ⋅ ⋅ ∇ + ∇ ⋅ Ω   

 = ⋅ Ω + ⋅ Γ + ∇ + ∇ ⋅ ⋅ Ω 

∫ ∫

∫

∫ ∫ ∫

w I + ε u u

ε w τ ε u

w b w h ε w τb

 (4.25) 

The last terms on the left-hand and right-hand side have appeared due to the assumption of fine 

scales in the problem. These terms account for the subgrid scales that would otherwise have been 

filtered out by a given discretization. Therefore, they provide improved accuracy and stability to 

the formulation; consequently, the method accommodates arbitrary combinations of 

interpolations for the displacement and pressure fields.  Since the stabilization terms are residual 

based, this method is consistent; when the coarse scales represent the total solution, the residual 

of the Euler-Lagrange equations vanishes identically, and we recover the standard Galerkin form 

(2.16) and (2.17). Finally, we emphasize that the structure of the stabilization tensor τ  was 

derived based on a variational principle and therefore is not an explicit function of the 

characteristic mesh parameter h or any other user-defined parameter. 
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The process of finding numerical solutions to the HVM form proceeds along the same line as the 

traditional finite element method. First, we consider the approximation h≈u u  and expand hu  in 

terms of shape functions defined over elements eΩ  for each 1,2,...,umele n= . The integrals in 

(4.25) are then evaluated in each element using this expansion, and these quantities are 

assembled into a system of equations that is solved to determine the coefficients of the shape 

functions. The only distinguishing feature of the HVM formulation from an implementation 

perspective is that there are additional integrals to evaluate, but these do not require any 

additional parameters that are not already assigned to each element in traditional methods. 

Therefore, the only modification to an existing code would be to add the new terms from (4.25). 

To facilitate such an implementation, explicit formulas for each term are provided in Appendix 

A.
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Chapter 5: Error Estimation  

Having addressed the issue of stability, our current objective is now to analyze the performance 

of the fine scales as an error estimator. As mentioned previously, the fine scale displacement ′u  

represents the component of the exact solution that is unaccounted for in the coarse scale u  on a 

particular level of discretization, where h≈u u  is the typical finite element solution. Returning to 

the decomposition of u  in (3.4), we claim that the fine scales can exactly represent the error 

between the coarse solution and the exact solution: 

 ′= − =e u u u  (5.1) 

This claim is true when the multiscale problem is solved exactly; namely, the true pressure field 

p is obtained along with both u  and ′u . While equality with the true error is lost in the discrete 

setting, the fine scales can still serve as a valid approximation for the error. Specifically, a good 

approximation to ′�u  should be a good approximation to e. 

In order to quantify the performance of ′u  as an estimator, we will invoke the concept of an 

effectivity index effI . This concept is commonly used in the academic community to compare 

error estimators [3]. It is defined as the ratio between the predicted error and the true error as 

measured in an appropriate norm for the problem: 

 eff

Predicted error

True error
I =  (5.2) 

In general, a norm is an aggregate measure of the magnitude of a field. For this mixed 

formulation, we have elected to use the L2 norm and H1 seminorm, which are defined for an 

arbitrary vector field v (e.g. u or p) as 

 ( )2
 d

L ω ω
= ⋅ Ω∫v v v   (5.3) 

 ( )1 :  d
H ω ω

= ∇ ∇ Ω∫v v v   (5.4) 

where ω  is the domain of integration, typically either a single element eΩ  or the entire domain 

Ω . In the latter case, we will abbreviate notation as follows: ( )2 2L LΩ
=v v  and ( )1 1H HΩ

=v v . 
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We are especially concerned with the following local error indicators eη  computed from the fine 

scale in each element as: 

 ( )1 e
e

H
η

Ω
′= u  (5.5) 

These local quantities can be agglomerated into a single global error indicator η : 

 ( )
1
2

2

1

umeln
e

e

η η
=

 
=  
 
∑  (5.6) 

Finally, we may define the associated local and global effectivity indices as 

 eff eff,e eI Iη η= =  (5.7), (5.8) 

As the value of the error indicator approaches the true error, these ratios will tend to one. 

Therefore, a desirable property of an estimator would be for this ratio to remain close to 1 

regardless of the problem being solved or the resolution of a mesh. More precisely, an estimator 

is considered efficient if the ratio can be bounded above and below regardless of the finite 

element partition of the domain. It is considered robust if the ratio is bounded above and below 

independent of problem-specific data such as material properties or boundary conditions. 

In section 5.1, we investigate the performance of the fine scale field given by (4.12) as an 

explicit error indicator. Then, we return to the fine scale equation rF  in section 5.2 to derive an 

implicit error estimator. 

5.1 Explicit a Posteriori Error Indicator 

Recall the analytical form derived for ′u  given by (4.12) and (4.13). Within each element of the 

mesh, these expressions depend only upon the element bubble function eb , material properties, 

and the residual of the governing equations ′Ωr  (3.27). Once the modified coarse scale problem 

M  has been solved numerically for u  and p, this expression can be directly evaluated in each 

element. This evaluation amounts to a simple post-processing step; thus, the fine scale field ′u  

from the HVM formulation can be considered as an explicit error indicator. Typical explicit 

residual-based estimates contain unknown constants that can be found through solving dual 

problems [26]. In the present case, the stabilization tensor τ  is serving as an approximation of 

this constant, an approximation that was consistently derived from the governing equations. 

Thus, the HVM formulation comes equipped with an error estimator that does not require any 
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additional mechanisms to evaluate beyond those already utilized in the solution process. The 

formula for this error indicator using the H1 seminorm is 

 ( )1exp e
e

H
η

Ω
′= u  (5.9) 

where 

 
( )

( ) ( ) 1

d d d
e e e

e e e e e eb b b b b bµ µ

′Ω

−

′ΩΩ Ω Ω

′∇ = ∇

 = ∇ Ω ∇ ⋅∇ Ω + ∇ ⊗∇ Ω
 ∫ ∫ ∫

u τ r

I r
 (5.10) 

The performance of this approximation of ′u  will be assessed in the numerical simulations in 

Chapter 6. However, we give two preliminary remarks: 

• This method provides a very simple procedure that is merely a post-processing step after 

the main solution phase. 

• The accuracy of this method depends upon the validity of the assumption that ′ 0u =  on 

′Γ ,  ′Ωr  is constant on element interiors, and the ability of eb  to represent ′u . 

5.2 Alternative Approach: Localization of Fine Scale Problem 

With the aim of computing an improved representation of ′u , we return to the fine scale equation 

rF . Once the coarse scale quantities have been obtained from the modified coarse scale problem 

M , ′u  becomes the only unknown. Therefore, we treat the fine scale equation rF  as a problem 

to be solved numerically for ′u . Noting that solving (3.30) numerically by a direct scheme would 

be very computationally intensive, we seek to develop an approximate technique to decouple the 

fine scale equations into a number of localized problems over smaller domains. 

To this end, we adapt a method proposed by Larson and Målqvist [42] for the multiscale 

approximation of the Poisson problem. Their method was designed to solve problems that 

possess a large disparity of scales in the solution fields due to high frequency oscillations of the 

material parameters spatially across the domain. It involves solving for localized components of 

the fine scale on overlapping regions spread throughout the domain so that a series of small 

problems are solved rather than one large problem. The concept of localized Dirchlet problems 

has been used previously for a posteriori error estimation of scalar problems by Morin et al. [47]. 

