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ABSTRACT 

 

 The distribution of Ixodes scapularis and Borrelia burgdorferi has continued expanding 

in Illinois over the past twenty years.  However, the extent to which this tick vector and etiologic 

agent of Lyme disease has spread is not well known.  In east-central Illinois (ECIL), I evaluated 

habitat diversity and temporal changes of I. scapularis occurrence and B. burgdorferi infection 

within a natural area in Piatt County, Illinois.  In northeast Illinois (NEIL), I assessed the 

geographic distribution and abundance of I. scapularis in forest patches of 32 public-access 

forest preserves in Cook, DuPage, Lake, and McHenry counties.  In ECIL, small mammals were 

trapped and attached ticks were collected in young forest, prairie, old forest, and flood plain sites 

from 2005 – 2009.  Small mammal diversity and abundance were compared.  Collected ticks 

were identified to species level based on morphology, and identification was confirmed 

molecularly.  Prevalence of I. scapularis (% mammals infested), mean intensity (I. scapularis 

per infested mammal), and relative density (I. scapularis per mammal trapped) were calculated.  

Multiple I. scapularis larvae found on a single mammal were pooled for testing; whereas, I. 

scapularis nymphs were tested individually for B. burgdorferi infection using polymerase chain 

reaction (PCR).  Ixodes scapularis were most abundant in the young forest and prairie sites.  The 

prairie had the highest diversity of small mammal hosts. Out of 2,446 trapped small mammals, 

388 were infested with I. scapularis.  Prevalence, mean intensity, and relative density of I. 

scapularis and prevalence of B. burgdorferi infection were highest for the prairie and young 

forest sites.  The overall B. burgdorferi infection of I. scapularis in the natural area was 14% (56 

/ 388).  In NEIL, timed dragging surveys were conducted from May to October 2008 and April to 

October 2009. A total of 602 I. scapularis of all three life stages (larvae, nymphs, and adults) 



 iii 

were collected from 17 of the 32 sites.  The highest abundances of I. scapularis were found at 

coastal forested sites near Lake Michigan, and I. scapularis appears to be widely distributed 

throughout the counties of Cook, DuPage, and Lake where suitable habitat is available.  The 

distribution of I. scapularis is encroaching upon developed areas, increasing the risk for human 

exposure to Lyme disease.  This study provides baseline data for further evaluation of emerging 

Lyme disease foci in Illinois.  Habitats and reservoir hosts that were previously overlooked may 

be suitable for I. scapularis and B. burgdorferi establishment in a dynamic fragmented 

landscape.  This study reveals mechanisms associated with wildlife – vector – pathogen 

interactions that could influence disease emergence and exposure, and it emphasizes the need to 

increase research efforts and public awareness concerning the occurrence of I. scapularis and the 

prevalence of B. burgdorferi in Illinois.  
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CHAPTER 1: 

 

LITERATURE REVIEW 

 

1. Lyme disease 

1.1 History of Lyme disease 

 Lyme disease, or borreliosis, is the most commonly reported vector-borne disease of 

humans in the Northern hemisphere, and one of the fastest-emerging infectious diseases in the 

United States (Bacon et al. 2008).  In the U.S., 27,444 human cases were reported in 2007, 

surpassing the previous maximum reported in 2002 by 15% (CDC 2009).  Although enhanced 

surveillance accounts for some of this increase, there is a true rise in emergence in certain areas 

(CDC 2009).  In Illinois, there were 108 reported human cases in 2008 compared to only 35 

cases in 2000 (IDPH 2010).   

 Borreliosis was first identified as a disease based on a group of human cases originally 

thought to be juvenile rheumatoid arthritis reported near Lyme, Connecticut, in 1975 (Steere et 

al. 1977).  Patients developing erythema chronicum migrans, a bull’s-eye-shaped rash, at the site 

of a tick bite led Steere and other researchers to conclude that this ―Lyme disease‖ was similar to 

symptoms of tick-borne illness reported in Europe (Steere et al. 1977).   

Although Lyme disease became accepted as a manifestation of a tick-borne illness, the 

actual cause of the disease was still not understood clearly.  In 1980, Burgdorfer discovered the 

etiologic agent to be a spirochete, Borrelia burgdorferi, which he isolated both from patients 

diagnosed with Lyme disease and from tick specimens collected on Shelter Island, New York, a 

Lyme-endemic area (Burgdorfer et al. 1982).  Three genomic groups of B. burgdorferi have been 

identified.  All strains found in North America belong to the group, Borrelia burgdorferi sensu 

stricto (Steere et al. 1994).  Strains from groups 2 and 3 have been found in Europe.  Isolates 
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from group 2 strains have been named Borrelia garinii (Baranton et al. 1992), and isolates from 

group 3 strains have been named Borrelia afzelii (Canica et al. 1993).   

 

1.2 Symptoms of Lyme disease 

Early manifestations of the disease often include nondescript flu-like symptoms such as 

fever, fatigue, malaise, and muscle and joint pain (Shapiro and Gerber 2000, Steere et al. 2004, 

Wormser et al. 2006).  Patients typically develop erythema migrans, a characteristic red, bulls-

eye rash at the site of the tick bite within 30 days of infection with B. burgdorferi (Bacon et al. 

2008).  An early infection can usually be treated successfully with broad-spectrum antibiotics.  

However, late manifestations of the infection spread to other parts of the body making it more 

difficult to treat and usually leading to life-long morbidity.  If left untreated in humans, Lyme 

disease can permanently affect the skin, musculoskeletal, cardiac, and central nervous systems 

ultimately leading to severe arthritic joint pain, cardiac abnormalities, and neurological damage 

(Steere et al. 1980, 2004).  In addition to affecting humans, domestic animals such as dogs and 

horses can also contract the disease and suffer from arthritic manifestations (Anderson et al. 

1983, Kornblatt et al. 1985).   

Diagnosis of Lyme disease is based on clinically observed symptoms and a history of 

potential exposure to infected ticks in Lyme-endemic geographic regions (Wormser et al. 2006).  

Lyme disease can be difficult to diagnose, as testing methods can reveal misleading results such 

as false-negatives.  Therefore, two-tiered serologic testing is recommended to confirm infection 

in patients (CDC 2005).  The continual emergence of Lyme disease within the U.S., and the 

expansion of endemic areas are strong reasons for public education on tick avoidance and early 

treatment interventions (Bacon et al. 2008). 
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1.3 Transmission of Lyme disease 

Hard-bodied ticks of the Ixodes ricinus species complex are the major vectors for 

transmitting the spirochete, B. burgdorferi (Burgdorfer et al. 1982, Barbour et al. 1983, Steere 

1994).  Ticks from this group are found in almost every geographic region of the world.  The 

vector tick endemic in the eastern half of the United States is Ixodes scapularis (Anderson et al. 

1983, Callister et al. 1988).  Ixodes dammini in the northeastern United States and Ixodes 

scapularis in the Midwest were once considered two separate species; however, this 

classification has been disproven and both are now referred to as I. scapularis (Steere and 

Malawista 1979, Levine et al. 1985, Oliver et al. 1993).  Ixodes pacificus is the vector for Lyme 

disease in the western United States (Burgdorfer et al. 1985, Bissett and Hill 1987), Ixodes 

ricinus in Europe (Anderson 1989), and Ixodes persulcatus in Asia (Dekonenko et al. 1988). 

Upon acquiring B. burgdorferi from feeding on an infected host, the engorged tick retains the 

spirochetes in the mid-gut (Piesman et al. 1990).  When the tick feeds on a new host during its 

next life stage, the spirochetes are activated and pass through the salivary glands into the host.  

This transmission takes about 24 hours to complete (Piesman et al. 1987, Ribiero et al. 1987).  

Although these ticks may bite humans at any life stage (larva, nymph, or adult), the infected 

nymph and adult stages are responsible for transmitting the spirochete (Steere et al. 2004).  

Vertical transmission of B. burgdorferi in I. scapularis is negligible because it occurs in less than 

1% of all larvae (Piesman et al. 1986, Burgdorfer et al. 1992).  However, once a tick does 

become infected as a larva or nymph, it maintains that infection transtadially (Fish 1993).  The 

nymph stage poses the greatest risk for transmitting Borrelia burgdorferi infection because of its 

small size and its peak activity coinciding with increased human activity outdoors in late spring 

and early summer (Fish 1993).   
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1.4 Endemic areas of Lyme disease 

Lyme disease occurs in Europe (Stanek et al. 1988), Asia (Dekonenko et al. 1988), and 

North America (Burgdorfer et al. 1982).  In the United States, focal endemic areas of Lyme 

disease include the northeast, the far-west, and the upper Midwest (Steer and Malawista 1979, 

Steere et al. 1994).  The highest infection rate in ticks and the greatest number of human cases 

occur in the northeast from Massachusetts to Maryland (Burgdorfer et al. 1982, Steere 2006).  In 

contrast, infection rates in the far-west are much lower because the vector competence of I. 

pacificus may be lower than other ticks in the I. ricinus complex based on a variety of 

physiological and ecological reasons (Lane et al. 1991). 

In the Midwest, the initial cases of Lyme disease were diagnosed in southeast Minnesota 

and northwest Wisconsin (Davis et al. 1984, Callister et al. 1988, 1991).  Efforts to assess the 

distribution of I. scapularis and B. burgdorferi infection within the Midwest have occurred in: 

Wisconsin (Callister et al. 1991), Michigan (Hamer et al. 2007), Iowa (Lingren et al. 2005), 

Indiana (Pinger et al. 1996), and Illinois (Guerra et al. 2002, Jobe et al. 2007).  There is a need to 

continuously monitor changes in the spread of I. scapularis distribution and B. burgdorferi 

prevalence in the United States to stay abreast of emerging tick-borne disease foci (Cortinas et al. 

2002). 

 

2. Ecology of Ixodes scapularis 

2.1 Life cycle of Ixodes scapularis  

The distribution and occurrence of Ixodes scapularis, also known as the blacklegged tick or 

deer tick, is typically associated with environmental factors such as tick habitat suitability 

(Kitron et al. 1991a, Guerra et al. 2002) and small mammal host abundance (Anderson et al. 
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1983, Brownstein et al. 2003).  Suitable habitat for I. scapularis has been characterized by oak-

dominated forested areas with sufficient leaf litter and moist, sandy soils (Kitron et al. 1992, 

Schulze et al. 1998).  The distribution and establishment of I. scapularis depends upon favorable 

vegetation, soil, topography, and climate necessary for questing, molting, diapause, and 

oviposition (Guerra et al. 2002).   

