
c© 2010 SUN KIM



BIJECTIVE PROOFS OF PARTITION IDENTITIES AND COVERING SYSTEMS

BY

SUN KIM

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Professor Bruce Berndt, Chair, Director of Research
Professor Kevin Ford, Director of Research
Professor A. J. Hildebrand
Professor Iwan Duursma



Abstract

This dissertation involves two topics. The first is on the theory of partitions, which is discussed in

Chapters 2− 5. The second is on covering systems, which are considered in Chapters 6− 8.

In 2000, Farkas and Kra used their theory of theta functions to establish a beautiful theorem on

colored partitions, and they asked for a bijective proof of it. In Chapter 2, we give a bijective proof

of a more general partition identity, with the Farkas and Kra partition theorem being a special case.

We then derive three further general partition identities and give bijective proofs of these as well.

The quintuple product identity is one of the most famous and useful identities in the theory

of theta functions and q-series, and dates back to 1916 or earlier. In his recent survey paper on

this identity, Shaun Cooper remarked that there does not exist a bijective proof of it. In Chapter

3, employing bijective proofs of Jacobi’s triple product identity and Euler’s pentagonal number

theorem, we provide the first bijective proof of the quintuple product identity.

In a recent paper, The parity in partition identities, George Andrews investigated parity ques-

tions in partition identities and listed 15 open problems at the end of his paper. In Chapter 4, we

provide solutions to the first two open problems suggested by Andrews. More precisely, we pro-

vide combinatorial proofs of two partition identities which were derived by comparing Andrews’

new identity with Göllnitz-Gordon identities or certain generalizations thereof.

In our last chapter on partitions, Chapter 5, we give a combinatorial proof of a companion

to Euler’s famous recurrence formula for the sum of divisors function σ(n). Euler’s recurrence

formula had previously been combinatorially proved using a double counting argument, but its

equally famous companion has not heretofore been established combinatorially. We not only pro-

vide such a combinatorial proof, but we also give a combinatorial proof of a vast generalization as
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well.

M. Filaseta, K. Ford, S. Konyagin, C. Pomerance and G. Yu proved that if the least modulus

N of a covering system is sufficiently large, then the sum of reciprocals of the moduli is bounded

below by a function of N, tending to∞ as N → ∞, which confirms a conjecture of P. Erdős and

J. L. Selfridge. They also showed that, for K > 1, the complement in Z of any union of residue

classes r(n) (mod n) with distinct n ∈ (N, KN ] has density at least dK for N sufficiently large,

which implies a conjecture of P. Erdős and R. L. Graham. In Chapter 6, we first define covering

systems in number fields, and extend those results to arbitrary number fields.

In Chapter 7, we give an explicit version of their first theorem to provide a specific number for

the least modulus of a covering system, where the reciprocal sum is strictly bigger than 1.

In the last chapter, Chapter 8, we consider exact covering systems in number fields. Motivated

by the theorem of Davenport, Mirsky, Newman and Rado that there does not exist an exact covering

system with distinct moduli, we raise the question whether or not this is true for covering systems

in algebraic number fields. We provide affirmative answers for certain quadratic fields.
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Chapter 1

Introduction

The theory of partitions was initiated by L. Euler who proved many beautiful partition theorems,

most notably the pentagonal number theorem and ’the number of partitions of n into distinct parts

is equal to that into odd parts’. The theory has been developed by many great mathematicians–

Gauss, Jacobi, Sylvester, Lebesque, MacMahon and Ramanujan for example– and has blossomed

in the past few decades. Most partition identities were derived from generating functions in terms

of q-series and hypergeometric series. Thus, they were first proved analytically, and some of them

were proved combinatorially many years later. It is not obvious that finding a direct bijective proof

of each partition identity is always a feasible task. We have few partition identities which have

such proofs, and many partition theorems remain whose bijections are still obscure. Constructive

partition theory is rich and powerful due to the ingenuity of bijective proofs, and also has the

benefit that more general results can be sometimes derived from those proofs.

The topics discussed in Chapters 2, 3, 4 and 5 are on partitions, mainly bijective proofs of

certain partition identities. In Chapter 2, we establish four new partition identities and also give

bijective proofs of them. H. M. Farkas and I. Kra [19, 20] seem to be the first mathematicians who

related modular equations with partition theorems. The following theorem is the most elegant of

their partition theorems, which is equivalent to a modular equation of degree 7, and Farkas asked

for a bijective proof of it without the use of theta functions.

Theorem 1.1. Consider the positive integers such that multiples of 7 occur in two copies, say 7k

and 7k. Let A(N) be the number of partitions of the even integer 2N into distinct even parts, and
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let B(N) be the number of partitions of the odd integers 2N + 1 into distinct odd parts. Then

A(N) = B(N).

For example, A(8) = 7 = B(8), with the representations of 16 and 17 being given respectively by

16 = 14 + 2 = 14 + 2 = 12 + 4 = 10 + 6 = 10 + 4 + 2 = 8 + 6 + 2,

17 = 13 + 3 + 1 = 11 + 5 + 1 = 9 + 7 + 1 = 9 + 7 + 1 = 9 + 5 + 3 = 7 + 7 + 3.

In [61], S. O. Warnaar mentioned that establishing a bijection between the partitions counted by

A(N) and B(N) seems to be quite difficult. Although not finding a bijective proof of Theorem

2.1, he established a generalization of the modular equation of degree 7 which is the generating

function identity of Theorem 2.1, and also gave a combinatorial proof of his generalized identity.

Fortunately, we could establish a bijection for Theorem 2.1, which also works for the generalized

theorem, by using Warnaar’s aforementioned combinatorial proof. Besides, we derive a more

generalized partition identity from Warnaar’s generating function since his theorem is indeed a

special case of it.

The bijection for Theorem 2.1 is so adjustable and powerful that we could construct three

more generalized partition identities of similar kinds. We show one of them below, which will be

mentioned again in Chapter 2.

Theorem 1.2. Let m be a positive integer, and let α, β and γ be odd positive integers ≤ m with

α + β + γ < 2m. Consider the positive integers in which multiples of 2m occur in two copies,

2m and 2m. Let A(N) denote the number of partitions of 2N into parts congruent to ±α, ±β,

±γ, ±(α + β + γ) (mod 2m), and let B(N) denote the number of partitions of 2N into parts

congruent to 0, 0, ±(α + β), ±(β + γ), ±(α + γ) (mod 2m). Then, A(N) = B(N).

We close Chapter 2 with some applications of the four partition identities. Some of them are

known from [8] and others are new.
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In Chapter 3, we provide a combinatorial proof of the quintuple product identity

∞∑

n=−∞
qn(3n+1)/2(x3n − x−3n−1)

=
∞∏

n=1

(1− xqn)(1− qn)(1− x−1qn−1)(1− x2q2n−1)(1− x−2q2n−1).

The quintuple product identity is one of the most well known identities, and various applications

can be found. For instance, in [10] B.C. Berndt proved many of Ramanujan’s claims using the

identity, and it can be applied to prove other identities such as Winquist’s identity. The history

of the quintuple product identity dates back to 1916, when R. Fricke presented it in terms of

theta functions. It had been believed that Ramanujan also discovered the identity even though

any general form is not found in his notebooks. In 1988, K. G. Ramanathan confirmed this belief

by reporting that the identity appears in Ramanujan’s Lost Notebook in a different form.

The quintuple product identity is often referred to as Watson’s quintuple product identity, since

in 1929 and 1938 G. N. Watson [59, 60] gave two proofs of the identity in proving some of Ra-

manujan’s results. Among others, W. N. Bailey [7], D. B. Sears [51] and L. J. Slater [52] also

gave proofs of the identity. O. L. Atkin and P. Swinnerton-Dyer [6] established the identity with-

out knowing of its prior occurrence. Also, in 1961 B. Gordon [28] rediscovered the quintuple

product identity. Since then, various proofs of the identity have been published. Recently, in his

comprehensive survey paper on the quintuple product identity, S. Cooper [13] mentioned that it is

interesting that no direct combinatorial proof has yet to be published, while at least 29 proofs of

the identity are known. The key idea, in proving the quintuple product identity combinatorially in

Chapter 3 is combining three known bijections. We apply two bijections of Jacobi’s triple product

identity in different forms, and in order to complete the proof, we also employ a bijective proof of

Euler’s pentagonal number theorem.

Parity has played a role in partition identities from the beginning. Most likely, the first theorem

in the history of partitions is Euler’s aforementioned famous discovery that the number of parti-

tions of a positive integer n into distinct parts equals the number of partitions of n into odd parts.
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Equivalently in terms of generating functions: for |q| < 1, [3, p. 5, eq. (1.2.5)]

∞∏

n=1

(1 + qn) =
∞∏

n=1

1

1− q2n−1
.

In his recent paper [4], G. E. Andrews investigated a variety of parity questions in partition identi-

ties. At the end of the paper, he then listed 15 open problems. In Chapter 4, we provide answers to

the first three problems from his list, which are related to the Göllnitz-Gordon identities and their

generalizations. The famous first Rogers-Ramanujan identity (the number of partitions of n into

nonconsecutive parts is equal to the number of partitions of n into parts congruent to 1 or 4 mod 5

) does not involve parity. However, introducing a parity consideration to the identity yields a new

partition identity, which is called the first Göllnitz-Gordon Identity. There are several results of this

sort, especially related to Rogers-Ramanujan’s identities. This motivated the deeper examination

of parity in partition identities by Andrews.

Andrews derived a new partition identity by considering the parity restriction that even parts

appear an even number of times in the celebrated Rogers-Ramanujan-Gordon identity [1, 30],

which is a generalization of the Rogers-Ramanujan identities. He then compared two special cases

with the first and second Göllnitz-Gordon identities to deduce a pair of new identities. The first

and second questions from the list are to find bijective proofs of them. We provide answers to

those questions in the second section of Chapter 4. The third problem is to prove bijectively the

generalization of the first two problems, which was derived by comparing the aforementioned

Andrews theorem and a generalization of the Göllnitz-Gordon identities, also by Andrews [2]. In

the third section, we give an answer to the third question. This is joint work with Ae Ja Yee.

Next, we discuss Euler’s recurrence formula for the sum of divisors σ(n).

Theorem 1.3. For every n > 0, we have

∞∑

k=−∞

(−1)kσ

(
n− k(3k + 1)

2

)
=






(−1)k−1n, if n = k(3k+1)
2 , k ∈ Z,

0, otherwise.
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Theorem 1.3 can be easily derived analytically from the pentagonal number theorem, and a

combinatorial proof was also given in [45] and [58], which is based on a double counting argument.

Now, we consider a companion of Theorem 1.3.

Theorem 1.4. Let n ≥ 1. Then,

−σ(n) =
∞∑

k=−∞

(−1)k k(3k + 1)

2
p(n− k(3k + 1)

2
).

An analytic proof of Theorem 1.4 is elementary. However, a combinatorial proof does not

seem to have been given. In Chapter 5, we generalize Theorem 1.4 and give a combinatorial proof

of it, which is also based on a double counting argument. We also employ the quintuple product

identity in a similar argument to derive another recurrence relation and its companion. We remark

that combinatorial proofs of them can be given in a similar fashion.

The second topic of this dissertation is covering systems, which are discussed throughout Chap-

ters 6, 7 and 8. A finite collection of congruence classes, {a1 (mod m1), . . . , ak (mod mk)} with

mi > 1 is called a covering system if each integer lies in at least one of them. The concept of

a covering system was first introduced by P. Erdös in 1950, who answered, in the negative, Ro-

manoff’s question: Can every sufficiently large odd integer be expressed as the sum of a power

of 2 and a prime? Erdös was particularly interested in covering systems with distinct moduli. We

remark that the following is a covering system with the least number of distinct moduli :

0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6), 11 (mod 12). (1.1)

In his proof [15], he used (1.1) with the last two classes replaced by

3 (mod 8), 7 (mod 12), 23 (mod 24).

Here are some famous conjectures concerning covering systems.
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Least Modulus Problem (Erdös’ conjecture): Can the least modulus in a covering system with

distinct moduli be arbitrarily large?

D. J. Gibson [24] found a covering system with distinct moduli where the least modulus is 25,

and a covering system with distinct moduli ≥ 40 has been recently discovered by P. Nielson [44].

Odd Moduli Problem : Is there a covering system with distinct odd moduli?

Schinzel’s Conjecture : In every covering system, there is a modulus that divides one of the

others.

In [18], J. Fabrykowski and T. Smotzer gave a simple proof showing that if Schinzel’s Conjec-

ture is false, then there exists an odd covering.

Recently, some conjectures of P. Erdös, J. L. Selfridge and R. L. Graham were confirmed by M.

Filaseta, K. Ford, S. Konyagin, C. Pomerance and G. Yu [22]. Erdös and Selfridge [14] conjectured

the following.

Conjecture I. For any number B, there is a number NB, such that in a covering system with

distinct moduli greater than NB, the sum of reciprocals of these moduli is greater than B.

It’s also interesting to study systems of residue classes where the moduli are distinct and come

from an interval (N, KN ]. Erdös and Graham [16] made the following conjecture.

Conjecture II. For each number K > 1 there is a positive number dK such that if N is sufficiently

large, depending on K, and we choose arbitrary integers r(n) for each n ∈ (N, KN ], then the

complement in Z of the union of the residue classes r(n) (mod n) has density at least dK .

In [22], stronger forms of these conjectures were proved by the aforementioned authors. In

Chapter 6, we generalize the results from [22] to arbitrary number fields. We first define a covering

system in a number field to be a finite set of cosets of ideals, whose union is the ring of the

integers. Covering systems of groups by subgroups or cosets of subgroups, which is the most

natural generalization of covering systems of Z, have been investigated by B. H. Neumann [44] ,

M. M. Parmenter [46, 47] and Z. W. Sun [55, 56]. However, we restrict the moduli of covering

systems in a number field to ideals, instead of arbitrary subgroups, in order to take advantage of

various properties of ideals which are crucial in the proofs. We remark that the results in Chapter
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6 are exactly as strong as those in [22]. Even though the methods are borrowed from [22], it is

not straightforward that the arguments of [22] can be generalized to arbitrary number fields. The

main difference and difficulty come from the function counting the number of ideals of norm n,

which has irregular behavior. In particular, in [22], the authors applied the standard upper-bound

estimates for the distribution of smooth numbers (numbers without large prime factors). However,

in the number field setting, another method is required to understand the counting function, which

is described in Lemma 6.9.

If a covering system covers every integer exactly once, then it is said to be an exact covering

system. The following are two simple examples of exact covering systems:

{0 (mod 2), 1 (mod 2)}, {0 (mod 2), 1 (mod 4), 3 (mod 4)}.

It is obvious that the sum of the reciprocals of the moduli of a covering system is at least 1.

Furthermore, in an exact covering system, the reciprocal sum of the moduli is exactly 1, and by

a density argument the reverse is also true. Here, one might ask if there is any exact covering

system with distinct moduli. The Davenport-Mirsky-Newman-Rado result shows that there is no

such exact covering system and in fact, the largest modulus must be repeated. We present their

proof here.

Proposition 1.1. If {ri (mod ni)}l
i=1 is an exact covering systems with n1 ≤ · · · ≤ nl, then we

have nl−1 = nl.

Proof. Suppose nl−1 < nl. We can assume that 0 ≤ ri < ni for each i. Then,

1

1− z
= 1 + z + z2 + · · · =

l∑

i=1

(zri + zri+ni + zri+2ni + · · · ) =
l∑

i=1

zri

1− zni

Letting z tend to a primitive nl−th roof of unity, we have a pole on the right side of the equation,

but not on the left side. Hence, nl−1 = nl.

Thus, in other words, in a covering system with distinct moduli, the reciprocal sum of the
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moduli is strictly bigger than 1 and so there must be some overlap between the congruence classes.