In what follows, we extend these ideas to the mixed formulation of elasticity and demonstrate the 

performance of simple polynomial functions as approximations of the local fine scale spaces. 
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We begin by recalling the partitioning of domain Ω  into finite elements given by (3.1) - (3.3). 

Let N  denote the set of coarse nodes on the corners of the elements in ′Ω . Let { }i i
ϕ

∈N
 be a 

partition of unity (POU) over Ω ; in general, a partition of unity is a set of functions which 

satisfy the following property: 

 ( ) 1i
i

ϕ
∈

= ∀ ∈Ω∑
N

x x  (5.11) 

The partition of unity functions may also be assigned other desirable properties such as compact 

support and nonnegativity. The concept of a POU is central to the Generalized Finite Element 

Method; one recent reference by Duarte et al. provides a discussion of partition of unity in that 

context [23]. For our purposes, the first-order Lagrange basis functions associated with the 

coarse nodes N  will be used. Employing this partition of unity in the first term on the right-

hand side of (3.30), we obtain: 

 d d d di i i
i i i

ϕ ϕ ϕΩ Ω Ω Ω′ ′ ′ ′Ω Ω Ω Ω
∈ ∈ ∈

     ′ ′ ′ ′⋅ Ω = ⋅ Ω = ⋅ Ω = ⋅ Ω        
∑ ∑ ∑∫ ∫ ∫ ∫
N N N

w r w r w r w r  (5.12) 

Using similar arguments, we may rewrite (3.23) as: 

 ( )
int

int

: 2 d d d d
h

h
i i i

i

µ ϕ ϕ ϕΩ Γ Γ′ ′Ω Ω Γ Γ
∈

 ′ ′ ′ ′ ′∇ Ω = ⋅ Ω + ⋅ Γ + ⋅ Γ
  ∑∫ ∫ ∫ ∫

N

w ε w r w r w r  (5.13) 

Equation (5.13) represents an exact equality due to the partition of unity property. 

We then separate ′u  into components such that each component is given by: 

 
i

i∈

′ ′= ∑
N

u u  (5.14) 

 
( )( )

int
int

: 2 d d d

d      for each 

h
h

i i i

i i

µ ϕ ϕ

ϕ

′Ω Γ′ ′Ω Ω Γ

ΓΓ

′ ′ ′ ′∇ Ω = ⋅ Ω + ⋅ Γ

′+ ⋅ Γ ∈

∫ ∫ ∫

∫ N

w ε u w r w r

w r
 (5.15) 

Thus, each component is given by the solution to the associated decoupled equation resulting 

from (5.13). This decoupled set of equations is equivalent to rF  because each equation is posed 

over the entire domain Ω . 

We now discuss an approximate method of solving (5.15).  To each node i ∈N , we associate a 

domain iω , referred to subsequently as a patch or subdomain, consisting of the elements in a 

neighborhood around node i. Specifically, let ,1iω  be the union of elements in the support of the 
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Lagrange basis function centered at node i, namely, all of the elements connected to node i. Let 

1
i

N  be the set of all nodes attached to those elements in ,1iω . Then we define iω   to be 

 
1

,2 ,1
i

i i j
j

ω ω ω
∈

= =
N

∪  (5.16) 

In [42], Larson and Målqvist describe ,2iω  as a level 2 mesh star around node i. They also 

observe that level 1 mesh starts, ,1iω , are too restrictive within their proposed framework and do 

not accurately capture the fine scale components because of the boundary conditions prescribed 

to the patches, described shortly. We have observed similar behavior in our studies, and therefore 

have opted for the use of patches defined by (5.16). Larger patches can be defined recursively by 

the following formula: 

 
1

, ,1
i
L

i L j
j

ω ω
−∈

=
N

∪  (5.17) 

where i
LN  is the set of all nodes attached to elements in ,i Lω . However, for the purpose of error 

estimation, we have found a level 2 star as defined in (5.16) to be sufficient. Finally, we denote 

the union of element boundaries which lie in iω  as 

 
e

i

e
i

ωΩ ∈

′Γ = Γ∪  (5.18) 

and we define the set of element boundaries on the interior of iω  as ,int \i i iω′ ′Γ = Γ ∂ , where iω∂  is 

the boundary of the patch. 

We define the appropriate fine scale displacement trial solution and weighting function spaces 

as: 

 ( ){ },  in \ ,  on \
i i i i i i i i hω ω ω ω′ ′ ′ ′ ′ ′= ∈ Ω ∂ ∂ ∩ Γ0 0S Su u u = u =  (5.19) 

 
i iω ω′ ′=V S  (5.20) 

In words, fine scale component i
′u  is a function from the fine scale space ′S  that vanishes 

outside patch iω  and also satisfies homogenous Dirchlet boundary conditions on the boundary of 

the patch which is not part of the Neumann boundary of domain Ω . This definition of the spaces 

for the components i′u  ensures that the total fine scale solution ′u  given by (5.14) will be 

continuous everywhere. With these definitions, the approximate fine scale equation becomes: 
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( )( )

int
,int

: 2 d d d

d     for each 

h
i i i h

i

i i i i i i

i i i

ω ω ω
µ ϕ ϕ

ϕ

′Ω Γ∂ ∩Γ

Γ′Γ

′ ′ ′ ′∇ Ω = ⋅ Ω + ⋅ Γ

′+ ⋅ Γ ∈

∫ ∫ ∫

∫ N

w ε u w r w r

w r
 (5.21) 

This approximation is reasonable if the value of ′u  within any particular element is not 

significantly influenced by the value of the coarse scale residual at a location further away than 

one or two element diameters. Our numerical studies have shown that approximation is valid for 

the HVM formulation given by (4.25). 

5.3 Implicit a Posteriori Error Estimator 

In order to obtain a finite element approximation of (5.21), we consider a partition of each 

element eΩ  into non-overlapping subregions ceω , which we will call cells, in direct analogy to 

(3.1) - (3.3). Namely: 

 
1

closure
celln

e c
e

c

ω
=

 
Ω =  

 
∪  (5.22) 

where 1,2,..., cellc n=  and celln  denotes the number of cells per element, which we assume is the 

same for each element. However, we also require that this partitioning results in a conforming 

discretization along element boundaries intΓ . With these definitions, we may denote the union of 

cell interiors iω′  within a particular subdomain iω  as the collection of all cells within each 

element eΩ  that is contained in that subdomain: 

 
1

cell

e
i

n
c

i e
cω

ω ω
=Ω ∈

 
′ =  

 
∪ ∪  (5.23) 

Figure 4 shows two typical subdomains on a sample finite element mesh. 