The two-year life cycle of I. scapularis consists of three stages: larva, nymph, and adult 

(Piesman and Spielman 1979, Anderson and Magnarelli 1980).  Each stage actively quests for a 

blood meal before molting into the next stage.  As stated previously, Ixodes scapularis becomes 

infected with B. burgdorferi while feeding on the blood of infected natural reservoir hosts.  

Borrelia burgdorferi is maintained within a tick transtadially (Fish 1993).  Therefore, I. 

scapularis has three opportunities to become infected with the spirochete, and two opportunities 

to spread the spirochete to uninfected hosts.   

The larval stage hatches in late summer and takes its first blood meal before overwintering.  

The nymph stage becomes active late spring to early summer of the following year.  After the 

second blood meal, it molts into the adult stage during fall of the same year.  Occasionally the 

adults overwinter and emerge in early spring of the next year if they were unable to mate in the 

fall (Steere 1994).  Adult ticks feed and mate on their final host.  The male takes a small blood 

meal while the female feeds for up to a week until engorged to repletion.  Before dying, an 

engorged gravid female lays up to 3,000 eggs that hatch to repeat the cycle (Wilson et al. 1990). 

The seasonal overlap of infected nymphs emerging and feeding before the newly hatched cohort 

of larvae emerge is a key factor in continually maintaining the enzootic cycle of Lyme disease.   
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2.2 Hosts of Ixodes scapularis  

Ixodes scapularis is a three-host generalist tick.  The immature stages feed on a variety of 

small and medium-sized mammals and birds (Anderson 1988).  In particular, the white-footed 

mouse (Peromyscus leucopus) is the primary reservoir host for maintaining B. burgdorferi within 

the environment (Levine et al. 1985, Donahue et al. 1987, Hofmeister et al. 1999).  Other small 

mammals, specifically rodents, also serve as hosts for immature I. scapularis (Anderson et al. 

1985, 2006, Markowski et al. 1997, 1998); however, they possess a limited reservoir potential 

for B. burgdorferi (Mather et al. 1989, LoGiudice et al. 2003) (Table 1.1.).  Evidence implicating 

a host as a reservoir of infection has previously been based upon either recovering B. burgdorferi 

from host blood, other tissues, and attached ticks or detecting the presence of B. burgdorferi-

specific antibodies in the host (Anderson et al. 1983, 1986, Bosler et al. 1983, 1984, Magnarelli 

et al. 1984, 1988).  Reinfection of small mammal hosts is common, as some mammals species 

remain susceptible regardless of previous built-up antibodies (Bunikis et al. 2004).  Therefore, 

the availability of hosts to maintain the Borrelia cycle in the United States is almost limitless.   

Adult I. scapularis feed and mate on larger animals such as their primary host, the white-

tailed deer (Odocoileus virginianus) (Piesman et al. 1979, Bosler et al. 1984).  Without deer in a 

natural area, adult I. scapularis lack a host on which to find each other and mate, likely resulting 

in lower tick densities (Wilson et al. 1988).  Although deer are not a competent reservoir for B. 

burgdorferi, they play an important role in I. scapularis dispersal along riparian corridors 

(Telford et al. 1988).  Increased populations of deer in the Midwest, especially in Illinois, have 

been associated with the increasing dispersal of I. scapularis to new areas via deer movement 

along riparian corridors (Cortinas and Kitron 2006).  The spread of I. scapularis by deer 



 7 

contributes to the increase of immature tick occurrence among potentially infected small 

mammals (Steere 1994, Jobe et al. 2006).   

Both the white-footed mouse and the white-tailed deer are considered habitat generalists 

(Adler and Wilson 1987, Rosenblatt et al. 1999).  Their population density, productivity, and 

survival can shift as environmental conditions change in quality.  This adaptability to a variety of 

habitat conditions results in population flexibility that enables these generalists to occupy poorer 

habitats (Adler and Wilson 1987).  Fragmentation of habitat into small forest patches has been 

associated with decreased vertebrate species diversity and increased densities in P. leucopus 

(Adler and Wilson 1987, Rosenblatt et al. 1999).  The net effect of decreasing habitat patch size 

is an increasing fraction of I. scapularis feeding on a B. burgdorferi competent reservoir, thus 

increasing the risk for nymphal infection prevalence (Ostfeld and Keesing 2000, Allan et al. 

2003).  Although the ecological and spatial determinants of variation in I. scapularis distribution 

and habitat use are still not well understood at the local-scale level (Goodwin et al. 2001), 

declining habitat quality, increased habitat fragmentation, and decreased biodiversity appear to 

have significant roles in the overpopulation of the white-footed mouse and white-tailed deer 

(Rosenblatt et al. 1999), the establishment of I. scapularis (Ginsberg 1994), and an increased risk 

of Lyme disease (Van Buskirk and Ostfeld 1995, LoGiudice et al. 2003). 

Some studies have shown that increased biodiversity leads to a ―dilution effect‖ of immature 

I. scapularis acquiring B. burgdorferi infection because the ticks feed on more hosts with 

decreased reservoir-competency (Van Buskirk and Ostfeld 1995, Ostfeld and Keesing 2000, 

LoGiudice et al. 2003).  The ―dilution effect‖ implicates the need to maintain biodiversity as a 

tool to reduce disease risk (Schmidt and Ostfeld 2001).   In contrast, Estrada-Peña (2009) 

concluded that neither species richness nor host density alone had a significant effect on the level 
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of B. burgdorferi infection within a site.  Infection index varied at the habitat patch level 

compared to either the county-level or state-level of infection (Estrada-Peña 2009).  A 

comprehensive evaluation of all vertebrate diversity in a habitat could reveal a better 

understanding of existing ecological interactions influencing the survival of B. burgdorferi-

competent reservoirs and creating a potential dilution, or amplification, effect (Ogden and Tsao 

2009). 

 

3. Collecting and Testing Methods 

Densities of questing I. scapularis within a natural area can be estimated if surveyed during 

the peak activity season for each life stage.  Common methods developed to survey for I. 

scapularis in a site include: walk sampling, drag sampling, small mammal trapping, and CO2-

baited traps (Ginsberg and Ewing 1989, Falco and Fish 1992).  The most successful methods for 

collecting immature I. scapularis include small mammal trapping and drag sampling (Falco and 

Fish 1992).  However, larvae reside in the leaf litter on the ground and are difficult to see on a 

drag cloth.  Therefore, small mammal trapping provides a more accurate estimate of larval I. 

scapularis abundance, especially detection at low population levels (Ginsberg and Ewing 1989).     

  Drag sampling, which involves pulling a white flannel or corduroy cloth along low 

vegetation, leaf litter, and trail edges in deciduous forest habitats, is a common method to collect 

adult ticks (Callister et al. 1991, Diuk-Wasser et al. 2006).  Dragging effort is determined by 

either set transects of a specified distance or by a time allotment.  Sampling should be repeated at 

least three to six times during the season to maximize tick collection during peak times of 

activity (Diuk-Wasser et al. 2006).   
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Collected ticks must be accurately identified to species and life stage based on morphology 

using microscopy and tick identification keys (Sonenshine 1979).  Identifying endemic Lyme 

disease foci where I. scapularis have become established has been accomplished by isolating B. 

burgdorferi from collected tick specimens or host tissues (Anderson et al. 1985, Callister et al. 

1988, 1991).  Borrelia burgdorferi is commonly identified from tick or tissue samples by culture 

(Barbour 1984, Johnson et al. 1984, Callister et al. 1990) and by polymerase chain reaction 

(PCR) techniques (Picken et al. 1997, Piesman et al. 2001).   

To culture B. burgdorferi, the mid-gut and salivary glands removed from live I. scapularis  

ticks, or host tissue such as the spleen, kidney, bladder, or ear biopsy, are placed in Barbour-

Stonner-Kelly Medium (BSK II) (Barbour 1984).  The cultures are then examined for viable 

spirochetes by dark field microscopy for 10 to 21 days.  Culturing tick and host tissue has aided 

in determining the risk of Lyme disease in a given area (Nelson et al. 1991, Callister et al. 1991, 

Jobe et al. 2007). 

Borrelia burgdorferi can also be isolated from tick and mammal tissue and amplified to an 

identifiable level using the polymerase chain reaction (PCR) method (Piesman et al. 2001).  

DNA from tick or host tissue can be tested for the presence or absence of spirochetes (Sinsky 

and Piesman 1989).  Gene segments of Borrelia that are commonly amplified through PCR 

include: OspA (Malloy et al. 1990), OspC (Jauris-Heipke et al. 1995), segments of the flagellin 

gene (Lebech et al. 1991, Picken 1992), and 16S rRNA (Marconi and Garon 1992, Liebisch et al. 

1998).  Sensitivity of PCR amplification between studies and type of gene segment amplified 

varies, but many are sensitive enough to detect positive samples containing a minimum 10
0
 to  

10
-1

 organisms (Bunikis et al. 2004).  
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4. Ixodes scapularis and Borrelia burgdorferi in Illinois 

Populations of both the vector tick and the spirochete were once limited to a small endemic 

area in Minnesota and Wisconsin (Davis et al. 1984, Callister et al. 1988).  Although I. 

scapularis was initially detected along the Rock River in Ogle County in the late 1980s 

(Bouseman et al. 1990), Illinois has not historically been considered a Midwestern endemic 

focus for Lyme disease (Picken et al. 1995).  Studies assessing the occurrence of I. scapularis 

near major metropolitan areas such as Milwaukee and Chicago in the early 1990s showed no 

evidence of tick populations within these areas (Callister et al. 1991).  However, Picken et al. 

(1995) suggested that Illinois may eventually be considered an area of focal endemicity for both 

I. scapularis and B. burgdorferi based on the positive findings of several studies (Kitron et al. 

1991b, Nelson et al. 1991).  Additional foci of established I. scapularis distribution have been 

detected along the Rock and Mississippi Rivers, and more recently along the Illinois River 

(Cortinas et al. 2002).  By 2007, Jobe et al. confirmed the presence of B. burgdorferi-infected I. 

scapularis at sites in northeast Illinois located less than one mile from city limits, and recognized 

that Lyme disease could become a significant health concern around the Chicago metropolitan 

area.  The risk of Lyme disease exposure is increasing throughout Illinois, most recently 

emerging in the northeast area of the state (Jobe et al. 2006, 2007).    

The landscape of Illinois is highly fragmented and characterized by extensive farming, 

expanding development, and urbanization.  Therefore, forest habitats suitable for I. scapularis 

establishment are discontinuous, occurring primarily along riparian corridors abutting residential 

and recreational areas (Guerra et al. 2002, Cortinas et al. 2002).  Most of the remaining natural 

areas in Illinois have become state parks, nature preserves, and wildlife areas with high volumes 

of visitor traffic (Cortinas et al. 2002).  Because these natural areas are small and fragmented, 
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they hold high potential for dense establishment of I. scapularis.  This situation creates concern 

for increased disease transmission in Illinois.  Assessing the habitat diversity and the spatial 

distribution of I. scapularis and the prevalence of B. burgdorferi, especially in regions of the 

state where this information is unknown, is essential to develop preventive measures where a 

potentially serious disease may be encroaching upon urban and suburban areas (Guerra et al. 