It is interesting to consider congruence classes that cover the set of integers with as little overlap as

possible. Covering systems with distinct moduli are known with least modulus 2, 3 and 4, where

the reciprocal sum of the moduli can be arbitrarily close to 1 (see [32], §F13 ). As we have seen

from the Conjecture I, which was confirmed in [22], this fails for all large enough choices of the

least modulus. This motivates us to find a specific value of the least modulus. In Chapter 7, we

prove an explicit version of the theorem from [22], which proves Conjecture I. This enables us to

specify a number N such that if the least modulus of a covering system with distinct moduli is

larger than N, then the reciprocal sum of the moduli is strictly larger than 1. We prove a slightly

weaker form than the one in [22], due to the difficulty of obtaining estimates for the distribution of

smooth numbers with explicit constants.

From Proposition 1.1, we have seen that there is no exact covering systems with distinct moduli

and in fact, the largest modulus should be repeated. This leads naturally to a question:

Can we find an exact covering system with distinct moduli in a number field?

To begin with, we consider quadratic number fields whose rings of integers are principal ideal

domains. In Chapter 8, we prove slightly stronger forms of the following result.

Theorem 1.5. Let S = {r1 + I1, . . . , rk + Ik} be an exact covering system in a quadratic number

field Q(
√

m), where the I ′is are principal ideals and Ik has the largest norm. Then, Ik must be

repeated.

The approach is somewhat analogous to that of the integer case shown above, but the argument

is much more complex. We start with the two variable function

1

1− z

1

1− w
=

∑

u,v≥0

zuwv. (1.2)

By identifying a + b
√

m with (a, b) ∈ Z2, we find a corresponding set Ai ∈ Z2 for each ri + Ii,

where each element in Ai is represented using the generator of Ii. After setting up an explicit
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identity starting from (1.2), we devise a similar argument to that in Proposition 1.1 involving

double poles.

Ideally, one would like to prove the same results for all quadratic fields, or for all number fields.

Actually, we conjecture that there is no exact covering system with distinct moduli in any number

field. However, we could not even settle this conjecture for all quadratic number fields. In the rest

of Chapter 8, we present a partial result, which proves that the above is true for certain imaginary

quadratic fields with two ideal classes. Since ideals may not be principal in these settings, we

classify the ideals according to the ideal classes of the field, and also we use some elementary

algebraic facts. Furthermore, we need to take the coefficients of terms with double poles into

consideration to establish such a result. In considering more general cases, it seems that we need

to introduce new tools.
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Chapter 2

Bijective Proofs of Partition Identities
Arising from Modular Equations

2.1 Introduction

H.M Farkas and I. Kra [19], [20] established certain theta constant identities and observed that

they are equivalent to partition identities. As we mentioned in Chapter 1, the following theorem is

the most elegant of their partition theorems, and Farkas asked for a bijective proof of it without the

use of theta functions.

Theorem 2.1. Consider the positive integers such that multiples of 7 occur in two copies, say 7k

and 7k. Let A(N) be the number of partitions of the even integer 2N into distinct even parts, and

let B(N) be the number of partitions of the odd integers 2N + 1 into distinct odd parts. Then

A(N) = B(N).

It is not hard to see that the generating function identity of Theorem 2.1 is

(−q; q2)∞(−q7; q14)∞ − (q; q2)∞(q7; q14)∞ = 2q(−q2; q2)∞(−q14; q14)∞, (2.1)

where

(a; q)∞ =
∞∏

n=0

(1− aqn).

The first term on the left-hand side of (2.1) is the generating function of partitions into distinct odd

parts with two copies of multiples of 7 allowed. Subtracting the same term with q replaced by −q

and dividing by 2, we suppress all even powers of q on the left-hand side. On the other hand, the
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right-hand side without the factor 2q gives the generating function of partitions into distinct even

parts with two copies of multiples of 7 allowed. Thus, equating the coefficients of q2N+1 on both

sides of (2.1) leads to Theorem 2.1.

Farkas and Kra proved (2.1) using the theory of theta functions. In [35], M.D. Hirschhorn gave

a simple q-series proof of (2.1). The referee of [35] observed that (2.1) was equivalent to a modular

equation of degree 7 in Ramanujan’s notebooks [10, Chapter 19, Entry 19 (i)], but actually due to

C. Guetzlaff [31] in 1834.

B.C. Berndt [9] observed that Ramanujan discovered five modular equations of this sort, and

he gave partition-theoretic interpretations for each of them.

In [61], S. O. Warnaar established an extensive generalization of Theorem 2.1, which is the

following.

Theorem 2.2. Let α and β be even positive integers such that α < β, and let γ be an odd positive

integer. Fix an integer m ≥ α + β + 2γ + 1. Consider the positive integers in which multiples

of 2m occur in two copies, 2m and 2m. Let A(N) be the number of partitions of 2N with parts

congruent to 0, 0, ±α, ±β, ±(α + β + 2γ) (mod 2m), and let B(N) be the number of partitions

of 2N + γ with parts congruent to ±γ, ±(α + γ), ±(β + γ), ±(α + β + γ) (mod 2m). Then

A(N) = B(N).

Warnaar mentioned that the conditions α < β and m ≥ α + β + 2γ + 1 can be replaced by the

conditions that the sequences α, 2m−α, β, 2m−β, α+β +2γ, 2m−α−β−2γ and γ, 2m−γ,

α + γ, 2m− α− γ, β + γ, 2m− β − γ, α + β + γ, 2m− α− β − γ are positive integers, and if

some of the above integers coincide, then we introduce different copies of those numbers. Setting

(α, β, γ) = (2, 4, 1) and m = 7, we can see that Theorem 2.2 implies Theorem 2.1. Note that the

condition α + β + γ = 7 = 2m− α− β − γ requires both of the numbers 7 and 7 (mod 14).

In order to prove Theorem 2.2, Warnaar considerably generalized (2.1) to obtain

(−c,−ac,−bc,−abc,−q/c,−q/ac,−q/bc,−q/abc; q)∞

− (c, ac, bc, abc, q/c, q/ac, q/bc, q/abc; q)∞
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= 2c(−a,−b,−abc2,−q/a,−q/b,−q/abc2,−q,−q; q)∞, (2.2)

where

(a1, . . . , an; q)∞ = (a1; q)∞ · · · (an; q)∞,

and gave three different proofs of (2.2). Furthermore, N.D. Baruah and Berndt [8] observed that

an equivalent formulation of (2.2) can be found in Ramanujan’s notebooks.

However, one of the referees of our paper [37] observed that (2.2) is a special case of the

addition formula

(ux, u/x, vy, v/y, q/ux, qx/u, q/vy, qy/v; q)∞

− (uy, u/y, vx, v/x, q/uy, qy/u, q/vx, qx/v; q)∞

= v/x(uv, u/v, xy, x/y, q/uv, qv/u, q/xy, qy/x; q)∞, (2.3)

which is given in [23, p. 52, Ex. 2. 16]. Setting x =
√

a, y = −
√

a, u = −
√

abc and v =
√

ac in

(2.3), we can derive (2.2).

Warnaar’s proofs of (2.2) include a combinatorial one. However, he asked for a bijective proof

of Theorem 2.1 without resorting to theta functions.

In Theorem 2.3 in Section 2.2, we derive a generalization of Theorem 2.2 from (2.2) and give

a bijective proof of it, which naturally gives a bijective proof of Theorem 2.1. In order to establish

a bijection of the generalization, we use Warnaar’s bijection from [61]. The generalization of

Theorem 2.2 also implies, in particular, two further partition identities derived from

(−q; q2)2
∞(−q3; q6)2

∞ − (q; q2)2
∞(q3; q6)2

∞ = 4q(−q2; q2)2
∞(−q6; q6)2

∞, (2.4)

(−q; q2)8
∞ − (q; q2)8

∞ = 16q(−q2; q2)8
∞. (2.5)

We remark that the identity (2.4) is equivalent to a modular equation of degree 3 and the identity

(2.5) is called Jacobi’s quartic identity. In [61], Warnaar showed that the identities (2.4) and (2.5)
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are specializations of the identity (2.2). However, he remarked that the partition theorems derived

from (2.4) and (2.5) are not special cases of Theorem 2.2.

In Section 2.3, we establish three further identities in Theorems 2.6, 2.8 and 2.10 and give their

partition theoretic consequences in Theorems 2.7, 2.9 and 2.11 together with bijective proofs. The

referee also pointed out that the identities in Theorems 2.6, 2.8 and 2.10 can be proved using (2.3).

In [8], Baruah and Berndt derived partition identities associated with modular equations of

degrees 3, 5 and 15. In Section 2.4, we show that some of them are special cases of the theorems

from Sections 2.2 and 2.3. We also give new examples that follow from these theorems.

2.2 Generalizations of the Farkas and Kra partition theorem

In this section, we prove a generalization of Theorem 2.2 which implies not only Theorem 2.1, but

the two partition theorems that can be derived from (2.4) and (2.5), respectively. We show that the

generalization is an immediate consequence of (2.2) after some changes of variables, and we also

give a bijective proof of the generalization.

Theorem 2.3. Let m be a positive integer, and let α, β and γ be odd positive integers ≤ m such

that α ≤ β, γ. Consider the positive integers in which multiples of 2m occur in two copies, 2m

and 2m. Let A(N) denote the number of partitions of 2N + α into parts congruent to ±α, ±β,

±γ, ±(−α + β + γ) (mod 2m), and let B(N) denote the number of partitions of 2N into parts

congruent to 0, 0,±(β−α),±(γ−α),±(β+γ) ( mod 2m). Let κ, 0 ≤ κ ≤ 3, denote the number

of elements from the set {β − α, γ − α, 2m− β − γ} that are equal to 0. Then, A(N) = 2κB(N).

Here, if some of the integers above coincide in these congruences or are congruent to them-

selves with opposite sign (mod 2m), then we allow additional copies of those integers. For in-

stance, if (m, α, β, γ) = (5, 1, 1, 5), then (±α,±β,±γ,±(−α + β + γ)) = (±1,±1,±5,±5) and

(±(β−α),±(γ−α),±(β +γ)) = (±0,±4,±6). So, we consider the set consisting of two copies

of the positive integers and two additional copies of multiples of 5.
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Note that we obtain Theorem 2.2 by replacing α, β, γ by γ, α + γ, β + γ, respectively. In

particular, setting (α, β, γ) = (1, 3, 5) and m = 7 in Theorem 2.3 yields Theorem 2.1.

First proof of Theorem 2.3. Replacing q by q2m, and then setting a = qβ−α, b = qγ−α and c = qα

in (2.2), we find that

(−qα,−qβ,−qγ,−qβ+γ−α,−q2m−α,−q2m−β,−q2m−γ,−q2m+α−β−γ; q2m)∞

+ (qα, qβ, qγ, qβ+γ−α, q2m−α, q2m−β, q2m−γ, q2m+α−β−γ; q2m)∞ (2.6)

= 2qα(−qβ−α,−qγ−α,−qβ+γ,−q2m+α−β,−q2m+α−γ,−q2m−β−γ,−q2m,−q2m; q2m)∞.

It is now easy to see that (2.6) has the partition-theoretic interpretation claimed in Theorem 2.3.

Second proof of Theorem 2.3. Let δ = −α + β + γ. Let π be a partition of 2N + α into parts

congruent to ±α,±β,±γ,±δ (mod 2m). Then we can write

π = ((λ1, µ1), (λ2, µ2), (λ3, µ3), (λ4, µ4)),

where λ1, . . . , λ4 are partitions into parts that are congruent to α, β, γ, δ (mod 2m), respectively,

and µ1, . . . , µ4 are partitions with parts congruent to −α, −β, −γ, −δ (mod 2m), respectively.

We obtain a new partition π′ from π such that

π′ = ((λ′1, µ
′
1), (λ

′
2, µ

′
2), (λ

′
3, µ

′
3), (λ

′
4, µ

′
4)),

where λ′1 = (λ1−α)/2m, . . . , λ′4 = (λ4− δ)/2m and µ′1 = (µ1 +α)/2m, . . . , µ′4 = (µ4 + δ)/2m.

Note that λ′i ∈ D0 and µ′i ∈ D, where D0 is the set of partitions with distinct non-negative parts

and D is the set of partitions with distinct positive parts.

Let di = )(λi)− )(µi) = )(λ′i)− )(µ′i) for 1 ≤ i ≤ 4, where )(λ) is the number of parts of the

partition λ.

Note that |π| = 2m|π′|+ αd1 + βd2 + γd3 + δd4 = 2N + α, where |π| is the sum of the parts
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of a partition π.

Since

4∑

i=1

di =
4∑

i=1

)(λi)−
4∑

i=1

)(µi) ≡
4∑

i=1

)(λi) +
4∑

i=1

)(µi) ≡ )(π) ≡ 1(mod 2),

∑4
i=1 di = 2s + 1 for some s ∈ Z. So, if we let d4 = n, d2 = k − n, d3 = l − n, with n, k and

l ∈ Z, then d1 = 2s + 1 + n− k − l.

Now, we introduce the bijection that Warnaar established in [61].

Let (λ, µ) be a partition pair such that λ ∈ D0 and µ ∈ D and such that )(λ)− )(µ) = d. Then

we can draw a diagram of λ, say G, as follows. The diagram G consists of )(λ) columns of nodes,

and the ith column contains the nodes of the ith part of λ. Displace the (i + 1) th column one

unit to the right and one unit down relative to the ith column. Similarly, draw a diagram H of µ,

consisting of )(µ) rows of nodes where the ith row contains the nodes of the ith part of µ. Displace

the (i + 1)th row one unit to the right and one unit down relative to the ith row. For example (in

examples, we may have subscripts on the aforementioned variables), if λ1 = (6, 4, 2, 1, 0) and µ1 =

(3, 1), then

G1 :

•

• •

• • •

• • • •

• •

•

and H1 :
• • •

•

and if λ2 = (4, 1, 0) and µ2 = (7, 5, 4, 2, 1), then
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G2 :

•

• •

•

•

and H2 :

• • • • • • •

• • • • •

• • • •

• •

•

Now, if d > 0, concatenate the top row of H and the dth row of G, and if d ≤ 0, concatenate

the first column of G and the (1−d) th column of µ to form a diagram K. For the examples above,

the respective graphs K are

K1 :

◦

◦ ◦

• • • • • •

• • • • •

• •

•

and K2 :

◦ ◦ • • • • •

◦ • • • •

• • • •

• • •

• • •

•

•

The graph K corresponds to an ordinary partition ν and a triangle of
(

d
2

)
nodes with |ν| =

|λ|+ |µ| −
(

d
2

)
, and in the examples ν1 = (6, 5, 2, 1) and ν2 = (5, 4, 4, 3, 3, 1, 1), respectively.

Conversely, for an ordinary partition ν and an integer d, add a triangle of
(

d
2

)
nodes to the

diagram ν to form a diagram K. When d > 0, place the triangle on top of the diagram of ν (so

it is left-aligned), and when d ≤ 0, place it to the left of ν (so it is top-aligned). Then K can be

dissected into two diagrams G and H corresponding to a partition pair (λ, µ) such that λ, µ ∈ D

and |λ|+ |µ| = |ν|+
(

d
2

)
.

Note that )(λ) − )(µ) equals d or d − 1. When )(λ) − )(µ) = d − 1, add the part 0 to λ. In

summary, we always have the equality )(λ)− )(µ) = d, where λ ∈ D0 and µ ∈ D.

This shows that there is a bijection between the set {(λ, µ, d) : λ ∈ D0, µ ∈ D, )(λ)− )(µ) =
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d} and the set {(ν, d) : ν is an ordinary partition and d ∈Z}, where |λ|+ |µ| = |ν|+
(

d
2

)
.