 

Figure 4. Example of subdomain refinement on a mesh; nodes associated with domains are 

We now discuss the approximate finite element subspaces of 

iω  given by (5.22) suggests an analogy with 

the simple approximation for i′u

the coarse mesh. In order to ensure the linear independence of

scale functions vanish identically at the coarse nodes:

 
( )

( )
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u x

 
i i

h h
ω ω=V S  

where jx  are the physical coordinates of node 

method for a posteriori error estimation using the fine scales is given by: Find 

i

h h
i ω∈Su  such that 

 
( )( ): 2 d d d

i i i h

h h h h
i i i i i iω ω ω

µ ϕ ϕ
′ ′
∇ Ω = ⋅ Ω + ⋅ Γ

+ ⋅ Γ ∈ ∈

∫ ∫ ∫w ε u w r w r
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. Example of subdomain refinement on a mesh; nodes associated with domains are 
highlighted 

ss the approximate finite element subspaces of (5.19) and (5.20). The partition of 

suggests an analogy with typical h-refinement schemes; therefore, we adopt 

i
′u  as piecewise-continuous polynomials of the same degree 

the coarse mesh. In order to ensure the linear independence of u  and ′u , we require that the fine 

tions vanish identically at the coarse nodes: 

( )
1

,  for 1,2,..., ,
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h h h k c
i i i i e cell

h i

C c n

j

ω ω
ω ω ′∈ ∩ ∈ = 

 
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S P

N

u u u
 

are the physical coordinates of node j. With these definitions in place, the implicit 

method for a posteriori error estimation using the fine scales is given by: Find ′u = u

int
,int

: 2 d d d

d      for all  and 

h
i i i h

i
i

h h h h
i i i i i i

h h h
i i i

ω ω ω

ω

µ ϕ ϕ

ϕ

Ω Γ′ ′ ∂ ∩Γ

Γ′Γ

∇ Ω = ⋅ Ω + ⋅ Γ

+ ⋅ Γ ∈ ∈

∫ ∫ ∫

∫ V N

u w r w r

w r w

. Example of subdomain refinement on a mesh; nodes associated with domains are 

. The partition of 

refinement schemes; therefore, we adopt 

polynomials of the same degree k as 

, we require that the fine 

(5.24) 

(5.25) 

e definitions in place, the implicit 

h
i

i∈

′ ∑
N

u = u  where 

d      for all  and i+ ⋅ Γ ∈ ∈V N
 (5.26) 
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Similar to (4.12), this method can be used to obtain both local and global estimates of the error in 

the coarse scale solution. The formula for this error estimator using the H1 seminorm is 

 ( )1imp e
e

H
η

Ω
′= u  (5.27) 

While this method is more computationally intensive, its robustness is enhanced by the 

relaxation of the assumption ′ = 0u  on ′Γ . 

The specific discretization scheme just described is only one of many ways in which the fine 

scale equation rF  could be decoupled and approximated. For example, p-hierarchical functions 

could be used to represent the fine scales rather than building the space using equal-order 

functions defined over cells. Other options include varying the size of patches and increasing the 

refinement of the fine scale by adding more cells or higher-order functions. Finally, there is the 

possibility of eliminating certain elements from the decoupled problems if the value of the 

explicit error obtained in them was below a specified tolerance. The only modification required 

would be to ignore those elements during the implicit solution phase and prescribe homogeneous 

Dirchlet boundary conditions on elements bordering them; this would result in a smooth 

approximation of ′u  when coupled with the explicit portion of ′u  obtained using bubble 

functions. In Chapter 6, the effects of increasing the number of cells in each element are explored 

for one family of numerical simulations. 

At a higher level, one could consider applying the POU concept to the alternative form of the 

fine scale equation given by (3.24). While the method presented above involves directly the 

residuals of the governing equation or strong form, this approach utilizes the integrated-by-parts 

or weak form of the residual, which is less consistent with traditional error estimation techniques 

but is nevertheless a valid formulation. We refer to these as the strong variant and weak variant 

of the error estimator, respectively. Sparing the details of the derivation, which proceed along 

similar lines as described in section 5.2, the approximate fine scale equation analogous to (5.21) 

but using the weak variant is given by: 

 
( )( ) [ ]: 2 d : 2 d d

d      for each 

i i i

i h

i i i i i i

i i

p

i

ω ω ω

ω

µ ϕ µ ϕ

ϕ
∂ ∩Γ

′ ′ ′ ′∇ Ω = − ∇ Ω + ⋅ Ω

′+ ⋅ Γ ∈

∫ ∫ ∫

∫ N

w ε u w I + ε w b

w h
 (5.28) 

Employing the discrete spaces presented in (5.24) and (5.25), the discrete form of the weak 

variant is given by: 
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( )( ) [ ]: 2 d : 2 d d

d      for all  and 

i i i

i
i h

h h h h
i i i i i i

h h h
i i i

p

i

ω ω ω

ωω

µ ϕ µ ϕ

ϕ
′ ′ ′

∂ ∩Γ

∇ Ω = − ∇ Ω + ⋅ Ω

+ ⋅ Γ ∈ ∈

∫ ∫ ∫

∫ V N

w ε u w I + ε w b

w h w
 (5.29) 

While equations (3.24) and (3.30) are exactly equivalent, (5.26) and (5.29) produce slightly 

different approximations due to the effect of localization. Specifically, if iω  is extended to Ω  for 

all i ∈N  and both (5.26) and (5.29) are solved numerically using the same discretization in the 

patches and full numerical integration, etc., the approximate solutions are identical, as is 

discussed in section 6.4. Two of the main benefits from using the weak variant are that second 

derivatives of shape functions are not required and that boundary integrals are only performed on 

the domain traction boundaries. One observation about both methods is that the form of the 

decomposition of ′u  implies that the decoupled equations can naturally be solved in parallel. 

Another important feature of both variants can be concluded by recalling the definition of the 

POU { }i i
ϕ

∈N
. Since these functions are defined using element-based linear Lagrange polynomial 

basis functions, we may observe that iϕ  indeed possesses the compact support property: 

 ( ) ( ),1 ,10 ; 0i i i iϕ ω ϕ ω= ∀ ∉ = ∀ ∈∂x x x x  (5.30) 

Therefore, the only nonzero contributions to the right-hand side of (5.26) and (5.29) come from 

cells interiors and boundaries within elements of ,1iω  rather than all of iω . This feature can be 

exploited in the numerical implementation.
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Chapter 6: Numerical Simulations 

To analyze the performance of the HVM formulation and the error estimation techniques, we 

present numerical results for prototypical problems on a variety of meshes. Convergence studies 

are performed for two problems using Lagrangian linear and quadratic triangular and 

quadrilateral elements with equal-order interpolations for the displacement and pressure fields; 

this family of elements is shown in Figure 5. All quantities computed during the solution and 

error estimation phases are fully integrated using appropriate quadrature rules.  The numerical 

framework has been implemented in a FORTRAN research code called FEAP; the contour plots 

shown were generated from the numerical output using MATLAB. 

 

Figure 5. Family of continuous equal-order Lagrangian elements 

Unless stated otherwise, all of the calculations of the implicit fine scale error were performed on 

patches iω  defined by (5.16). A submesh was created within each element of the patch, 

consisting of four cells. The cells were generated by bisecting each edge of the parent element 

and drawing lines between these points. An example of submeshes for a triangular and a 

quadrilateral element are shown in Figure 6 below. This procedure provides sufficient 

refinement, enforces conformity between elements, and maintaines aspect ratios. 



