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Abstract

This work presents an error estimation frameworkafmixed displacement-pressure finite
element method for nearly incompressible elastitiat is based on variational multiscale
concepts. The displacement field is decomposedcdnse scales captured by the finite element
mesh and fine scales representing the part oftigsigs unresolved by the mesh. This solution
field decomposition addresses the artificial lerggthles resulting from discretization of a
continuum problem at the variational level to progla stabilized method equipped with
naturally derived error estimators. Two error eations are proposed. The first employs a
representation by bubble functions that arisesistergly during the development of the
stabilized method and is computed by a simplectipest-solution evaluation. The second
involves solving the fine scale error equation tigio localization to overlapping patches spread
across the domain. The performance of the stabilzethod and the error estimators is
investigated through numerical convergence testdwded for two model problems on uniform
and distorted meshes. The sharpness and robustribesestimators is observed to be consistent

across the simulations performed.
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Chapter 1. I ntroduction

Numerical methods are commonly employed to soleblpms of engineering interest, and the
finite element method has been invariably empldyechuse of its mathematical robustness and
its versatility of implementation. The general pebphy of the finite element method is to use
the notion of discretization to subdivide the pesblinto simpler subregions, called elements,
coupled with a simple set of shape functions ta@yamate the form of the true solution to the
problem. Typically, this limited set of functionartcapture the features of the solution that are
larger than the diameter of any single elementeviéy do a poor job at representing the finer
features of the solution that fall within an elemexithough the mesh can be refined and more
functions can be added to this approximation stas components of the true solution may
still be lost. This phenomenon is discretizatiomerthe inability of a finite set of functions to
represent an otherwise arbitrary function; thig tsauniversal among all numerical methods.
Therefore, the two most important features of adirlement formulation are its ability to
minimize the discretization error in the approxienablution computed on a given mesh and its
ability to provide a measure of the error in thenpoted solution. This second feature is known

as the field of a posteriori error estimation.

A variety of techniques has been and continue® toestigated that attempt to quantify the
level of accuracy in numerically computed solutiadsstorically, the investigation of error
estimation began with a focus on elliptical bourydaalue problems as studied by Babuska and
Rheinbolt [7]. Significant contributions followirtfpis work were presented by Zienkiewicz and
Zhu [58] and Eriksson and Johnson [25]. As thelfelolved, work was also conducted on
mixed formulations for fluid and solid mechanicéwiich representative sources include
[16,55]. Fairly comprehensive reviews of errormsgtiion are contained in the works of
Ainsworth and Oden [2,3], BabuSka and Stroubodl®,[and Verflrth [56].

Almost all framewaorks for error estimation can ba&ced into one of three major categories

based on the manner by which the error is evaluated

1) Explicit Methods: These methods invoke equations involving thedtesds of a governing

equation evaluated in element interiors and aateseent boundaries. Typically the
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2)

3)

finite element solution is employed directly with@ny additional projections or
eqguation solving. While these estimators are netftisimple to compute, the
expressions often include problem-dependent cotssthat can be approximated using
dual problems [26]. These methods, also calledivesibased methods, were proposed
by BabusSka and Rheinbolt [9]; later works inclu@geLB].

Implicit Methods: These techniques employ the finite element smhutidirectly by
posing residual-driven problems to be solved ferahror. Often, a global error equation
is approximated through localization to subdomaimssisting of either individual
elements or clusters of elements, respectivelygdrthe Element Residual Method
(ERM) and the Subdomain Residual Method (SRM). €hmasthods offset increased
complexity by providing improved levels of robusteeSome of the pioneering work
was conducted by BabusSka and Rheinbolt [7,8] anBdnk and Weiser [12]; more
recent works include extensions to linear elastioit Parést al. [50] and Carstensen
and Thiele [20].

Recovery-based Methods: These methods focus on post-processing the noaheri
solution to produce an enhanced reference soluligpically, the difference between the
discontinuous gradient field obtained directly frtme finite element solution and a
smoothed gradient field obtained through a prapectiperation is computed to provide
an error estimate. These methods often inheritrsopgergence properties from the
smoothing projections. Fundamental contributionsawsovided by Zienkiewicz and
Zhu [58,59], followed by [60,61]; more recent seglhave conducted studies on

irregular meshes [57] and used the estimatorsatuate quantities of interest [39].

Almost all of the above works focus on computing énror only after the numerical solution has
been obtained. One of the first attempts to acctmrrihe effects of fine scales on a coarse
approximation is presented by Oden in [49]. Inttsauidy of the advection-diffusion-reaction
equation, they segregated the basis functionscwaose scale functions and fine scale functions
by invoking the concept of mesh hierarchy. Theaytbombined the fine scale functions with a
secondary independent bilinear form to inspired&eelopment of optimal coarse mesh trial and
test functions. The resulting stiffness matrix wgsimetric and well-conditioned, properties
which do not hold for the standard formulationsdfection-dominated problems. They also

suggested that the fine scales represent thevelkatior between the optimal coarse mesh
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solution and the solution obtained on a refinedhm&gus, the incorporation of fine scales
resulted in improved algorithmic properties anaalsovided a means to quantify the accuracy

of a solution.

The concept of introducing a scale separation tyr@to the variational form for the purpose of
modeling subgrid effects was made rigorous by Hagh¢35,38] and is referred to as the
variational multiscale method (VMS). In this noaglproach, a decomposition is applied to
separate the solution field into resolved scaldsclvare captured by a given mesh, and
unresolved scales, the finer features giving Kseiscretization error, from the outset. This
decomposition is introduced into the variationalisture of the desired problem and gives rise to
separate equations for the resolved and unresshadds. This system of variational equations

serves as a launching point for the derivationndfagced numerical methods.

One of the applications of this method is to usefthe scale component either as an a posteriori
error estimator or as a driving component for adapnheshing algorithms. In [24], Elsheskal.
recast the classical techniques of the ERM an@&®ie in a unified manner by starting from the
fine scale equation and applying localization tlvsdhe equation over elements or subdomains.
They illustrated the performance of the framewankthe Poisson problem and discussed
conceptual benefits such as relaxation assumptiofmundary conditions for the subdomains.
The performance of the fine scales as a residusd¢barror estimator has been studied by Hauke
et al. in the context of the transport equation [31,32jeir approach was to represent the fine
scales using residual-free bubble functions towgatalthe error in various norms at the element
level and across the domain in order to drive naekptivity. While beginning with one-
dimensional domains, the method has been extendadtier order elements and to higher
dimensions [30,33]. Finally, Larson and Malgvistpayed the variational multiscale method to
develop an adaptive framework to solve problems@ssing multiple scales [40,41,42]. They
solved the variational system of equations in ggdeed fashion and localized the fine scale

eqguation on patches which are refined automatieallthe error in both scales is monitored.

Another area of computational mechanics where VidSlad to significant contributions is
stabilized methods. In particular, the model probieghich we have selected for our study is the
mixed formulation of elasticity, which is often teabject of stabilized methods. This

formulation introduces a pressure field alongsigedisplacement field in order to model



incompressible phenomenon characterizing the behatrubber-like materials and metals
undergoing plastic deformation. While this mixednfialation can overcome the volumetric-
locking exhibited by the classical pure displacetmeeathod, it is also subject to the LBB inf-sup
condition [5], which is a mathematical statementhef reduced stability of the pressure field.
This numerical deficiency is manifested when cartaimbinations of displacement and pressure
interpolations are employed and leads to unphygiegsure oscillations. Therefore, careful
attention must be paid to design stable framewtwrkesoid pathologic behavior. Further
treatment of mixed formulations is given by Breaad Fortin [17]; other enlightening
discussions are given in [14,15]. Out of the mamedies for instability which have been
proposed, some focus on developing stable intetipalaombinations for particular elements
while others focus on enhancing the underlying micakframework. A sampling of stable
elements is contained in the following referen¢22;34,4,53]. Noteworthy advancements of the
latter approach include Brezzi and Pitkaranta firi] Hughest al. [37,27]. In recent years,
stabilized formulations have been pursued throtghapplication of the variational multiscale
method to the mixed form of elasticity and the &®Kow problem, which are form-equivalent
in the incompressible limit. In [21], Codina pretsshequivalence between two methods for
stabilizing the Stokes problem: pressure gradienjeptions and orthogonal sub-grid scales. For
the second method, Codina employed a stabilizatiatmix in the fine scale equation which is
approximated with mesh-dependent constants. IngAd][48], Masud and co-workers applied
the variational multiscale method to the mixed farhlinear elasticity and derived the structure

of the stabilization matrix by employing bubble functions to represent the Bnales.

The purpose of this thesis is to present an estimation framework for a mixed displacement-
pressure finite element method that is based aati@ral multiscale concepts. Herein, a
decomposition of the displacement field into coanse fine scales serves as a point of departure
for developing a stabilized solution procedure anblsequently generating natural a posteriori
error estimators. As mentioned previously, the singescale features which are not captured by
a crude discretization also tend to contributentaability and locking phenomenon. The
proposed formulation provides a mechanism to mtiaede subgrid effects through residual or
error based terms that arise consistently duriegiéirivation of the fine scale equation. This
mechanism ensures consistency and increases theegof the formulation when the model

for the fine scales is substituted back into th&rse scale problem, overcoming the lack of
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stability in the standard Galerkin method. Oncedb& se solution is obtained, the model for the
subgrid effects can be revisited to evaluate the $icales or error in the solution. The most
obvious procedure is to simply compute the findescasing the same approximation invoked

for the purpose of stabilization, yielding an egplerror estimator. However, the fine scale
eqguation could also be solved again using altereatipresentations of the fine scale component
of displacement, leading to a class of impliciberstimators. Therefore, this method aims to
both remedy the numerical deficiencies of the mlisplacement formulation and quantify
discretization error together within a unified, smtent framework through the modeling of fine

scale effects.

We begin our discussion by posing the strong forelasticity followed by a mixed form and

the corresponding standard Galerkin form in Chapi&ext, we describe the application of the
Hughes variational multiscale method to the stash@alerkin form and the resulting fine scale
equation in Chapter 3. Chapter 4 provides a deonaf the stabilized form from the fine scale
equation; Chapter 5 describes two methods for usiadine scale equation as a mechanism for
estimating the discretization error. Finally, Clea@ presents numerical results for two standard
benchmark problems, and conclusions are drawn apt@h 7.