2002, Jobe et al. 2007).  People who never considered being at risk for coming into contact with 

I. scapularis or B. burgdorferi in developed landscapes of Illinois may become vulnerable to an 

increased exposure to Lyme disease. 

Bouseman et al. (1990) hypothesized that the likely routes for the expansion of I. 

scapularis distribution and B. burgdorferi prevalence in Illinois would follow along major rivers.  

Riparian corridors provide suitable tick habitat and act as dispersal and migratory routes for 

white-tailed deer and birds (Cortinas et al. 2002).  Kitron et al. (1991a) added validity to this 

hypothesis by finding that infested deer tended to cluster around the Rock and Mississippi 

Rivers.  In 2006, Cortinas and Kitron confirmed that I. scapularis in northwest Illinois has 

continued expanding its range southward along the Illinois River.  Based on the evidence for the 

riparian corridor hypothesis thus far, it is possible that expansion of I. scapularis distribution 

could increase along the Fox and Des Plaines Rivers of northeast Illinois and the Sangamon 

River of east-central Illinois.  A Midwest model of I. scapularis habitat suitability predicted 

suitable forested habitats along the Des Plaines River in northeast Illinois (Guerra et al. 2002).   

To date, mapping the spatial distribution of I. scapularis establishment within Illinois has 

been limited to nonstandardized reporting (IDPH 2009).  There are numerous parks and forest 

preserves throughout the fragmented landscapes of northeast and east-central area of the state 

with suitable I. scapularis that have not been evaluated.  Many of these natural areas were 
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predicted to be ideal habitat for small mammal hosts and I. scapularis populations (Guerra et al. 

2002).  Therefore, I. scapularis may be established in areas thought to be free of the tick and the 

Lyme disease-causing spirochete.  In reality, these areas could merely be overlooked due to lack 

of reporting (Madhav et al. 2004).  Several studies have clarified the need to maintain 

surveillance of I. scapularis range expansion and B. burgdorferi prevalence and to identify focal 

endemic areas of Lyme disease risk (Callister et al. 1991, Falco et al. 1995).   

Overall, my research builds upon previous work assessing I. scapularis distribution in 

northeast and east-central Illinois.  More specifically, it highlights the significance of I. 

scapularis expanding its range in the state, potentially increasing the endemic range of B. 

burgdorferi.  Emerging Lyme disease foci create health concerns of increased disease risk among 

humans, especially in heavily populated metropolitan areas.  This study provides baseline 

distribution data that will be useful to further evaluate the occurrence of I. scapularis and B. 

burgdorferi in Illinois to improve disease prevention efforts.   
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Chapter 1 meets the formatting requirements for Vector-Borne and Zoonotic Diseases.  
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6. Tables 

 

Table 1.1. Known natural reservoir hosts of Borrelia burgdorferi and their reservoir competence  

 

of infecting Ixodes scapularis. 

 

Reservoir Host Scientific name 

Reservoir    

Competence 

(%) 

Source 

White-footed mouse Peromyscus leucopus 90 Mather et al. 1989 

Chipmunk Tamias striatus 75 Mather et al. 1989 

Sorex shrews Sorex spp. 51.2 LoGiudice et al. 2003 

Northern short-tail shrew Blarina brevicauda. 41.8 LoGiudice et al. 2003 

Grey squirrel Sciurus carolinensis 14.7 LoGiudice et al. 2003 

Meadow vole Microtus pennsylvanicus 5.5 Mather et al. 1989 
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CHAPTER 2: 

IXODES SCAPULARIS AND BORRELIA BURGDORFERI AMONG DIVERSE 

HABITATS WITHIN A NATURAL AREA IN EAST-CENTRAL ILLINOIS 

 

1. Introduction 

 Steadily increasing in the number of reported cases over recent years, Lyme disease is the 

most common vector-borne disease in the U.S.  In 2007, 27,444 human cases were reported, 

surpassing the previous maximum reported in 2002 by 15% (CDC 2009).  Although enhanced 

surveillance accounts for some of this increase, there is a true rise in emergence in certain areas 

(CDC 2009).  In Illinois, there were 108 reported human cases in 2008 compared to only 35 

cases in 2000 (IDPH 2010).   

 Lyme disease is caused by the spirochete Borrelia burgdorferi sensu stricto and is 

transmitted by the blacklegged tick, Ixodes scapularis, in the Northeast and Midwest United 

States (Burgdorfer et al. 1982, Davis et al. 1984, Lane et al. 1991).  In humans, B. burgdorferi 

infection can result in dermatologic, musculoskeletal, cardiac, or neurologic abnormalities 

(Shapiro and Gerber 2000, Steere et al. 2004, Wormser et al. 2006).  If left untreated, Lyme 

disease leads to persistent arthritis and neurological damage (Spielman et al. 1985).   

Borrelia burgdorferi is transmitted to immature I. scapularis during a blood meal from an 

infected host (CDC 2009).  Ixodes scapularis is a three-host generalist tick that feeds on a wide 

variety of small mammal hosts during its immature stages (Mather et al. 1989).  Once infected, I. 

scapularis ticks maintain the spirochete transtadially (Fish 1993).  The white-footed mouse 

(Peromyscus leucopus) is the primary reservoir host for both I. scapularis and B. burgdorferi 

(Levine et al. 1985, Donahue et al. 1987, Hofmeister et al. 1999).  Other small mammals, 
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specifically rodents, also serve as hosts for immature I. scapularis (Anderson et al. 1985, 2006, 

Markowski et al. 1997, 1998); however, they possess a limited reservoir potential for B. 

burgdorferi (Mather et al. 1989, LoGiudice et al. 2003).  Reinfection of small mammal hosts is 

common, as some species remain susceptible regardless of previous built-up antibodies (Bunikis 

et al. 2004a).  Adult I. scapularis feed and mate on larger mammals such as the white-tailed deer 

(Odocoileus virginianus).  Although deer are not competent reservoirs for B. burgdorferi, they 

play an important role in tick dispersal along riparian corridors.  A gravid female I. scapularis 

can drop from a deer in a new area and lay up to 3,000 eggs that hatch to feed on potentially 

infected small mammal populations (Jobe et al. 2006, Steere 1994).   

In the Midwest, populations of both the vector tick and spirochete were once limited to 

southeast Minnesota and northwest Wisconsin (Davis et al. 1984, Callister et al. 1988, 1991); 

however, the focal endemic area has expanded farther into Illinois (Bouseman et al. 1990, 

Cortinas and Kitron 2006) and the surrounding states (Pinger et al. 1996, Walker et al. 1998, 

Lingren et al. 2005, Hamer et al. 2007) in the past twenty years.  In Illinois, Lyme disease has 

mainly been identified in the northern third of the state (Kitron et al. 1991, Nelson et al. 1991, 

Jobe et al. 2006, 2007); however, I. scapularis has been both identified and predicted in several 

parts of the state (Guerra et al. 2002) and its distribution has continued to increase in recent years 

(IDPH 2009).   

The distribution and occurrence of I. scapularis is typically associated with 

environmental factors such as tick habitat suitability (Kitron et al. 1991, Guerra et al. 2002) and 

small mammal host abundance (Anderson et al. 1983, Brownstein et al. 2003).  Although the 

ecological and spatial determinants of variation in I. scapularis distribution and habitat use are 

not well understood at the local-scale level (Goodwin et al. 2001), fragmentation of habitat into 
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small forest patches has been associated with decreased vertebrate species diversity and 

increased densities in P. leucopus (Adler and Wilson 1987, Rosenblatt et al. 1999).  The net 

effect of decreasing patch size is an increasing fraction of I. scapularis feeding on a B. 

burgdorferi competent reservoir, thus increasing the risk for nymphal infection prevalence 

(Ostfeld and Keesing 2000, Allan et al. 2003).   

Suitable habitat for I. scapularis has been characterized by oak-dominated forested areas 

with sufficient leaf litter and moist, sandy soils (Kitron et al. 1992, Schulze et al. 1998).  The 

importance of habitat suitability is emphasized by a predictive model for the distribution and 

establishment of I. scapularis in Illinois based on vegetation, soil, topography, and climate 

necessary for questing, molting, diapause, and oviposition (Guerra et al. 2002).  To my 

knowledge, recent studies of I. scapularis distribution and abundance have only been conducted 

in forested sites.    

 The spatial variation and dynamism of the Lyme disease system highlights the need for a 

more comprehensive approach to study I. scapularis and B. burgdorferi habitat suitability in 

small natural areas (Killilea et al. 2008).  Previous studies show consistent findings that some 

natural areas have a higher association with risk and incidence of Lyme disease than others 

(Allan et al. 2003, Killilea et al 2008).  Both decreased biodiversity and increased habitat 

fragmentation appear to have significant roles in the overpopulation of P. leucopus, the 

establishment of I. scapularis, and the risk of Lyme disease in a natural area.   

 Illinois, once dominated by prairie, is now characterized by a highly fragmented 

landscape where forest patches are surrounded by urban areas, remnant prairie patches, and 

agricultural lands (Rosenblatt et al. 1999).  In this study, I evaluated habitat diversity and 

temporal changes of I. scapularis occurrence and the maintenance of B. burgdorferi among small 
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mammal hosts within a natural area in east-central Illinois.  Prior to this study, the presence of B. 

burgdorferi has not been evaluated in this region; although, I. scapularis has been identified.   

 The objectives of this study were 1) to determine I. scapularis occurrence and B. 

burgdorferi infection across four habitats within the natural area, and 2) to evaluate differences 

in I. scapularis occurrence and B. burgdorferi infection within the same natural area over a five-

year period.  To accomplish these objectives, I live-trapped small mammals and collected 

attached ticks; tested I. scapularis for B. burgdorferi infection using PCR and qPCR assays; 

measured small mammal diversity and abundance; and calculated I. scapularis prevalence, mean 

intensity, and relative density (Margolis et al. 1982).  

 

2. Materials and Methods 

2.1 Study area 

 The study was conducted between 2005 and 2009 in Robert Allerton Park (RAP), a 614 ha 

natural area owned by the University of Illinois located 6.4 km southwest of Monticello, in Piatt 

County, Illinois.  The park is bisected by the Sangamon River; the south half is a natural area 

consisting of a river corridor, a flood plain, upland and bottomland forests, meadows, and prairie 

surrounded by an intensively farmed agricultural landscape (Fig. 2.1.).  I chose four sites 

representative of the habitats found within the park.  Site 1 is an upland young successional 

forest comprised of oak-hickory (Quercus-Carya) stands and heavy undergrowth (Wang et al. 