 

Figure 6. Submesh of cells within a triangular and quadrilateral element

6.1 Cantilever Beam Problem Description

The first simulation is of a cantilever beam loaded by a parabolic edge shear. This problem 

typically serves as a benchmark for numerical methods for elasticity. Plane strain conditions are 

assumed for this problem, as these conditions are more stringent to satisfy near the 

incompressible limit. The description of the problem is shown in Figure 6; the exact solution 

derived from elasticity theory is given in 

Figure 7

 
( ) (

2

exact 2 2
1

6 3 2
6 1x

P y
u L x x y C

EI

ν−  = − − + + − 
 

 
( ) (

2

exact 2 2
1

6 1 1y

P
u L x C x L x x

EI

ν−  
= − + + + − 

 

 ( )exactp Py L xν= − −  

 
( )3
2

12

C
I =  

 

35 

 

. Submesh of cells within a triangular and quadrilateral element

Problem Description 

The first simulation is of a cantilever beam loaded by a parabolic edge shear. This problem 

nchmark for numerical methods for elasticity. Plane strain conditions are 

assumed for this problem, as these conditions are more stringent to satisfy near the 

incompressible limit. The description of the problem is shown in Figure 6; the exact solution 

ived from elasticity theory is given in (6.1)-(6.3) [52]. 

7. Cantilever beam problem description 
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. Submesh of cells within a triangular and quadrilateral element 

The first simulation is of a cantilever beam loaded by a parabolic edge shear. This problem 

nchmark for numerical methods for elasticity. Plane strain conditions are 

assumed for this problem, as these conditions are more stringent to satisfy near the 

incompressible limit. The description of the problem is shown in Figure 6; the exact solution 

 

(6.1) 

(6.2) 

(6.3) 

(6.4) 
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The values of parameters selected for the simulation were: 

 72560 1 10 8 12 7.5 10 0.4999P C L I E ν= = = = = × =  (6.5) 

6.2 Convergence Study: Uniform Meshes 

In order to verify the convergence of the method with respect to this particular problem, the 

numerical solution was computed on sets of uniformly refined meshes. The mesh hierarchy is 

shown in Table 2; examples of two successive meshes obtained by bisection for triangular and 

quadrilateral elements are shown in Figure 8. In keeping with standard conventions, we refer to 

the numerical solutions for displacement and pressure as hu  and ph, respectively. 

Table 2. Listing of number of elements and nodes in mesh hierarchy 

Mesh 
Name 

Triangular (T3) Quadrilateral (Q4) Triangular (T6) Quadrilateral (Q9) 

Elements Nodes Elements Nodes Elements Nodes Elements Nodes 

Coarse 40 33 20 33 40 105 20 105 

Medium 160 105 80 105 160 369 80 369 

Fine 640 369 320 369 640 1377 320 1377 

Very Fine 2560 1377 1280 1377 2560 5313 1280 5313 

 

 
  (a)               (b) 

 
  (c)               (d) 

Figure 8. Uniform mesh hierarchy: (a) 40 triangular element mesh; (b) 640 triangular element 
mesh; (c) 20 quadrilateral element mesh; and (d) 320 quadrilateral element mesh 

To illustrate the convergence of the numerical method, we plot the normalized centerline tip 

displacement versus the characteristic mesh parameter h for each mesh in Figure 8.  As can be 

seen, the predicted value of the tip displacement approaches the analytical value as the mesh is 
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refined. Additionally, the crudest approximation of the tip displacement is in error by only 3% 

for the Q4 elements and 35% for the T3 elements, which is much smaller than would be obtained 

by a standard finite element formulation applied near the incompressible limit. Therefore, we 

may conclude that the HVM formulation successfully addresses the problem of volumetric 

locking. 

  
  (a)             (b) 

Figure 9. Convergence of normalized tip displacement: (a) linear elements; (b) quadratic 
elements 

Results of the numerical simulation performed on the medium Q4 mesh are presented in Figures  

10-12. All three contour plots capture the smoothness of the exact solution. In particular, the 

pressure field does not exhibit spurious oscillations which can occur in simulations using 

unstable elements that do not satisfy the LBB stability condition. While the standard Q4 element 

with bilinear displacement and pressure interpolations is known to be unstable [36], Figure 12 

provides evidence that the HVM formulation provides stability to this element and thereby 

eliminates these unphysical features. 
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Figure 10. Displacement xu  contour, medium Q4 mesh 

 

Figure 11 Displacement xu  contour, medium Q4 mesh 

 

Figure 12. Pressure p contour, medium Q4 mesh 
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We now examine the error between our numerical simulations and the exact solution. We begin 

by evaluating the L2 norm and H1 seminorm of the standard error h−e = u u  over the entire 

domain as a global measure of accuracy of the numerical solutions. These quantities are 

evaluated using (5.3) and (5.4). Figure 13 presents the value of these error norms on a log-log 

scale for each element type computed on successively refined meshes as given in Table 2. The 

magnitudes have been normalized with respect to the exact solution fields in the corresponding 

norms. From finite element theory, the asymptotic rate of convergence for a primal field is 1p +  

in the L2 norm, where p is the degree of the highest complete polynomial represented by the 

element basis functions [36]. The associated rate for the H1 seminorm is p. Therefore, the 

optimal convergence rates for linear and quadratic elements in the L2 norm are 2.0 and 3.0, 

respectively, and the associated rates for the H1 seminorm are 1.0 and 2.0. 

 
  (a)             (b) 

 
  (c)             (d) 

Figure 13. Convergence rates of normalized standard error: (a) L2 norm of displacement; (b) H1 
seminorm of displacement; (c) L2 norm of pressure; and (d) H1 seminorm of pressure 
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For all element types, the displacement field converged at nearly the optimal rate in both the 

standard error measures. This agreement with the theoretical convergence rates indicates that the 

HVM formulation is stable. The stability of the pressure field is often more of a concern for 

mixed methods for linear elasticity. As can be seen in Figure 13 (c) and (d), the pressure fields 

do converge suboptimally for many of the element types. However, the trends are very smooth, 

and contour plots of the fields revealed that they do not exhibit spurious oscillations. Therefore, 

these results are considered to be positive. 

6.3 Error Estimation: Uniform Meshes 

As a first step in evaluating the performance of the proposed error estimators, we present 

convergence plots of the global norms of the fine scale field ′u  obtained from the explicit and 

implicit methods. These graphs are shown in Figure 14. 
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  (a)             (b) 

 
  (c)             (d) 

Figure 14. Convergence rates of normalized error estimates: (a) L2 norm of explicit ′u ; (b) H1 
seminorm of explicit ′u ; (c) L2 norm of implicit ′u ; and (d) H1 seminorm of implicit ′u  

Upon examining the error estimates shown in Figure 14, we see that the fine scales from both the 

explicit and implicit methods are converging at the optimal rates. Since this convergence trend is 

parallel to the standard error, we may conclude that the fine scales can serve as an indicator of 

error reduction as the coarse mesh is refined. However, there is a significant shift in the 

magnitude of the norms. This is a result of our assumption that ′u  represents the relative 

component between u  and u . Returning to the forms of ′u given in (4.12) and (5.26), we see 

that in both cases the fine scales are zero at the coarse nodes; thus, these approximations of ′u

capture the fine part of the coarse scale residuals in the region between coarse nodes, both in ′Ω

and on ′Γ . This approximation does imply that the fine scales should accurately capture the error 

in the H1 seminorm, since the residuals of the governing equations involve derivatives of u . In 
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fact, comparing Figure 13 (b) to Figure 14 (b) and (d) shows that this is indeed the case. Finally, 

we note that the implicit method typically provides a better approximation to both error norms 

than the explicit method, and both methods provide a consistent underestimation, or lower 

bound, on the error in the numerical solution. To clarify the proceeding points, we reproduce the 

values of the norms of the standard error and the error estimates in tabular form for the Q4 

element in Table 3. From these values, we can clearly see that the implicit method produced 

closer estimates of the L2 norm than the explicit method, but the explicit method provided 

slightly better estimates for the H1 seminorm. 