Thus, ((α1, β1), (α2, β2), (α3, β3), (α4, β4)), with αi ∈ D0, βi ∈ D, d1 = 2s + 1 + n − k − l,

d2 = k − n, d3 = l− n and d4 = n, corresponds to ((ν1, d1), (ν2, d2), (ν3, d3), (ν4, d4)), where the

ν ′is are ordinary partitions. Defining d′1 = 2n + 1 + s− k − l, d′2 = k − s, d′3 = l − s and d′4 = s,

we can check that
4∑

i=1

(
di

2

)
=

4∑

i=1

(
d′i
2

)
,

and so
4∑

i=1

(|αi|+ |βi|) =
4∑

i=1

(
|νi|+

(
di

2

))
=

4∑

i=1

(
|νi|+

(
d′i
2

))
.

Applying the inverse of the bijection with (ν1, d′1), (ν2, d′2), (ν3, d′3), (ν4, d′4) yields π1 = ((ω1, τ1),

(ω2, τ2), (ω3, τ3), (ω4, τ4)) with )(ωi)− )(τi) = d′i and ωi ∈ D0, τi ∈ D for 1 ≤ i ≤ 4.

Let us now use this bijection to set up a bijection between A(n) and B(n). We can apply it

with

π′ = ((λ′1, µ
′
1), (λ

′
2, µ

′
2), (λ

′
3, µ

′
3), (λ

′
4, µ

′
4))

to obtain the corresponding partition π1 = ((ω1, τ1), (ω2, τ2), (ω3, τ3), (ω4, τ4)) with )(ωi)−)(τi) =

d′i.

Now, multiply each part of the ω′is and τ ′is by 2m, and add β − α, α − β; γ − α, α − γ; and

β + γ,−β − γ to each part of 2mω2, 2mτ2; 2mω3, 2mτ3; 2mω4 and 2mτ4, respectively. Then

remove all the parts 0 from 2mω1, 2mω2 + (β − α), 2mω3 + γ − α and 2mτ4 − (β + γ). (Note

that they can have part 0 if β −α = 0, γ −α = 0 or β + γ = 2m.) Then we obtain a new partition

π′1 = ((ω′1, τ
′
1), (ω

′
2, τ

′
2), (ω

′
3, τ

′
3), (ω

′
4, τ

′
4)).

Since the sum of the numbers added to the 2mω′is and 2mτ ′is is

(β − α)d′2 + (γ − α)d′3 + (β + γ)d′4 = αd1 + βd2 + γd3 + δd4 − α,
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we have

|π′1| = 2m|π1|+ (β − α)d′2 + (γ − α)d′3 + (β + γ)d′4

= 2m|π′|+ αd1 + βd2 + γd3 + δd4 − α

= |π| − α = 2N.

Thus, we can see that π′ is a partition of 2N into parts congruent to 0, 0, ±(β − α), ±(γ − α),

±(β + γ) (mod 2m).

However, consider two distinct partitions π′1 and π′′1 that both have the same copies of positive

parts. If both of them have an even number of parts 0 or an odd number of parts 0, then they

correspond to the same partition of 2N into parts congruent to 0, 0,±(β−α),±(γ−α),±(β +γ)

(mod 2m). Note that if π′1 and π′′1 have an even (odd) number of parts 0, then they correspond to

partitions of 2N with the number of parts odd (even) after removing parts 0. We can easily see

that there are exactly 2κ+1/2 = 2κ partitions that have the same copies of positive parts and the

same parity in the number of parts 0. Furthermore, the process above is reversible. Thus we can

conclude that A(N) = 2κB(N).

From (2.4), Farkas and Kra [19], [20] infer the following theorem, which is an analogue of

Theorem 2.1 for modulus 3.

Theorem 2.4. Let S denote the set of positive integers in 4 distinct colors with two colors, say

orange and blue, each appearing at most once, and the remaining two colors, say red and green,

appearing at most once and only in multiples of 3. Let A(N) denote the number of partitions of

2N +1 into odd elements of S. Let B(N) denote the number of partitions of 2N into even elements

of S. Then,

A(N) = 2B(N).

Proof. Let m = 3, α = γ = 1 and β = 3 in Theorem 2.3. Then A(N) = 2B(N) since κ = 1.

Similarly, from (2.5), Farkas and Kra [19], [20] infer the following theorem.

18



Theorem 2.5. Consider the positive integers such that each integer occurs in eight copies. Let

A(N) denote the number of partitions of 2N + 1 into distinct odd parts and B(N) the number of

partitions of 2N into distinct even parts. Then

A(N) = 8B(N).

Proof. Let m = α = β = γ = 1 in Theorem 2.3. Then A(N) = 8B(N) since κ = 3.

2.3 Further general partition theorems

In this section, we establish three further identities that imply partition theorems with forms similar

to that of Theorem 2.3.

First, we prove the following.

Theorem 2.6.

(−c,−a2c,−b2c,−d2c,−q/c,−q/a2c,−q/b2c,−q/d2c; q)∞

− (c, a2c, b2c, d2c, q/c, q/a2c, q/b2c, q/d2c; q)∞

= c{(−ab/d,−ad/b,−bd/a,−abdc2,−qd/ab,−qb/ad,−qa/bd,−q/abdc2; q)∞

+ (ab/d, ad/b, bd/a, abdc2, qd/ab, qb/ad, qa/bd, q/abdc2; q)∞}. (2.7)

We remark that taking d = ab, and then replacing a2 and b2 by a and b, respectively, in Theorem

2.6 yields (2.2).

First Proof. Let x = ra, y = b/d, u = rbcd, and v = ac in (2.3). Then we have

(r2abcd, bcd/a, abc/d, acd/b, q/r2abcd, qa/bcd, qd/abc, qb/acd; q)∞

− (rb2c, rcd2, ra2c, c/r, q/rb2c, q/rcd2, q/ra2c, qr/c; q)∞
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= c/r(rab/d, rad/b, rabc2d, rbd/a, qd/rab, qb/rad, q/rabc2d, qa/rbd)∞. (2.8)

Subtracting (2.8) with r = −1 from (2.8) with r = 1 yields

− (c, a2c, b2c, d2c, q/c, q/a2c, q/b2c, q/d2c; q)∞

+ (−c,−a2c,−b2c,−d2c,−q/c,−q/a2c,−q/b2c,−q/d2c; q)∞

= c(ab/d, ad/b, bd/a, abdc2, qd/ab, qb/ad, qa/bd, q/abdc2; q)∞

+ c{(−ab/d,−ad/b,−bd/a,−abdc2,−qd/ab,−qb/ad,−qa/bd,−q/abdc2; q)∞,

which completes the proof.

Second Proof. We use the fact [3] that the coefficient of akqN in (−a,−q/a; q)∞ is the number of

partition pairs (λ, µ), where λ ∈ D0, µ ∈ D, |λ| + |µ| = N and )(λ) − )(µ) = k. Thus, the co-

efficient of a2(k−n)b2(l−n)c2s+1d2nqN on the left side of Theorem 2.6 divided by 2 is the cardinality

of the set Γk,l,s,n(N) consisting of four partition pairs ((λ1, µ1), (λ2, µ2), (λ3, µ3), (λ4, µ4)), where

λi ∈ D0, µi ∈ D,
∑4

i=1(|λi| + |µi|) = N, d1 = 2s + 1− k − l + n, d2 = k − n, d3 = l − n and

d4 = n with di = )(λi)− )(µi).

Similarly, the coefficient of a2(k−n)b2(l−n)c2s+1d2nqN on the right-hand side of Theorem 2.6

divided by 2 is the cardinality of the set Ωk,l,s,n(N) consisting of four partition pairs (ω1, τ1),

(ω2, τ2), (ω3, τ3), (ω4, τ4), where ωi ∈ D0, τi ∈ D,
∑4

i=1(|ωi|+ |τi|) = N, d′1 = −2n− s + l + k,

d′2 = k − s, d′3 = l − s and d′4 = s with d′i = )(ωi)− )(τi).

We can apply Warnaar’s bijection described in the proof of Theorem 2.3 with d1, . . . , d4 and

d′1, . . . , d
′
4 defined above, since

4∑

i=1

(
di

2

)
=

4∑

i=1

(
d′i
2

)
.

Now, it follows that Γk,l,s,n(N) corresponds to Ωk,l,s,n(N) bijectively. Hence, these sets have the

same cardinality.
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We deduce the following partition identity from Theorem 2.6, and, with the use of Warnaar’s

bijection, we also give a bijective proof of Theorem 2.7.

Theorem 2.7. Let m be a positive integer, and let α, β, γ, and δ be nonnegative integers such that

α + β + γ + δ ≡ 1 (mod 2), α + β + γ + δ + 2 < 2m and α < min{β + γ − δ, β − γ + δ,

−β + γ + δ}. Let A(N) denote the number of partitions of 2N + 2α + 1 into parts congruent to

±(2α + 1), ±(2β + 1), ±(2γ + 1), ±(2δ + 1) (mod 2m), and let B(N) denote the number of

partitions of 2N into parts congruent to±(−α+β+γ−δ),±(−α+β−γ+δ),±(−α−β+γ+δ),

±(α + β + γ + δ + 2) (mod 2m). Then, A(N) = B(N).

Here, as before, if some of the integers above coincide, then we introduce additional copies of

those numbers, while we allow only one copy of the remaining integers.

First Proof. Replacing q by q2m and then replacing (a, b, c, d) by (qβ−α, qγ−α, q2α+1, qδ−α) in The-

orem 2.6 yields

(−q2α+1,−q2β+1,−q2γ+1,−q2δ+1,−q2m−2α−1,−q2m−2β−1,−q2m−2γ−1,−q2m−2δ−1; q2m)∞

− (q2α+1, q2β+1, q2γ+1, q2δ+1, q2m−2α−1, q2m−2β−1, q2m−2γ−1, q2m−2δ−1; q2m)∞

= q2α+1{(−q−α+β+γ−δ,−q−α+β−γ+δ,−q−α−β+γ+δ,−qα+β+γ+δ+2,−q2m+α−β−γ+δ,

− q2m+α−β+γ−δ,−q2m+α+β−γ−δ,−q2m−α−β−γ−δ−2; q2m)∞

+ (q−α+β+γ−δ, q−α+β−γ+δ, q−α−β+γ+δ, qα+β+γ+δ+2, q2m+α−β−γ+δ,

q2m+α−β+γ−δ, q2m+α+β−γ−δ, q2m−α−β−γ−δ−2; q2m)∞}. (2.9)

It is now readily seen that Thoerem 2.7 follows from (2.9).

Second Proof. Let

α′ = −α + β + γ − δ, β′ = −α + β − γ + δ,

γ′ = −α− β + γ + δ, δ′ = α + β + γ + δ + 2.
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Similarly to the second proof of Theorem 2.3, for given a partition π of 2n + 2α + 1 into parts

congruent to ±(2α + 1), ±(2β + 1), ±(2γ + 1), ±(2δ + 1) (mod 2m), we obtain a new partition

π′ = ((λ′1, µ
′
1), (λ

′
2, µ

′
2), (λ

′
3, µ

′
3), (λ

′
4, µ

′
4)),

where λi ∈ D0, µi ∈ D, and

|π| = 2m|π′|+ (2α + 1)d1 + (2β + 1)d2 + (2γ + 1)d3 + (2δ + 1)d4,

where di = )(λ′i)− )(µ′i). We can write

d1 = 2s + 1 + n− k − l, d2 = k − n, d3 = l − n, d4 = n,

since
∑4

i=1 di = 2s + 1 for some integer s. Define

d′1 = −2n− s + k + l, d′2 = k − s, d′3 = l − s, d′4 = s.

Note that
∑4

i=1 d′i is even, and
4∑

i=1

(
di

2

)
=

4∑

i=1

(
d′i
2

)
.

Using Warnaar’s bijection, we obtain the corresponding partition

π1 = ((ω1, τ1), (ω2, τ2), (ω3, τ3), (ω4, τ4)),

where ωi ∈ D0, τi ∈ D, |π′| = |π1| and d′i = )(ωi)− )(τi).

Now, multiplying all parts of π1 by 2m and then adding α′, . . . , δ′, −α′, . . . ,−δ′ to each part

of ω1, . . . , ω4, τ1, . . . , τ4, respectively, yields a new partition, say π′1. Since

|π′1| = 2m|π1|+ α′d′1 + β′d′2 + γ′d′3 + δ′d′4
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= 2m|π′|+ (2α + 1)d1 + (2β + 1)d2 + (2γ + 1)d3 + (2δ + 1)d4 − (2α + 1)

= 2N,

π′1 is a partition of 2N into parts congruent to α′, β′, γ′, δ′ (mod 2m).

Clearly, the process is reversible. Hence, A(N) = B(N).

Next, we show that the following identity is true.

Theorem 2.8.

(−c,−a2c,−b2c,−d2c,−q/c,−q/a2c,−q/b2c,−q/d2c; q)∞

+ (c, a2c, b2c, d2c, q/c, q/a2c, q/b2c, q/d2c; q)∞

= (−abc/d,−adc/b,−bdc/a,−abcd,−qd/abc,−qb/adc,−qa/bdc,−q/abdc; q)∞

+ (abc/d, adc/b, bdc/a, abdc, qd/abc, qb/adc, qa/bdc, q/abdc; q)∞. (2.10)

We remark that the left-hand side of Theorem 2.8 has the opposite sign of the left-hand side of

Theorem 2.6.

First Proof. Set x = a, y = b/d, u = rac, and v = rbdc in (2.3) to deduce that

(ra2c, rc, rb2c, rd2c, q/ra2c, q/rc, q/rb2c, q/rd2c; q)∞

− (rabc/d, racd/b, rabcd, rbdc/a, qd/rabc, qb/racd, q/rabcd, qa/rbdc; q)∞

= rbdc/a(ab/d, ad/b, r2abdc2, a/bd, qd/ab, qb/ad, q/r2abdc2, qbd/a; q)∞. (2.11)

Adding (2.11) with r = −1 and (2.11) with r = 1, we obtain (2.10).

Second Proof. Repeating the same argument as in the second proof of Theorem 2.6, we see that the

coefficient of d2na2(k−n)b2(l−n)c2(k+l−n−s)qN on the left side of (2.10) divided by 2 is the cardinality

of the set Γk,l,s,n(N) consisting of four partition pairs ((λ1, µ1), (λ2, µ2), (λ3, µ3), (λ4, µ4)), where
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λi ∈ D0, µi ∈ D,
∑4

i=1(|λi|+ |µi|) = N, d2 = k− n, d3 = l− n, d4 = n and d1 = 2(k + l− n−

s)− d2 − d3 − d4 = −2s + k + l − n, with di = )(λi)− )(µi).

Similarly, the coefficient of d2na2(k−n)b2(l−n)c2(k+l−n−s)qN on the right-hand side of (2.10)

divided by 2 is the cardinality of the set Ωk,l,s,n(N) consisting of four partition pairs ((ω1, τ1),

(ω2, τ2), (ω3, τ3), (ω4, τ4)), where ωi ∈ D0, τi ∈ D,
∑4

i=1(|ωi|+ |τi|) = N, d′1 = −2n+ k + l− s,

d′2 = k − s, d′3 = l− s and d′4 = s, with di = )(λi)− )(µi). (Note that (d′1, d
′
2, d

′
3, d

′
4) is a solution

of (2.13).)

Using Warnaar’s bijection with d1, . . . , d4 and d′1, . . . , d
′
4 above, we deduce that

| Γk,l,s,n(N) | = | Ωk,l,s,n(N) |,

which completes the proof.

The following partition theorem can be derived from Theorem 2.8.