2008).  Site 2 is a restored tall-grass prairie mainly comprised of big bluestem and Indiangrass 

(Andropogon gerardii, Sorghastrum nutans).  Site 3 is a mature successional forest comprised of 

old-growth oak-hickory (Quercus-Carya) stands.  Site 4 is a floodplain of the Sangamon River 
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dominated by silver maple and green ash (Acer saccharinum, Fraxinus pennsylvanica) (Wang et 

al. 2008).   

 

2.2 Sampling frame 

A 100 m x 100 m grid consisting of 100 trapping stations set 10m apart was established 

within each habitat site similar to the methods described by Kitron et al. 1991.  Two 5.08 x 6.35 

x 16.51cm Sherman live traps (H.B. Sherman Traps, Tallahassee, FL) baited with sunflower 

seeds were placed 1m apart at each trapping station for a total of 200 traps per night at each site.  

Traps were set in the late afternoon and retrieved the following morning.  Trapping took place 

from June through October 2005 – 2009 with the exception of two trap nights in May 2007 and 

one in November 2008.  Each site was trapped between 3 – 11 nights per year (mean = 6.3, SD = 

0.26), and between 30 – 33 nights over the study period (mean = 31.5, SD = 1.29).  

 

2.3 Small mammal processing 

Captured mammals were restrained, identified, sexed, weighed, ear-tagged (National 

Band and Tag, Newport, KY), and examined for ticks.  Ticks were removed using tweezers and 

placed in 70% ethanol vials for later identification and lab analysis.  One 2-mm ear punch biopsy 

was taken from each mammal using a sterilized circular ear punch (National Band and Tag, 

Newport, KY) and placed in 70% ethanol (Sinsky and Piesman 1989).  Recaptured mammals 

were similarly processed and their ear tag numbers were recorded.  Following examination, the 

small mammals were released at the trapping site.  All procedures were approved under animal 

care and biosafety protocols at the University of Illinois Urbana-Champaign.   
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2.4 Lab analysis 

 Identification of the ticks to life stage and species was performed under a dissecting 

microscope using an identification key (Sonenshine 1979).  Multiple I. scapularis larvae from a 

single host were then pooled and tested as one unit; whereas, nymphs were tested individually.  

Total DNA from the tick-pools and ear biopsies was extracted using the DNeasy Blood and 

Tissue Kit (Qiagen, Valencia, CA) following a modified version of the Qiagen supplementary 

protocol: Purification of Total DNA from Ticks for Detection of Borrelia DNA.  The DNA 

samples were tested for B. burgdorferi at Michigan State University using either 1) a nested 

polymerase chain reaction (PCR) for the 16S – 23S rRNA intergenic spacer region (IGS) of 

Borrelia spp. (Bunikis et al. 2004b) followed by visualization with gel electrophoresis or 2) a 

quantitative PCR (qPCR) of a region of the 16S rRNA of B. burgdorferi (Tsao et al. 2004).  

Preliminary experiments showed that both tests were comparable in sensitivity and were able to 

detect positive samples containing a minimum 10
0
 – 10

-1
 organisms.   

 

2.5 Statistical analysis 

 The number of small mammals and I. scapularis were calculated by habitat and by year.  

I used three measures to evaluate habitat diversity and temporal changes of I. scapularis 

occurrence: prevalence of I. scapularis infestation (proportion of mammals that were infested), 

mean intensity of infestation (number of I. scapularis per infested mammal), and I. scapularis 

relative density (number of I. scapularis per mammal).  Prevalence of B. burgdorferi infection 

was quantified by the proportion of positive tick-pools from infested mammals.  Differences in 

number of small mammals, number of I. scapularis, mean intensity of infestation and I. 

scapularis relative density across habitats and years were compared using negative binomial 
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regression.  Ratios (R) of means were reported and used to quantify the differences.  Because 

number of trapnights did not distribute equally among all sites and years, it was adjusted in the 

regression model.  Prevalence of I. scapularis infestation and B. burgdorferi infection were 

evaluated using logistic regression.  Odds ratios (OR) were used to quantify the differences in 

prevalence.  If sparse data were observed (expected count < 5), an exact test was used.  Statistical 

analyses were performed using SAS software (Version 9.1.3; Statistical Analysis System 

Institute Inc., Cary, NC). A P ≤ 0.05 was considered significant in this study.     

 

3. Results 

3.1 Small mammal abundance and diversity  

 A total of 2,446 small mammals captured (including recaptures) were examined for ticks 

from 2005 through 2009.  The white-footed mouse (Peromyscus spp.) comprised the vast 

majority (96%) of individuals captured in all habitats.  Other species processed include: the 

meadow jumping mouse (Zapus hudsonius) in the young forest, flood plain, and prairie; and the 

prairie vole (Microtus ochrogaster) and the Western harvest mouse (Reithrodontomys megalotis) 

only found in the prairie.  The abundance of small mammals captured was significantly different 

(P < 0.001) across the four habitats.  The abundance was highest for the flood plain (n = 844) 

followed by the old forest (n = 739) and young forest (n = 724), then the prairie (n = 139).  

Despite the prairie having the lowest abundance of mammals, it had the highest diversity of 

species captured (Table 2.1.).    

  

3.2 Ixodes scapularis abundance 

 A total of 1,009 immature I. scapularis ticks (977 larvae and 32 nymphs) were collected 

from the small mammals (Table 2.1.).  In addition, I identified 290 immature Dermacentor 
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variabilis ticks, found primarily in the old forest and flood plain, but did not include them in the 

analysis.  The abundance of I. scapularis was also different (P < 0.001) across the four habitats.  

The young forest had the highest abundance of I. scapularis (n = 676), followed by the prairie (n 

= 176), the old forest (n = 127), and the flood plain (n = 30).   

  

3.3 Ixodes scapularis occurrence 

Looking at differences in I. scapularis occurrence between habitats, prevalence of I. 

scapularis infestation did not vary between the prairie and the young forest (the reference group 

for site) (P = 0.983) (Table 2.2.).  However, the odds of infestation per trapnight for the young 

forest were 5 and 37 times higher compared to the old forest (P < 0.001) and the flood plain (P < 

0.001) respectively (Table 2.2.).  Intensity of infestation showed the same pattern with the 

greatest number of I. scapularis per infested mammal found in the prairie and the young forest 

(P = 0.498).  These two habitats had, on average, twice as high an intensity of infestation as both 

the old forest (P < 0.001) and the flood plain (P = 0.001) (Table 2.2.).  Based on the outcome of 

the previous measures, the density of I. scapularis was also highest for the prairie and the young 

forest (P = 0.913), followed by the old forest (P < 0.001), and finally the flood plain (P < 0.001) 

(Table 2.2.). 

Over the study period, the odds of infestation prevalence per trapnight compared to 2005 

(the reference group for year) only increased significantly in 2009 (OR = 2.4 (1.5, 3.9), P < 

0.001) (Fig. 2.2a.).  In addition, 2009 had the highest relative density (0.6 I. scapularis per 

mammal), and the second highest mean intensity (3.0 I. scapularis per infested mammal) (Figs. 

2.2b, 2.2c.).  Interestingly, 2006 had the second highest abundance of mammals (n = 738) with 

the lowest prevalence of infestation (11.2%), yet the highest mean intensity of infestation (3.7 I. 
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scapularis per infested mammal) (Figs. 2.2a, 2.2b).  Despite a considerably small number of 

mammals captured in 2007 (n = 55), prevalence and mean intensity of I. scapularis infestation 

were third highest, and relative density was second highest (Figs. 2.2a – 2.2c).     

 

3.4 Borrelia burgdorferi prevalence 

In total, 388 I. scapularis pools and 861 ear tissue samples were tested for B. burgdorferi 

by either PCR or qPCR.  Out of 388 I. scapularis pools, 56 were positive, for an overall infection 

prevalence of 14% (Table 2.3.).  The highest proportion of positive tick pools was found in the 

prairie (27%).  The odds of I. scapularis pools testing positive in the prairie were twice as high 

as the young forest; however, the P value is at the maximum limit of significance (P = 0.05) 

(Table 2.3.). The sample sizes of I. scapularis pools testing positive for B. burgdorferi were 

sparse in the old forest (n = 5) and the flood plain (n = 1) making it difficult to accurately 

compare differences with the number of positives in the young forest (Table 2.3.).  Because of 

the small sample size of total positive I. scapularis pools (n = 56), more data are demanded to 

confirm the differences across sites.  Although the abundance of I. scapularis varied across years 

(P < 0.001), the prevalence of B. burgdorferi infection within RAP did not significantly vary 

over the study period (P = 0.992).  The exception being 2006, when none of the samples tested 

positive (Fig. 2.3).   

Out of 861 ear biopsies that were tested, only two samples were positive for B. 

burgdorferi: a Z. hudsonius from the flood plain in 2005 and an M. ochrogaster from the prairie 

in 2009.  The DNA sequence of the 16S – 23S rRNA IGS of B. burgdorferi, extracted from the 

Z. hudsonius ear tissue, was determined to validate the PCR assay and determine the strain 

identity.  The IGS product was purified (Qiagen PCR Purification Kit; Qiagen, Valencia, CA) 
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and the sequence was determined using the inner primers on an ABI Prism 3100 Genetic 

Analyzer (Applied Biosystems, Foster City, CA).  The sequence was aligned with the 

prototypical strains published in Bunikis et al. (2004b) using the program MEGA (Tamura et al. 

2007).  The isolated B. burgdorferi strain was IGS type 4D, which is a ribosomal spacer type 

(RST) 3 spirochete.  All 3 RST groups of B. burgdorferi have been associated with human skin 

lesions and cultures (Liveris et al. 1995).   

Given the large sample size of ear biopsies, I expected a higher proportion of them to test 

positive.  Because B. burgdorferi infection in I. scapularis pools averaged 14% overall, the 

infection prevalence of the ear biopsies should be similar.   Reasoning for this low positive 

outcome in the ear biopsies is discussed in the next section. 