Table 3. List of error norms for Q4 elements 

L2 norms of error measures 

Number of 
Elements 

Standard 
Error 

Standard 
Error 

Explicit 
Estimate 

Implicit 
Estimate 

h−u u  hp p−  ′u  ′u  

20 7.440  E-4 6.198  E+2 8.241  E-5 1.313  E-4 

80 2.292  E-4 4.965  E+2 2.089  E-5 3.154  E-5 

320 6.595  E-5 2.081  E+2 5.209  E-6 7.662  E-6 

1280 1.870  E-5 7.745  E+1 1.298  E-6 1.883  E-6 

H1 norms of error measures 

Number of 
Elements 

Standard 
Error 

Standard 
Error 

Explicit 
Estimate 

Implicit 
Estimate 

h−u u  hp p−  ′u  ′u  

20 4.965  E-4 1.797  E+3 3.688  E-4 3.526  E-4 

80 2.218  E-4 2.810  E+3 1.869  E-4 1.748  E-4 

320 1.060  E-4 2.428  E+3 9.319  E-5 8.629  E-5 

1280 5.219  E-5 1.774  E+3 4.643  E-5 4.278  E-5 
 

In addition to considering the performance of the error estimators in a normed sense, we may 

also investigate their performance at capturing the error locally throughout the domain. Figures 

15-17 depict a projection of the standard error in each solution field onto the medium Q4 mesh. 

We can compare these results to the components of ′u  predicted by the explicit method, shown 

in Figures 18-19, and the implicit method, shown in Figures 20-21. 
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Figure 15. Standard displacement error ex contour, medium Q4 mesh 

 

Figure 16. Standard displacement error ey contour, medium Q4 mesh 

 

Figure 17. Standard pressure error ep contour, medium Q4 mesh 
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Figure 18. Explicit fine scale xu′  contour, medium Q4 mesh 

 

Figure 19. Explicit fine scale yu′  contour, medium Q4 mesh 

 

Figure 20. Implicit fine scale xu′  contour, medium Q4 mesh 
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Figure 21. Implicit fine scale yu′  contour, medium Q4 mesh 

A first glance at Figures 15 and 16 provides the observation that the coarse trends of the error in 

the displacement fields parallels the actual fields themselves: the error has higher magnitudes in 

regions where the solution fields have higher magnitudes. We also observe that the fine scale 

plots do not appear to match the standard error very well. However, by taking a closer look at 

Figures 15 and 16, we can observe finer features within the error fields. For example, compare 

the bottom left-hand corner element in Figures 16 and 21. Inside the element, the standard error 

value peaks at about 2.1 x 10-5, and the fine scale error value is approximately 2.3 x 10-5 in the 

element center. Both of these values are fairly similar. In fact, if the coarse scale trends in the 

standard error are filtered out, the remaining fine scale error features match very well with the 

implicit fine scale field. 

Additionally, we may observe that the elements with relatively larger fine scale components 

correspond with regions were the true solution field possesses higher displacement gradients. In 

Figure 20, the fine scales are concentrated on the upper and lower portions of the beam, where 

the bending stresses are highest. Also, in Figure 21, the fine scales increase from right to left, 

corresponding to the increase in shear stresses. Thus, these regions with significant fine scales 

represent candidate regions for local refinement in order to capture the gradients in the solution 

field more accurately. 

Finally, while the explicit fine scales in Figures 18 and 19 provide a good qualitative match to 

the implicit fine scales in Figures 20 and 21, we note that the implicit fine scales appear to 

capture the magnitude of the fine scale effects in the standard error with higher accuracy. 
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The quality of the error estimators can also be evaluated through the use of the effectivity index 

discussed in Chapter 5. In Figure 22, we graph the value of effI  for each element type, as 

computed by (5.8). There is a significant amount of variety across the element types. For the Q9 

simulations, the index remains constant, while most of the other elements exhibit values tending 

toward unity upon refinement. This behavior can be linked to the size of disparity in convergence 

rates between the standard error and the error estimates. Comparing Figure 13 (b) to Figure 14 

(b) and (d), we observe that the slopes of the curves for the Q9 elements are identical while the 

curves of other elements do not match exactly. A few trends are universal, however: except for 

the Q4 elements, the implicit estimate is closer to unity than the explicit estimate, and, except for 

the T6 elements, all error predictions underestimate the standard error. Finally, almost all values 

of the index are greater than 0.1, indicating that the estimates are on the same order of magnitude 

as the standard error. 

 
  (a)             (b) 

Figure 22. Effectivity index for each element type in H1 seminorm: (a) explicit error estimator; 
(b) implicit error estimator 

The effectivity index can also be evaluated within each element using (5.7) to provide a local 

indication of the difference between the actual and predicted values of error. Figure 23 and 

Figure 24 show a contour plot of the value of eff
eI  on the medium Q4 mesh obtained from the 

explicit and implicit error estimators, respectively. Upon comparison with Figure 21, we observe 

that the value of eff
eI  is closest to unity for elements with large values of yu′  and smaller in 

elements with lower values. While the magnitude of ( )1 eH Ω
e  does decline from left to right 

across the domain for this simulation, the predicted values of error decline more rapidly, giving 
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rise to smaller values of eff
eI . The tendency for the sharpness of an error estimate to deteriorate in 

regions where the actual error is reduced was also observed by [24]. By comparing Figures 23 

and 24, we may conclude that the sharpness of the error estimate throughout the domain is 

maintained better by the implicit method than by the explicit method. 

 

 

Figure 23. Local effictivity index for explicit fine scale 

 

Figure 24. Local effictivity index for implicit fine scale 

6.4 Error Estimator Variant Comparison 

In this section, we investigate the performance of different versions of the implicit error 

estimator given by the localized fine scale equation. As discussed in section 5.3, two forms of the 

localized equation, the strong variant (5.26) and the weak variant (5.29), can be obtained from 

the fine scale equation rF  depending on whether integration by parts is invoked. Additionally, 
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the patches used in solving the decoupled equations can be set to various sizes by including 

elements further from a node using the recursive definition (5.17). Finally, the strategies of h-

refinement or p-refinement could be used to provide different levels of resolution in the patches. 

We conducted a study on the sequence of uniform Q4 meshes to compute the strong and weak 

variants and also to explore the effect of patch size on the global error estimate. The resulting L2 

norm and H1 seminorm of the fine scale obtained from these simulations are shown in Table 4 

and 5, respectively. The main conclusion is that both the strong and weak variants provide 

almost the same value for the norms, although the estimates from the strong variant were slightly 

closer to the standard error norms for this particular study. A patch size of 1, including only 

elements directly adjacent to a node, does not provide a sharp estimate for either of the error 

norms for either variant. However, a patch size of 2 is sufficient for approximating the value of 

the estimate obtained by solving the fine scale equation without localization. Also, the gain from 

increasing the patch size beyond 2 is not very significant. Therefore, a level 2 mesh star provides 

the optimal balance between computational efficiency and accuracy. Finally, we have 

numerically verified that the strong and weak variants are equivalent when solved over the entire 

domain. 