Theorem 2.9. Let m be a positive integer and α, β, γ, and δ be nonnegative integers satisfying the

condition that any of them is at most the sum of the other three, α + β + γ + δ ≡ 0 (mod 2), and

α + β + γ + δ + 1 < 2m. Let A(N) denote the number of partitions of 2N into parts congruent to

±(2α+1),±(2β+1),±(2γ+1),±(2δ+1) ( mod 2m) and B(N) denote the number of partitions

of 2N into parts congruent to ±(α+β + γ− δ +1),±(α+β− γ + δ +1),±(α−β + γ + δ +1),

±(−α + β + γ + δ + 1) (mod 2m). Then, A(N) = B(N).

First Proof. Replacing q by q2m and then letting (a, b, c, d) = (qβ−α, qγ−α, q2α+1, qδ−α) in Theo-

rem 2.8 yields

(−q2α+1,−q2β+1,−q2γ+1,−q2δ+1,−q2m−2α−1,−q2m−2β−1,−q2m−2γ−1,−q2m−2δ−1; q2m)∞

+ (q2α+1, q2β+1, q2γ+1, q2δ+1, q2m−2α−1, q2m−2β−1, q2m−2γ−1, q2m−2δ−1; q2m)∞

= (−qα+β+γ−δ+1,−qα+β−γ+δ+1,−qα−β+γ+δ+1,−q−α+β+γ+δ+1,−q2m−α−β−γ+δ−1,

− q2m−α−β+γ−δ−1,−q2m−α+β−γ−δ−1,−q2m+α−β−γ−δ−1; q2m)∞
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+ (qα+β+γ−δ+1, qα+β−γ+δ+1, qα−β+γ+δ+1, q−α+β+γ+δ+1, q2m−α−β−γ+δ−1,

q2m−α−β+γ−δ−1, q2m−α+β−γ−δ−1, q2m+α−β−γ−δ−1; q2m)∞. (2.12)

It is now easy to see that (2.12) has the partition-theoretic interpretation given in the statement of

Theorem 2.9.

Second Proof. We repeat the same argument as in the proof of Theorem 2.7 with

α′ = α + β + γ − δ + 1, β′ = α + β − γ + δ + 1,

γ′ = α− β + γ + δ + 1, δ′ = −α + β + γ + δ + 1,

and d1 = −2s− n + k + l (d2, . . . , d4, d′1, . . . , d
′
4 remain unchanged). Using

(2α + 1)d1 + (2β + 1)d2 + (2γ + 1)d3 + (2δ + 1)d4 = α′d′1 + β′d′2 + γ′d′3 + δ′d′4,

we complete the proof.

Lastly, we make a specialization of Theorem 2.8 and give another proof of it. Also, we deduce

a partition identity from the specialization.

Theorem 2.10.

(−c,−ac,−bc,−abc3,−q/c,−q/ac,−q/bc,−q/abc3; q)∞

+ (c, ac, bc, abc3, q/c, q/ac, q/bc, q/abc3; q)∞ (2.13)

= 2(−ac2,−bc2,−abc2,−q/ac2,−q/bc2,−q/abc2,−q,−q; q)∞.

First Proof. Taking d = abc, then replacing (a2, b2) by (a, b) in Theorem 2.8, we obtain Theorem

2.10.

Second proof. We can view both sides of (2.13) as functions of a. Let the left-hand side be de-

noted by L(a) and the right-hand side by R(a). Define f(a) = L(a)/R(a). Then, we can eas-
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ily see that f(aq) = f(a), since L(aq) = L(a)/a2bc4 and R(aq) = R(a)/a2bc4. The values

a = −qn/c2,−qn/bc2, n ∈ Z, are simple zeroes of R(a), provided that b += 1, and so are possible

poles of f(a). But, using

(qn/c, cq1−n; q)∞ = (−1)n−1cn−1q−(n
2)(c, q/c; q)∞,

(aqn, q1−n/a; q)∞ = (−1)na−nq−(n
2)(a, q/a; q)∞,

we obtain

L(−qn/c2) = (−c, qn/c,−bc, qnbc,−q/c, cq1−n,−q/bc, q1−n/bc; q)∞

+ (c,−qn/c, bc,−qnbc, q/c,−cq1−n, q/bc,−q1−n/bc; q)∞

= −b−nc−1q−2(n
2)(−c, c,−bc, bc,−q/c, q/c,−q/bc, q/bc; q)∞

+ b−nc−1q−2(n
2)(c,−c, bc,−bc, q/c,−q/c, q/bc,−q/bc; q)∞

= 0.

Similarly, we have

L(−qn/bc2) = (−c, qn/bc,−bc, cqn,−q/c, bcq1−n,−q/bc, q1−n/c; q)∞

+ (c,−qn/bc, bc,−cqn, q/c,−bcq1−n, q/bc,−q1−n/c; q)∞

= −bn−1c−1q−2(n
2)(−c, bc,−bc, c,−q/c, q/bc,−q/bc, q/c; q)∞

+ bn−1c−1q−2(n
2)(c,−bc, bc,−c, q/c,−q/bc, q/bc,−q/c; q)∞

= 0.

Thus, under the assumption that b += 1, f is an entire bounded function. By Liouville’s theorem, f

is a constant. Take a = 1/c; then

L(1/c) = 2(−c,−q,−bc,−bc2,−q/c,−q,−q/bc,−q/bc2; q)∞,
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R(1/c) = 2(−c,−bc2,−bc,−q/c− q/bc2,−q/bc,−q,−q; q)∞.

Hence f(a) = f(1/c) = 1, which completes the proof when b += 1.

Since L(a) and R(a) can also be regarded as meromorphic functions of b, say, L(a) = L∗(b)

and R(a) = R∗(b), then

f(a) =
L(a)

R(a)
=

L∗(b)

R∗(b)
=: f ∗(b)

can also be considered as a meromorphic function of b, which is equal to 1 for b += 1. By analytic

continuation, f(a) = f ∗(b) = 1 at b = 1 as well.

Theorem 2.11. Let m be a positive integer, and let α, β and γ be odd positive integers ≤ m with

α + β + γ < 2m. Consider the positive integers in which multiples of 2m occur in two copies,

2m and 2m. Let A(N) denote the number of partitions of 2N into parts congruent to ±α, ±β,

±γ, ±(α + β + γ) (mod 2m), and let B(N) denote the number of partitions of 2N into parts

congruent to 0, 0, ±(α + β), ±(β + γ), ±(α + γ) (mod 2m). Then, A(N) = B(N).

First Proof. Replacing q by q2m and then letting (a, b, c) = (qα, qβ−α, qγ−α) in Theorem 2.10, we

obtain

(−qα,−qβ,−qγ,−qα+β+γ,−q2m−α,−q2m−β,−q2m−γ,−q2m−α−β−γ; q2m)∞

+ (qα, qβ, qγ, qα+β+γ, q2m−α, q2m−β, q2m−γ, q2m−α−β−γ; q2m)∞ (2.14)

= 2(−qα+β,−qβ+γ,−qα+γ,−q2m−α−β,−q2m−β−γ,−q2m−α−γ,−q2m,−q2m; q2m)∞.

It is now easy to see that (2.14) has the partition-theoretic interpretation given in the statement of

Theorem 2.11.

Second Proof. Let δ = α+β+γ. Let π be a partition of 2n into parts congruent to±α,±β,±γ,±δ

(mod 2m). Then, as in the proof of Theorem 2.3, we can obtain a new partition π′ from π such

that

π′ = ((λ′1, µ
′
1), (λ

′
2, µ

′
2), (λ

′
3, µ

′
3), (λ

′
4, µ

′
4)),
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with λ′i ∈ D0, µ′i ∈ D and |π| = 2m|π′|+ αd1 + βd2 + γd3 + δd4, where di = )(λ′i)− )(µ′i).

Since
∑4

i=1 di ≡ )(π) ≡ 0 (mod 2), we can find corresponding (s, n, k, l) such that

d1 = −2s− n + k + l, d2 = k − n, d3 = l − n, d4 = n.

Defining

d′1 = −2n− s + k + l, d′2 = k − s, d′3 = l − s, d′4 = s,

observing that
∑4

i=1

(
di

2

)
=

∑4
i=1

(
d′i
2

)
), and using Warnaar’s bijection with them, we obtain the

corresponding partition π1 = ((ω1, τ1), (ω2, τ2), (ω3, τ3), (ω4, τ4)) with )(ωi)− )(τi) = d′i.

Now, multiply each part of the ω′is and τ ′is by 2m and add α + β,−α − β; β + γ,−β − γ;

and α + γ,−α − γ to each part of 2mω2, 2mτ2; 2mω3, 2mτ3; and 2mω4, 2mτ4, respectively.

Lastly, removing the part 0 from 2mω1 (if present), we can view π1 as a partition of 2n into parts

congruent to 0, 0,±(α+β),±(β +γ),±(α+γ) (mod 2m), since the sum of the numbers added

to the 2mω′is and 2mτ ′is is (α + β)d′2 + (β + γ)d′3 + (α + γ)d′4 = αd1 + βd2 + γd3 + δd4. We

remark that if 2mω1 has a part 0, then π1 (without the part 0) is a partition with an odd number of

parts.

The converse is obvious, since we can add a part 0 to the first partition of π1 if it has an odd

number of parts.

2.4 Applications

Baruah and Berndt [8] found new partition theorems associated with modular equations of degree

3, 5 and 15. In this section, we show that some of their partition theorems and their equivalent q-

series identities are consequences of the results from Section 2.2 and Section 2.3. Also, we derive

some new partition identities from our theorems.

From one of the modular equations of degree 3 [10, p. 230], Baruah and Berndt deduced that
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[8, Eq. (6.6)]

(−q; q2)2
∞(−q,−q5; q6)∞ + (q; q2)2

∞(q, q5; q6)∞ = 2(−q2; q2)2
∞(−q2,−q4; q6)∞. (2.15)

Replacing q by q6 and then setting (a, b, c) = (1, 1, q) in Theorem 2.10 gives (2.15).

From (2.15), Baruah and Berndt derive the following theorem [8, Theorem 6.1].

Theorem 2.12. Let S denote the set consisting of two copies of the positive integers and one

additional copy of positive integers that are not multiples of 3. Let A(N) and B(N) denote the

number of partitions of 2N into odd elements and even elements, respectively, of S. Then, for

n ≥ 1, A(N) = B(N).

Proof. Set m = 3 and α = β = γ = 1 in Theorem 2.11.

Next, Baruah and Berndt show that another modular equation of degree 3 [10, Entry 5 (viii), p.

231] implies the identities [8, Eqs. (6.18), (6.19)]

(−q.− q5; q6)4
∞ − (q.q5; q6)4

∞ = 8q(−q2;−q2)∞(−q6;−q6)5
∞, (2.16)

q{(−q.− q5; q6)4
∞ + (q.q5; q6)4

∞} = (−q; q2)∞(−q3; q6)5
∞ − (q; q2)∞(q3; q6)5

∞. (2.17)

Replacing q by q6 and then setting a = b = 1, c = q in (2.2) yields (2.16), and replacing q by

q6 and then letting a = b = c = d = q in Theorem 2.6 gives (2.17).

From (2.16) and (2.17), the following theorem [8, Theorem 6.4] is deduced.

Theorem 2.13. Let S denote the set consisting of one copy of positive integers and five additional

copies of positive integers that are multiples of 3. Let A(N) denote the number of partitions of

2N + 1 into odd elements of S, and let B(N) denote the number of partitions of 2N into even

elements of S. Furthermore, let T denote the set consisting of four copies of odd positive integers

that are not multiples of 3 and let C(N) denote the number of partitions of N into elements of T.

Then, for N ≥ 1, C(2N) = A(N) and C(2N + 1) = 4B(N).
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Proof. Letting m = 3, α = 0 and β = γ = δ = 1 in Theorem 2.7, we obtain A(N) = C(2N).

Set m = 3 and α = β = γ = 1 in Theorem 2.3. Then, we have C(2N + 1) = 4B(N), since

κ = 2.

Baruah and Berndt also derived the following two identities [8, Eqs. (7.18), (7.19)] from a

modular equation of degree 5 [10, Entry 13 (vii), p. 281], namely,

(−q.− q3,−q7,−q9; q10)2
∞ − (q.q3, q7, q9; q10)2

∞ = 4q(−q2;−q2)∞(−q10;−q10)3
∞, (2.18)

(−q; q2)∞(−q5; q10)3
∞ − (q; q2)∞(q5; q10)3

∞

= q{(−q.− q3,−q7,−q9; q10)2
∞ + (q.q3, q7, q9; q10)2

∞}. (2.19)

Replacing q by q10 and then setting (a, b, c) = (q2, q6, q) in (2.2) yields (2.18). Also, replacing

q by q10 and then letting (a, b, c, d) = (q2, q, q, q2) in Theorem 2.6, we obtain (2.19).

Similarly, we deduce the following theorem [8, Theorem 7.4] from (2.18) and (2.19).

Theorem 2.14. Let S denote the set consisting of one copy of the positive integers and three

additional copies of the positive integers that are multiples of 5, and let T denote the set consisting

of two copies of the odd positive integers that are not multiples of 5. Let A(N) be the number of

partitions of 2N + 1 into odd elements of S, and let B(N) be the number of partitions of 2N into

even elements of S. Furthermore, let C(N) be the number of partitions of N into elements of T.

Then C(2N) = A(N) and C(2N + 1) = 2B(N) for N ≥ 1.

Proof. Let (m, α, β, γ, δ) = (5, 0, 2, 1, 2) in Theorem 2.7. Then we have A(N) = C(2N). Next,

setting (m, α, β, γ) = (5, 1, 1, 3) in Theorem 2.3 implies C(2N + 1) = 2B(N), since κ = 1.

The following two identities [8, Eqs. (8.10), (8.11)] were deduced from one of Ramanujan’s

modular equations of degree 15 [10, p. 383] :

(−q3; q6)∞(−q5; q10)∞ + (q3; q6)∞(q5; q10)∞

= (−q,−q7,−q11,−q13,−q17,−q19,−q23,−q29; q30)∞
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+ (q, q7, q11, q13, q17, q19, q23, q29; q30)∞, (2.20)

2q(−q6; q6)∞(−q10; q10)∞ = (−q,−q7,−q11,−q13,−q17,−q19,−q23,−q29; q30)∞

− (q, q7, q11, q13, q17, q19, q23, q29; q30)∞. (2.21)

Replacing q by q30 and then letting (a, b, c, d) = (q, q3, q3, q6) in Theorem 2.8 yields (2.20).

Also, replacing q by q30 and then setting (a, b, c) = (q6, q10, q) in (2.2), we obtain (2.21).

Equations (2.20) and (2.21) give the following partition-theoretic interpretations [8, Theorem

8.2].

Theorem 2.15. Let S denote the set consisting of one copy of the positive integers that are multiples

of 3 and another copy of the positive integers that are multiples of 5. Let A(N) and B(N) denote

the number of partitions of 2N into, respectively, odd elements of S and even elements of S.

Furthermore, let C(N) denote the number of partitions of N into distinct odd parts that are not

multiples of 3 or 5. Then, for N ≥ 6, C(2N) = A(N) and C(2N + 1) = B(N).

Proof. Take (m, α, β, γ, δ) = (15, 1, 2, 4, 7) in Theorem 2.9. Then we have A(N) = C(2N).

Next, letting (m, α, β, γ) = (15, 1, 7, 11) in Theorem 2.3, we obtain C(2N + 1) = B(N).

Lastly, we show some new partition theorems.

Theorem 2.16. Let S denote the set consisting of one copy of the positive integers, another copy

of the positive integers that are either congruent to ±2 or ±3 (mod 10) or are multiples of 5.

Let A(N) be the number of partitions of 2N + 1 into odd parts, and let B(N) be the number of

partitions of 2N into even parts. Then A(N) = B(N).