Chapter 2 Governing Equations

2.1 Srong Form

Let Q O R™ be an open bounded domain with a piece-wise sntmmthdaryl , wheren,, > 2
is the number of spatial dimensions. The boundaiy divided into two subsets jand " on

which Dirchlet and Neumann conditions are appliedpectively, and these subsets satisfy

r,or,=rr,nr,=0.With these definitions, the governing equatiohbnear elasticity

are:
O&+b=0 in Q (2.1)
u=g onl (2.2)
ch=h onl, (2.3)

whereu:Q - R™represents the displacement fietdis the Cauchy stress tensbr,is the
body force, g is the prescribed displacement,is the prescribed traction, anis the unit
outward normal o™ . An isotropic constitutive model is assumed, whbeerelationship

betweens andu is given as:

e=2(u)=3(0u+(0u)') (2.4)

o = Atr[&(u) |+ 2uz(u) (2.5)
where¢is the linearized strain tensot,and i are the Lame parameters, aht the second-
order identity tensor. In the above and throughioistwork, these conventions are used for

vector and tensor operatof3{ [) represents the gradiertt,[{ [ is the divergencel( [)is the

Laplacian, tr( D)is the trace, and[)’ is the transpose. As a function of the Young’s nhoslE

and Poisson’s ratio for the material, the Lame parameters are given as

Ev 1= E
(1-2)(1+v)’ 2 1+v)

(2.6)

To represent significant resistance to volume chandnibited by incompressible materials, the

value ofv is taken nearly 0.5, which implies that— o . This unbounded value of becomes a
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source of numerical instability for standard digglment-based finite elements that manifests
itself as volumetric locking [36]. To combat thesatisfactory performance of the pure
displacement formulation near the incompressiloht lian independent pressure field is
introduced, which gives rise to the following mixeshstitutive law and associated kinematic
constraint:

o= pl+ 2ue(u) (2.7)

O=p/A (2.8)
where p: Q - R denotes the pressure field. White does not correspond exactly to the

hydrostatic stress, which  =tr(¢)/3, it does reflect the volumetric behavior of thetenil.

Substituting (2.7) into (2.1) and (2.3) resultsiset of governing equations capable of modeling
the incompressible limit:

Op+ D024z (u))+b=0 inQ (2.9)

O=p/A in Q (2.10)
u=g onl (2.11)
[ pl + 2uz(u) [t =h onl, (2.12)

Both the displacement field and the pressure fielg are taken as unknowns to be determined

in the solution process, and they must satisfyaleegiations at every point @ as well as
satisfy the boundary conditions én.

2.2 Weak Form

For the purpose of computing approximate soluttontsoundary value problems such as
elasticity, the governing equations are typicalynsformed into an equivalent expression called
the weak or variational form. The general procedsite relax the condition of pointwise
satisfaction by multiplying each expression by aglveng function and integrating over the
domainQ , thereby allowing the solution to satisfy the gming equations in an integral sense.
Therefore, this technique is called the method @fed residuals, and details of its application

can be bound in any standard finite element aratgsitbook [36].



An important ingredient of this procedure is toestlproper spaces of functions to which the trial
solution and weighting functions belong. The fuortspaces appropriate for the displacement

and pressure trial solutions and weighting functiare:

S:{u|u D(Hl(Q))nS”,u:gonl'g} (2.13)
V:{W|WD(H1(Q))%,W:O onl'g} (2.14)
P={ppOL(Q)} (2.15)

where L, (Q) and H*(Q) are standard Hilbertian-Sobolev spaces. The weak éorresponding
to the governing equations can be expressed as:WHihS, p 0P such that for alwUV,qUP :
J'QDW:[pI+2,ug(u)]dQ=_|'QWEIDO|Q"’J}h wthd” (2.16)

[La(Dm-p/A)da=0 2.17)

The next step in the classical approach is to ekfnaite dimensional subspaces of the trial and
weighting function spaces on which the weak formealved numerically to obtain an
approximate solution; this process of restricting infinite dimensional problem to a finite

dimensional problem is called discretization.

While the standard weak form given in (2.16) and {2is well-posed in the continuum setting,
the process of discretization gives rise to novidtissues that need further consideration. First,
the discretized form must satisfy thadyzenskaya—BabuSka—Bre£kBB) inf-sup condition to
ensure uniqueness and stability of the pressue[Bg Various discussions of this criterion and
its implications for numerical methods are includegil7,15]. This condition imposes additional
constraints that a combination of displacementifaald pressure field interpolations must satisfy
in order to produce solutions which do not possessious oscillations in the pressure field. In
particular, simple combinations such as equal-opdgmomial interpolations may produce

unstable discrete solutions [17,36].

Discretization also introduces an arbitrary filtieat limits the resolution to which the solution
fields can be determined. For example, the triatfions generated from a finite element mesh
typically approximate well the characteristics loé true solution which span multiple elements

but are unable to capture significant variationghasolution within a single element. Those
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features of the continuum solution that are lathjan the characteristic element length are
resolvable scales, and smaller features are umeasor subgrid scales. The inability of a given

mesh to capture the subgrid scales results inatizgation error.



Chapter 3: Variational Multiscale Method

In order to address the aspects of discretizatierudsed in Chapter 2, we employ the variational
multiscale method as first proposed by Hughes 5,3 he philosophy of this method is to
assume that the primal field can be separateccmgponents of varying scale and then
substitute this decomposition directly into the wéam. While the continuum solution does not
inherently possess scales, an artificial scaleraéipa is induced by the limited resolution
capacity of a spatial discretization. The variaélomultiscale method provides a mechanism to
account for those features which would otherwiséobein the numerical approximation. The
motivation for using this method is two-fold: thertvation of a stabilized formulation and the
development of an error-estimation framework. ka finst case, assumptions are made on the
form of the fine scale components in order to deem expression to be injected into the coarse
scale weak form with the goal of reducing the portof the true solution lost to discretization
error and thereby returning stability to the foratidn. In the second case, an expression for the
fine scales emanating from the weak form is evalliasing the computed numerical solution

for the coarse scale in order to quantify the finales as a measure of the error.
3.1 Multiscale Decomposition

We begin by describing the process of discretimaticthe context of the finite element method.

Consider a partition of the domafn into n,,, non-overlapping open subregioQs, called
finite elements, where= 1,2,n,,, . Let I'® denote the boundary of element, and letQ'

and[l™" denote the union of element interiors and elemennbaries, respectively:

Q' =WU§ Q° (3.1)
e=1

M= U re (3.2)
=1

This partition satisfies the following closure peoty:
Q =closurd Q') (3.3)

Finally, letI",, ="\T denote the set of element boundaries on the imtefidomainQ .

10



Now, consider a multiscale overlapping decompasitibthe displacement field into coarse and

fine scales:

u=s u + U (3.4)

coarse scale  fine sce

The coarse scales represent the component of finigosaresolved by a given mesh, while the
fine scales can be viewed as the relative compasfegrror between the coarse scale and the
exact solution; an example is given in Figure lthicontext of the finite element method, the
approximate solution computed using nodal shapetifums plays the role of the coarse scale.
However, since our goal is the development of aegdrframework, we postpone prescribing
explicit sets of basis functions to the coarsarm $cales until later in the derivation. A similar

decomposition is assumed for the weighting funaion

w= W o+ W (3.5)

coarse scale  fine sce

In the most general setting, an analogous mulessaparation could be applied to the pressure
field. However, for simplicity, we neglect the fiseale component of the pressure field for this

discussion.

Figure 1. Multiscale decomposition of the totalusimin into coarse and fine scales
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We define the appropriate spaces @iceindu’ as

S={uuoc’(Q)ns.u

o OPX(Q°) fore=1,2,...n,,} (3.6)
S' :{u'|u' O(H*(Q))™.u'=0 onrg} (3.7)

where P* (Qe) denotes the set of complete polynomials of okdgyanningQ®. The functions

assumed fou are permitted to be non-smooth across element laoigsd which will be an
important consideration during the subsequent naadibn of the weak form (2.16) and (2.17).
Additionally, for completeness, the functions reggnetingu’ are not assumed to vanish on
element boundaries. While such an assumption isalfor stabilized variational multiscale
methods, this generality will be important for erestimation. The relaxation that# 0 on[ is
the major difference in the developments presehéedin and in the study conducted in [46].
Similarly, the functions for the displacement weigh functions are

V={wwoc®(Q)nV, W, 0P (Q%) fore=1.2,...n} (3.8)

V=5 (3.9)
These spaces must satisfr S 1S’ andV=V 01", namely that the spaces are linearly

independent. This ensures that the decompositian given in (3.4) is uniquely defined.

Furthermore, the strain tensermay be decomposed into coarse and fine scale aoenpodue
to its linearity with respect to displacements.slimplify notation, the coarse and fine scale

components will be represented byand ¢’ , respectively:

z=7(1)=4(00+(00)') (3.10)
¢ =2 (u)=3(0u+(0u)') (3.11)
3.2 Multiscale Variational Problem

We now substitute the decomposed trial solutiomsvagighting functions of expressions (3.4)
and (3.5) into the weak form (2.16) and (2.17)iteedhe multiscale variational problem:

[ O(w+w)[pl+2us(U+u)]da=[ (w+w)lbdQ+| (W+w)Ohd  (3.12)
[ a(0r(@+u)-p/a)da=0 (3.13)
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By observing that the above equations are linetir igispect to the displacement weighting
function, (3.12) and (3.13) can be separated irtoagsse scale problem and fine scale problem:
Coarse Scale Problem C

quw:[m+2pg(U+u')]dQ=jQ,v—v[bon+jrh wChd (3.14)

jﬁ,q(D[@Uw')—p/A)dQ:o (3.15)
Fine Scale Problem 7

LTDW':[ pl + 2ue(T+u')]dQ = jg,w' bdQ +jrh whd (3.16)

We now focus on the fine scale equatidn This equation is infinite dimensional since no
particular form has been assumed for the fine doaletions. Our goal will be to analyze (3.16)
and extract a generalized representation for tieedcales which will serve as a reference point

for developing a stabilized formulation and subsatly the error estimators.
3.3 Additional Notation

Before proceeding, we will define additional natatthat will be used in subsequent derivations.
As noted previously, the coarse component of degprentu is permitted to be non-smooth
across element boundaries; therefore, its der@atmay experience discontinuities. For the
benefit of the reader, we shall elaborate on tl@grapplication of integration by parts to fields
experiencing discontinuities. For example, suppghaewe wish to evaluate the following

integral over a domain composed of two eleméhtsand Q":

IQ Ow:edQ = Lr Ow*:e" dQ + LT Ow 2~ dQ (3.17)

wherew is a displacement weighting function ands the linear strain tensor, and the +
superscript designates the element from which doerhted quantity is derived, as shown in
Figure 2. A straightforward application of the digence theorem (integration by parts) to each
term on the right-hand side of (3.17) gives

[.Owgmdo=-[ w0z )do+| w s m)d (3.18)

[ Owedo=~ w (o )do +f w (e ") 0@ (3.19)
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Figure 2. Depiction of unit outward normals on edgninterface

Along the shared interface boundary between theagtssnl™, , the two boundary integrals may

be combined:
Jow e m)oas] wilem )@= wiemes @ @20
where we have used the fact thet =w = w on I, becausew is continuous everywhere in

Q. Considering the term in brackets and definirgn® =-n", we observe that
e +e M ="M —¢ "
. (3.22)
:(8 -& )m

which vanishes only it” = &, which is not true when the strain field is distionous. This

guantity represents the “jump” in the value of istiacross element boundaries and is commonly
expressed using the jump operator, denoteﬁl Eﬂ] which is defined as

[em]=(c"-&")m (3.22)
We point out that (3.22) is invariant under a regassent of the + designations, and therefore

represents a unique quantity. To conclude, we coenfd.18) - (3.22) into (3.17) and remove the
superscripts to obtain:

[ OwedQ =~ wilO&)dQ+| wilzh) OQ*L wfem] (3.23)
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3.4 Analysisof Fine Scale Problem

Returning to the fine scale problefm and using the expressions for the componentsaihst
(3.10) and (3.11), those terms depending only uperiine scale quantities can be isolated from

the coarse scale quantities:
jQ, Ow':(2u¢') dQ = —jQ, Ow'{ pl + 2ue] & +jQ, w b d+ jrh wWChd (3.24)
Integration by parts will now be applied to thesfiterm on the right-hand side of this equation.