Table 4. L2 norm of error obtained for different patch sizes 

Mesh Size 
Standard 

Error 

Strong Variant 

Number of 
Elements 

Patch Size Entire 
Domain 1 2 3 4 

20 7.440  E-4 7.830  E-5 1.313  E-4 1.334  E-4 1.336  E-4 1.336  E-4 
80 2.292  E-4 1.679  E-5 3.154  E-5 3.371  E-5 3.392  E-5 3.392  E-5 
320 6.595  E-5 3.794  E-6 7.662  E-6 8.365  E-6 8.463  E-6 8.478  E-6 
1280 1.870  E-5 8.914  E-7 1.883  E-6 2.079  E-6 2.110  E-6 2.115  E-6 

Mesh Size 
Standard 

Error 

Weak Variant 

Number of 
Elements 

Patch Size Entire 
Domain 1 2 3 4 

20 7.440  E-4 8.703  E-5 1.285  E-4 1.330  E-4 1.335  E-4 1.336  E-4 
80 2.292  E-4 2.003  E-5 3.151  E-5 3.351  E-5 3.387  E-5 3.392  E-5 
320 6.595  E-5 4.823  E-6 7.807  E-6 8.332  E-6 8.451  E-6 8.478  E-6 
1280 1.870  E-5 1.212  E-6 1.960  E-6 2.075  E-6 2.107  E-6 2.115  E-6 
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Table 5. H1 seminorm of error obtained for different patch sizes 

Mesh Size 
Standard 

Error 

Strong Variant 

Number of 
Elements 

Patch Size Entire 
Domain 1 2 3 4 

20 4.965  E-4 3.116  E-4 3.526  E-4 3.547  E-4 3.548  E-4 3.548  E-4 
80 2.218  E-4 1.555  E-4 1.748  E-4 1.800  E-4 1.806  E-4 1.806  E-4 
320 1.060  E-4 7.711  E-5 8.629  E-5 8.970  E-5 9.021  E-5 9.029  E-5 
1280 5.219  E-5 3.831  E-5 4.278  E-5 4.467  E-5 4.499  E-5 4.505  E-5 

Mesh Size 
Standard 

Error 

Weak Variant 

Number of 
Elements 

Patch Size Entire 
Domain 1 2 3 4 

20 4.965  E-4 3.147  E-4 3.497  E-4 3.542  E-4 3.547  E-4 3.548  E-4 
80 2.218  E-4 1.574  E-4 1.758  E-4 1.796  E-4 1.805  E-4 1.806  E-4 
320 1.060  E-4 7.885  E-5 8.821  E-5 8.964  E-5 9.016  E-5 9.029  E-5 
1280 5.219  E-5 4.011  E-5 4.470  E-5 4.472  E-5 4.497  E-5 4.505  E-5 

 

A second study was conducted whereby the refinement of the submesh within each element was 

increased from 4 cells to 16 cells and the patch size was returned to the default of 2. The 

resulting L2 norm and H1 seminorm of the fine scale are shown in Table 6. While the accuracy of 

both variants increased with refinement, most notably in the H1 seminorm, the execution time 

(not reported) also increased dramatically. Therefore, we conclude that the additional refinement 

of the fine scale trial space does not add sufficient value. 

Table 6. Norms of error computed with finer submesh 

Number of 
Elements 

Standard Error Strong Variant Weak Variant 

L2(e) H1(e) L2(u') H1(u') L2(u') H1(u') 

20 7.440  E-4 4.965  E-4 1.581  E-4 3.945  E-4 1.469  E-4 3.887  E-4 

80 2.292  E-4 2.218  E-4 3.647  E-5 1.945  E-4 3.505  E-5 1.964  E-4 

320 6.595  E-5 1.060  E-4 8.675  E-6 9.593  E-5 8.643  E-6 9.923  E-5 

1280 1.870  E-5 5.219  E-5 2.108  E-6 4.754  E-5 2.190  E-6 5.084  E-5 
 

6.5 Convergence Study: Distorted Meshes 

The convergence of the stabilization framework was also investigated on meshes with significant 

element distortion. Such distortion may occur in practice when automatic mesh generators are 
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used to mesh complicated features in the geometry or at the junction between branching regions 

of the domain. We attempt to simulate these conditions by creating meshes containing elements 

of various sizes and shapes in close proximity. This study serves as an indicator of the robustness 

of the method. Table 7 contains data concerning the meshes used in the study; Figure 25 depicts 

two successive meshes for the triangular and quadrilateral elements. A very fine mesh for the Q9 

elements was not simulated because the problem size exceeded the default limit of the program. 

Table 7. Listing of number of elements and nodes in mesh hierarchy 

Mesh 
Name 

Triangular (T3) Quadrilateral (Q4) Triangular (T6) Quadrilateral (Q9) 

Elements Nodes Elements Nodes Elements Nodes Elements Nodes 

Coarse 80 53 118 146 80 185 118 527 

Medium 320 185 472 527 320 689 472 1997 

Fine 1280 689 1888 1997 1280 2657 1888 7769 

Very Fine 5120 2657 7552 7769 5120 10433 7552 30641 
 

 
  (a)               (b) 

 
  (c)               (d) 

Figure 25. Distorted mesh hierarchy: (a) 80 triangular element mesh; (b) 1280 triangular element 
mesh; (c) 118 quadrilateral element mesh; and (d) 1997 quadrilateral element mesh 

Results of the numerical simulation performed on the medium Q4 mesh are presented in Figures 

26-28. While the displacement contours retain the symmetry of the exact solution, the pressure 

field became slightly unsymmetrical as a result of the severe distortion. However, the major 

trends of the solution are still captured. 
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Figure 26. Displacement xu  contour, medium Q4 mesh 

 

Figure 27. Displacement yu  contour, medium Q4 mesh 

 

Figure 28. Pressure p contour, medium Q4 mesh 
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The convergence of the standard error norms is shown in Figure 29. The convergence rates of the 

displacement field are nearly optimal for all element types in both norms; however, the 

magnitude of the error in the solutions increased slightly from the solutions obtained on uniform 

meshes, which can be observed from the downward shift of the curves in Figure 29 compared to 

those in Figure 13. The pressure field experienced deteriorated rates compared to the uniform 

mesh study. In all cases, the rate for the L2 norm was one order below the optimum. For the H1 

seminorm, the rates for the T6 and Q9 elements were one order below the optimum, the Q4 

elements failed to converge, and the T3 elements exhibited a relative error greater than 1.0. This 

poor performance can be attributed to the effect of mesh distortion on the quality of the 

numerical approximation. Additionally, the norms for the first Q4 mesh appear out of sync with 

the subsequent simulations do to the lack of resolution on the coarsest mesh.  
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  (a)             (b) 

 
  (c)             (d) 

Figure 29. Convergence rates of normalized standard error: (a) L2 norm of displacement; (b) L2 
norm of pressure; (c) H1 seminorm of displacement; and (d) H1 seminorm of pressure 

6.6 Error Estimation: Distorted Meshes 

This section presents convergence plots of the global norms of the fine scale field ′u  obtained 

from the explicit and implicit methods. As can be seen in Figure 30, both the explicit and 

implicit L2 error norms converge at the optimal rates of 2.0 for linear elements and 3.0 for 

quadratic elements. Similarly, the H1 seminorm converges near the optimal rate for each of the 

element types. By comparing the error estimates with the standard error in Figure 29 (a) and (b), 

we observe that the convergence rates of the error estimates parallel those of the standard error. 