Proof. Set m = 5 and (α, β, γ) = (1, 3, 3) in Theorem 2.3.

For example, A(5) = 8 = B(5) with the representations

11 = 1 + 5 + 5 = 1 + 3 + 7 = 1 + 3 + 7 = 1 + 3 + 7

= 1 + 3 + 7 = 3 + 3 + 5 = 3 + 3 + 5,
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10 = 10 = 2 + 8 = 2 + 8 = 2 + 8 = 2 + 8 = 2 + 2 + 6 = 4 + 6.

Theorem 2.17. Let S denote the set consisting of the odd positive integers that are not multiples

of 17. Let A(N) be the number of partitions of 2N into parts congruent to ±3, ±5, ±9 or ±15

(mod 34), and let B(N) be the number of partitions of 2N into parts congruent to ±1, ±7, ±11

or ±13 (mod 34). Then A(N) = B(N).

Proof. Take m = 17 and (α, β, γ, δ) = (1, 2, 4, 7) in Theorem 2.9.

For example, if N = 20, then A(N) = 3 = B(N) with the relevant representations being

3 + 37 = 9 + 31 = 15 + 25,

7 + 33 = 13 + 27 = 1 + 7 + 11 + 21.

Theorem 2.18. Let S denote the set consisting of one copy of the positive integers and another

copy of the integers that are either congruent to ±1 or ±4 (mod 10) or are multiples of 5. Let

A(N) be the number of partitions of 2N into odd parts, and let B(N) be the number of partitions

of 2N into even parts. Then A(N) = B(N).

Proof. Let m = 5 and (α, β, γ) = (1, 3, 5) in Theorem 2.11.

For example, A(4) = 4 = B(4), and we have the representations

1 + 7 = 1 + 7 = 3 + 5 = 3 + 5,

8 + 2 + 6 = 2 + 6 = 4 + 4.
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Chapter 3

A Bijective Proof of the Quintuple Product
Identity

3.1 Introduction

The quintuple product identity is stated in the form

∞∑

n=−∞
qn(3n+1)/2(x3n − x−3n−1)

=
∞∏

n=1

(1− xqn)(1− qn)(1− x−1qn−1)(1− x2q2n−1)(1− x−2q2n−1). (3.1)

It can be presented in many different forms and various proofs have been given, but, (3.1) seems to

be the form that appears most frequently. S. Cooper [13] gave a comprehensive survey of the work

on the quintuple product identity, and classified and discussed all known proofs. For historical

notes and detailed proofs, the reader is directed to [13].

Although at least 29 proofs of the quintuple product identity have been given, no direct combi-

natorial proof has yet been shown. J. Lepowsky and S. Milne [39] set q = uv2, x = v−1 in (3.1) to

obtain

∞∑

n=−∞
un(3n+1)/2vn(3n−2) −

∞∑

n=−∞
un(3n+1)/2v(n+1)(3n+1)

=
∞∏

n=1

(1− unv2n−1)(1− un−1v2n−1)(1− unv2n)(1− u2n−1v4n−4)(1− u2n−1v2n),

and they gave the following combinatorial interpretation:

The excess of the number of partitions of (m, n) into an even number of distinct parts
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of the type (a, 2a), (b, 2b− 1), (c− 1, 2c− 1), (2d− 1, 4d− 4), (2e− 1, 4e) over those

into an odd number of parts is 1 or −1 if (m, n) is of the type (r(3r +1)/2, r(3r− 2))

or (r(3r + 1)/2, (r + 1)(3r + 1)), respectively, and 0 otherwise.

They remarked that a direct combinatorial proof of this interpretation can be given. However,

Cooper [13] states that ”this proof was never published and the notes are most likely now lost.”

M. V. Subbaro and M. Vidyasagar [53] deduced the following identities from the quintuple

product identity:

1 +
∞∑

n=1

q3n2
x3n−1(xq2n − x−1q−2n)

= 1 +
∞∑

n=1

(−1)nxnqn(1 + qx)(1 + q3x) · · · (1 + q2n−1x)

=
∞∑

n=0

(−1)nx2nqn(n+1)

(1 + qx)(1 + q3x) · · · (1 + q2n+1x)
, (3.2)

and Subbarao [54] gave a combinatorial proof of (3.2). In [13], Cooper mentioned that this proof

is not a completely combinatorial proof of the quintuple product identity because a lot of algebraic

rearrangements are required to derive (3.2).

Thus, the goal of this chapter is to give a bijective proof of the quintuple product identity,

especially in the form (3.1). We remark that the right hand side of (3.1) can be viewed as a product

of two different forms of Jacobi’s triple product identity

∞∑

n=−∞
qn2

xn =
∞∏

n=1

(1 + xq2n−1)(1 + x−1q2n−1)(1− q2n). (3.3)

This naturally suggests that we can apply two bijections of (3.3) in different forms. In order to

complete the proof, we also employ a bijective proof of Euler’s pentagonal number theorem in the

form
∞∏

n=1

(1− qn)−1
∞∑

n=−∞
(−1)nq

n(3n+1)
2 = 1.

In the next section, we first derive a combinatorial interpretation from (3.1), and present the afore-
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mentioned three bijective proofs. Lastly, we give a bijective proof of the quintuple product identity

using them.

3.2 A bijective proof of the quintuple product identity

Let D be the set of partitions into distinct positive parts, D0 be the set of partitions into distinct

nonnegative parts and O be the set of partitions into distinct odd parts. The weight |π| and the

length )(π) of a partition π denote the sum of the parts and the number of parts of π, respectively.

We can easily see that (3.1) has the following combinatorial interpretation by comparing the

coefficients of xmqN on each side of (3.1) :

Theorem 3.1. The excess of the number of partitions of N into an even number of parts in the form

N = π1 + π2 + π3 + σ1 + σ2,

where π1, π2 ∈ D, π3 ∈ D0, σ1, σ2 ∈ O and )(π1)−)(π3)+2)(σ1)−2)(σ2) = m, over those into an

odd number of parts is 1 or−1 if (m, N) = (3n, n(3n+1)/2) or (m, N) = (−3n−1, n(3n+1)/2),

respectively, and 0 otherwise.

Before proving Theorem 3.1, we first introduce two combinatorial proofs of Jacobi’s triple

product identity. J. Zolnowsky [62] made the substitutions q2 = uv, x = −(u/v)1/2 in (3.3) to

obtain

∞∏

n=1

(1− unvn−1)(1− un−1vn)(1− unvn) = 1 +
∞∑

n=1

(−1)n
(
u

n(n+1)
2 v

n(n−1)
2 + u

n(n−1)
2 v

n(n+1)
2

)
,

for which he gave a combinatorial proof. Using his bijection, we can also give a combinatorial

proof of Jacobi’s triple identity in the form

∞∑

n=−∞
(−1)nxnq

n(n+1)
2 =

∞∏

n=1

(1− xqn)(1− qn)(1− x−1qn−1). (3.4)
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Comparing the coefficient of xmqN on both sides of (3.4), we obtain the following combinatorial

interpretation.

Theorem 3.2. The excess of the number of partitions of N into an even number of parts in the form

N = τ1 + τ2 + τ3, where τ1, τ2 ∈ D, τ3 ∈ D0 and )(τ1) − )(τ3) = m, over those into an odd

number of parts is (−1)n if (m, N) = (n, n(n + 1)/2), and 0 otherwise.

For convenience, we follow Zolnowsky’s notations and rules from [62]. We draw the Ferrars

diagram of a partition placing parts left to right in decreasing order. For instance, the partitions

π = (6, 5, 4, 2, 1) ∈ D and σ = (5, 4, 3, 2, 1) ∈ D are represented as the following.

π :

•

• •

• • •

• • •

• • • •

• • • • •

σ :

•

• •

• • •

• • • •

• • • • •

We define the slope of the diagrams to be the portion consisting of ◦ in the following graphs.

π :

◦

• ◦

• • ◦

• • •

• • • •

• • • • •

σ :

◦

• ◦

• • ◦

• • • ◦

• • • • ◦

Thus, the length of the slope is equal to the number of consecutive parts starting from the largest

one. We say that the slope of a partition in D is nondetachable if the largest part is the same as the

number of parts as in the graph of σ and otherwise, we say that he slope is detachable, as in the
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graph of π. We define a slope of an empty partition to be nondetachable.

We can also define the slope of diagrams of partitions in D0 in a similar way. For example, the

length of slope of π = (5, 4, 3, 1, 0) is 3 and that of σ = (4, 3, 2, 1, 0) is 5. Similarly, we say that

the slope of π is detachable and the slope of σ is nondetachable. Note that if the slope of a partition

∈ D0 is nondetachable, then the largest part is the number of parts −1.

Proof of Theorem 3.2. First, we consider the case when m ≥ 0, i.e., )(τ1) ≥ )(τ3).

Let LS denote the length of the slope of τ1, HL designate the largest part of τ1 (0 if τ1 is empty)

and HM and HR denote the smallest parts of τ2 and τ3, respectively (infinite if they are empty).

Case 1 : LS ≥ HM. (Note that τ2 is not empty.)

Move the least part of τ2 onto the slope of τ1 to create a new slope. For instance, (5, 4, 3, 1) +

(4, 2) + (3) corresponds to (6, 5, 3, 1) + (4) + (3).

•

• •

• • •

• • •

• • • •

•

•

• ◦

• ◦

•

•

•

⇒

◦

• ◦

• •

• • •

• • •

• • • •

•

•

•

•

•

•

•

Case 2 : LS < HM, and the slope is detachable.

Remove the slope of τ1 to create a new smallest part τ2. For instance, (6, 5, 3, 1) + (4) + (3)
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corresponds to (5, 4, 3, 1) + (4, 2) + (3).

◦

• ◦

• •

• • •

• • •

• • • •

•

•

•

•

•

•

•

⇒

•

• •

• • •

• • •

• • • •

•

•

• ◦

• ◦

•

•

•

Note that Case 1 and Case 2 are inverses of each other.

Case 3 : LS < HM, the slope is nondetachable, and HM ≤ HL+HR with nonempty τ2.

In this case, HM > HL = LS. Remove the smallest part of τ2 to create a new largest part

(=HL+1) and a new smallest part (since 0 ≤ HM − (HL +1) < HR). For instance, (3, 2, 1) +

(6, 5) + (3) corresponds to (4, 3, 2, 1) + (6) + (3, 1).

•

• •

• • •

•

• ◦

• ◦

• ◦

• ◦

• ◦

•

•

•

⇒
◦

◦ •

◦ • •

◦ • • •

•

•

•

•

•

•

•

•

• ◦

Case 4 : LS < HM, the slope is nondetachable, and HM > HL+HR with nonempty τ3. (Note

that τ1 is nonempty since m ≥ 0.)

Add the largest part of τ1 and the smallest part of τ3 to form a new smallest part of τ2. For
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instance, (4, 3, 2, 1) + (6) + (3, 1) corresponds to (3, 2, 1) + (6, 5) + (3).

◦

◦ •

◦ • •

◦ • • •

•

•

•

•

•

•

•

•

• ◦

⇒
•

• •

• • •

•

• ◦

• ◦

• ◦

• ◦

• ◦

•

•

•

Note that Case 3 and Case 4 correspond to each other. Also, note that all four operations change

the parity of partitions and none of the rules changes the condition )(τ1)− )(τ3) = m.

The bijection fails when the slope of τ1 is nondetachable, and τ2 and τ3 are empty, i.e., for some

n ≥ 0,

N =
n(n + 1)

2
, m = )(τ1)− )(τ3) = )(τ1) = n,

and the excess of the number of partitions of N into an even number of parts over those into an

odd number parts is (−1)n.

Now, consider the case when m < 0. In this case, we switch the roles of τ1 and τ3. In other

words, LS is the length of the slope of τ3, HL denotes the largest part of τ3 and HM and HR

designate the smallest parts of τ2 and τ1, respectively. Recall that if the slope of τ3 is nondetachable,

then LS= HL +1 (so, in Case 3, HM-(HL+1)≥ 1). Similarly, the bijection fails when τ1 and τ2 are

empty and the slope of τ3 is nondetachable, i.e., for some negative integer n,

m = )(τ1)− )(τ3) = −)(τ3) = n, N = 0 + 1 + · · ·+ (−n− 1) =
n(n + 1)

2
,

and the excess of the number of partitions of N into an even number of parts over those into an

odd number parts is (−1)n. Hence, we complete the proof.
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Next, we introduce another combinatorial proof of Jacobi’s triple product identity in the form

∞∏

n=1

(1 + xq2n−1)(1 + x−1q2n−1) =
( ∞∑

n=−∞
xnqn2

)( ∞∏

n=1

(1− q2n)−1
)

=
( ∞∑

n=−∞
xnqn2

)( ∞∑

n=0

pe(2n)q2n
)
, (3.5)

where pe(n) is the number of partitions of n into even parts. Comparing the coefficients of xkqN

on each side of (3.5), R. P. Lewis derived the following combinatorial interpretation and gave a

bijective proof of it. We also present his proof here.

Theorem 3.3. The number of partitions of N in the form N = π + σ, where π, σ ∈ O and

)(π)− )(σ) = k, is equal to pe(N − k2)..

Remark : Lewis [40] proved Theorem 3.3 with p((N −k2)/2) instead of pe(N −k2). Theorem

3.3 implies that given a partition of N = π + σ with π, σ ∈ O and )(π)− )(σ) = k, we can find a

partition τ bijectively such that N = k2 + τ and τ is a partition of N − k2 into even parts.

Proof. Let us consider only the case when k ≥ 0 since we can exchange π and σ. Given N = π+σ

with π, σ ∈ O and )(π)− )(σ) = k, we draw the self-conjugate diagrams G1 and G2, respectively.

For example, if N = 38, π = (11, 9, 5, 1) and σ = (9, 3), then

G1 :

• • • • • •

• • • • • •

• • • • •

• • • •

• • •

• •

G2 :

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦

◦ ◦

◦

◦

Now, superimpose G2 on G1 with the top left corner of G2 over the point k + 1 places down the

40



diagonal of G1. Then, remove the top left square of size k2. For our example, since k = 2,

• • • • • •

• • • • • •

• • - - - ◦ ◦

• • - - ◦

• • - ◦

• • ◦

◦

⇒
• •

• •
+

• • • •

• • • •

• • - - - ◦ ◦

• • - - ◦

• • - ◦

• • ◦

◦

Lastly, switch • and ◦ below the diagonal of the diagram.

• •

• •
+

• • • •

• • • •

◦ ◦ - - - ◦ ◦

◦ ◦ - - ◦

◦ ◦ - •

◦ ◦ •

•

The new diagram is composed of the graph, drawn with •, of a partition of (N − k2)/2 with the
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graph of its conjugate, drawn with ◦, superimposed.

• •

• •
+

• • • •

• • • •

◦ ◦ - - - ◦ ◦ 7

◦ ◦ - - ◦ 5

◦ ◦ - • 3

◦ ◦ • 2

•

7 5 3 2

Since we have the same two partitions of (N − k2)/2, by multiplying each part by 2, we obtain a

partition of N − k2 into even parts. Thus, for our example, we obtain a partition 14 + 10 + 6 + 4

of N − k2 = 38− 4 = 34. This process is obviously reversible, so we complete the proof.

Lastly, we introduce a bijective proof of Euler’s recurrence relation by D. M. Bressoud and D.

Zeilberger [11]. From Euler’s pentagonal number theorem in the form

∞∏

n=1

(1− qn)−1
∞∑

n=−∞
(−1)nq

n(3n+1)
2 =

∞∑

n=0

p(n)qn
∞∑

n=−∞
(−1)nq

n(3n+1)
2 = 1 (3.6)

we deduce the following theorem.

Theorem 3.4. For n ≥ 1,

∑

i even

p(n− i(3i + 1)/2) =
∑

i odd

p(n− i(3i + 1)/2),

where i ∈ Z is allowed to be negative.