Because the fine scale functions do not vanish'grthis operation will give rise to boundary

integrals; the result is:
—jQ, Ow"[ pl + 2uz] dQ = jQ, w fi0p+00{2uz) | —jr,w' f[pl+ 2] & (3.25)
Although the pressure fielg is continuous in the present formulation, we pount that the

jump term appearing in (3.25) arises in a consigeshion from integration by parts and would

accommodate more general formulations involvingatsinuous approximations fqu .
Recalling from (3.7) that' =0 onl" , we may substitute (3.25) int6 to obtain the following
result:
IQ, Ow':(2ue') dQ = IQ, w fi0p+00{2uz) | d + '[Q, w b d2
+jrhw'[gh—[p| + 244 | h} dr (3.26)
_J.rim w [f[ pl + 2] (h] dr

We now make the important observation that thetsigind side of (3.26) is entirely a function
of the residual of the Euler-Lagrange equation8)(&ith respect to the coarse scale
displacement and boundary residuals representagatisfaction of the traction boundary
condition (2.12) and point-wise continuity of thteess field acros§’ . To clarify, we introduce

the following definitions:

ro =0p+ O0{2uz) +b (3.27)
r, =h-[pl+ 2uz] M (3.28)
e ==[[pl+ 2uz] 0] (3.29)

Substituting these definitions into (3.26) gives:
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Fine Scale Equation F,
L}, Ow':(2ue') dQ = L}, w' [, dQ +J'rhw’ & d +J'rim W d (3.30)

This compact form represents a paradigm for baghctnstruction of a stabilized formulation

and of error estimators for the coarse scale gestiSince all terms depending on the fine scale
trial displacement functions have been isolatethereft-hand side of (3.30), we can see that the
fine scales are in essence driven by the residddle coarse scale variables. Thus, the fine
scales vanish exactly under the conditions expeetbdn the coarse scale exactly satisfies the
governing equations and the residuals identicallyish everywhere i€ . This fact is central to
the consistency of the resultant stabilized forriioihain Section 4 and to the validatity of the

error estimators in Section 5.
3.5 Analytical Solution of Fine Scale Equation

To conclude our analysis of , we invoke the theory of Green'’s functions foeln partial

differential equations (PDES) in order to derivgemeral expression far' . Details of Green’s
functions can be found in many textbooks on PDBs32]. The fundamental concept is the
following: given the strong form of a PDE, the dada can be immediately written down in an
integral expression using only the associated Gsdanction and supplied problem data. For

example, consider the following strong form:

L(u)=-f(x) forx0Q, u=0 forx 0oQ (3.31)
where £ is a linear differential operator anfd(x) is a forcing function. Then the exact solution
is given by

u(x):—ng(x,y)f(y)dQ for xJQ (3.32)
where g(x, y) is the Green’s function of operatdr, which can be found by solving the
following equation:

£(g(xy))=-0(x-y) for x0Q,  g(xy)=0 forx0JaQ (3.33)
where 5( E) is the Dirac-delta function and is the adjoint of£ . This general theory holds for

vector-valued PDEs as well and can be applied &byaea the fine scale problem. Considering
the form of (3.30), we can write the associatedrgrform as:
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Df2ue') = -1, in Q' (3.39)

[2ue'|th = -1, onl, (3.35)
[2ue' ] =-r. onl . (3.36)
u=0 onrl (3.37)

The first two equations (3.34) and (3.35) show tlfats driven by the coarse scale residuals of
the equilibrium equation (2.9) and the traction taary condition (2.12); the third equation

states that the jump in the fine scale stressaddialance the jump in coarse scale stresses.

In lieu of (3.32), the exact expression for theefgtale solutionu’ is given by
u(x)==],g(xy) b (y)d,-[ d(xy)F (Y,

3.38
=[x Y0, (y)ar, o

In the aboveg'( x, y) is the Green’s function for the fine scale problémthis case a second
order tensor.

While the concept of a Green’s function is faitsagghtforward, deriving a closed-form

expression forg'(x, y) is often much harder than directly finding theusioin for u’ . However,
in their discussion of the variational multiscalethrod, Hughes observed that the modeling
assumptions applied @' can ultimately be linked to making approximatiémshe form of
g'(x, y) [38]. Also, by analyzing the form of (3.38) anchsaleringu’ as the error betweem
and U, we may infer that each of the residual tempsr , and'; ~ acts as a source of error,
while the Green'’s functiory' ( X, y) serves as a distributor of error. For certainsgasof

problems such as nodally-exact formulations for-dimeensional boundary value problems,

g'(x, y) has been linked to so-called residual-free bubjdlgs This fact was utilized by Hauke

et al. in their error estimation techniques using the fcales [31]. Therefore, our subsequent
derivations using the fine scale equation can beed in light of making approximations to the

Green’s function.
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Chapter 4. Stabilized For mulation

The main objective of this section is to use the §cale equatiotf, to determine an analytical

expression fou' that can be substituted into the coarse scale @mobl. This will be
accomplished by making simplifying assumptionstonfunctional form of the fine scales. This
functional form will be substituted into (3.30)ander to rearrange and solve far. This

technique is more insightful than directly approatmg g' in (3.38). In this way, the explicit

appearance ofi' as an independent field will be removed fram however, the presence of
additional terms will implicitly account for theaffects, thereby stabilizing the resulting
modified coarse scale problem. These derivatiol@waalong the lines of the derivation in
[46,48].

4.1 Solutionto Fine Scale Equation

Toward the goal of solving (3.30), we now makesimeplifying assumption that the fine scale
functions vanish on element boundaries, namely:

u=0 onl', w =0 of 4.1)
One consequence of this assumption is that sequhthad terms on the right-hand side of
(3.30) vanish identically, which dramatically sinfigls the equation. Since the remaining terms
are integrals over element interid®s, (3.30) can be evaluated as a sum of integrads in

element-by-element fashion:

IQe Ow':(2ue') dQ = er w' I, dQ foreadh= 1,2,n,,, 4.2)
This equation can now be solved independently wigsich element of the mesh. While a multi-
dimensional basis could be used to represent tieesfiales, a single basis function typically

provides a sufficient approximation for the purposstabilization. Therefore, in each element
we represent the fine scales by the following esgmns:

. =b°(&)B -~ ul.=b(&)s ong® (4.3)
o =D°(¢)y -~ W, =b°(¢&)y onQ° (4.4)

u'

WI
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whereb® (&) denotes the bubble shape function over elementfo@f, as shown in Figure 3,

i1=1,2,..n,, and g andy represent the scaling coefficients for the finglesdtrial solutions and

weighting functions, respectively. The followingcien discusses bubble functions in greater
depth. In general, a bubble function is any int&fwog or basis function that is zero on the
entire boundary of an element. These functionshosen to satisfy the characteristicaubfas
specified by (3.7) and (4.1).

Figure 3. Quadratic polynomial bubble function oty@ical quadrilateral element

Substituting these forms af andw' into the quantity inside the integral on the ledind side

of (4.2), we can derive an expression that is vialidach element of the discretization:
Ow':¢' =w :%(Du’+(Du’)T)
=(y00Ob%):(p 000 +0b° 0 )

=%[(Dbe Mb°) y" p+" (O O Dbe)ﬁ] (4:5)
=157 [ (00 mb°) 1 +p2(00° 0 06°) | 8
Using this expression with (4.3) and (4.4), we mawrite (4.2) as
[ ],. (00 mbe) al + 1(Ob* 0 ObF)d2 | =57 [ b1 4.6)

where the vectors of constant coefficients have li@etored out of the integrals. Since this

equation must be valid for all admissible weightingctions, the vectof must be arbitrary,
and consequently we have
f=K'R (4.7)

where K and R are defined as follows:
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K = jﬂe(mbe mb®) u1 +(0b® 0 Ob*) d (4.8)

R= er ber,,dQ (4.9)
Substituting (4.7) into (4.3) gives an analyticabeession foru':
u|. =b°(¢)K™R (4.10)

Based on our assumptions, this expression is walidn each element and expresses a

relationship between the fines scalésand the coarse scale residual

Finally, in order to write (4.10) in a form analagoto traditional stabilized methods, we assume

a projection that extracts the mean valueofover element interiors. From a practical
viewpoint, on a sufficiently refined mesh, will be essentially constant on the interior olea
element. Therefore, we may approximate (4.9) bintathe residual out of the integral:

R= ( [ bedQ) L (4.11)

Making this substitution into (4.10), we arriveaasuccinct expression for the fine scale

displacement’ in each element:

=Tl (4.12)

Qe
wheret is a second-order stabilization tensor with tHewing form:
(5 (5 e e e e -
. :(b [.b dg)[(jge;mb M dQ)I +[_ 40" O0b on] (4.13)
Therefore, under our assumptions, we concludeuhat a function of the shear modulys the
bubble functionb®, and the residual of the equilibrium equatign We can also determine the

approximation ofg’ resulting from this method. By comparing (4.12% #4.13) with the

general formula fou' (3.38), we can deduce that our approximate fiadesGreen’s function
g’ is given by the following expression:
g =~{b°(x) [ .brae} | (], 406 o e) 1 + [ uob" O DbedQT 5(y-x)
=-7(x)d(y-x)

Indeed, by substituting (4.14) into (3.38) and gdime definition ofd( [}, we obtain

(4.14)
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=o

g'(
j [ 3(y-x)]0, (y)dQ, (4.15)
)

(()

which is exactly equation (4.12). This formula rabkbgous to the expression given by Hughes in

y)dQ, jom ), -] otk (y)d,

their discussion of stabilized methods in sectiaf [38]. This approximation replaces the

nonlocal character off’ within an element by a purely local one.

4.2 Discussion of Bubble Functions

In this section, we briefly elaborate on the chaastics of bubble functions. The minimum

requirements for a functiob® to be a valid basis function far used for the purpose of

stabilization is that it must belong to the follmgisetgé , Which is a subset of" :
S, ={ulu(x)=00x00Q°%} (4.16)

This simply states thdi® is nonzero only in elemer®2® and has square-integrable first partial
derivatives. A more detailed procedure to ensuaédbubble function satisfies the patch test is
provided in [48]. Simple choices for bubble funascare higher-order Lagrange or hierarchical
polynomial functions that vanish on element bouredathowever, more sophisticated functions
are possible. Bubble functions have been used sixtdg over the years in the analysis of mixed
methods to produce stable elements. One of thesfich elements was the MINI element,
proposed by Arnolét al. [4]. Discussions about bubble functions in thateat of mixed

methods and associated proofs of stability arerging17]. Another popular class of functions is
the residual-free bubbles, which are designedtisfgdahe governing partial differential equation
at each point in an element. A sampling of refeesran this topic are [11,28]. Other procedures
for designing bubble functions were explored by Mband Franca in the context of problems
with multiscale source terms [44] and by Masud Enéck in the case of the advection-

diffusion equation [45].
The bubble functions used for this implementatimngiven by the expressions shown in Table 1
in terms of element natural coordina(e{'sr]) . The element type abbreviations designate the

shape of the element, either triangular (T) or quetdral (Q), and the number of nodes per

element, varying between 3 and 9.
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Table 1. Bubble functions employed for stabilizatio

Element Bubble Function
T3 én(1-&-n)
Q4 (1-¢)(1-n’)
T6 én(1-¢&-n)
Q9 166°7* (1-6%)(1-1?)