Additionally, the estimated H1 seminorm in Figure 30 (b) and (d) match closely with the curves 

in Figure 29. These trends were preserved under significant distortion of the mesh. 
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  (a)             (b) 

 
  (c)             (d) 

Figure 30. Convergence rates of normalized error estimates: (a) L2 norm of explicit ′u ; (b) H1 
seminorm of explicit ′u ; (c) L2 norm of implicit ′u ; and (d) H1 seminorm of implicit ′u  

6.7 Simply-Supported Beam Problem Description 

The second simulation is of a simply-supported beam loaded by its self weight. This problem 

was selected in order to verify the consistency of the stabilized formulation in the presence of a 

non-zero body force. Plane strain conditions are assumed, and tractions derived from the exact 

solution are applied to the left and right edges of the beam. The description of the problem is 

shown in Figure 31; the exact solution derived from elasticity theory is given in (6.6)-(6.8) [43]. 
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6.8 Convergence Study: Uniform Meshes
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Convergence Study: Uniform Meshes 

In order to verify the convergence of the method with respect to this particular problem, the 

l solution was computed on sets of uniformly refined meshes. Due to the overlap of the 

domains between the cantilever beam and the simply-supported beam, the meshes presented in 

were also used for this study. The resulting values of the normalized vertical deflection 

at the origin of coordinates, namely the midpoint of the beam, are plotted in Figure 

seen, the predicted value of the tip displacement approaches the analytical value as 
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In order to verify the convergence of the method with respect to this particular problem, the 

Due to the overlap of the 

supported beam, the meshes presented in 

values of the normalized vertical deflection 

Figure 32. As can be 

seen, the predicted value of the tip displacement approaches the analytical value as the mesh is 
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refined. These results exhibit similar performance compared to the values obtained for the 

cantilever beam. 

  
  (a)             (b) 

Figure 32. Convergence of normalized midpoint displacement: (a) linear elements; (b) quadratic 
elements 

Results of the numerical simulation performed on the medium Q4 mesh are presented in Figures  

33-35. All three contour plots capture the smoothness of the exact solution; the pressure field is 

free from spurious oscillations. The symmetries and anti-symmetries of the exact solution are 

captured by the uniform quadrilateral meshes. 

 

Figure 33. Displacement xu  contour, medium Q4 mesh 
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Figure 34. Displacement yu  contour, medium Q4 mesh 

 

Figure 35. Pressure p contour, medium Q4 mesh 

The convergence rates for the normalized standard error in the displacement and pressure fields 

measured in the L2 norm and H1 seminorm are presented in Figure 36. All element types exhibit 

near optimal convergence for the displacement field in both norms. The error in the pressure 

field converged at one order below the corresponding optimal rate for most of the element types. 

Additionally, the H1 seminorm of pressure diverged for the T3 element as it did for the first 

problem. By comparing Figure 36 to Figure 13, we observe that the numerical solutions for the 

simply-supported beam as a whole contained more error than those obtained for the cantilever 

beam. We attribute this increase in error to the fact that the exact solution of the second problem 

is a fourth-order polynomial while the first problem is a cubic polynomial. 
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  (a)             (b) 

 
  (c)             (d) 

Figure 36. Convergence rates of normalized standard error: (a) L2 norm of displacement; (b) L2 
norm of pressure; (c) H1 seminorm of displacement; and (d) H1 seminorm of pressure 

6.9 Error Estimation: Uniform Meshes 

Analogous to the cantilever beam study, we evaluate the fine scale field ′u  for each of the 

numerical simulations using explicit and implicit methods and compute the resulting global 

norms, which are presented in Figure 37. Many of the trends highlighted for the first problem 

also apply to the current study. In particular, all of the curves obtained using both error 

estimation methods possess optimal convergence, and each individual curve runs parallel to its 

counterpart in Figure 36. Also, the H1 seminorm of the estimated error provides a sharp estimate 

of the standard error in displacement. 
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  (a)             (b) 

 
  (c)             (d) 

Figure 37. Convergence rates of normalized error estimates: (a) L2 norm of explicit ′u ; (b) H1 
seminorm of explicit ′u ; (c) L2 norm of implicit ′u ; and (d) H1 seminorm of implicit ′u  

Next, we examine the distribution of error across the domain by presenting contour plots of the 

various field components. Figures 38-40 depict a projection of the standard error in each solution 

field onto the medium Q4 mesh. We can compare these results to the components of ′u  

predicted by the explicit method, shown in Figures 41-42, and the implicit method, shown in 

Figures 43-44. 
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Figure 38. Standard displacement error ex contour, medium Q4 mesh 

 

Figure 39. Standard displacement error ey contour, medium Q4 mesh 

 

Figure 40. Standard pressure error ep contour, medium Q4 mesh 
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Figure 41. Explicit fine scale xu′
 contour, medium Q4 mesh 

 

Figure 42. Explicit fine scale yu′  contour, medium Q4 mesh 

Figure 43. Implicit fine scale xu′
 contour, medium Q4 mesh 
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Figure 44. Implicit fine scale yu′  contour, medium Q4 mesh 

By comparing Figure 38 to Figure 33, we again observe that magnitude of error is larger in 

regions where the solution field has higher magnitudes. Also, the fine scale features in the error 

distributions are more apparent for this problem compared to the first. These same features are 

approximated well by the fine scale error estimates. For example, consider one of the elements at 

mid-span on the bottom chord of the beam in Figure 39. The value of the error within the 

element peaks at 6.8 x 10-4, but the values at the corners of the element are about 4.8 x 10-4. The 

difference between these values is 2.0 x 10-4, which is similar to the magnitude of 2.4 x 10-4 

within the same element in Figure 44. This trend was discussed previously for the cantilever 

beam. 

The performance of the error estimators is now quantified using the effectivity index, which is 

shown in Figure 45 for the explicit and implicit methods. These results are remarkably similar to 

those presented in Figure 22 for the cantilever beam problem. Therefore, the same comments 

about the proper magnitude of the error and the lower bound property still apply. Although the 

results from only two problems give little indication of the performance of the method for 

arbitrary problems, this consistent behavior is a positive result. 
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  (a)             (b) 

Figure 45. Effectivity index for each element type in H1 seminorm: (a) explicit error estimator; 
(b) implicit error estimator 

Finally, we evaluate the effectivity index locally in each element to indicate the difference 

between the actual and predicted values of error. Figure 46 and Figure 47 show a contour plot of 

the value of eff
eI  on the medium Q4 mesh obtained from the explicit and implicit error 

estimators, respectively. By looking back to Figure 44, we conclude that the value of eff
eI  is 

closest to unity for elements with large values of yu′  and smaller in elements with lower values. 

This behavior was also discussed in the context of the first problem in section 6.3. The 

distribution of eff
eI  shown in Figures 46 and 47 again implies that the sharpness of the error 

estimate throughout the domain is maintained better by the implicit method than by the explicit 

method. 