 

4. Discussion 

 The effect of habitat diversity on the occurrence of I. scapularis and the prevalence of B. 

burgdorferi infection among small mammal hosts in a natural area is not well known.  In the 

highly fragmented region of east-central Illinois, the Sangamon River is a vital riparian corridor 

among small forest and remnant prairie patches surrounded by agricultural fields and urban areas 

(Rosenblatt et al. 1999).  This landscape produces a complex but relatively small network of 

habitat diversity with unknown effects on the dynamics of I. scapularis occurrence and B. 

burgdorferi infection among small mammal hosts.  The results of this study support the 

hypothesis that I. scapularis distribution continues to expand in Illinois (Cortinas and Kitron 

2006, IDPH 2009) and that environments suitable for transmission of Lyme disease continue to 

emerge, specifically in the east-central region of the state.       
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 The data of this study indicate differences in I. scapularis prevalence, mean intensity, and 

relative density between habitats, with the prairie and young forest having greater measures of I. 

scapularis occurrence than both the old forest and the flood plain (P < 0.001).   The prevalence 

of I. scapularis infestation among trapped small mammals ranged from 40% in the prairie to 

33% in the young forest, 11% in the old forest, and 2% in the flood plain.  Although these results 

are comparable to small mammal studies in forest patches in northwestern Illinois (Kitron et al. 

1991, Mannelli et al. 1994, Slajchert et al. 1997), this study is the first to report a prairie habitat 

supporting the highest prevalence of I. scapularis infestation compared to the forested sites 

within the same natural area.   

 Another important outcome of this study indicates that B. burgdorferi is present in the 

park.  The highest prevalence of B. burgdorferi infection was found in I. scapularis pools from 

the prairie (27%) followed by the young forest (15%), the old forest (6%), and the flood plain 

(6%).   This result is of pivotal importance to evaluate the risk of Lyme disease transmission in 

an area where the mechanisms of host-vector coexistence and the maintenance of B. burgdorferi 

remain equivocal.  Although B. burgdorferi is present within the park, there was no significant 

temporal change of B. burgdorferi infection across the study period, with the exception of zero 

positive samples in 2006.  Upon investigation, no issues regarding the sample collection, DNA 

extraction, or PCR assays were discovered that would cause the negative data for 2006.   

 Surprisingly, only two ear biopsies were positive for B. burgdorferi.  Because 14% of the 

I. scapularis pools tested positive, a similar number of ear biopsies should be positive as well.  

The ear punch method has shown successful sensitivity for both culture and PCR (Sinsky and 

Piesman 1989, Barthold et al. 1991, Hofmeister et al. 1992, Marshall et al. 1994).  However, 

there are several factors that may have contributed to the low number of positive ear biopsies in 
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my study.  The density of spirochete growth has been shown to increase as the position of the ear 

punch moved inward toward the center and base of the ear (Sinsky and Piesman 1989, 

Hofmeister and Childs 1995).  These researchers found that most negative samples were taken 

from peripheral ear tissue.  In addition, by repeatedly sampling individuals, the proportion of 

positive punches noticeably decreased at 16 weeks post-infection (Sinsky and Piesman 1989).  

The location of the ear punches (peripheral versus central tissue) most likely varied within my 

study.  Non-infested mammals may have been infected with B. burgdorferi more than 16 weeks 

prior to capture, suggesting low to absent spirochetemia in ear tissues at the time of capture.  

 It is also understood that the number of visible spirochetes in infected tissue greatly 

decreases as infection progresses, as seen in the histology study of Barthold et al. (1991) and in 

human Lyme disease tissues.  Marshall et al. (1994) tested preserved museum specimens of P. 

leucopus for B. burgdorferi.  Only 2 of 280 samples were positive using nested PCR for OspA.  

In this case, low positive results were most likely caused by inhibitory effects of specimen 

preservation methods.  However, Marshall et al. (1994) state that a small sample of skin (2 mm) 

may contain low copy numbers of Borrelia DNA.   Distribution of spirochetes may vary across 

the tissue, especially between the ear periphery and the center.  Tick larvae feed for 2-3 days 

(Fish 1993), so they may accumulate a greater spirochetal load compared to the ear tissue, 

leading to a higher proportion of I. scapularis pools testing positive compared to the ear biopsies.  

 Small mammals from the flood plain accounted for 35% (844) of total captures, yet very 

few I. scapularis were found -- 3% (30) of total I. scapularis collected.  Out of 16 I. scapularis 

pools from the flood plain, only one was positive for B. burgdorferi.  Therefore, the flood plain 

accounts for many of the negative ear biopsies based on high mammal abundance but extremely 

low I. scapularis occurrence and B. burgdorferi prevalence. In addition, 64% (555) of ear 
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biopsies were collected in 2006, when no I. scapularis pools or ear biopsies tested positive, thus 

accounting for another large portion of negative samples.  However, further investigation is 

needed to resolve this discrepancy between B. burgdorferi prevalence in I. scapularis pools and 

in mammal ear biopsies. 

 In contrast to small mammal studies in hyper endemic areas of Lyme disease, the overall 

prevalence of B. burgdorferi infection in RAP (14%) was lower compared to 21% in northwest 

Illinois (Kitron et al. 1991), 29% in Massachusetts (Levine et al. 1985), 29% in Maryland 

(Anderson et al. 2006), 20-55% in Wisconsin (Godsey et al. 1987), and 94% in New York (Fish 

and Daniels 1990).  Although this study utilized PCR assays to test for B. burgdorferi, the 

overall prevalence within the park is also lower than the prevalence of I. scapularis infection 

(32-37%) reported from tick dragging studies in northeast Illinois utilizing culture methods (Jobe 

et al. 2007).  The prevalence of B. burgdorferi at RAP is still relatively low; nonetheless, it has 

been recommended that a person bitten by a tick in areas where the percentage of B. 

burgdorferi–infected I. scapularis exceeds 20% receive prophylactic antibiotic treatment 

(Nadelman et al. 2001, Wormser et al. 2006, Jobe et al. 2007). 

 Surprisingly, the prairie had the highest occurrence of I. scapularis (although not 

statistically different from occurrence in the young forest), despite having the lowest abundance 

of small mammals.  The prairie also had the highest observed diversity of small mammals, 

including Peromyscus spp. as well as M. ochrogaster, R. megalotis, and Z. hudsonius.  These 

additional species may serve as substitute or additional hosts for I. scapularis where P. leucopus 

is less abundant (Mannelli et al. 1993, Markowski et al. 1997).   

 Of additional interest in this study, all positive I. scapularis pools and one positive ear 

biopsy from the prairie came from the prairie vole, M. ochrogaster.  Although the meadow vole 
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(Microtus pennsylvanicus) has been reported as a competent reservoir for B. burgdorferi, 

(Anderson 1988, Markowski et al. 1998), no reports to date describe M. ochrogaster as a 

potential reservoir host for B. burgdorferi.  Mather et al. (1989) reported that the prairie does not 

qualify as suitable habitat for I. scapularis populations, so the potential for small mammal 

reservoir hosts of B. burgdorferi in this habitat may have been overlooked.     

 Based on previous studies, decreased biodiversity and increased habitat fragmentation 

appear to have significant roles in the overpopulation of P. leucopus (Rosenblatt et al. 1999), the 

establishment of I. scapularis (Ginsberg 1994), and the risk of Lyme disease (Van Buskirk and 

Ostfeld 1995, LoGiudice et al. 2003).  Fragmentation of habitat in RAP has perhaps led to 

increased densities of P. leucopus in the forested areas, as the majority of small mammals 

captured in this study were Peromyscus spp. (96%).  Yet, this study shows an increase in I. 

scapularis occurrence and B. burgdorferi prevalence in the prairie, where small mammal 

diversity is greatest.   

 Conclusions from prior studies indicate that an increase in biodiversity leads to a 

―dilution effect‖ of immature I. scapularis acquiring B. burgdorferi infection because of 

decreased reservoir-competency in hosts (Van Buskirk and Ostfeld 1995, Ostfeld and Keesing 

2000).  Despite evidence of this hypothesis (LoGiudice et al. 2003), the results of my study 

suggest otherwise.  The presence of M. ochrogaster in the prairie could serve as a competent 

reservoir, thus having an opposite effect, as Ogden and Tsao suggest (2009), by amplifying the 

abundance of infected I. scapularis.  However, this study is limited in that it only includes small 

mammal diversity.  A comprehensive evaluation of all vertebrate diversity in these habitats may 

lead to a better understanding of existing ecological interactions influencing the survival of B. 
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burgdorferi-competent reservoirs and creating a potential dilution, or amplification, effect 

(Ogden and Tsao 2009).   

 The observation made by Brown and Burgess (2001) that habitat heterogeneity leads to 

host diversity and increased rodent density may explain why the occurrence of I. scapularis is 

highest in the prairie as well as the young forest.  Given the relatively small size of RAP (614 

ha), I. scapularis abundance and B. burgdorferi prevalence may be dynamic, or continue to shift 

and change within and among the habitats of the park.  The diverse habitats of this natural area 

are all clustered within a close range and bordered by agriculture fields and urban areas 

(Rosenblatt et al. 1999). Such habitat composition favors a high degree of connectivity enabling 

vertebrate host movements between suitable habitat patches, which, based on literature, is an 

important factor correlated with I. scapularis distribution and abundance (Estrada-Peña 2003).  

For example, this landscape could facilitate deer movement between habitats enabling them to 

utilize the riparian corridor of the Sangamon River near the young forest as a dispersal route, the 

prairie as a bedding area, and the agriculture fields as a food source.  Such deer habitat use could 

explain the high occurrence of I. scapularis in the prairie and young forest.  As habitat patches 

become smaller in size due to changes in land use toward agriculture and urbanization, I. 

scapularis may increase in abundance and density in remaining habitat (Ginsberg 1994).   

 Given the difficulties associated with surveying only one study site, I. scapularis 

distribution can easily vary from one local-scale site to the next.  However, Piesman and Gray 

(1994) point out that there are a number of exceptions to generalized tick-habitat associations.  

Landscape context can influence the abundance of I. scapularis (Madhav et al. 2004, Estrada-

Peña 2009).  This study proves the possibility of I. scapularis establishment within habitats other 

than forested areas.   
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 Continued sampling over the five-year period has increased understanding of the 

relationship between I. scapularis occurrence, B. burgdorferi infection, habitat diversity, and 

small mammal abundance within a small natural area surrounded by a fragmented landscape.  

Based on these findings, I conclude that estimating I. scapularis occurrence and B. burgdorferi 

prevalence in an area may depend on a comprehensive evaluation of the surrounding habitat 

diversity and species composition.  Monitoring the distribution of I. scapularis and the 

prevalence of B. burgdorferi in this natural area of east-central Illinois will allow Lyme disease 

preventive measures to be focused in high-risk areas of concern. 
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Chapter 2 meets the formatting requirements for Vector-Borne and Zoonotic Diseases.  
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Habitat Species n Ratio
a
 (95% CI) I. scapularis Ratio

b
 (95% CI)

Young Forest
a,b

Peromyscus spp. 723

Z. hudsonius 1

Total 724 --- 676 ---

Prairie M. ochrogaster 64

Peromyscus spp. 51

Z. hudsonius 15

R. megalotis 9

Total 139 0.2 (0.17, 0.32) 176 0.2 (0.1, 0.3)

Old Forest Peromyscus spp. 739 1.1 (0.9, 1.5) 127 0.1 (0.05, 0.21)

Flood Plain Peromyscus spp. 832

Z. hudsonius 12

Total 844 1.5 (1.1, 1.9) 30 0.04 (0.02, 0.09)

Total 2,446 1,009

Young Forest served as the reference group for comparison.

b
Ratio of mean number of Ixodes scapularis  collected per trapnight, adjusting for year and month.