These bubble functions are fairly standard and lEmplynomial functions. A nonstandard
bubble function was used for the Q9 elements ierota satisfy the linear independence
property and because it provided improved accuf@acthe problems investigated compared to

the following bubble function:

b°(¢) = (1-¢*)(1-1") (4.17)
4.3 Solution to Coarse Scale Problem

We will now prepare (3.14) and (3.15) for substitntof (4.12) in place ofl' to eliminate its
explicit appearance. To do so, we will isolate thteyms involvingu’ and apply integration by
parts wherever necessary to remove derivativesnBex with (3.14), we employ the
decomposition of strain given by (3.10) and (3.tbl3eparate the term on the left-hand side of
(3.14) and obtain:

jQ,Dv—v:[ pl + 24z dQ +jQ, 2u(Ows') d = qu‘v[lb o) +jr wihd (4.18)

Focusing on the second term in (4.18), by recallivagu’' =0 onl"" and recalling the identity

Dace(b) =&(a):0b which holds for all vector fields andb, we may integrate by parts to

obtain:

[, 2u(Dws')dQ =~| 2u[0&(W)]W @ (4.19)
Substituting the expression fof (4.12) into (4.19) gives:

-[_2u[ DG (W) ] =~ 2u[0G(W)]Gr, © (4.20)

Now returning to (3.15), employ the decompositidm given by (3.4) to rewrite this equation

as

jQ,q(Duu—p//l)dij,qu'dQ:o (4.21)
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Considering the second term, we may integrate big jpad substitute (4.12) to obtain:
jﬂ,qm ' dQ :—J.Q,Dq ' dQ :—J'Q,Dq [, dQ (4.22)

Inserting (4.20) into (4.18) and (4.22) into (4.2the coarse scale probleth can be written in

the following modified form:

Modified Coarse Scale Problem M
jQ,Dw:[ pl + 24z] dQ —jQ, 2u[ O (W)]Gr, d = jQ,vv b & +jrh whh d (4.23)

jﬂ,q(mm— p/A)dQ—jQ, g, dQ =0 (4.24)

44 TheHVM Form

We may combine (4.23) and (4.24) to obtain a siegleression that represents the HVM
formulation for incompressible elasticity. Sincefade scale terms have been explicitly
eliminated from the equations, the superimposesd barthe coarse scale terms will be dropped

for simplicity. Rearranging the terms and introchgcthe expression fat, from (3.27), we

obtain:
IQ,DW:[pI + 2,u.e(u)]d§2+jqu([jl]|— p/A) &
—jQ,[Dq+2yD & (w) ][ Op+ 2002 (u) ] (4.25)
:IQ,WEbdQ +jrh wChar +IQ,[Dq+ 2001 (w) | Gb &

The last terms on the left-hand and right-hand batlee appeared due to the assumption of fine
scales in the problem. These terms account fosubgrid scales that would otherwise have been
filtered out by a given discretization. Therefdley provide improved accuracy and stability to
the formulation; consequently, the method accomnesdarbitrary combinations of

interpolations for the displacement and press@legi Since the stabilization terms are residual
based, this method is consistent; when the coaedessrepresent the total solution, the residual
of the Euler-Lagrange equations vanishes identicatid we recover the standard Galerkin form
(2.16) and (2.17). Finally, we emphasize that thecture of the stabilization tenserwas

derived based on a variational principle and theeefs not an explicit function of the

characteristic mesh paramekeor any other user-defined parameter.
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The process of finding numerical solutions to théHform proceeds along the same line as the
traditional finite element method. First, we comsithe approximatiom = u" and expandi” in
terms of shape functions defined over eleméditdor eache= 1,2,..n,,, . The integrals in

(4.25) are then evaluated in each element usisgettpansion, and these quantities are
assembled into a system of equations that is satvddtermine the coefficients of the shape
functions. The only distinguishing feature of th&M formulation from an implementation
perspective is that there are additional integaksvaluate, but these do not require any
additional parameters that are not already assigmedch element in traditional methods.
Therefore, the only modification to an existing eadould be to add the new terms from (4.25).
To facilitate such an implementation, explicit farias for each term are provided in Appendix
A.
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Chapter 5: Error Estimation

Having addressed the issue of stability, our curobfective is now to analyze the performance
of the fine scales as an error estimator. As maatiqpreviously, the fine scale displacemeht
represents the component of the exact solutionghataccounted for in the coarse scalen a
particular level of discretization, whete= u" is the typical finite element solution. Returniag
the decomposition ofi in (3.4), we claim that the fine scales can eyaepresent the error
between the coarse solution and the exact solution:

ezu-u=u (5.1)
This claim is true when the multiscale problemdklved exactly; namely, the true pressure field
p is obtained along with both and u’. While equality with the true error is lost in thiscrete
setting, the fine scales can still serve as a \&@lgroximation for the error. Specifically, a good

approximation tou’ should be a good approximationeo

In order to quantify the performance of as an estimator, we will invoke the concept of an
effectivity indexl , . This concept is commonly used in the academicneonity to compare
error estimators [3]. It is defined as the rationeen the predicted error and the true error as
measured in an appropriate norm for the problem:

_||Predicted errdfr
B [True errof

(5.2)

eff

In general, a norm is an aggregate measure of dymitade of a field. For this mixed
formulation, we have elected to use thenorm andH! seminorm, which are defined for an

arbitrary vector fields (e.g.u or p) as

VI, =/ vEvdQ (5.3)
|v|H1(w) =JL}DV:Dde (5.4)

where w is the domain of integration, typically eitheriagde elementQ® or the entire domain

Q. In the latter case, we will abbreviate notatisrf@lows: ||v||L2(Q) :||v||L2 and|v|H1(Q) =M,
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We are especially concerned with the following laaor indicators;® computed from the fine

scale in each element as:
7 = |0 (5.5)
These local quantities can be agglomerated intoghesglobal error indicaton :
e 1o 3
f7={2(f7 )} (5.6)
e=1
Finally, we may define the associated local andalleffectivity indices as
Lo =0% leg =17 (5.7), (5.8)
As the value of the error indicator approachedriine error, these ratios will tend to one.
Therefore, a desirable property of an estimatorld/be for this ratio to remain close to 1
regardless of the problem being solved or the misol of a mesh. More precisely, an estimator
is considered efficient if the ratio can be boundbdve and below regardless of the finite

element partition of the domain. It is consideredust if the ratio is bounded above and below

independent of problem-specific data such as nateroperties or boundary conditions.

In section 5.1, we investigate the performancdeffine scale field given by (4.12) as an
explicit error indicator. Then, we return to thediscale equatiorf, in section 5.2 to derive an

implicit error estimator.
5.1 Explicit a Posteriori Error Indicator

Recall the analytical form derived far given by (4.12) and (4.13). Within each elemernthef
mesh, these expressions depend only upon the eiémigible functionb®, material properties,

and the residual of the governing equations(3.27). Once the modified coarse scale problem

M has been solved numerically far andp, this expression can be directly evaluated in each
element. This evaluation amounts to a simple postgssing step; thus, the fine scale fiald
from the HVM formulation can be considered as apliei error indicator. Typical explicit
residual-based estimates contain unknown constaatt€an be found through solving dual
problems [26]. In the present case, the stabibpatensorr is serving as an approximation of
this constant, an approximation that was consistelerived from the governing equations.
Thus, the HVM formulation comes equipped with ameestimator that does not require any
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additional mechanisms to evaluate beyond thosadyratilized in the solution process. The

formula for this error indicator using th& seminorm is

”eeXp =|u' HY(e?) (5.9)

where

Ou' =(0r)r,

=00° ([ b (. 400" Mot 1 + [ 6 0 DbedQTrQ, (5-10)

The performance of this approximation wf will be assessed in the numerical simulations in
Chapter 6. However, we give two preliminary remarks
» This method provides a very simple procedure thaterely a post-processing step after
the main solution phase.
e The accuracy of this method depends upon the walidithe assumption that =0 on

', ry is constant on element interiors, and the ahilftp°® to represent’ .

5.2  Alternative Approach: Localization of Fine Scale Problem

With the aim of computing an improved representatbu’, we return to the fine scale equation

F, . Once the coarse scale quantities have been elithiom the modified coarse scale problem
M, U becomes the only unknown. Therefore, we treafitieescale equatiot¥, as a problem

to be solved numerically fan'. Noting that solving (3.30) numerically by a direcheme would
be very computationally intensive, we seek to dgveln approximate technique to decouple the

fine scale equations into a number of localizedfgms over smaller domains.

To this end, we adapt a method proposed by LansdVilqvist [42] for the multiscale
approximation of the Poisson problem. Their metivad designed to solve problems that
possess a large disparity of scales in the soltidais due to high frequency oscillations of the
material parameters spatially across the domainvétives solving for localized components of
the fine scale on overlapping regions spread througthe domain so that a series of small
problems are solved rather than one large problém.concept of localized Dirchlet problems
has been used previously for a posteriori erromegion of scalar problems by Morebal. [47].

In what follows, we extend these ideas to the mixeghulation of elasticity and demonstrate the

performance of simple polynomial functions as agpnations of the local fine scale spaces.
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We begin by recalling the partitioning of domdninto finite elements given by (3.1) - (3.3).

Let A denote the set of coarse nodes on the cornefe @f¢ments i’ . Let{¢}  bea

partition of unity (POU) oveg? ; in general, a partition of unity is a set of ftinns which

satisfy the following property:
34, (x)=1 Ox0Q (5.11)

ioN
The partition of unity functions may also be assigjother desirable properties such as compact
support and nonnegativity. The concept of a POtérgral to the Generalized Finite Element
Method; one recent reference by Duaateal. provides a discussion of partition of unity inttha
context [23]. For our purposes, the first-order laaxge basis functions associated with the
coarse nodes\V will be used. Employing this partition of unity ihe first term on the right-
hand side of (3.30), we obtain:

jQ,w' 0, dQ = jgw' E@?ﬂ‘ j r, dQ = jgw' [EmzNﬁ er Q= DZNUQ W B r, cn} (5.12)

Using similar arguments, we may rewrite (3.23) as:

J.Q, Ow':(2ue’) dQ :Z[J‘Q’W' B, dQ+jr r s d’+.[r} w B r d'J (5.13)

ioNv

Equation (5.13) represents an exact equality dileetgartition of unity property.

We then separate’ into components such that each component is diyen

u=>u (5.14)

ioN

J‘Q'DW':(Zﬂg(u;))dQ:J‘Q'WI [$ro CD+J.rhW’ R’jirrh d

(5.15)
+ jr_ Wgr, dr foreachON

Thus, each component is given by the solution ¢écafsociated decoupled equation resulting

from (5.13). This decoupled set of equations is\vajent to 7, because each equation is posed

over the entire domai .