For instance, if n = 7, then

∑

i even

p(n− i(3i + 1)/2) = p(7) + p(2) + p(0) = 15 + 2 + 1 = 18,
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∑

i odd

p(n− i(3i + 1)/2) = p(6) + p(5) = 11 + 7 = 18.

Proof of Theorem 3.4. Let a(i) = i(3i + 1)/2. Define the map γ by the following rule:

for a partition λ : n− a(i) = λ1 + λ2 + · · ·+ λt,

γ(λ) =






λ′ : n− a(i− 1) = (t + 3i− 1) + (λ1 − 1) + · · ·+ (λt − 1) if t + 3i ≥ λ1,

λ′ : n− a(i + 1) = (λ2 + 1) + · · ·+ (λt + 1) + 1 + · · ·+ 1︸ ︷︷ ︸
λ1−t−3i−1

if t + 3i < λ1.

It is not hard to see that γ is an involution, so we complete the proof.

Now, let us use the three bijections that we showed above to prove Theorem 3.1.

Proof of Theorem 3.1. First, fix σ1, σ2 ∈ O, and say |σ1| + |σ2| = M. Now, consider all the

partitions π1+π2+π3 of N−M with π1, π2 ∈ D, π3 ∈ D0 and )(π1)−)(π3) = m−2()(σ1)−)(σ2)),

so that N = π1+π2+π3+σ1+σ2. By the bijective proof of Theorem 3.2, the excess of the number

of partitions of N into an even number of parts in the form N = π1 +π2 +π3 +σ1 +σ2 over those

into an odd number of parts (with fixed σ1 and σ2) is nonzero only when π1 = 1 + · · · + t, t ≥ 0,

and π2 = π3 = ∅, or π3 = 0 + 1 + + · · ·+ (−t− 1), t < 0, and π1 = π2 = ∅.

Thus, we only have to consider the partitions of the form

N = 1 + · · ·+ t + σ1 + σ2, t ≥ 0, N = 0 + 1 + · · ·+ (−t− 1) + σ1 + σ2, t < 0,

where σ1, σ2 ∈ O and 2()(σ1)− )(σ2)) = m− t. By the bijection described in Theorem 3.3, each

pair (σ1, σ2) corresponds to ()(σ1)−)(σ2))2+τ, where τ is a partition of N−t(t+1)/2−()(σ1)−

)(σ2))2 into even parts. Thus, each partition of N of the form

µ : N = t(t + 1)/2 + σ1 + σ2, t ∈ Z, (3.7)
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is bijectively associated with

µ′ : N = t(t + 1)/2 + ()(σ1)− )(σ2))
2 + τ.

We consider three different cases when m ≡ 0, 1 or −1 (mod 3).

Case 1: m = 3n, n ∈ Z.

Let )(σ1)−)(σ2) = r. Then we have t+2r = 3n and )(µ) = t+)(σ1)+)(σ2) ≡ t+r ≡ n−r

(mod 2). Also,

µ′ : N =
t(t + 1)

2
+ r2 + τ =

n(3n + 1)

2
+ 3(n− r)2 + (n− r) + τ. (3.8)

So, if N = n(3n + 1)/2, then we have n = r = t and |τ | = 0. Thus, the only possibilities

for σ1 and σ2 for µ are σ1 = 1 + 3 + · · · + 2n − 1 and σ2 = ∅ if n ≥ 0, and σ1 = ∅ and

σ2 = 1 + 3 + · · · + (−2n − 1) if n < 0, since n = r = )(σ1) − )(σ2). Considering )(µ) ≡ 2n

(mod 2), we can see that the excess of the number of partitions of N into an even number of parts

over those into an odd number of parts in the form satisfying the condition of our theorem is 1.

Now, suppose N += n(3n + 1)/2. Then, L := N − n(3n + 1)/2 ≥ 1 by (3.8). By the

bijective relations between the solutions of µ and µ′, the excess of the number of solutions of

µ with )(µ) even over those with )(µ) odd is equal to the excess of the number of partitions of

L − (3(n − r)2 + (n − r)) into even parts with n − r even over the number of partitions of

L− (3(n− r)2 + (n− r)) into even parts with n− r odd since )(µ) ≡ n− r (mod 2). Using the

fact that the number of partitions of a number a into even parts is equal to the number of partitions

of a/2 and the bijection described in Theorem 3.4, we complete the proof of Case 1, because the

previously described excess is equal to 0.

Case 2: m = −3n− 1, n ∈ Z.

If )(σ1)− )(σ2) = r, then t + 2r = −3n− 1, )(µ) ≡ t + r ≡ n + r + 1 (mod 2) and

µ′ : N =
t(t + 1)

2
+ r2 + τ =

n(3n + 1)

2
+ 3(n + r)2 + (n + r) + τ.
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Similarly, if N = n(3n + 1)/2, then we have n = −r = −t− 1 and |τ | = 0. Since |σ1| + |σ2| =

N − t(t + 1)/2 = (t + 1)2 by (3.7) and )(σ1)− )(σ2) = t + 1, we have σ1 = 1 + 3 + · · ·+ 2t + 1

and σ2 = ∅ if t ≥ −1, and σ1 = ∅ and σ2 = 1 + 3 + · · · + (−2t − 3) if t < −1. Considering

)(µ) ≡ 2t + 1 (mod 2), we complete the proof when N = n(3n + 1)/2.

By the same argument as in Case 2, we can also prove the theorem when N += n(3n + 1)/2.

(The only difference is that )(µ) has the opposite parity of n + r.)

Case 3: m = 3n + 1, n ∈ Z.

Similarly, letting )(σ1) − )(σ2) = r, we have t + 2r = 3n + 1, )(µ) ≡ t + r ≡ n − r + 1

(mod 2) and

µ′ : N =
t(t + 1)

2
+ r2 + τ =

3n2 + 3n + 2

2
+ 3(n− r)(n− r + 1) + τ.

Let L = N−(3n2+3n+2)/2. Then, the excess of the number of solutions of µ with )(µ) even over

those with )(µ) odd is equal to the excess of the number of partitions of L− (3(n− r)(n− r + 1))

into even parts with n− r odd over those with n− r even, which is 0, since (n− r)(n− r + 1) =

{−(n− r)− 1}{(−(n− r)− 1 + 1)}, and n− r and −(n− r)− 1 have opposite parity. Note that

L = 0 is not an exceptional case since (n−r)(n−r+1) = 0 when n−r = 0 or n−r+1 = 0.

45



Chapter 4

Göllnitz-Gordon Identities and Parity
Questions in Partitions

4.1 Introduction

Parity has played a role in additive number theory, in particular partition identities, from the begin-

ning.

B. Gordon [29, 30] and H. Göllnitz [25, 26] independently considered parity as follows:

Theorem 4.1 (First Göllnitz-Gordon Identity). The number of partitions of n into distinct non-

consecutive parts with no even parts differing by exactly 2 equals the number of partitions of n

into parts ≡ 1, 4, or 7 (mod 8).

The famous Rogers-Ramanujan identities do not immediately involve parity. However, several

results related to the Rogers-Ramanujan identities concern parity. In particular, many q-series

identities from Ramanujan’s Lost Notebook raise parity questions.

These examples initiated the thorough examination of parity in partition identities by Andrews

[4]. In a long recent paper [4], G. E. Andrews began a thorough study of parity questions arising

from partition identities. At the end of his paper [4], he listed fifteen open problems, most of which

ask for combinatorial and bijective proofs.

The purpose of this chapter is to provide answers to the first two problems of Andrews, which

involve the celebrated Rogers-Ramanujan-Gordon Theorem [1, 30].

Theorem 4.2 (Rogers-Ramanujan-Gordon Identities). For 1 ≤ a ≤ k, let Bk,a(n) be the number

of partitions of n of the form

b1 + b2 + · · ·+ bj,
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where bi ≥ bi+1, bi− bi+k−1 ≥ 2, and at most a− 1 of the bi are equal to 1. Let Ak,a be the number

of partitions of n into parts +≡ 0,±a (mod 2k + 1). Then for all n ≥ 0,

Ak,a(n) = Bk,a(n).

We now add parity restrictions.

Theorem 4.3 (Andrews). Suppose k ≥ a ≥ 1 are integers with k ≡ a (mod 2). Let Wk,a(n)

denote the number of those partitions enumerated by Bk,a(n) with the added restriction that even

parts appear an even number of times. If k and a are both even, let Gk,a(n) denote the number of

partitions of n in which no odd part is repeated and no even part is ≡ 0,±a (mod 2k + 2). If k

and a are both odd, let Gk,a(n) denote the number of partitions of n into parts that are neither≡ 2

(mod 4) nor ≡ 0,±a (mod 2k + 2). Then for all n ≥ 0,

Wk,a(n) = Gk,a(n).

It follows from a comparison of Theorem 4.3 with the Gollnitz-Gordon identity in Theorem 4.1

that W3,3(n) is equal to the number of partitions of n into parts that differ by at least 2 and by more

than 2 if the parts are even. A bijective proof of this partition identity is the first problem in the

list of Andrews [4]. The second problem is to show bijectively that W3,1(n) is equal to the number

of partitions of n into parts (each > 2) that differ by at least 2 and by more than 2 if the parts are

even.

A generalization of the Göllnitz-Gordon identities, the first of which is stated in Theorem 4.1,

has been accomplished by Andrews [2] in the same manner that the Rogers-Ramanujan-Gordon

identity stated in Theorem 4.2 generalizes the celebrated Rogers-Ramanujan identities.

Theorem 4.4 (Andrews). Let a and k be integers with 0 < a ≤ k. Let Ck,a(n) be the number of

partitions of n into parts that are neither≡ 2 (mod 4) nor≡ 0,±(2a−1) (mod 4k). Let Dk,a(n)

denote the number of partitions of n of the form n =
∑

i≥1 fii with f1 + f2 ≤ a − 1 and for all
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i ≥ 1,

f2i−1 ≤ 1 and f2i + f2i+1 + f2i+2 ≤ k − 1,

where fi denotes the number of appearances of i in the partition. Then Ck,a(n) = Dk,a(n).

By comparing Theorems 4.3 and 4.4, we see that

W2k−1,2a−1(n) = Dk,a(n). (4.1)

In the third problem of Andrews, it is asked to prove (4.1) bijectively.

In Section 4.2, we prove combinatorially that

1. W3,3(n) is equal to the number of partitions of n into parts that differ by at least 2 and by

more than 2 if the parts are even, namely W3,3(n) = D2,2(n), and

2. W3,1(n) is equal to the number of partitions of n into parts (each > 2) that differ by at least

2 and by more than 2 if the parts are even, namely W3,1(n) = D2,1(n).

4.2 Problems 1 and 2

Theorem 4.5. For any positive integer n,

W3,3(n) = D2,2(n)

Proof. Let π = (π1, . . . , πm) with πi ≤ πi+1, be a partition counted by W3,3(n). By the definition

of W3,3(n), we see that each part can be repeated at most twice and all the even parts appear exactly

twice. We represent the partition π by an array with two rows (counted from bottom to top), where

the first and the second rows consist of the first and second copies of the parts, respectively and

each column has the same parts. For instance, if π = (2, 2, 4, 4, 7, 9, 14, 14, 23, 23, 33) is counted
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by W3,3(135), then we write π as following.

2 4 14 23

2 4 7 9 14 23 33

We note that since πi+2 − πi ≥ 2 and even parts appear twice, the parts appearing only in the

first row are odd and the parts from the first row differ by at least 2. Let (τ1, . . . , τl) be the parts

appearing in the first row. For each i with 1 ≤ i ≤ l, subtract 2i−1 from τi and add the parts in the

same column. In the above example, we have (τ1, . . . , τl) = (2, 4, 7, 9, 14, 23, 33), and we obtain

2 4 14 23

1 1 2 2 5 12 20

3 5 2 2 19 35 20

We note that the sums of two parts from the same column are odd and the parts appearing only

in the first row are even. Besides, since the parts from the second row differ by at least 2, all the

odd parts in the resulting partition are distinct. Lastly, we rearrange the parts in weakly increasing

order and add 2i − 1 to the i−th part for each 1 ≤ i ≤ l. Then, the parts of the resulting partition

differ by at least two and even parts differ by more than 2. Hence, the resulting partition is counted

by D2,2(n). In the example, we obtain

2 2 3 5 19 20 35

1 3 5 7 9 11 13

3 5 8 12 28 31 48

and we see that (3, 5, 8, 12, 28, 31, 48) is counted by D2,2(135).

Now, we show that the process is reversible. Let σ = (σ1, . . . , σl) with σi ≤ σi+1, be a

partition counted by D2,2(n). We first subtract 2i − 1 from σi to obtain σ′. Since the even parts

of σ differ by at least 4, σ′ has distinct odd parts. For example, if σ = (3, 5, 8, 12, 28, 31, 48),
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then σ′ = (2, 2, 3, 5, 19, 20, 35). Now, we rearrange the parts of σ′ to obtain w = (w1, . . . , wl) as

following. In order to select wi from the parts of σ′, we consider the remaining parts of σ′ after

removing w1, . . . , wi−1 from σ′, and choose the smallest odd and even parts among them, say σ′o

and σ′e, respectively. If (σ′o − (2i − 1))/2 ≤ σ′e, then let wi = σ′o, and otherwise, let wi = σ′e. We

continue this process until we determine all of w1, . . . , wl (if we use all of odd parts or even parts of

σ′, then just arrange the remaining parts in weakly increasing order). In the same example, we have

σ′o = 3 and σe = 2. Since (3 − 1)/2 ≤ 2, we have w1 = 3. For w2, we have σ′o = 5 and σ′e = 2.

Since (5 − 3)/2 ≤ 2, we have w2 = 5. Similarly, since σ′o = 19, σ′e = 2 and (19 − 5)/2 > 2, we

have w3 = 2. By continuing this, we have w = (3, 5, 2, 2, 19, 35, 20).

Now, if wi is odd, then we split it into two parts (wi +(2i−1))/2 and (wi− (2i−1))/2, whose

difference is 2i − 1. We write w by an array with two rows (counted from bottom to top), where

the first and second rows of i−th column are (wi− (2i− 1))/2 and (wi + (2i− 1))/2 if wi is odd,

and if wi is even, then place it in the first row of the i−th column. Thus, in the example we have

2 4 14 23

1 1 2 2 5 12 20

Lastly, we add 2i− 1 to the i−th part in the first row. Then, the columns with two parts will have

the same parts. Since the parts in the first row differ by at least two and the parts appearing only

in the first row are odd, the resulting partition is counted by W3,3(n). From the example, we obtain

the following.

2 4 14 23

2 4 7 9 14 23 33

Note that the resulting partition is (2, 2, 4, 4, 7, 9, 14, 14, 23, 23, 33), which is counted by W3,3(135).
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Theorem 4.6. For any positive integer n,

W3,1(n) = D2,1(n)

Proof. By the definitions, 1 is not allowed in any partitions counted by W3,1(n), and none of 1

and 2 are allowed in partitions counted by D2,1(n). Thus, in the proof of Theorem 4.5, we add the

constraints that the parts are greater than 1 and 2, respectively. Then, the rest of the proof is the

same. We omit the details.
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Chapter 5

A Combinatorial Proof of a Recurrence
Relation for the Partition Function due to
Euler

5.1 Introduction

One of Euler’s famous identities is a recurrence formula for the sum of divisors σ(n).

Theorem 5.1. For every n > 0, we have

∞∑

k=−∞

(−1)kσ

(
n− k(3k + 1)

2

)
=






(−1)k−1n if n = k(3k+1)
2 , k ∈ Z,

0 otherwise.