Young Forest served as the reference group for comparison.

 

a 
Ratio of mean number of mammals captured per trapnight, adjusting for year and month.  

6. Tables and Figures 

 

Table 2.1. Summary of small mammals captured and Ixodes scapularis collected from sites in                                                                   

Robert Allerton Park, Piatt County, Illinois, 2005-2009. 
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Table 2.3. Ixodes scapularis pools from infested small mammals  

 

tested for Borrelia burgdorferi in Robert Allerton Park, Piatt  

 

County, Illinois, 2005-2009. 

  

 

Habitat 

No. of infested 

mammals 

Pools positive for                

B. burgdorferi   

% (n)  

Odds Ratio
a
 

(95% CI) 

Young Forest
a
 237 14.8 (35) --- 

Prairie 55 27.3 (15) 2.2 (1.0, 4.5) 

Old Forest 80  6.3 (5) x 

Flood Plain 16  6.3 (1) x 

Total 388 14.4 (56)   

    
a
Odds Ratio of B. burgdorferi infection prevalence per trapnight,  

 

adjusting for year and month.  Young Forest served as the reference  

 

group for comparison. 

 

x Small sample size of Old Forest and Flood Plain did not allow  

 

accurate comparisons. 
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Fig. 2.1. Study site in east-central Illinois. Robert Allerton Park (RAP) is located 6.4 km 

southwest of Monticello, in Piatt County, Illinois.  Site 1 = Young Forest, Site 2 = Prairie, Site 3 

= Old Forest, Site 4 = Flood Plain. 
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Fig. 2.2a.- c. Temporal changes in Ixodes scapularis occurrence (Prevalence, Mean Intensity, 

and Relative Density) in Robert Allerton Park, Piatt County, Illinois 2005 – 2009. *Value 

significantly higher compared to 2005 as the reference group (P ≤ 0.001). 
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Fig. 2.3. Ixodes scapularis pools tested for Borrelia burgdorferi in Robert Allerton Park, Piatt 

County, Illinois 2005 – 2009.  % positive pools did not vary significantly between years with the 

exception of 2006 when no pools tested positive.  
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CHAPTER 3: 

IXODES SCAPULARIS DISTRIBUTION IN NORTHEAST ILLINOIS 

 

1. Introduction 

Lyme disease, the most common vector-borne disease of humans in the U.S., is caused by 

the spirochete Borrelia burgdorferi sensu stricto and is transmitted by the blacklegged tick 

(Ixodes scapularis) in the Midwest (Burgdorfer et al. 1982, Steere et al. 1983).  The number of 

human Lyme disease cases in Illinois has quickly increased from 35 reported cases in 2000 to 

108 cases in 2008 (IDPH 2010a).    If left untreated during the early stages, Lyme disease can 

affect the skin, musculoskeletal, cardiac, and central nervous systems, ultimately leading to long-

term severe joint pain and neurological damage (Steere et al. 2004).  Since B. burgdorferi occurs 

naturally in a variety of small mammal and bird reservoir hosts, immature I. scapularis become 

infected when taking a blood meal (Mather et al. 1989, Fish 1993, Bunikis et al. 2004).  Humans 

are incidental hosts of I. scapularis and acquire B. burgdorferi infection when bitten by an 

infected nymphal or adult tick.   

The two-year life cycle of the vector tick, I. scapularis, consists of three stages: larva, 

nymph, and adult.  Each stage actively quests for a blood meal before molting into the next stage.  

The larvae typically hatch uninfected (Lane 1994).  Ixodes scapularis maintains the spirochete 

transtadially, so it can infect a susceptible host while feeding at a later life stage (Piesman et al. 

1986, Fish 1993).  The nymph stage poses the greatest risk for human infection in the Midwest 

because of its small size and its peak questing activity coinciding with increased human activity 

outdoors during late spring and early summer (Fish 1993).  Adult ticks feed and mate on larger 

animals like the white-tailed deer (Odocoileus virginianus) (Piesman et al. 1979).  Although deer 
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are not a competent reservoir for B. burgdorferi, they play an important role in tick dispersal, 

especially along riparian corridors (Cortinas and Kitron 2006). 

Both the vector tick and spirochete were once limited to a small area in Minnesota and 

Wisconsin (Davis et al. 1984, Callister et al. 1988).  Although I. scapularis was initially detected 

along the Rock River in Ogle County, Illinois, in the late 1980s (Bouseman et al. 1990), Illinois 

has not historically been considered a Midwestern endemic focus for Lyme disease (Picken et al. 

1995).  Studies assessing the presence of I. scapularis near major metropolitan areas, such as 

Milwaukee and Chicago, in the early 1990s showed no evidence of tick populations within these 

areas (Callister et al. 1991).    However, Picken et al. (1995) suggested that Illinois may 

eventually be considered an area of focal endemicity for both I. scapularis and B. burgdorferi 

based on the positive findings of several studies (Kitron et al. 1991a, Nelson et al. 1991).  

Suitable habitat for I. scapularis has been characterized by oak-dominated forests with 

sufficient leaf litter and moist, sandy soils (Kitron et al. 1991b, Mannelli et al. 1994).  The 

distribution and establishment of I. scapularis depends upon favorable vegetation, soil, 

topography, and climate necessary for questing, molting, diapause, and oviposition (Guerra et al. 

2002).  Guerra et al. (2002) predicted the distribution of I. scapularis in Illinois based on these 

environmental factors that favor or inhibit I. scapularis establishment in new areas.  Ixodes 

scapularis abundance is expected to increase with increased habitat suitability.  The Centers for 

Disease Control and Prevention (CDC) define a tick population as ―established‖ in an area if all 

three life stages or at least six individuals of a single stage are present (Dennis et al. 1998).   

Expansion of I. scapularis geographic distribution in northern Illinois has typically 

followed along riparian corridors via dispersal and migration of abundant white-tailed deer 

populations (Bouseman et al. 1990, Kitron et al. 1991a, Cortinas and Kitron 2006).  The Midwest 
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I. scapularis habitat suitability model predicted suitable forested habitats along the Des Plaines 

River in northeast Illinois (Guerra et al. 2002).  By 2007, Jobe et al. confirmed the presence of B. 

burgdorferi-infected I. scapularis at sites in northeast Illinois located less than one mile from 

city limits, and recognized that Lyme disease could become a significant health concern around 

the Chicago metropolitan area.  Thus, the risk of Lyme disease exposure is increasing throughout 

Illinois, most recently emerging in the northeast area of the state (Jobe et al. 2006, 2007).   

To date, mapping the spatial distribution of I. scapularis establishment within Illinois has 

been limited to nonstandardized reporting (IDPH 2009).  There are numerous natural areas, 

parks, and forest preserves in and around the Chicago metropolitan region.  Many homes in this 

urban-suburban area are also surrounded by dense vegetation and woodlots—ideal habitat for 

small mammal hosts and I. scapularis populations.  However, most homeowners are unaware of 

a potential residential or peridomestic risk of contracting Lyme disease (Guerra et al. 2002, Jobe 

et al. 2007).  Because there is no state-wide system for surveying I. scapularis, areas where the 

tick is present could be overlooked due to lack of reporting (Madhav et al. 2004). 

To assess the geographic distribution and abundance of I. scapularis throughout the 

Chicago metropolitan region of northeast Illinois, I surveyed public-access forest preserves 

frequented by large numbers of visitors.  I utilized timed dragging surveys to collect ticks.  This 

study builds upon previous work (Jobe et al. 2006, 2007) assessing I. scapularis distribution in 

northeast Illinois by sampling a larger geographic area over a two-year study period.  By 

collecting ticks over a large geographic range, I clarified whether I. scapularis distribution was 

limited to isolated patches or widespread throughout the northeast Illinois region.  
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2. Materials and Methods 

2.1 Study sites 

Thirty-two survey sites were selected from public-access forest preserves throughout 

Cook (n = 10), DuPage (n = 11), Lake (n = 10), and McHenry (n = 1) counties in northeast 

Illinois (Fig. 3.1, Table 3.1.).  Several sites within each county had previously known presence of 

I. scapularis (Jobe et al. 2007), while the remaining selected sites were not tested previously, or 

I. scapularis presence was unknown (Jeff Nelson, Tom Velat, Mike Adam personal 

communication).  Sites were selected so that they covered a large geographic distribution 

throughout the tri-county area including 6 sites within Chicago city limits.  Each site was 

surveyed up to five times either between May - June and October 2008, or between April - June 

and October 2009.  Four sites were surveyed in both 2008 and 2009.   

 

2.2 Collection of ticks 

Questing ticks were collected by drag sampling for three person-hours per site visit.   

Sampling was performed during the late morning and late afternoon on days with no rain, little to 

no wind, and a minimum temperature of 10° C to avoid wet vegetation and excessively hot or 

cold temperatures.  Standardized tick drags, made of 1-m
2
 white corduroy attached to a wooden 

dowel (Mather et al. 1996, Diuk-Wasser et al. 2006), were pulled across leaf litter and low 

vegetation along trail edges and over short transects (~25 m) perpendicular to trails in forested 

sites.  The drags were checked at 30 second intervals; attached ticks of all three life stages 

(larvae, nymphs, and adults) were removed and placed in vials filled with 70% ethanol.  To 

maximize tick collection during peak seasonal activity, drag sampling visits per site were 

repeated up to five times during the field season.    
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2.3 Laboratory analysis 

After transport to the laboratory, ticks were identified to species and life stage based on 

morphology using a stereo-microscope and tick identification keys (Sonenshine 1979).  Tick 

collection data, including site, date, species, and number of individuals were digitized into a 

database before specimens were added to the collection.  All procedures were approved under 

biosafety protocols at the University of Illinois Urbana-Champaign, and appropriate research 

collection permits were obtained from the forest preserve districts.  Geographic information 

systems created in ArcMap® (ESRI ArcView 9.2, 2006, Redlands, CA) were used to map tick 

distribution and relative abundance.  