We now discuss an approximate method of solvintg(s. To each nodeJ NV, we associate a

domaina, referred to subsequently as a patch or subdomansjsting of the elements in a

neighborhood around nodeSpecifically, leta , be the union of elements in the support of the
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Lagrange basis function centered at ngaemely, all of the elements connected to nodlet

N, be the set of all nodes attached to those elentemts . Then we definey to be

w=a,=]w, (5.16)

In [42], Larson and Malqvist descrilig , as a level 2 mesh star around nadghey also
observe that level 1 mesh stars, , are too restrictive within their proposed framekvand do

not accurately capture the fine scale componerdsuse of the boundary conditions prescribed
to the patches, described shortly. We have obsesivmaithr behavior in our studies, and therefore
have opted for the use of patches defined by (5LE8per patches can be defined recursively by

the following formula:

a, = U W, (5.17)

JON
where \V| is the set of all nodes attached to elements jn However, for the purpose of error
estimation, we have found a level 2 star as defin€d.16) to be sufficient. Finally, we denote

the union of element boundaries which liecdnas

r=Jre (5.18)
Q%0
and we define the set of element boundaries omtagor of @ asT, =l \dw, wheredq is
the boundary of the patch.
We define the appropriate fine scale displacenraitdolution and weighting function spaces
as:
S, ={ulu 08", u=0inQ\w, uy=0ondy dynT,)} (5.19)
Vi =Sy (5.20)
In words, fine scale component is a function from the fine scale spase that vanishes

outside patchwy and also satisfies homogenous Dirchlet boundamgitions on the boundary of

the patch which is not part of the Neumann boundddomainQ . This definition of the spaces

for the components; ensures that the total fine scale solutidrgiven by (5.14) will be

continuous everywhere. With these definitions,approximate fine scale equation becomes:
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L va{:(Z,ug(ui')) dQ = Lq w g r, oQ+
+.fr_, w, [g,r. dr for each ON

iint

w gr d
oy nrly, 'w' T

(5.21)

This approximation is reasonable if the valuauofwithin any particular element is not
significantly influenced by the value of the coassale residual at a location further away than
one or two element diameters. Our numerical stutke® shown that approximation is valid for
the HVM formulation given by (4.25).

5.3 Implicit a Posteriori Error Estimator

In order to obtain a finite element approximatidrf21), we consider a partition of each
elementQ°® into non-overlapping subregiong , which we will call cells, in direct analogy to

(3.1) - (3.3). Namely:

e

_ Neal
Q° =closure | | afj (5.22)

c=1
wherec=1,2,...n, andn, denotes the number of cells per element, whiclasseme is the

same for each element. However, we also requitghigpartitioning results in a conforming

discretization along element boundarlgs . With these definitions, we may denote the unibn o
cell interiorsaJ within a particular subdomai as the collection of all cells within each

elementQ°® that is contained in that subdomain:

= ("L"jwcj (5.23)

Q%0 \ c=1

Figure 4 shows two typical subdomains on a sampitefelement mesh.
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]

L

Figure 4 Example of subdomain refinement on a mesh; nadesciated with domains ¢
highlighted

We now discas the approximate finite element subspac«(5.19) and (5.20)The partition o
@ given by (5.22pkuggests an analogy witypical h-refinement schemes; therefore, we ac
the simple approximation fan' as piecewise-continuog®lynomials of the same degrk as

the coarse mesh. In order to ensure the lineapemence ¢ U andu’, we require that the fin

scale funtions vanish identically at the coarse no

ui“‘uih 0C’(w)n S, ui“‘wg DP"(a)g) forc=1,2,..n,

Sa | (5.24)
uih(xj)=0 OjoON,
V=S, (5.25)

where x; are the physical coordinates of n¢. With theg definitions in place, the implic

method for a posteriori error estimation usingfthe scales is given by: Firu' = Z u" where
ioN

u' 0S8, such that

L{ Dwih:(Z,u.s(uih)) dQ = L{ w' [Pr, dQ +'[awr w'@r. o s
" 5.
+.[r' w' (g1 dr for allw 0V and ON (620

i,int
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Similar to (4.12), this method can be used to obiaith local and global estimates of the error in

the coarse scale solution. The formula for thisreestimator using thel* seminorm is

Minp = |u' H(o°) (5.27)

While this method is more computationally intensit® robustness is enhanced by the

relaxation of the assumptiami =0 on " .

The specific discretization scheme just descrigazhly one of many ways in which the fine

scale equatior¥, could be decoupled and approximated. For exarpgieerarchical functions

could be used to represent the fine scales rdtherkuilding the space using equal-order
functions defined over cells. Other options inclwdeying the size of patches and increasing the
refinement of the fine scale by adding more callsigher-order functions. Finally, there is the
possibility of eliminating certain elements fronettlecoupled problems if the value of the
explicit error obtained in them was below a spedifiolerance. The only modification required
would be to ignore those elements during the int@mlution phase and prescribe homogeneous
Dirchlet boundary conditions on elements bordetiregn; this would result in a smooth
approximation ofu’ when coupled with the explicit portion of obtained using bubble

functions. In Chapter 6, the effects of increaghmgnumber of cells in each element are explored

for one family of numerical simulations.

At a higher level, one could consider applying B@U concept to the alternative form of the
fine scale equation given by (3.24). While the rodtpresented above involves directly the
residuals of the governing equation or strong fdins approach utilizes the integrated-by-parts
or weak form of the residual, which is less comsistvith traditional error estimation techniques
but is nevertheless a valid formulation. We refethiese as the strong variant and weak variant
of the error estimator, respectively. Sparing tagis of the derivation, which proceed along
similar lines as described in section 5.2, the appnate fine scale equation analogous to (5.21)
but using the weak variant is given by:

J'(q Ow;:(2ue (u))) 0Q = —J'(q Ow:¢, [ pl + 2z | & +J'(q W [g,b d
+ w (@ hdr for each O N

oynly

(5.28)

Employing the discrete spaces presented in (5:2d)%®25), the discrete form of the weak

variant is given by:
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L{ Dwih:(z,u.e(ui“)) dQ = —L{ Ow:, [ pl + 20z ] +L{ w' b

(5.29)
+I w" (@ hdr for allw' 01 and ON
oynly

While equations (3.24) and (3.30) are exactly egjent, (5.26) and (5.29) produce slightly

different approximations due to the effect of lozation. Specifically, ifey is extended t&®@ for

all iON and both (5.26) and (5.29) are solved numeriaaing the same discretization in the
patches and full numerical integration, etc., thpraximate solutions are identical, as is
discussed in section 6.4. Two of the main bené&fii: using the weak variant are that second
derivatives of shape functions are not requiredtaatiboundary integrals are only performed on
the domain traction boundaries. One observationiaboth methods is that the form of the
decomposition oll' implies that the decoupled equations can natubalgolved in parallel.
Another important feature of both variants can twectuded by recalling the definition of the

POU{4¢} ., - Since these functions are defined using elemasedlinear Lagrange polynomial
basis functions, we may observe tigatindeed possesses the compact support property:
¢ (x)=0 OxOw,; ¢ (x)=00Ox00aw, (5.30)

Therefore, the only nonzero contributions to thlghtihand side of (5.26) and (5.29) come from

cells interiors and boundaries within elementsypf rather than all oty . This feature can be

exploited in the numerical implementation.
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Chapter 6: Numerical Simulations

To analyze the performance of the HVM formulatiowl éhe error estimation techniques, we
present numerical results for prototypical problemsa variety of meshes. Convergence studies
are performed for two problems using Lagrangiaedmand quadratic triangular and
guadrilateral elements with equal-order interpoladifor the displacement and pressure fields;
this family of elements is shown in Figure 5. Allaptities computed during the solution and
error estimation phases are fully integrated usimgropriate quadrature rules. The numerical
framework has been implemented in a FORTRAN reseawde called FEAP; the contour plots

shown were generated from the numerical outpuigusiATLAB.

® Displacement Node Q Pressure Node
Figure 5. Family of continuous equal-order Lagrangelements
Unless stated otherwise, all of the calculationthefimplicit fine scale error were performed on
patchesw defined by (5.16). A submesh was created withehedement of the patch,

consisting of four cells. The cells were generdtgtisecting each edge of the parent element
and drawing lines between these points. An exawfpebmeshes for a triangular and a
guadrilateral element are shown in Figure 6 belbiws procedure provides sufficient

refinement, enforces conformity between elememtd,maaintaines aspect ratios.
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Figure 6 Submesh of cells within a triangular and quatkita elemer

6.1 Cantilever Beam Problem Description

The first simulation is of a cantilever beam loadkgdch parabolic edge shear. This prob
typically serves as a hehmark for numerical methods for elasticity. Platrain conditions ar
assumed for this problem, as these conditions are stringent to satisfy near t
incompressible limit. The description of the prables shown in Figure 6; the exact solut

derived from elasticity theory is given (6.1)-(6.3) [52].

Figure7. Cantilever beam problem description

exact _ P(1-v*)y v 2 _ A2

ue _—%{(GL—BX)X{HEJU -C )} (6.1)
exact P 1_V2 a/ 2 2 2

ue =%{(L—x) 1_5:/ +(4+5ﬁ)c x+( 3L~ X)x } 6.2)

p>*=-Pyv(L-X) (6.3)
_(2¢)’

=2 (6.4)
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The values of parameters selected for the simulavere:

P=2560 C=1 L=10 |= 812 E= 7% fov= 0.49 (6.5)

6.2 Convergence Sudy: Uniform Meshes

In order to verify the convergence of the methothwespect to this particular problem, the
numerical solution was computed on sets of unifgmmafined meshes. The mesh hierarchy is
shown in Table 2; examples of two successive mesibksned by bisection for triangular and
guadrilateral elements are shown in Figure 8. kpkeg with standard conventions, we refer to

the numerical solutions for displacement and presasu" andp", respectively.

Table 2. Listing of number of elements and nodesésh hierarchy

Mesh Triangular (T3) Quadrilateral (Q4)  Triangular (T6) Quadrilateral (Q9
Name Elements| Node4 Elements Nodes Eleméents N¢des Hemétodes
Coarse 40 33 20 33 40 104 20 105
Medium 160 105 80 105 160 364 80 36P
Fine 640 369 320 369 640 1377 320 137
Very Fine 2560 1377 1280 137y 2560 5313 1280 5813
(a) (b)
(©) (d)

Figure 8. Uniform mesh hierarchy: (a) 40 triang@kment mesh; (b) 640 triangular element
mesh; (c) 20 quadrilateral element mesh; and (8)q@&drilateral element mesh

To illustrate the convergence of the numerical méthve plot the normalized centerline tip
displacement versus the characteristic mesh paeam&ir each mesh in Figure 8. As can be

seen, the predicted value of the tip displacempptaaches the analytical value as the mesh is
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refined. Additionally, the crudest approximationtleé tip displacement is in error by only 3%
for the Q4 elements and 35% for the T3 elementg;wis much smaller than would be obtained
by a standard finite element formulation appliedmt@e incompressible limit. Therefore, we
may conclude that the HVM formulation successfalligresses the problem of volumetric

locking.
Vertical Tip Deflection - T3, Q4 Vertical Tip Deflection - T6, Q9
11 1.00035
l'oi 1.0003 - —&—T6
= | —8—Q9
% 0.95 1.00025
i 0.9 1.0002 -
3 0.85 1.00015 -
5 08 1.0001 -
€0.75 -
] i
2 57 1.00005
0.65 - 1
0.6 - - ‘ - ‘ 0.99995 ‘ ‘ : : ‘
-1 01 03 05 07 09 11 .01 01 03 05 07 09 11
Log(1/h) Log(L/h)
(a) (b)
Figure 9. Convergence of normalized tip displacem@n linear elements; (b) quadratic
elements