Euler [17, p. 234] derived the above result using logarithmic differentiation of Euler’s pentag-

onal number theorem

F (x) :=
∞∏

k=1

(1− xk) =
∞∑

k=−∞

(−1)kx
k(3k+1)

2 . (5.1)

The proof is elementary. We begin with

xF ′(x) = F (x)
xF ′(x)

F (x)
= −

∞∑

k=−∞

(−1)kx
k(3k+1)

2

∞∑

j=1

σ(j)xj.

On the other hand,

xF ′(x) =
∞∑

k=−∞

(−1)k k(3k + 1)

2
x

k(3k+1)
2 .

By equating coefficients of xn, we obtain Theorem 5.1.

From (8.8), we can easily derive Euler’s recurrence formula for p(n),

∞∑

n=−∞
(−1)kp

(
n− k(3k + 1)

2

)
= 0.
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Thus, Theorem 5.1 indicates that a similar formula is also valid for σ(n).

Considering xF ′(x)/F (x) instead of xF ′(x), we can deduce an identity, which is a companion

of the identity from Theorem 5.1. From

−
∞∑

j=1

σ(j)xj =
∞∏

k=1

(1− xk)−1
∞∑

k=−∞

(−1)k k(3k + 1)

2
x

k(3k+1)
2

we obtain a formula for σ(n) in terms of p(n).

Theorem 5.2. Let n ≥ 1. Then,

−σ(n) =
∞∑

k=−∞

(−1)k k(3k + 1)

2
p(n− k(3k + 1)

2
).

Even though Theorems 5.1 and 5.2 are easily derived analytically, it is interesting to find com-

binatorial proofs. A combinatorial proof for Theorem 5.1, that is based on a double counting

argument, can be found in [58, pp. 182–183] and [45, p. 53]. However, no such argument is

known for Theorem 5.2.

In this chapter, we generalize Theorem 5.2 and give a combinatorial proof of this generaliza-

tion, which is also based on a double counting argument. We can easily obtain the generalization

by applying the previous argument to the general theta function, defined by

f(a, b) :=
∞∑

n=−∞
a

n(n+1)
2 b

n(n−1)
2 = (−a; ab)∞(−b; ab)∞(ab; ab)∞, (5.2)

where |ab| < 1. The latter equality is called Jacobi’s triple product identity.

A generalization of Theorem 5.1 can also be found in a natural way. Moreover, the com-

binatorial argument from [58, pp. 182–183] used to prove Theorem 5.1 can be applied to the

generalization of Theorem 5.1 with a little modification. Because the combinatorial proof of the

more general theorem is similar to that for Theorem 5.1, we do not give it here.

Lastly, we show that the quintuple product identity can be employed to yield similar sorts of

identities, and we remark that their combinatorial proofs can be given in a similar fashion.
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5.2 A generalization of Theorem 5.2 and its combinatorial

proof

Theorem 5.3. Let n and m be positive integers, and put n + m = L. Then, for N ≥ 1, we have

−σn,m(N) =
∞∑

k=−∞

(−1)k k2(n + m) + k(n−m)

2
pn,m(N − k2(n + m) + k(n−m)

2
), (5.3)

where pn,m(N) is the number of partitions of N into parts congruent to n, m or L (mod L) and

σn,m(k) =
∑

d|k
d≡n,m,L (mod L)

d.

Note that Theorem 5.3 with n = 1, m = 2 reduces to Theorem 5.2.

We can easily deduce Theorem 5.3 by taking the logarithmic derivative of f(−qn,−qm). By

(5.2), we have

f(−qn,−qm) =
∞∏

k=0

(1− qn+kL)(1− qm+kL)(1− q(k+1)L)

= 1 +
∞∑

k=1

(−1)kq
k2(n+m)+k(n−m)

2 +
∞∑

k=1

(−1)kq
k2(n+m)−k(n−m)

2 . (5.4)

Consider

− q
d
dqf(−qn,−qm)

f(−qn,−qm)
=

∞∑

k=0

(n + kL)qn+kL

1− qn+kL
+

∞∑

k=0

(m + kL)qm+kL

1− qm+kL
+

∞∑

k=0

(k + 1)Lq(k+1)L

1− q(k+1)L

=
∞∑

k=1

σn,m(k)qk.

On the other hand, we also have

−q
d
dqf(−qn,−qm)

f(−qn,−qm)
=

−1

f(−qn,−qm)

∞∑

k=−∞

(−1)k k2(n + m) + k(n−m)

2
q

k2(n+m)k+(n−m)
2 .
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Thus, we obtain

−
∞∑

k=1

σn,m(k)qk =
1

f(−qn,−qm)

∞∑

k=1

(−1)k k2(n + m)± k(n−m)

2
q

k2(n+m)±k(n−m)
2 ,

which implies Theorem 5.3.

A combinatorial proof of Theorem 5.3. Define the set

An,m(N) = {(π, λ) : |π|+ |λ| = N, π ∈ Dn,m, λ ∈ Pn,m},

where Dn,m is the set of partitions into distinct parts congruent to n, m or L (mod L) and Pn,m is

the set of partitions into parts congruent to n, m or L (mod L). Now let

Bn,m(N) =
∑

(π,λ)∈An,m(N)

(−1)((π)|π|.

We show that Bn,m(N) is equal to both sides of (5.3). The involution of the Jacobi triple product

identity [62] implies a bijective proof of (5.4). Thus, bijectively, we have

Bn,m(N) =
∑

(π,λ)∈An,m(N)

(−1)((π)|π| =
N∑

b=0

(N − b)pn,m(b)
∑

π∈Dn,m(N−b)

(−1)((π)

=
∞∑

k=−∞

(−1)k k2(n + m) + k(n−m)

2
pn,m(N − k2(n + m) + k(n−m)

2
),

where Dn,m(N − b) is the set of partitions of N − b into distinct parts congruent to n, m or L

(mod L).

Next, we first show that the number of pairs (π, λ) ∈ An,m(N) with )(π) even is equal to the

number of those with )(π) odd. Let s(π) be the smallest part of a partition π and define s(π) =∞

if π = ∅. If s(π) ≤ s(λ), then move s(π) to the partition λ, and if s(π) > s(λ), then move s(λ)

to the partition π. Obviously, this map is an involution, so we complete the proof of our claim. By
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this involution, we have

Bn,m(N) =
∑

(π,λ)∈An,m(N)

(−1)((π)|π| =
∑

s(π)≤s(λ)

(−1)((π)|π|+
∑

s(π)>s(λ)

(−1)((π)|π|

=
N∑

a=1

∑

s(π)=a
s(π)≤s(λ)

(−1)((π)(|π| − (|π| − a))

=
N∑

a=1

a
∑

s(π)=a
s(π)≤s(λ)

(−1)((π).

It suffices to show that
∑

s(π)=a
s(π)≤s(λ)

(−1)((π) =






−1, if a | N,

0, otherwise.

Let L(π) be the largest part of a partition π and define L(π) = 0 if π = ∅. Consider a pair (π, λ) ∈

An,m(N) with s(π) = a ≤ s(λ). Let π = a + µ. If L(µ) ≥ L(λ) and µ += ∅, then move the largest

part of µ to the partition λ, and if L(µ) < L(λ), except in the case when L(µ) = 0 < L(λ) = a,

then move the largest part of λ to the partition µ. We thus obtain a new partition (π′, λ′). Then

s(π′) = a ≤ s(λ′) and (−1)((π) = −(−1)((π′). But, the above map fails when π = a (i.e., µ = ∅)

and λ = ∅ or π = a and λ = a + · · ·+ a. So, we have a | N. Thus

∑

s(π)=a
s(π)≤s(λ)

(−1)((π) =






−1, if a | N,

0, otherwise,

whence

Bn,m(N) =
∑

(π,λ)∈An,m(N)

(−1)((π)|π| = −
∑

a|N
a≡n,m,L (mod L)

a = −σn,m(N).
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5.3 Further results

Let k, l be positive integers. By the quintuple product identity [13],

F (q) :=
∞∏

n=0

(1− q
k+l
2 +kn)(1− q

k+l
2 +kn)(1− q

k−l
2 +kn)(1− ql+2kn)(1− q2k−l+2kn)

=
∞∑

n=−∞
q

3k
2 n2+ 2k−3l

2 n − q
3k
2 n2+ 4k−3l

2 n+ k−l
2 .

Repeating the same argument as in Section 5.2, we have

−q
d
dqF (q)

F (q)
=

∞∑

n=1

εk.l(n)qn, (5.5)

where

εk,l(n) =
∑

d|n
d≡ k+l

2 , k−l
2 ,0 (mod k)

d +
∑

d|n
d≡l,2k−l (mod 2k)

d. (5.6)

Also,

q
d

dq
F (q) =

∞∑

n=−∞

(
3k

2
n2 +

2k − 3l

2
n

)
q

3k
2 n2+ 2k−3l

2 n

−
(

3k

2
n2 +

4k − 3l

2
n +

k − l

2

)
q

3k
2 n2+ 4k−3l

2 n+ k−l
2 . (5.7)

Equating the two expressions for q(dF (q))/dq from (5.5) and (5.7) we conclude that

( ∞∑

n=−∞
q

3k
2 n2+ 4k−3l

2 n+ k−l
2 − q

3k
2 n2+ 2k−3l

2 n

) ∞∑

n=1

εk.l(n)qn

=
∞∑

n=−∞

(
3k

2
n2 +

2k − 3l

2
n

)
q

3k
2 n2+ 2k−3l

2 n (5.8)

−
(

3k

2
n2 +

4k − 3l

2
n +

k − l

2

)
q

3k
2 n2+ 4k−3l

2 n+ k−l
2 . (5.9)
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The identity (5.8) has the following arithmetic interpretation.

Theorem 5.4. For N ≥ 1,

∑

j+ 3k
2 n2+ 4k−3l

2 n+ k−l
2 =N

εk,l(j)−
∑

j+ 3k
2 n2+ 2k−3l

2 n=N

εk,l(j) =






N, if N = 3k
2 n2 + 2k−3l

2 n,

−N, if N = 3k
2 n2 + 4k−3l

2 n + k−l
2 ,

0, otherwise,

where εk,l(j) are defined in (5.6).

Next, from the two different representations of q(dF (q))/dqF (q) given in (5.5) and (5.7), we

obtain the following identity.

Theorem 5.5. For N ≥ 1,

εk,l(N) =
∞∑

n=−∞

(
3k

2
n2 +

4k − 3l

2
n +

k − l

2

)
ρk,j

(
N − 3k

2
n2 − 4k − 3l

2
n− k − l

2

)

−
∞∑

n=−∞

(
3k

2
n2 +

2k − 3l

2
n

)
ρk,j

(
N − 3k

2
n2 − 2k − 3l

2
n

)
,

where ρk,j(n) is the number of partitions of n into parts congruent to k+l
2 , k−l

2 , 0 (mod k) or l, 2k−l

(mod 2k).

Using the bijective proof of the quintuple product identity from Chapter 3, we can give com-

binatorial proofs of Theorems 5.4 and 5.5 that are very similar to those for Theorems 5.1 and

5.3.
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Chapter 6

Covering Systems in Number Fields

6.1 Introduction

As we mentioned earlier in the Introduction, Conjectures I and II were confirmed by M. Filaseta,

K. Ford, S. Konyagin, C. Pomerance and G. Yu [22]. Their principal results are the following.

Let

L(N, s) = exp

(
log N

log log(s log N)

log(s log N)

)
.

Theorem 6.1. Suppose 0 < b < 1
2 , 0 < c < 1

3(1− 4b2) and let N be sufficiently large, depending

on the choice of b and c. Suppose C is a finite set of congruence classes with moduli > N, each

modulus appearing at most s times, where s ≤ exp
(
b
√

log N log log N
)
, and such that

∑

(r mod n)∈C

1

n
≤ c log L(N, s).

Then C is not a covering system.

Theorem 6.2. Suppose 0 < ε < 1/2, 0 < b < 1
2

√
ε and N ≥ 100. Suppose that C is a finite

set of congruence classes with moduli from (N, KN ], each modulus appearing at most s times,

where s ≤ exp
(
b
√

log N log log N
)

and K = L(N, s)(1/2−ε)/s. Then the density of the integers

not covered by C is

≥
(

1 + O

(
1

(log N)λ

)) ∏

(r mod n)∈C

(
1− 1

n

)
,

where λ is a positive constant depending only on ε and b.
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It is not hard to see that Theorems 6.1 and 6.2 imply Conjectures I and II, respectively, by setting

s = 1.

In this chapter, we generalize Theorems 6.1 and 6.2 to arbitrary number fields. We take advan-

tage of the facts that all the ideals in the ring of integers of a number field have unique factorization

into prime ideals, the greatest common divisor and the least common multiple of ideals are defined,

and the Chinese Remainder Theorem holds. These properties are necessary in the proofs of the

results from [22].

Now, we introduce a concept of covering systems in number fields. For example, consider the

field of Gaussian rationals Q(i) with ring of integers Z[i] = {a + bi : a, b ∈ Z}, which is the

set of Gaussian integers. Let I = (1 + i), which is the ideal in Z[i] generated by 1 + i. Then we

can see that Z[i] = I
⋃
{1 + I}. In other words, {0 (mod I), 1 (mod I)} covers Z[i]. We say

that {0 (mod I), 1 (mod I)} is a covering system of Z[i] (or in Q(i)). More generally, let F/Q

be a number field of degree d with ring of integers OF . We call {r1 (mod I1), . . . , rk (mod Ik)}

a covering system in F (or of OF ) if for each i ≤ k, ri ∈ OF , Ii is an ideal in OF , and OF

=
⋃k

i=1{ri + Ii}. Furthermore, if a covering system covers every element of OF exactly once,

then it is said to be an exact covering system. Thus, in fact, {0 (mod I), 1 (mod I)} is an exact

covering system of Z[i].

We remark that a covering system in a number field can be identified with a covering system of

Zd by cosets of subgroups, where d is the degree of the number field, since the ring of integers of

a number field with degree d is isomorphic to Zd as an additive group. However, the moduli from

a covering system in a number field are ideals in the ring of integers. Thus, the covering systems

in a number field are more restrictive than those of Zn by cosets of any subgroups.

Here, note that if {r1 (mod I), . . . , rk (mod I)} is an exact covering system, then we must

have k = |OF /I| = ‖I‖, which is the norm of I. Analogous to the notion of density for sets of

integers, we say that the density of each ri (mod I) is 1/‖I‖.

In order to handle ideals in the ring of integers, we introduce the functions f(n) and g(n), which

denote the number of ideals of norm n and the number of prime ideals of norm n, respectively. In
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particular, we use the following key propositions.

Proposition 6.1 ([41], Corollary of Theorem 39). Let F/Q be a number field of degree d. Then,

∑

n≤x

f(n) = cF x + O(x1− 1
d ),

where cF is a constant depending on F.

Proposition 6.2 ([38], page 670). Let F/Q be a number field of degree d. Then,

∑

n≤x

g(n) = Li(x) + O
(
x exp (−(log x)1/13)

)
, where Li(x) =

∫ x

2

dt

log t
.

Here and throughout this chapter, constants implied by the O−symbol may depend on the field

F. Dependence on any other quantity will be indicated by a subscript. We remark that a stronger

version of Proposition 6.2 is possible using Theorem 5.33 of [36] (the term involving a possible

exceptional zero is absorbed into the error estimate at the cost of the O−constant, which thus

depends on the field F in an inexplicit way). We can easily see that g(pn) ≤ d and g(pn) = 0 if

n > d, where p is a prime.

We adopt the following notation which is analogous to that in [22]. We call a finite collection

of congruence classes C = {r1 (mod I1), . . . , rk (mod Ik)} in a number field F/Q a residue

system. We let S(C) be the multiset {I1, . . . , Ik} and we say that the multiplicity of Ii is the

number of times that Ii appears in S(C). By δ(C) we denote the density of the elements of the

ring of integers not covered by C, and we also set

α(C) =
∏

I∈S(C)

(
1− 1

‖I‖

)
.