 

3. Results 

I collected a total of 1,067 ticks from 30 out of 32 sites.  There were 602 I. scapularis 

ticks (152 larvae, 120 nymphs, and 330 adults) collected from 17 out of 32 sites (Table 3.1.).  

The CDC defines blacklegged tick establishment in an area if 2 of 3 life stages are found or 6 

individuals are collected (Dennis et al. 1998).  Therefore, 12 sites meet this requirement.  In 

addition to I. scapularis, Dermacentor variabilis (n = 321: 1 larva, 1 nymph, 319 adults), 

Haemaphysalis leporispalustris (n = 60: 55 larvae, 5 nymphs), Ixodes dentatus (n = 83 larvae), 

and Amblyomma americanum (n = 1 adult) were also collected (Table 3.1.).  The proportional 

number of ticks collected per site separated by species is shown in (Fig. 3.2.).  The highest 

abundance of I. scapularis was collected in Lake County (n = 358), followed by DuPage County 

(n = 140), and Cook County (n = 100).  Only one site was surveyed in McHenry County in 2009, 

and 4 I. scapularis were collected.  In 2008, 15 sites were surveyed, and 296 I. scapularis were 
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collected (Fig. 3.3.).  In 2009, 17 new sites and 4 sites from 2008 were surveyed with 306 I. 

scapularis collected (Fig. 3.4.).   

  Ixodes scapularis were most abundant at the sites along the shoreline of Lake Michigan 

(Fig. 3.5.) suggesting suitable tick habitat with ideal microclimate conditions and abundant host 

availability in this area.  The areas where the fewest I. scapularis were found, specifically Lake 

County west of the shoreline and southeast Cook County, are mainly mesic to wet-mesic grassy 

sites.  This type of habitat is not believed to be suitable for the maintenance of abundant I. 

scapularis populations (Brown and Burgess 2001).  Ixodes scapularis appears to be well 

distributed throughout northeast Illinois (Fig. 3.6.) where suitable oak-dominated forested habitat 

is available similar to the predicted areas shown in the Midwest habitat suitability model (Guerra 

et al. 2002).  

 

4. Discussion 

Overall, this study provides a snap-shot of current I. scapularis distribution, which can be 

compared to historical data and aid future studies to monitor changes and predict areas of future 

establishment of I. scapularis populations.  During an initial study of the area surrounding 

Chicago and Milwaukee in the early 1990s, no I. scapularis were found and B. burgdorferi was 

only recovered from two small mammals (Callister et al. 1991).  These results led to the 

conclusion that northeastern Illinois and southeastern Wisconsin were not yet included in the 

Midwestern Lyme disease focus (Callister et al. 1991).  By 2006, Jobe et al. began finding I. 

scapularis at sites surrounding the Chicago area in Cook, DuPage, and Lake Counties.  In less 

than twenty years, I. scapularis had become established in northeastern Illinois.  Because a 

proportion of those ticks tested positive for B. burgdorferi, Lyme disease became an emerging 
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concern (Jobe et al. 2007).  However, only a few sites had been surveyed, so the extent of I. 

scapularis distribution and establishment was still unknown.  My current study has clarified the 

distribution and abundance of I. scapularis in areas of northeast Illinois where this information 

was previously unknown by documenting the location and number of ticks collected through 

intensive dragging surveys.  Ixodes scapularis were collected from sites where they were not 

previously found.  This new information is pertinent to build public awareness about the 

potential exposure to vector ticks and tick-borne disease, such as Lyme disease.     

Because I. scapularis were found at 17 of the 32 sites between 2008 and 2009, I conclude 

that I. scapularis is widely distributed throughout the study area of northeast Illinois where 

suitable habitat is available.  Similar to the results of a study focused on I. scapularis expansion 

along the Illinois River (Cortinas and Kitron 2006), I. scapularis also appears to be expanding its 

established range along the Des Plaines River and the shoreline of Lake Michigan in northeast 

Illinois.  Likewise, the predictive model for habitat suitability of I. scapularis by Guerra et al. 

(2002) shows the area along the Des Plaines, particularly in Lake County, to be highly suitable 

habitat for I. scapularis establishment.  My results support this prediction, as the highest 

abundance of I. scapularis was collected from sites in this geographic area.   

The abundance and geographical distribution of I. scapularis in an area depend on 

interactions between microclimate and habitat (Mannelli et al. 1994, Jones and Kitron 2000).  Of 

interest in this study, the eastern Lake - Cook County region appears to have a combination of 

environmental factors ideal for I. scapularis establishment given the large number of ticks 

collected in this area, especially in coastal sites along Lake Michigan.  As Cortinas and Kitron 

suggested (2006), the distribution of I. scapularis in Illinois appears to remain dynamic.     
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  Although I. scapularis was the species of interest in this study, a large number of 

Dermacentor variabilis (the American dog tick) were collected, as this tick species is very 

common throughout the state (IDPH 2010b).  Although this species is not a vector for B. 

burgdorferi, it is still a public health concern because it can transmit Rocky Mountain spotted 

fever, tularemia, and possibly ehrlichiosis to humans (IDPH 2010b).   It was surprising to find an 

adult Amblyomma americanum tick in Cook County.  Commonly known as the Lone Star tick, 

its distribution covers the southern half of the state; A. americanum is the vector for Southern 

tick-associated rash illness (STARI) (IDPH 2010b).  Haemaphysalis leporispalustris and Ixodes 

dentatus are two species of rabbit ticks.  Although these host-specific ticks have been found 

naturally infected with B. burgdorferi, they are not competent vectors and rarely bite humans 

(Anderson 1989, Lane et al. 1991).  While drag sampling, the immature stages of these host-

specific, nest-dwelling ticks were mostly found in big clusters of 10 or more individuals, mainly 

in October, suggesting that the tick drag had swept across a nest.    

Tick-borne diseases are recognized by the Illinois Department of Public Health as an 

emerging concern (IDPH 2010b).  Therefore, in addition to surveying I. scapularis, reporting the 

relative abundance of these other tick species collected is useful to increase understanding of 

ecological variables that determine spatial and temporal variation of vector-pathogen 

interactions.   This study provides information to build awareness of prevention efforts against 

tick bites and to develop environmental management strategies to control further spread of vector 

ticks and their associated pathogens.     

The results of this study yield valuable information about the geographic distribution and 

abundance of questing I. scapularis in northeast Illinois.  Based on these results, the public 

should be aware of I. scapularis presence within forested areas of Cook, DuPage, & Lake 
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Counties.  Residents and visitors of the fragmented urban and suburban landscapes of the 

Chicago metropolitan region may become vulnerable to an increased risk of Lyme disease as the 

distribution of established I. scapularis populations continues to expand.  Of interest, this study 

provides baseline data that will be useful to further evaluate the distribution and abundance of I. 

scapularis.  Because I. scapularis positive for B. burgdorferi were collected (Jobe et al. 2006, 

2007) in sites nearby and similar to those of this study, it is important to continue monitoring the 

prevalence of the spirochete within these areas, especially where I. scapularis were found to be 

abundant.   

 It is important to continue sampling efforts to track the potential spread of I. scapularis 

and B. burgdorferi, as changes in land use can alter wildilfe-vector-pathogen interactions and 

influence disease emergence.  Future research stemming from this study could focus on 

evaluating environmental factors, such as climate, habitat, and white-tailed deer and small 

mammal host populations, associated with the identified sites of established I. scapularis 

populations to gain more insight of wildlife-vector-pathogen interactions occurring in the 

fragmented landscape of northeast Illinois.  This further evaluation could identify possible 

environmental targets for managing or reducing I. scapularis distribution and abundance.  

Because northeast Illinois is so densely populated and the forest preserves are frequently visited 

by large numbers of people, this study emphasizes the need to increase research efforts and 

public awareness concerning the occurrence of I. scapularis and the prevalence of B. 

burgdorferi.  Focusing research of I. scapularis and Lyme disease prevention efforts in the 

Chicago metropolitan region will enable people to make safer decisions when utilizing the 

outdoor environment for recreation and residence.   
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Chapter 3 meets the formatting requirements for the Vector-Borne and Zoonotic Diseases.  
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Site County Year Visits I. scapularis
a

D. variabilis Other Total Ticks

Brookfield
b

Cook 2008 4 0/1/0 0 2 3

Hegewisch Marsh Cook 2008 3 0/0/0 4 40 44

Potawatomi Cook 2008 1 0/0/0 0 0 0

Powderhorn Cook 2008 3 0/0/0 8 1 9

Somme Woods Cook 2008 4 0/2/1 1 1 5

Swallow Cliff South
b 

Cook 2008 4 13/17/12 0 2 44

Brookfield
b

Cook 2009 4 0/0/0 1 0 1

Caldwell Woods Cook 2009 1 0/0/0 0 0 0

Forest Glen Cook 2009 1 0/0/0 0 0 0

Peterson Park Cook 2009 4 0/1/1 0 0 2

Schiller Woods South Cook 2009 4 0/0/0 0 0 0

Swallow Cliff South
b 

Cook 2009 2 0/11/41 1 0 53

Blackwell DuPage 2008 5 0/1/7 5 58 71

Churchill DuPage 2008 4 1/10/26 7 39 83

Danada DuPage 2008 5 0/1/22 19 0 42

Fullersburg
a 

DuPage 2008 4 1/2/5 1 0 9

Waterfall Glen
a

DuPage 2008 3 0/1/26 4 0 31

West DuPage Woods DuPage 2008 4 0/1/7 5 1 14

York DuPage 2008 2 0/0/0 0 0 0

Fullersburg
b

DuPage 2009 2 0/0/1 0 0 1

Meacham Grove DuPage 2009 4 0/0/0 7 0 7

Pratts Wayne Woods DuPage 2009 2 0/0/0 10 0 10

Salt Creek DuPage 2009 4 0/0/0 0 0 0

Waterfall Glen
b

DuPage 2009 2 0/0/28 0 0 28

West Branch DuPage 2009 2 0/0/0 10 0 10

Table 3.1. Survey sites visited and ticks collected in northeast Illinois counties 2008 - 2009.