Results of the numerical simulation performed aartiedium Q4 mesh are presented in Figures
10-12. All three contour plots capture the smoossra the exact solution. In particular, the
pressure field does not exhibit spurious oscill&iwhich can occur in simulations using
unstable elements that do not satisfy the LBB btgloiondition. While the standard Q4 element
with bilinear displacement and pressure interpotetiis known to be unstable [36], Figure 12
provides evidence that the HVM formulation providésbility to this element and thereby

eliminates these unphysical features.
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Displacement Contour - u_

Figure 10. Displacement, contour, medium Q4 mesh

Displacement Contour - u

Figure 11 Displacement, contour, medium Q4 mesh

Pressure Contour - p *

F"" -

Figure 12. Pressugecontour, medium Q4 mesh
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We now examine the error between our numerical lsiians and the exact solution. We begin

by evaluating thé, norm andH! seminorm of the standard erre= u— u' over the entire
domain as a global measure of accuracy of the noataolutions. These quantities are
evaluated using (5.3) and (5.4). Figure 13 predbetsalue of these error norms on a log-log
scale for each element type computed on succegsefahed meshes as given in Table 2. The
magnitudes have been normalized with respect texhet solution fields in the corresponding
norms. From finite element theory, the asymptaite 0f convergence for a primal field jps+1
in theL, norm, where is the degree of the highest complete polynonejpiesented by the
element basis functions [36]. The associated mtéheH* seminorm igp. Therefore, the
optimal convergence rates for linear and quadedéments in thé, norm are 2.0 and 3.0,
respectively, and the associated rates forthseminorm are 1.0 and 2.0.

L, Displacement Error Convergence H?* Displacement Error Convergence
0 0
-1
——1.78 1
2 T _ B\B\EFT 1.57
s 5
S _3 i \B\E \—'2 b —
& 1.82 —u0 % 1.02——1H
= o)
3 _4 4 _|_3 4
5 { AT ——T13
5 o4 =] 2.67 4l B 1201
—&—Q9 —&— Q9
-7 ‘ -5 .
01 01 0.5 0.9 11 01 01 3 05 09 11
Log(1/h) Log(1/h)
() (b)
L, Pressure Error Convergence H? Pressure Error Convergence
0

0
-1 A_\A\ﬁQﬁo A—/"ﬂ/—ﬁ_—ﬂ
L] BB 1 ——0.4¢
-3 N? “ I\ 0.88 —0L
4
5 A3 ——T3

—8—Q4 300 == PR el *\2_:&-

Log(error)
N

w

Log(error)

-6 { —&—T6 —&—T6
—&—Q9 —m— Q9
-7 - -5 : ;
0.1 0.1 0.3 0.5 0.7 0.9 11 01 01 0.3 0.5 0.7 0.9 1.1
Log(1/h) Log(L/h)
() (d)

Figure 13. Convergence rates of normalized stanelacd: (a)L, norm of displacement; ()"
seminorm of displacement; (£} norm of pressure; and (H): seminorm of pressure
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For all element types, the displacement field cogee at nearly the optimal rate in both the
standard error measures. This agreement with dwetical convergence rates indicates that the
HVM formulation is stable. The stability of the geeire field is often more of a concern for
mixed methods for linear elasticity. As can be sedfigure 13 (c) and (d), the pressure fields
do converge suboptimally for many of the elemepesy However, the trends are very smooth,
and contour plots of the fields revealed that ttheyot exhibit spurious oscillations. Therefore,

these results are considered to be positive.
6.3 Error Estimation: Uniform Meshes

As a first step in evaluating the performance efphoposed error estimators, we present
convergence plots of the global norms of the ficedesfield u’ obtained from the explicit and

implicit methods. These graphs are shown in Figdre
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L, Explicit Fine Scale Conver gence . H? Explicit Fine Scale Convergence

-3
.
A-4_ A B\E\
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Figure 14. Convergence rates of normalized errimages: (al, norm of explicitu’; (b) H*
seminorm of explicitu’; (c) L, norm of implicitu’; and (d)H* seminorm of implicitu’

Upon examining the error estimates shown in Figdrewe see that the fine scales from both the
explicit and implicit methods are converging at titimal rates. Since this convergence trend is
parallel to the standard error, we may concludettiefine scales can serve as an indicator of
error reduction as the coarse mesh is refined. Mewéhere is a significant shift in the
magnitude of the norms. This is a result of ouuagsion thatu' represents the relative
component betweetl and u. Returning to the forms af’ given in (4.12) and (5.26), we see
that in both cases the fine scales are zero atdhese nodes; thus, these approximationg of
capture the fine part of the coarse scale residodle region between coarse nodes, botQ'in
and ol . This approximation does imply that the fine ssakould accurately capture the error

in theH' seminorm, since the residuals of the governingigons involve derivatives afi. In
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fact, comparing Figure 13 (b) to Figure 14 (b) &hdshows that this is indeed the case. Finally,
we note that the implicit method typically providebetter approximation to both error norms
than the explicit method, and both methods progidensistent underestimation, or lower
bound, on the error in the numerical solution. Tawity the proceeding points, we reproduce the
values of the norms of the standard error and ifoe estimates in tabular form for the Q4
element in Table 3. From these values, we canlglsae that the implicit method produced
closer estimates of the norm than the explicit method, but the explicitthoel provided

slightly better estimates for ti¢" seminorm.

Table 3. List of error norms for Q4 elements

Lo normsof error measures

Standard | Standard | Explicit Implicit

Number of Error Error Estimate | Estimate
Elements . ; ,
u-u" p-p u u

20 7.440 E-4| 6.198 E+2 8.241 E51.313 E-4

80 2.292 E-4| 4.965 E+2 2.089 E}53.154 E-5

320 6.595 E-5| 2.081 E+2 5.209 EI67.662 E-6

1280 1.870 E-5| 7.745 E+]1 1.298 Er61.883 E-6
H' norms of error measures

Standard | Standard | Explicit Implicit

Number of Error Error Estimate | Estimate
Elements -
u-u" p-p u' u'
20 4965 E-4| 1.797 E+3 3.688 EF43.526 E-4
80 2.218 E-4| 2.810 E+3 1.869 El41.748 E-4
320 1.060 E-4| 2.428 E+3 9.319 E}58.629 E-5

1280 5.219 E-5| 1.774 E+3 4.643 EX4.278 E-5

In addition to considering the performance of threreestimators in a normed sense, we may

also investigate their performance at capturingetiner locally throughout the domain. Figures
15-17 depict a projection of the standard erraganh solution field onto the medium Q4 mesh.
We can compare these results to the componentis pfedicted by the explicit method, shown

in Figures 18-19, and the implicit method, showifrigures 20-21.
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Standard Error - u,

Figure 15. Standard displacement egocontour, medium Q4 mesh
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Figure 16. Standard displacement egpcontour, medium Q4 mesh
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Figure 17. Standard pressure egpcontour, medium Q4 mesh
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Explicit Fine Scale - u',
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Figure 18. Explicit fine scale;, contour, medium Q4 mesh

Explicit Fine Scale - u'

Figure 19. Explicit fine scale; contour, medium Q4 mesh

Implicit Fine Scale - u',

He et e et |

Figure 20. Implicit fine scale;, contour, medium Q4 mesh
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Implicit Fine Scale - u'y
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Figure 21. Implicit fine scale;, contour, medium Q4 mesh

A first glance at Figures 15 and 16 provides theeolmation that the coarse trends of the error in
the displacement fields parallels the actual fighdsnselves: the error has higher magnitudes in
regions where the solution fields have higher miagieis. We also observe that the fine scale
plots do not appear to match the standard errgrwell. However, by taking a closer look at
Figures 15 and 16, we can observe finer featurdgmithe error fields. For example, compare
the bottom left-hand corner element in Figuresrd 1. Inside the element, the standard error
value peaks at about 2.1 x@&nd the fine scale error value is approximatedyx210° in the
element center. Both of these values are fairlylamn fact, if the coarse scale trends in the
standard error are filtered out, the remaining Soale error features match very well with the

implicit fine scale field.

Additionally, we may observe that the elements watlatively larger fine scale components
correspond with regions were the true solutiordffgdssesses higher displacement gradients. In
Figure 20, the fine scales are concentrated onpber and lower portions of the beam, where
the bending stresses are highest. Also, in Figliy¢h2 fine scales increase from right to left,
corresponding to the increase in shear stresses, Tiese regions with significant fine scales
represent candidate regions for local refinemewtrder to capture the gradients in the solution

field more accurately.

Finally, while the explicit fine scales in Figur&8 and 19 provide a good qualitative match to
the implicit fine scales in Figures 20 and 21, wéerthat the implicit fine scales appear to
capture the magnitude of the fine scale effecth@énstandard error with higher accuracy.
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The quality of the error estimators can also béuatad through the use of the effectivity index

discussed in Chapter 5. In Figure 22, we graplvéhge of |, for each element type, as

computed by (5.8). There is a significant amountasfety across the element types. For the Q9
simulations, the index remains constant, while nobsthe other elements exhibit values tending
toward unity upon refinement. This behavior caniteed to the size of disparity in convergence
rates between the standard error and the erronasts. Comparing Figure 13 (b) to Figure 14

(b) and (d), we observe that the slopes of theesufer the Q9 elements are identical while the
curves of other elements do not match exactly.vAtfends are universal, however: except for
the Q4 elements, the implicit estimate is closaurtily than the explicit estimate, and, except for
the T6 elements, all error predictions underesentia¢ standard error. Finally, almost all values
of the index are greater than 0.1, indicating thatestimates are on the same order of magnitude
as the standard error.

Explicit Error Effectivity Index Implicit Error Effectivity Index
1.2

1
0.9 -
1 B
0.8 | ﬂ/ﬁ/———;’/ﬁ;——’im = ]
0.7 A —8—0Q4 0.8 -
o o |3/E,\/—Ei—EI

05 - . —®—Q9 0.6 -

04 | B ] u

03 | 0.4 - —A—T3
0.2 A Q4

) 0.2 4 —&—T6
0.1 - —®—Q9

0 T T T T T 0 T T T T -

-0.1 0.1 3 0.5 0.9 1.1 -0.1 0.1 0.3 0.5 0.7 0.9 1.1
Log(/h) Log(/h)

(a) (b)

Figure 22. Effectivity index for each element typdd* seminorm: (a) explicit error estimator;
(b) implicit error estimator

The effectivity index can also be evaluated witbath element using (5.7) to provide a local
indication of the difference between the actual predlicted values of error. Figure 23 and

Figure 24 show a contour plot of the valuel §f on the medium Q4 mesh obtained from the
explicit and implicit error estimators, respectwdlpon comparison with Figure 21, we observe

that the value of 5 is closest to unity for elements with large valoés, and smaller in

elements with lower values. While the magnitud%e#ifll(ge) does decline from left to right
across the domain for this simulation, the predist@ues of error decline more rapidly, giving
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rise to smaller values df}, . The tendency for the sharpness of an error etitoadeteriorate in

regions where the actual error is reduced wasaserved by [24]. By comparing Figures 23
and 24, we may conclude that the sharpness ofrtbeastimate throughout the domain is

maintained better by the implicit method than by ¢éxplicit method.