 

Figure 46. Local effectivity index for explicit fine scale 
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Figure 47. Local effectivity index for implicit fine scale 

6.10 Convergence Study: Distorted Meshes 

A convergence study involving distorted meshes was also conducted for this problem in order to 

assess the robustness of the numerical framework. Again, due to the overlap in dimensions for 

the two beams, we utilized the meshes from Table 7 for this study as well. 

The convergence of the standard error norms is shown in Figure 48. The convergence rates of the 

displacement field are nearly optimal for all element types in both norms; however, the 

magnitude of the error in the solutions increased slightly from the solutions obtained on uniform 

meshes, which can be observed from the downward shift of the curves in Figure 48 compared to 

those in Figure 36. The pressure field experienced deteriorated rates compared to the uniform 

mesh study. In all cases, the rate for the L2 norm was one order below the optimum. For the H1 

seminorm, the rates for the quadratic elements were one order below the optimum, and the linear 

elements exhibited a relative error greater than 1.0. These trends are similar to those observed for 

the distorted mesh simulations of the cantilever beam problem. 
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  (a)             (b) 

 
  (c)             (d) 

Figure 48. Convergence rates of normalized standard error: (a) L2 norm of displacement; (b) L2 
norm of pressure; (c) H1 seminorm of displacement; and (d) H1 seminorm of pressure 

6.11 Error Estimation: Distorted Meshes 

This section presents convergence plots of the global norms of the fine scale field ′u  obtained 

from the explicit and implicit methods. As can be seen in Figure 49, both the explicit and 

implicit L2 error norms converge at the optimal rates of 2.0 for linear elements and 3.0 for 

quadratic elements. Similarly, the H1 seminorm converges near the optimal rate for each of the 

element types. By comparing the error estimates with the standard error in Figure 48 (a) and (b), 

we observe that the convergence rates of the error estimates parallel those of the standard error. 

Additionally, the estimated H1 seminorm in Figure 49 (b) and (d) match closely with the curves 

in Figure 48. These trends were preserved under significant distortion of the mesh. 
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  (a)             (b) 

 
  (c)             (d) 

Figure 49. Convergence rates of normalized error estimates: (a) L2 norm of explicit ′u ; (b) H1 
seminorm of explicit ′u ; (c) L2 norm of implicit ′u ; and (d) H1 seminorm of implicit ′u
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Chapter 7: Conclusions 

We have demonstrated the application of the Hughes Variational Multiscale framework to the 

standard weak form of mixed elasticity in order to develop a stabilized finite element method and 

a posteriori error estimators. Because the method is based on sound variational principles, it 

produces stable and convergent solutions, as was illustrated by the numerical simulations 

presented in this work. Additionally, the error estimators developed from this framework 

provided an accurate representation of the fine scale features of the standard error for the 

benchmark problem. Thus, this framework represents a unified and consistent methodology for 

the analysis of elasticity problems involving nearly incompressible media. In our future work, we 

plan to investigate techniques for estimating the coarse scale trends of the error in the finite 

element solutions obtained from this framework. 
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Appendix A 

In this section, we present explicit formulas using indicial notation for the HVM Form (4.25) in 

two-dimensions as a guide for those seeking to implement the method.  

Let the discretized approximations of u  be represented through a linear combination of basis 

functions as follows: 

 
1

umnpn
h b b
x x

b

u N u
=

= ∑  (A.1) 

 
1

umnpn
h b b
y y

b

u N u
=

= ∑  (A.2) 

where umnpn  is the number of nodes in the mesh, bN  is the basis function associated with node b, 

and ,b b
x yu u  are the displacement coefficients or degrees of freedom for node b. Similarly, the 

weighting functions are expressed as: 

 
1

umnpn
h a a
x x

a

w N w
=

= ∑  (A.3) 

 
1

umnpn
h a a
y y

a

w N w
=

= ∑  (A.4) 

where ,a a
x yw w  are the displacement weighting function coefficients or degrees of freedom for 

node a. Finally, the pressure field trial and weighting functions are expressed as: 

 
1

umnpn
h d d

d

p N p
=

= ∑  (A.5) 

 
1

umnpn
h c c

c

q N q
=

= ∑  (A.6) 

For simplicity, we have assumed equal-order interpolations for the displacement and pressure 

fields so that the number of basis functions is the same for both fields. For economy, we utilize 

the comma notation to express the derivative of a function; for example, the partial derivative of 

h
xw  with respect to y is given by 
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 , ,
1

umnpn
h a a
x y y x

a

w N w
=

= ∑  (A.7) 

where ,

a
a
y

N
N

y

∂=
∂

. Similarly, ,

a
a
xy

N
N

x y

∂=
∂ ∂

 is the mixed second partial derivative of aN . Finally, 

in indicial notation, the components of a vector are typically numbered rather than assigned a 

specific coordinate direction so that the vector is not tied to any particular frame of reference and 

so that the summation of components can be easily expressed. Therefore, in subsequent 

expressions we will use 1 in place of x and 2 in place of y to represent the coordinates of the 

Cartesian system and the associated components of vectors and tensors. 

With these expansions, we can return to HVM Form (4.25). Regrouping the terms and separating 

the equation via the displacement and pressure weighting functions, this equation can be written 

as: 
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Sparing the details, the expansions for the trial and weighting functions can be substituted into 

(A.8) and (A.9) to obtain the following equations: 

 
1 1 1 1 1 1

umnp umnp umnp umnp umnp umnpn n n n n n
a ab b a ad d a a a a
i ij j i i i i i i

a b a d a a

w K u w K p w F w F
= = = = = =

+ = +∑ ∑ ∑ ∑ ∑ ∑ɶ  (A.10) 

 
1 1 1 1 1

umnp umnp umnp umnp umnpn n n n n
c bc b c cd d c c

j j
c b c d c

q K u q K p q F
= = = = =

+ =∑ ∑ ∑ ∑ ∑
⌣

ɶ ɶ  (A.11) 

where the summation convention is in force for repeated indices i and j. These equations are 

indicative of the iconic finite element equation Kd = F . In particular, let ̂u  be the vector of 

displacement coefficients and p̂  be the vector of pressure coefficients; then, equations (A.10) 

and (A.11) can be expressed as the following system of equations: 
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ˆ
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u F + FK K

p FK K

ɶ
⌣

ɶɶ
 (A.12) 

The formulas for the stiffness matrix terms are given as follows: 

 
, , , ,

2
, , , , , , , ,

+ d

d
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 , , , , ,d dad a d a d a b
i i mm ij j ik kj jK N N N N N Nµ τ τ

′ ′Ω Ω
= Ω − + Ω∫ ∫ɶ  (A.14) 

 , ,

1
d dcd c d c d

i ij jK N N N Nτ
λ ′ ′Ω Ω

= − Ω − Ω∫ ∫
⌣

 (A.15) 

where the summation convention is in force for repeated indices. The formulas for the force 

vector terms are given as follows: 

 , ,d da a a a
i i mm ij j ik kj jF N b N b N bτ τ

′ ′Ω Ω
= Ω + + Ω∫ ∫  (A.16) 

 d
h

a a
i iF N h

Γ
= Γ∫  (A.17) 

 , dc c
i ij jF N bτ

′Ω
= Ω∫ɶ  (A.18) 
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