6. Tables and Figures 
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Table 3.1. (cont.)

Site County Year Visits I. scapularis
a

D. variabilis Other Total Ticks

Fort Sheridan Lake 2008 4 18/14/92 46 0 170

Ryerson Lake 2008 4 8/2/5 6 0 21

Grant Lake 2009 5 0/0/1 34 0 35

Lakewood Lake 2009 5 0/0/2 57 0 59

Lyons Lake 2009 4 2/11/23 21 0 57

Nippersink Lake 2009 5 0/0/0 16 0 16

Raven Glen Lake 2009 4 0/0/0 25 0 25

Singing Hills Lake 2009 1 0/0/0 9 0 9

Spring Bluff Lake 2009 4 109/45/26 4 0 184

Van Patten Lake 2009 4 0/0/0 2 0 2

Moraine Hills McHenry 2009 5 0/0/4 18 0 22

a
larva/nymph/adult

b
site surveyed in 2008 and 2009
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Fig. 3.1. Locations of tick survey sites in Cook, DuPage, Lake, and McHenry Counties of 

northeast Illinois 2008 - 2009. 
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Fig. 3.2. Results of tick surveys in Cook, DuPage, Lake, and McHenry Counties of northeast 

Illinois 2008 - 2009. 
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Fig. 3.3. Results of tick surveys in Cook, DuPage, Lake, and McHenry Counties of northeast 

Illinois 2008. 
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Fig. 3.4. Results of tick surveys in Cook, DuPage, Lake, and McHenry Counties of northeast 

Illinois 2009. 
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Fig. 3.5. Distribution and relative abundance of Ixodes scapularis collected in Cook, DuPage, 

Lake, and McHenry Counties of northeast Illinois 2008 - 2009. 
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Fig. 3.6. Relative abundance of Ixodes scapularis collected at sites in Cook, DuPage, Lake, and 

McHenry Counties of northeast Illinois 2008 - 2009. 
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CHAPTER 4: 

 

SUMMARY 

   

 The distribution of Ixodes scapularis establishment continues to expand in Illinois.  At 

Robert Allerton Park (RAP) in Piatt County, Illinois, I. scapularis were most abundant in the 

young forest and prairie habitats.  The prairie had the highest diversity of small mammal hosts.  

Prevalence, mean intensity, and relative density of I. scapularis and prevalence of B. burgdorferi 

infection were highest for the prairie and young forest.  The overall B. burgdorferi infection 

prevalence of I. scapularis pools from RAP was 14%.  Continued sampling from 2005 - 2009 

has increased understanding of the relationship between I. scapularis occurrence, B. burgdorferi 

infection, habitat diversity, and small mammal abundance within a small natural area surrounded 

by a fragmented landscape.    

 In northeast Illinois, I. scapularis of all three life stages were collected from 17 of the 32 

survey sites.  Ixodes scapularis appear to be widely established throughout the counties of Cook, 

DuPage, and Lake where suitable habitat is available.  Of interest in this study, the eastern Lake - 

Cook County region appears to have a combination of environmental factors ideal for I. 

scapularis establishment given the large number of ticks collected in this area, especially in 

coastal sites along Lake Michigan.  My current study has clarified the distribution and abundance 

of I. scapularis in areas of northeast Illinois where this information was previously unknown.  

Ixodes scapularis were collected from sites where they were not previously found.  This new 

information is pertinent to build public awareness about the potential exposure to I. scapularis 

and Lyme disease in the metropolitan region of Chicago. 

 Surprisingly, the highest abundance of I. scapularis were found in habitats not typical or 

predicted for I. scapularis establishment i.e. the prairie habitat in east-central Illinois and the 
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coastal forested sites along Lake Michigan in northeast Illinois.  Taken in context of the overall 

landscape, it is possible for I. scapularis populations to utilize these habitats, especially if they 

border typical I. scapularis habitat (oak-dominated forests).  For example, RAP is spatially 

unique since the prairie is situated between forested areas, a riparian corridor, and agriculture 

fields.  As host mammals, such as white-tailed deer and white-footed mice, adapt to increased 

development, they utilize habitats in new ways.  We may see a reflection of this host habitat shift 

in I. scapularis populations appearing where they previously have not been detected.  Therefore, 

I do not broadly generalize these unconventional I. scapularis habitats as ideal locations for their 

establishment, but it may be possible for I. scapularis to take advantage of such habitats and 

ecotones located near forested habitat in a fragmented landscape.    

 This study provides baseline data for further evaluation of emerging Lyme disease foci in 

Illinois.  The distribution of I. scapularis is encroaching upon developed areas, increasing the 

risk for human exposure to Lyme disease.  Habitats and reservoir hosts that were previously 

overlooked may be suitable for I. scapularis and B. burgdorferi establishment in dynamic 

fragmented landscapes.  This study reveals mechanisms associated with wildlife – vector – 

pathogen interactions that could influence disease emergence and exposure, and it emphasizes 

the need to increase research efforts and public awareness concerning the occurrence of I. 

scapularis and the prevalence of B. burgdorferi in Illinois. 
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APPENDIX A: 

 

SMALL MAMMAL TRAPPING RESULTS FOR EAST-CENTRAL ILLINOIS 

 

Results of small mammal trapping in four habitats at Robert Allerton Park (RAP) in Piatt 

County, Illinois 2005 – 2009.  I_scap is the sum of Ixodes scapularis ticks collected from 

captured small mammals per trapnight.  Mammal is the sum of small mammals trapped, 

processed, and examined for ticks per trapnight. 

Site Year Month Trapnight I_scap Mammal 

Young Forest 2005 6 1 3 5 

Young Forest 2005 6 2 1 4 

Young Forest 2005 6 3 0 2 

Young Forest 2005 7 4 6 4 

Young Forest 2005 7 5 3 2 

Young Forest 2005 8 6 14 8 

Young Forest 2005 8 7 8 9 

Young Forest 2005 8 8 15 7 

Young Forest 2005 8 9 9 3 

Young Forest 2005 10 10 3 12 

Young Forest 2005 10 11 2 16 

Young Forest 2006 6 1 2 28 

Young Forest 2006 7 2 28 46 

Young Forest 2006 7 3 100 41 

Young Forest 2006 8 4 94 22 

Young Forest 2006 9 5 33 34 

Young Forest 2006 10 6 2 43 

Young Forest 2007 5 1 1 1 

Young Forest 2007 7 2 19 7 

Young Forest 2007 10 3 0 4 

Young Forest 2008 6 1 1 15 

Young Forest 2008 6 2 13 63 

Young Forest 2008 7 3 7 29 

Young Forest 2008 8 4 100 104 

Young Forest 2008 8 5 18 25 

Young Forest 2008 9 6 42 64 

Young Forest 2008 10 7 6 43 

Young Forest 2009 6 1 10 10 

Young Forest 2009 7 2 5 12 
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Appendix A  

 

(cont.) 

     

Site Year Month Trapnight I_scap Mammal 

Young Forest 2009 7 3 41 7 

Young Forest 2009 8 4 47 20 

Young Forest 2009 9 5 31 17 

Young Forest 2009 10 6 12 17 

Prairie 2005 6 1 1 2 

Prairie 2005 6 2 0 1 

Prairie 2005 7 3 0 5 

Prairie 2005 7 4 0 1 

Prairie 2005 7 5 0 2 

Prairie 2005 8 6 0 2 

Prairie 2005 8 7 4 9 

Prairie 2005 8 8 0 6 

Prairie 2005 8 9 0 4 

Prairie 2005 10 10 0 1 

Prairie 2005 10 11 0 1 

Prairie 2006 6 1 0 0 

Prairie 2006 7 2 0 1 

Prairie 2006 7 3 0 2 

Prairie 2006 8 4 18 4 

Prairie 2006 9 5 0 1 

Prairie 2006 10 6 0 8 

Prairie 2007 5 1 0 1 

Prairie 2007 7 2 0 2 

Prairie 2007 10 3 0 1 

Prairie 2008 6 1 0 0 

Prairie 2008 7 2 14 5 

Prairie 2008 7 3 6 4 

Prairie 2008 8 4 4 7 

Prairie 2008 9 5 15 9 

Prairie 2008 10 6 7 14 

Prairie 2009 6 1 0 0 

Prairie 2009 7 2 2 3 

Prairie 2009 7 3 61 10 

Prairie 2009 8 4 29 15 

Prairie 2009 9 5 15 10 

Prairie 2009 10 6 0 8 

Old Forest 2005 6 1 0 6 

Old Forest 2005 7 2 0 4 
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Appendix A 

 

(cont.) 

     

Site Year Month Trapnight I_scap Mammal 

Old Forest 2005 7 3 2 12 

Old Forest 2005 8 4 1 8 

Old Forest 2005 8 5 0 9 

Old Forest 2005 8 6 0 5 

Old Forest 2005 9 7 0 12 

Old Forest 2005 9 8 1 11 

Old Forest 2005 10 9 1 16 

Old Forest 2005 10 10 0 13 

Old Forest 2006 6 1 0 28 

Old Forest 2006 7 2 1 26 

Old Forest 2006 7 3 5 33 

Old Forest 2006 8 4 4 36 

Old Forest 2006 9 5 1 45 

Old Forest 2006 10 6 0 54 

Old Forest 2007 6 1 0 1 

Old Forest 2007 7 2 1 4 

Old Forest 2007 10 3 0 11 

Old Forest 2008 6 1 1 37 

Old Forest 2008 6 2 0 17 

Old Forest 2008 7 3 36 76 

Old Forest 2008 8 4 38 73 

Old Forest 2008 9 5 11 45 

Old Forest 2008 10 6 1 29 

Old Forest 2009 6 1 0 10 

Old Forest 2009 7 2 1 15 

Old Forest 2009 7 3 13 23 

Old Forest 2009 8 4 8 33 

Old Forest 2009 9 5 1 16 

Old Forest 2009 10 6 0 31 

Flood Plain 2005 6 1 0 15 

Flood Plain 2005 7 2 0 1 

Flood Plain 2005 7 3 3 3 

Flood Plain 2005 8 4 0 11 

Flood Plain 2005 8 5 0 12 

Flood Plain 2005 8 6 0 8 

Flood Plain 2005 8 7 0 13 

Flood Plain 2005 9 8 1 11 

Flood Plain 2005 10 9 0 28 
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Appendix A 

 

(cont.) 

     

Site Year Month Trapnight I_scap Mammal 

Flood Plain 2005 10 10 0 16 

Flood Plain 2006 6 1 0 62 

Flood Plain 2006 7 2 9 70 

Flood Plain 2006 7 3 0 11 

Flood Plain 2006 8 4 6 67 

Flood Plain 2006 9 5 0 49 

Flood Plain 2006 10 6 0 27 

Flood Plain 2007 6 1 0 0 

Flood Plain 2007 7 2 3 23 

Flood Plain 2008 6 1 0 14 

Flood Plain 2008 7 2 0 35 

Flood Plain 2008 8 3 3 81 

Flood Plain 2008 8 4 0 45 

Flood Plain 2008 10 5 0 27 

Flood Plain 2008 11 6 0 26 

Flood Plain 2009 7 1 0 41 

Flood Plain 2009 7 2 0 30 

Flood Plain 2009 7 3 4 50 

Flood Plain 2009 9 4 0 30 

Flood Plain 2009 9 5 1 22 

Flood Plain 2009 10 6 0 16 

 

 

 