Local Effectivity Indices

Figure 23. Local effictivity index for explicit fescale

Local Effectivity Indices
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Figure 24. Local effictivity index for implicit fia scale

6.4 Error Estimator Variant Comparison
In this section, we investigate the performancdifbérent versions of the implicit error
estimator given by the localized fine scale equmatAs discussed in section 5.3, two forms of the

localized equation, the strong variant (5.26) dmweak variant (5.29), can be obtained from

the fine scale equatiot, depending on whether integration by parts is imebkAdditionally,
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the patches used in solving the decoupled equat@mmbe set to various sizes by including
elements further from a node using the recursivimitien (5.17). Finally, the strategies bf

refinement op-refinement could be used to provide different lewd resolution in the patches.

We conducted a study on the sequence of uniforrméghes to compute the strong and weak
variants and also to explore the effect of patzk s the global error estimate. The resulting
norm andH! seminorm of the fine scale obtained from theseikitions are shown in Table 4
and 5, respectively. The main conclusion is thah Ibloe strong and weak variants provide
almost the same value for the norms, although shimates from the strong variant were slightly
closer to the standard error norms for this paldicstudy. A patch size of 1, including only
elements directly adjacent to a node, does notigeecar sharp estimate for either of the error
norms for either variant. However, a patch siz2 of sufficient for approximating the value of
the estimate obtained by solving the fine scaleagqgao without localization. Also, the gain from
increasing the patch size beyond 2 is not veryifsigmt. Therefore, a level 2 mesh star provides
the optimal balance between computational effioyeared accuracy. Finally, we have

numerically verified that the strong and weak vatsaare equivalent when solved over the entire

domain.
Table 4.L, norm of error obtained for different patch sizes

Mesh Size Strong Variant

Number of Stg:g?rd Patch Size Entire

Elements 1 2 3 4 Domain
20 7.440 E-4 7.830 E-5 1.313 E-4{ 1.334 E-4/1.336 E-4 1.336 E-4
80 2.292 E-41.679 E-5 3.154 E-5 3.371 E-5 3.392 E-5 3.392 E-5
320 6.595 E-§ 3.794 E-6 7.662 E-6 8.365 E-6/ 8.463 E-6/ 8.478 E-6
1280 1.870 E-38.914 E-7/1.883 E-6 2.079 E-6 2.110 E-6/ 2.115 E-6

Mesh Size Weak Variant

Number of Stélrr;g?rd Patch Size Entire

Elements 1 2 3 4 Domain
20 7.440 E-48.703 E-5 1.285 E-4{ 1.330 E-4{1.335 E-4 1.336 E-4
80 2.292 E-4 2.003 E-5 3.151 E-5 3.351 E-5/3.387 E-5 3.392 E-5
320 6.595 E-44.823 E-6 7.807 E-6 8.332 E-6/ 8.451 E-6| 8.478 E-6
1280 1.870 E-§1.212 E-6/1.960 E-6 2.075 E-6 2.107 E-6 2.115 E-6
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Table 5.H* seminorm of error obtained for different patctesiz

Mesh Size Strong Variant

Number of Stg:g?rd Patch Size Entire

Elements 1 2 3 4 Domain
20 4,965 E-4 3.116 E-4] 3.526 E-4| 3.547 E-4{ 3.548 E-4 3.548 E-4
80 2.218 E-4 1.555 E-4] 1.748 E-4|1.800 E-4] 1.806 E-4| 1.806 E-4
320 1.060 E-4 7.711 E-5 8.629 E-5/8.970 E-5/ 9.021 E-5 9.029 E-5
1280 5.219 E-43.831 E-5 4.278 E-5| 4.467 E-5/ 4.499 E-5 4.505 E-5

Mesh Size Weak Variant

Number of Stélrr;g?rd Patch Size Entire

Elements 1 2 3 4 Domain
20 4.965 E-4 3.147 E-4] 3.497 E-4| 3.542 E-4] 3.547 E-4| 3.548 E-4
80 2.218 E-4 1.574 E-4/ 1.758 E-4{ 1.796 E-4{1.805 E-4 1.806 E-4
320 1.060 E-4 7.885 E-5 8.821 E-5/ 8.964 E-5/ 9.016 E-5 9.029 E-5
1280 5.219 E-34.011 E-5 4.470 E-5| 4.472 E-5 4.497 E-5 4.505 E-5

A second study was conducted whereby the refinewofahe submesh within each element was
increased from 4 cells to 16 cells and the patoh wias returned to the default of 2. The
resultingL, norm andH! seminorm of the fine scale are shown in Table Bils\the accuracy of
both variants increased with refinement, most rgtabthe H* seminorm, the execution time

(not reported) also increased dramatically. Theeefawe conclude that the additional refinement

of the fine scale trial space does not add sufficialue.

Table 6. Norms of error computed with finer submesh

Number of Standard Error Strong Variant Weak Variant

Elements|  Ly(e) H'(®) L) | H@W) | L) | H()
20 7.440 E-4| 4.965 E-4]| 1.581 E-4| 3.945 E-4]| 1.469 E-4| 3.887 E-4
80 2.292 E-4| 2.218 E-4] 3.647 E-5| 1.945 E-4] 3.505 E-5[ 1.964 E-4
320 6.595 E-5| 1.060 E-4] 8.675 E-6| 9.593 E-5| 8.643 E-6| 9.923 E-5
1280 1.870 E-5| 5.219 E-5| 2.108 E-6| 4.754 E-5 2.190 E-6| 5.084 E-5

6.5 Convergence Sudy: Distorted Meshes

The convergence of the stabilization framework alas investigated on meshes with significant

element distortion. Such distortion may occur iagbice when automatic mesh generators are
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used to mesh complicated features in the geomety the junction between branching regions

of the domain. We attempt to simulate these cambtby creating meshes containing elements
of various sizes and shapes in close proximitys Bludy serves as an indicator of the robustness
of the method. Table 7 contains data concerningrtéghes used in the study; Figure 25 depicts
two successive meshes for the triangular and gaéehal elements. A very fine mesh for the Q9

elements was not simulated because the problenescazded the default limit of the program.

Table 7. Listing of number of elements and nodesésh hierarchy

Mesh Triangular (T3) Quadrilateral (Q4)  Triangular (T6) Quadrilateral (Q9
Name Elements| Node4 Elements Nodes Eleméents N¢des Hemétodes
Coarse 80 53 118 146 80 185 118 537
Medium 320 185 472 527 320 689 472 1997
Fine 1280 689 1888 1997 1280 26%7 188 7169
Very Fine 5120 2657 7552 776p 5120 10433 755 30641
(@) (b)
() (d)

Figure 25. Distorted mesh hierarchy: (a) 80 tridagalement mesh; (b) 1280 triangular element
mesh; (c) 118 quadrilateral element mesh; and48Y huadrilateral element mesh

Results of the numerical simulation performed anrtifedium Q4 mesh are presented in Figures
26-28. While the displacement contours retain ymarsetry of the exact solution, the pressure

field became slightly unsymmetrical as a resulihefsevere distortion. However, the major

trends of the solution are still captured.
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Displacement Contour - u,

Figure 26. Displacement, contour, medium Q4 mesh

Displacement Contour - u,

Figure 27. Displacement, contour, medium Q4 mesh

Pressure Contour - p

Figure 28. Pressugecontour, medium Q4 mesh
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The convergence of the standard error norms is shiokigure 29. The convergence rates of the
displacement field are nearly optimal for all elerngypes in both norms; however, the
magnitude of the error in the solutions increadigghtty from the solutions obtained on uniform
meshes, which can be observed from the downwafddgtihe curves in Figure 29 compared to
those in Figure 13. The pressure field experiemntstdriorated rates compared to the uniform
mesh study. In all cases, the rate forltheorm was one order below the optimum. Fortihe
seminorm, the rates for the T6 and Q9 elements weeeorder below the optimum, the Q4
elements failed to converge, and the T3 elemertidbiad a relative error greater than 1.0. This
poor performance can be attributed to the effech@$h distortion on the quality of the

numerical approximation. Additionally, the norms fbe first Q4 mesh appear out of sync with

the subsequent simulations do to the lack of réi®oiwn the coarsest mesh.
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L, Displacement Error Convergence

H! Displacement Error Convergence
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Figure 29. Convergence rates of normalized staneiaiod: (a)L, norm of displacement; (th),
norm of pressure; (¢}* seminorm of displacement; and ) seminorm of pressure

6.6 Error Estimation: Distorted Meshes

This section presents convergence plots of theagjlarms of the fine scale field obtained

from the explicit and implicit methods. As can lees in Figure 30, both the explicit and

implicit L, error norms converge at the optimal rates of @cQifiear elements and 3.0 for

quadratic elements. Similarly, th€ seminorm converges near the optimal rate for eathe

element types. By comparing the error estimatels thi¢ standard error in Figure 29 (a) and (b),

we observe that the convergence rates of the estonates parallel those of the standard error.

Additionally, the estimate#i* seminorm in Figure 30 (b) and (d) match closelthwie curves

in Figure 29. These trends were preserved undeifisignt distortion of the mesh.
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Figure 30. Convergence rates of normalized errimeses: (a)., norm of explicitu’; (b) H*
seminorm of explicitu’ ; (c) L, norm of implicitu’; and (d)H* seminorm of implicitu’

6.7 S mply-Supported Beam Problem Description

The second simulation is of a simply-supported bkxded by its self weight. This problem
was selected in order to verify the consistencthefstabilized formulation in the presence of a
non-zero body force. Plane strain conditions asei@ed, and tractions derived from the exact
solution are applied to the left and right edgethefbeam. The description of the problem is
shown in Figure 31; the exact solution derived frasticity theory is given in (6.6)-(6.8) [43].
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Figure 31.Simply-supported beam problem description

exact_'ogc(l_vz)xy Xz_ 2 2 vV 2 _ 2 4 2
b= El K? Lj+(g+3(l—v)JC _3+C{1—|/)Jy} (6-:6)

1-v? 2
uexact: ,OgC( v ) i+ v y4_ }+—V C2y2+(L2—X2) vy
’ El 12 §(1-v) 6 §tv) 2 xv)
(6.7)
1 4 5 v
_1_2(X2 5L2)(X2— Lz) +[%+_6E)( 2 LZ)C 2}
exact — _ PICVY | ( 2 | 2 C_z_y_2
P {(X L)+15 3} (6.8)
()’
| =—— .
D (6.9)
The values of parameters selected for the simulatiere
©=1000 g=9.81 C=1 L=10 E= 7% 10 v= 0.4999 (6.10)

6.8 Convergence Sudy: Uniform Meshes

In order to verify the convergence of the methothweéspect to this particular problem, -
numericdsolution was computeon sets of uniformly refined mesh&ue to the overlap of tr
domains between the cantilever beam and the s-supported beam, the meshes present
Table 2were also used for this study. The resu values of the normalized vertical deflecti
at the origin of coordinates, namely the midpointhe beam, are plotted Figure32. As can be

seen, the predicted value of the tip displacempptaaches the analytical valuethe mesh is
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refined. These results exhibit similar performaoompared to the values obtained for the

cantilever beam.

Vertical Midpoint Deflection - T3, Q4 Vertical Midpoint Deflection - T6, Q9
11 1.0001
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c 1 0.9999
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(a) (b)
Figure 32. Convergence of normalized midpoint dispient: (a) linear elements; (b) quadratic
elements

Results of the numerical simulation performed aartiedium Q4 mesh are presented in Figures
33-35. All three contour plots capture the smooslsrad the exact solution; the pressure field is
free from spurious oscillations. The symmetries antiksymmetries of the exact solution are

captured by the uniform quadrilateral meshes.

Displacement Contour - u,

h L L

Figure 33. Displacement, contour, medium Q4 mesh
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Displacement Contour - u
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Figure 34. Displacement, contour, medium Q4 mesh

Pressure Contour - p !

Figure 35. Pressugecontour, medium Q4 mesh

The convergence rates for the normalized standaod ia the displacement and pressure fields
measured in the, norm andH* seminorm are presented in Figure 36. All elemgmes exhibit
near optimal convergence for the displacement fielibth norms. The error in the pressure
field converged at one order below the correspandptimal rate for most of the element types.
Additionally, theH! seminorm of pressure diverged for the T3 elemsiitt did for the first
problem. By comparing Figure 36 to Figure 13, weaslse that the numerical solutions for the
simply-supported beam as a whole contained mooe ttvan those obtained for the cantilever
beam. We attribute this increase in error to tloe thaat the exact solution of the second problem

is a fourth-order polynomial while the first probias a cubic polynomial.
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Figure 36. Convergence rates of normalized staneiaiod: (a)L, norm of displacement; (lb),
norm of pressure; (¢}* seminorm of displacement; and ) seminorm of pressure

6.9 Error Estimation: Uniform Meshes

Analogous to the cantilever beam study, we evaltietdine scale field)' for each of the
numerical simulations using explicit and impliciethods and compute the resulting global
norms, which are presented in Figure 37. Many efttends highlighted for the first problem
also apply to the current study. In particular,chithe curves obtained using both error
estimation methods possess optimal convergencegacidindividual curve runs parallel to its
counterpart in Figure 36. Also, the seminorm of the estimated error provides a shstimate

of the standard error in displacement.
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Figure 37. Convergence rates of normalized errimages: (al, norm of explicitu’; (b) H*
seminorm of explicitu’; (c) L, norm of implicitu’; and (d)H* seminorm of implicitu’
Next, we examine the distribution of error acrdssdomain by presenting contour plots of the
various field components. Figures 38-40 depictageation of the standard error in each solution
field onto the medium Q4 mesh. We can compare tlesséts to the components of
predicted by the explicit method, shown in Figutés42, and the implicit method, shown in
Figures 43-44.
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Standard Error - u,

Figure 38. Standard displacement egocontour, medium Q4 mesh

Standard Error - uy 4

1

Figure 39. Standard displacement egpcontour, medium Q4 mesh
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Standard Error - p n

Figure 40. Standard pressure egpcontour, medium Q4 mesh
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Explicit Fine Scale - u'X

Figure 41. Explicit fine scale, contour, medium Q4 mesh

Expilicit Fine Scale - u'y
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Figure 42. Explicit fine scale], contour, medium Q4 mesh
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Figure 43. Implicit fine scale, contour, medium Q4 mesh
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Implicit Fine Scale - u'y
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Figure 44. Implicit fine scale], contour, medium Q4 mesh

By comparing Figure 38 to Figure 33, we again olesénat magnitude of error is larger in
regions where the solution field has higher maglatu Also, the fine scale features in the error
distributions are more apparent for this problemmpared to the first. These same features are
approximated well by the fine scale error estimates example, consider one of the elements at
mid-span on the bottom chord of the beam in Fi@®eThe value of the error within the

element peaks at 6.8 x $(but the values at the corners of the elemenalboet 4.8 x 10. The
difference between these values is 2.0 X, 1thich is similar to the magnitude of 2.4 x10

within the same element in Figure 44. This trend digcussed previously for the cantilever

beam.

The performance of the error estimators is now tifiedh using the effectivity index, which is
shown in Figure 45 for the explicit and implicit theds. These results are remarkably similar to
those presented in Figure 22 for the cantilevenbpeoblem. Therefore, the same comments
about the proper magnitude of the error and thefdwund property still apply. Although the
results from only two problems give little indicai of the performance of the method for

arbitrary problems, this consistent behavior i®sifve result.
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Figure 45. Effectivity index for each element typdd* seminorm: (a) explicit error estimator;
(b) implicit error estimator

Finally, we evaluate the effectivity index locaityeach element to indicate the difference

between the actual and predicted values of erigur& 46 and Figure 47 show a contour plot of
the value ofl 5, on the medium Q4 mesh obtained from the expliuit implicit error

estimators, respectively. By looking back to Figd#e we conclude that the value Idf is

closest to unity for elements with large valuesipfand smaller in elements with lower values.

This behavior was also discussed in the contetttefirst problem in section 6.3. The
distribution of | §; shown in Figures 46 and 47 again implies thastiepness of the error

estimate throughout the domain is maintained bbite¢he implicit method than by the explicit

method.

Local Effectivity Indices
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Figure 46. Local effectivity index for explicit fenscale
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Local Effectivity Indices

Figure 47. Local effectivity index for implicit fanscale

6.10 Convergence Study: Distorted Meshes

A convergence study involving distorted meshes alss conducted for this problem in order to
assess the robustness of the numerical framewg@#&nAdue to the overlap in dimensions for
the two beams, we utilized the meshes from Talite this study as well.

The convergence of the standard error norms is shiokigure 48. The convergence rates of the
displacement field are nearly optimal for all elerngypes in both norms; however, the
magnitude of the error in the solutions increadigghtty from the solutions obtained on uniform
meshes, which can be observed from the downwafda$iihe curves in Figure 48 compared to
those in Figure 36. The pressure field experiemntstdriorated rates compared to the uniform
mesh study. In all cases, the rate forltheorm was one order below the optimum. Fortihe
seminorm, the rates for the quadratic elements weeeorder below the optimum, and the linear
elements exhibited a relative error greater th@nThese trends are similar to those observed for

the distorted mesh simulations of the cantilevemb@roblem.
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Figure 48. Convergence rates of normalized staneiaiod: (a)L, norm of displacement; (lh),
norm of pressure; (¢}* seminorm of displacement; and ) seminorm of pressure

6.11 Error Estimation: Distorted Meshes

This section presents convergence plots of theagjlarms of the fine scale field obtained

from the explicit and implicit methods. As can lees in Figure 49, both the explicit and
implicit L, error norms converge at the optimal rates of @cQifiear elements and 3.0 for
quadratic elements. Similarly, th€ seminorm converges near the optimal rate for eathe
element types. By comparing the error estimatels thig¢ standard error in Figure 48 (a) and (b),
we observe that the convergence rates of the estonates parallel those of the standard error.
Additionally, the estimate#i* seminorm in Figure 49 (b) and (d) match closelthwie curves

in Figure 48. These trends were preserved undeifisignt distortion of the mesh.
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Figure 49. Convergence rates of normalized errimages: (al, norm of explicitu’; (b) H*
seminorm of explicitu’; (c) L, norm of implicitu’; and (d)H* seminorm of implicitu’
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Chapter 7: Conclusions

We have demonstrated the application of the Huifaemtional Multiscale framework to the
standard weak form of mixed elasticity in orded&velop a stabilized finite element method and
a posteriori error estimators. Because the methddsed on sound variational principles, it
produces stable and convergent solutions, as Wwagdted by the numerical simulations
presented in this work. Additionally, the erroriesttors developed from this framework
provided an accurate representation of the fineedeatures of the standard error for the
benchmark problem. Thus, this framework represanisified and consistent methodology for
the analysis of elasticity problems involving nganicompressible media. In our future work, we
plan to investigate techniques for estimating th&rse scale trends of the error in the finite

element solutions obtained from this framework.
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Appendix A

In this section, we present explicit formulas usimgjcial notation for the HVM Form (4.25) in

two-dimensions as a guide for those seeking toempht the method.

Let the discretized approximations ofbe represented through a linear combination agbas

functions as follows:

uy = > N (A.1)
b=1
up = > N°w (A.2)

wheren, is the number of nodes in the mes\?, is the basis function associated with nbde

and uf,us are the displacement coefficients or degreeseaidiom for nodé. Similarly, the

weighting functions are expressed as:

WQ = nuz"“‘:’ NaV\/j (A3)
W;] = nuz"“‘:’ Nav\/; (A.4)

a=1
wherew;,w, are the displacement weighting function coeffitsear degrees of freedom for

nodea. Finally, the pressure field trial and weightingp€tions are expressed as:

MNurmp

p"=> Np* (A.5)
d=1
h numnp
q"=> N°¢° (A.6)
c=1

For simplicity, we have assumed equal-order intiatpns for the displacement and pressure
fields so that the number of basis functions issdu@e for both fields. For economy, we utilize

the comma notation to express the derivative aination; for example, the partial derivative of

w! with respect ty is given by
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W, = N2w. (A.7)

oN . Similarly, N2 = N
oy Y oxay

in indicial notation, the components of a vecta pically numbered rather than assigned a

where Nf; = is the mixed second partial derivative df . Finally,

specific coordinate direction so that the vectarastied to any particular frame of reference and
so that the summation of components can be eagilessed. Therefore, in subsequent
expressions we will use 1 in placexadind 2 in place of to represent the coordinates of the

Cartesian system and the associated componenésiirs and tensors.

With these expansions, we can return to HVM For@$% Regrouping the terms and separating
the equation via the displacement and pressurehtveggfunctions, this equation can be written
as:

[ Ow:2pe (u)~[ 200 (w) |G [ 260G (u) ] &

+jQ, (0w) p-[ 2402 (w) | & (Op) dQ (A.8)

= [, wib+ 2401 (w) b dQ +jrh wrhd™

qu(m ) ~(Oq) G| 240 2 (u) |dQ
-|_ ap/A+(0d) & (Op) d ~o)
=[_(0q)bd

Sparing the details, the expansions for the tndl\&eighting functions can be substituted into
(A.8) and (A.9) to obtain the following equations:
nurmp nurmp _ r'|urm|c| r'|urm|c| r'|urmp
DU IWKPU DTy WK d=ZWaF +Z\NaFa (A.10)
a=l b=1 a=1 d=1
nurmp umnp urmp urmp
DI GRIU DD g K p* Zq Fe (A.11)

c=1 b=1 c=1 d=1

where the summation convention is in force for edpe indices andj. These equations are
indicative of the iconic finite element equatié = F . In particular, let( be the vector of
displacement coefficients angl be the vector of pressure coefficients; then, tgos (A.10)

and (A.11) can be expressed as the following systieaquations:
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£ A
K KI|P F

The formulas for the stiffness matrix terms areegias follows:

s ab — a b an|b
K = ij, N2 NS +N2N°dQ

(A.13)
[ NaZyNoy + NGT NS+ NS 7 Np + NGz NG dQ
Ri = [ NINAQ - ] N3z N§ + N5z NG o0 (A.14)
ccd — _ 1 cpgd _ c d
K™ = ;L},N N“dQ - [ NS7;N dQ (A.15)

where the summation convention is in force for egpé indices. The formulas for the force

vector terms are given as follows:

Re =] N dQ+[ Ni.zb +Nizbdo (A.16)
Fo = jrh N2h dr (A.17)
Fe=[ NizbdQ (A.18)
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