The goal of this chapter is to derive analogues of all the lemmas and theorems of [22], including

Theorems 6.1 and 6.2, in the number field setting. In Section 6.2, we present analogues of many

preparatory lemmas from [22]. Most of the proofs are very similar to those of [22]. A notable

exception is Lemma 6.11 below. In Section 6.3, we prove our main theorems, which are analogues
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of Theorems 2, 3 and 4 of [22]. Let us state three of our results, the first and the third being

analogues of Theorems 6.1 and 6.2, respectively.

Theorem 6.3. Suppose 0 < b < 1
2 , 0 < c < 1

3(1 − 4b2). Let F/Q be a number field of degree

d ≥ 1. Let N be sufficiently large, depending on the choice of b, c and F. Suppose C is a residue

system in F/Q with S(C) consisting of ideals ‖I‖ > N , each having multiplicity at most s, where

s ≤ exp
(
b
√

log N log log N
)
, and such that

∑

I∈S(C)

1

‖I‖ ≤ c log L(N, s). (6.1)

Then δ(C) > 0.

Theorem 6.4. Suppose that C is a residue system of a number field F/Q of degree d. Suppose

0 < ε< (1 − log 2)−1, b < 1
2

√
(1− log 2)ε, N is sufficiently large, depending on the choice of

ε, b and F , and S(C) consists of ideals whose norms are in (N, KN ] with multiplicity at most s,

where s ≤ exp
(
b
√

log N log log N
)

and K = L(N, s)((1−log 2)−1−ε)/cF s. Then δ(C) > 0.

As in [22], the following theorem shows that if K is a bit smaller than in Theorem 6.4, then we

have

δ(C) ≥ (1 + o(1))α(C).

Theorem 6.5. Suppose 0 < ε < 1/2, 0 < b < 1
2

√
ε and N ≥ 100. Suppose that C is a residue

system of F/Q with S(C) consisting of ideals whose norms are in (N, KN ] with multiplicity at

most s, where s ≤ exp
(
b
√

log N log log N
)

and K = L(N, s)(1/2−ε)/cF s. Then

δ(C) ≥
(

1 + Oε,b

(
1

(log N)λ

))
α(C),

where λ is a positive constant depending only on ε and b.

We remark that we obtain our main theorems under the same conditions on b, c and ε as in

Theorems 2, 3 and 4 of [22]. Additional theorems which are analogues of those from [22] will be
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given later in Section 6.4 and Section 6.5. In Section 6.4, we construct an exact covering system

in a number field with the multiplicity of each modulus ≤ exp(
√

log N log log N) and we also

show that the density δ(C) can be considerably smaller than that of Theorem 6.5 provided K is

sufficiently large. In Section 6.5, we study normal behaviors of δ(C) over random residue systems

C with fixed S(C).

6.2 Preliminary Lemmas

In this section, we present lemmas that are analogues of all the lemmas in [22]. Throughout this

chapter, n denotes a positive integer and p represents a prime. We use the Vinogradov notation

A 0 B, which is the same as A = O(B), and constants implied by the notation 0, as with the

notation O, may depend on the field F.

Let F/Q be a number field of degree d and let OF be the ring of integers of F. Let C be a finite

set of ordered pairs (I, r), which is a set of residue classes r (mod I), where I is an ideal of OF

and r ∈ OF . We say such a set is a residue system of F . Let S = S(C) denote the multiset of the

moduli I appearing in C, and we call the number of times an ideal I appears in S the multiplicity of

I . By R(C) we denote the set of elements of OF not congruent to r (mod I) for any (I, r) ∈ C,

and we denote the asymptotic density of R(C) by δ(C). For C = {(I1, r1), . . . , (Il, rl)}, we let

α(C) =
∏

I∈S(C)

(
1− 1

‖I‖

)
=

l∏

j=1

(
1− 1

‖Ij‖

)
, β(C) =

∑

i<j
‖ gcd(Ii,Ij)‖>1

1

‖Ii‖‖Ij‖
,

where ‖I‖ is the norm of the ideal I. We also let f(n) and g(n) denote the number of ideals of

norm n and the number of prime ideals of norm n, respectively, as in Introduction.

Lemma 6.6. For an arbitrary residue system C of a number field F/Q, we have δ(C) ≥ α(C)−

β(C).
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Proof. Let α = α(C) and β = β(C). We set

C ′ = {(I1, r1), . . . , (Il−1, rl−1)}, C ′′ = {(Ij, rj) : j < l, ‖ gcd(Ij, Il)‖ = 1},

α′ = α(C ′) =
l−1∏

j=1

(
1− 1

‖Ij‖

)
and β′ = β(C ′) =

∑

i<j≤l−1,
‖ gcd(Ii,Ij)‖>1

1

‖Ii‖‖Ij‖
.

Now, follow the proof of Lemma 2.1 of [22] replacing (ni, ri), 1/ni and gcd(nj, nl) by (Ii, ri),

1/‖Ii‖ and ‖ gcd(Ij, Il)‖, respectively.

We can factor each modulus I as IQIQ, where IQ is the smallest ideal dividing I composed

solely of prime ideals that lie over prime numbers in [1, Q] with Q ≥ 1, and IQ = I/IQ.

Lemma 6.7. Let C be a residue system of a number field F/Q. Let Q ≥ 2 be arbitrary, and set

M = lcm{IQ : I ∈ S(C)}.

Let {(M, hi) : 1 ≤ i ≤ ‖M‖} be a covering system of OF . For each hi, let Chi be the set

Chi =
{(

IQ, r
)

: (I, r) ∈ C, r ≡ hi (mod IQ)
}

.

Then

δ(C) =
1

‖M‖

‖M‖∑

i=1

δ(Chi).

Proof. Using the Chinese Remainder Theorem, we can follow the same argument as in the proof

of Lemma 3.1 of [22] (replacing M, nQ and nQ by ‖M‖, IQ and IQ, respectively).

Now, we use the fact that ‖IQ‖ has no prime factors ≤ Q to get an upper bound for the sum of

β(Chi) as in the proof of Lemma 3.2 of [22].

Lemma 6.8. Let K > 1, and suppose C is a residue system of a number field F/Q of degree d

with S(C) consisting of ideals whose norms are in the interval (N, KN ], each with multiplicity at
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most s. Let Q ≥ 2, and define M and Chi as in Lemma 6.7. Then

1

‖M‖

‖M‖∑

i=1

β(Chi)0
s2(1 + log K)2 log2 Q

Q
. (6.2)

Proof. For J | M , let SJ be the set of distinct ideals IQ = I/ gcd(I,M), where I ∈ S(C) and

IQ = gcd(I,M) = J . For J, J ′ | M , let

G(r, J, r′, J ′) = #{1 ≤ i ≤ ‖M‖ : hi ≡ r (mod J), hi ≡ r′ (mod J ′)}.

Then
1

‖M‖

‖M‖∑

i=1

β(Chi) ≤
1

‖M‖
∑

J |M
J ′|M

∑

I∈SJ
I′∈SJ′

‖ gcd(I,I′)‖>1

1

‖I‖‖I ′‖
∑

(IJ,r)∈C
(I′J ′,r′)∈C

G(r, J, r′, J ′).

We can see that G(r, J, r′, J ′) is either 0 or ‖M‖/‖lcm[J, J ′]‖, so the inner sum is at most

s2 ‖M‖
‖lcm[J, J ′]‖ .

Next, let P denote a prime ideal, and let P (n) and P−(n) denote the largest prime factor and the

least prime factor of n ≥ 1, respectively. Then

∑

I∈SJ
I′∈SJ′

‖ gcd(I,I′)‖>1

1

‖I‖‖I ′‖ ≤
∑

P (‖P‖)>Q

∑

I∈SJ
I′∈SJ′
P|I, P|I′

1

‖I‖‖I ′‖

=
∑

P (‖P‖)>Q

1

‖P‖2

(
∑

N/‖PJ‖<‖I‖≤KN/‖PJ‖
P−(‖I‖)>Q

1

‖I‖

)(
∑

N/‖PJ ′‖<‖I′‖≤KN/‖PJ ′‖
P−(‖I′‖)>Q

1

‖I ′‖

)
.

Using Proposition 6.1 and partial summation, we obtain

∑

y<n≤x

f(n)

n
=

1

x

∑

n≤x

f(n)− 1

y

∑

n≤y

f(n) +

∫ x

y

1

t2

∑

n≤t

f(n)dt
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= cF log
x

y
+ O(y−

1
d )0 log

x

y
+ 1. (6.3)

Thus,
∑

N/‖PJ‖<‖I‖≤KN/‖PJ‖
P−(‖I‖)>Q

1

‖I‖ ≤
∑

N/‖PJ‖<n≤KN/‖PJ‖

f(n)

n
0 log K + 1

and similarly with J ′, I ′ replacing J, I . We have the estimate

∑

P (‖P‖)>Q

1

‖P‖2
=

∑

n≥1
p>Q

f(pn)

p2n
≤ d

∑

p>Q

(
1

p2
+

1

p4
+ · · ·

)
0 d

Q log Q
,

which follows from the prime number theorem and partial summation.

Thus,
∑

I∈SJ
I′∈SJ′

‖ gcd(I,I′)‖>1

1

‖I‖‖I ′‖ 0
(1 + log K)2

Q log Q
,

so that

1

‖M‖

‖M‖∑

i=1

β(Chi)0
s2(1 + log K)2

Q log Q

∑

J |M
J ′|M

1

‖lcm[J, J ′]‖ =
s2(1 + log K)2

Q log Q

∑

u|M

∑

lcm[J,J ′]=u

1

‖u‖ .

Let τ(I) denote the number of divisors of an ideal I. Then

∑

u|M

∑

lcm[J,J ′]=u

1

‖u‖ =
∑

u|M

τ(u2)

‖u‖ ≤
∏

P (‖P‖)≤Q

(
1 +

3

‖P‖ +
5

‖P‖2
+ · · ·

)

=
d∏

n=1

∏

p≤Q

(
1 +

3

pn
+

5

p2n
+ · · ·

)g(pn)

=
∏

p≤Q

(
1 +

3

p
+

5

p2
+ · · ·

)g(p) d∏

n=2

∏

p≤Q

(
1 +

3

pn
+

5

p2n
+ · · ·

)g(pn)

0
∏

p≤Q

(
1 +

3

p
+

5

p2
+ · · ·

)g(p)
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≤ exp

(
∑

p≤Q

g(p)

(
3

p
+

5

p2
+ · · ·

))
0 exp

(
3

∑

p≤Q

g(p)

p

)

≤ exp

(
3

∑

n≤Q

g(n)

n

)
0 log3 Q,

since
∑

‖P‖≤Q 1/‖P‖ =
∑

n≤Q g(n)/n = log log Q + O(1) by Proposition 6.2 and partial sum-

mation. This completes the proof.

We can also obtain a lower bound for the sum of α(Chi) using those I’s in S(C) for which

P (‖I‖) ≤ Q.

Lemma 6.9. Let C be an arbitrary residue system of F/Q. For Q ≥ 2, define M and Chi as in

Lemma 6.7. Let C ′ = {(I, r) ∈ C : I|M} = {(I, r) ∈ C : P (‖I‖) ≤ Q} and suppose δ(C ′) > 0.

Then
1

M

‖M‖∑

i=1

α(Chi) ≥ (α(C))(1+1/Q)/δ(C′) .

Proof. Note that OL ∈ S(Chi) if and only if there is a pair (I, r) ∈ C ′ with hi ≡ r (mod I). Let

M′ = {1 ≤ i ≤ ‖M‖ : OF +∈ S(Chi)}, M ′ = |M′|.

Then
M ′

‖M‖ = δ(C ′). (6.4)

Now, follow the same argument as in the proof of Lemma 3.3 of [22] replacing M, 1/n, 1/n′,

1/nQ and 1/nQ by ‖M‖, 1/‖I‖, 1/‖I ′‖, 1/‖IQ‖ and 1/‖IQ‖, respectively.

Now, combining the above two lemmas yields the following.

Lemma 6.10. Suppose K > 1, N is a positive integer, and C is a residue system of F/Q with S(C)

consisting of ideals whose norms are in (N, KN ], each with multiplicity at most s. Let Q ≥ 2, and
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as in Lemma 6.9, let C ′ = {(I, r) ∈ C : P (‖I‖) ≤ Q}. If δ(C ′) > 0, then

δ(C) ≥ α(C)(1+1/Q)/δ(C′) + O

(
s2(1 + log K)2 log2 Q

Q

)
,

where the implied constant depends on F only.

Proof. Using the same definition of M and Chi as in Lemma 6.7 and by Lemmas 6.6, 6.7, 6.8, and

6.9, we have

δ(C) =
1

M

‖M‖∑

i=1

δ(Chi) ≥
1

‖M‖

‖M‖∑

i=1

α(Chi)−
1

‖M‖

‖M‖∑

i=1

β(Chi)

≥ α(C)(1+1/Q)/δ(C′) + O

(
s2(1 + log K)2 log2 Q

Q

)
.

Thus, we complete the proof of the lemma.

Next, we show an analogue of Lemma 4.1 of [22] which is about smooth numbers.

Our result is more complicated to prove because we need to understand f(n) at smooth argu-

ments n.

Lemma 6.11. Let F/Q be a number field of degree d with the ring of integers OF Suppose Q ≥ 2

and Q < N ≤ exp(exp(log2/5 Q)). If f(n) is the number of ideals of norm n in OF , then

∑

n>N
P (n)≤Q

f(n)

n
0 (log Q)e−u log u, where u =

log N

log Q
.

Proof. We use Corollary 2.3 of [57] with κ = 1, and L1/5(z) = exp{(log z)2/5}.

Using Proposition 6.2, we have

∑

p≤z

f(p) log p =
∑

‖P‖≤z

log ‖P‖ −
∑

‖P‖≤z
‖P‖=ql

l≥2

log ‖P‖

=
∑

‖P‖≤z

log ‖P‖+ O(
√

z) = z + O

(
z

exp(log z)1/13

)
.
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Thus, for some constant C, if z > 1, then

|
∑

p≤z

f(p) log p− z| ≤ Cz/L1/5(z),

which is (2.1) of [57]. Since (1.8) of [57] also holds for some A > 0 and η ∈ (0, 1/2), f ∈

M1(A, C, η, L1/5). By Corollary 2.3 of [57],

∑

n≤t
P (n)≤Q

f(n)0 t

uut
t

,

where ut = log t/ log Q, provided Q ≤ t ≤ t0 = QL1/5(Q), since ρ1(u) = ρ(u) 0 u−u (Corollary

2.3 of [34]).

Let Q1(t) = exp{(log log t)5/2}. Note that if t > t0, then Q1(t) ≥ Q. Thus, for t > t0

∑

n≤t
P (n)≤Q

f(n) ≤
∑

n≤t
P (n)≤Q1(t)

f(n)0 t/vv, where v = v(t) =
log t

log Q1(t)
,

since 1 ≤ v(t) ≤ L1/5(Q1). Let i0 be the largest integer such that NQi0 ≤ t0. Then

∑

n>N
P (n)≤Q

f(n)

n
=

∫ ∞

N

1

t2

∑

N<n≤t
P (n)≤Q

f(n) dt

≤
i0−1∑

i=0

∫ NQi+1

NQi

1

t2

∑

n≤t
P (n)≤Q

f(n) dt +

∫ t0

NQi0

1

t2

∑

n≤t
P (n)≤Q

f(n) dt +

∫ ∞

t0

1

t2

∑

n≤t
P (n)≤Q

f(n) dt

0
∑

i≥0

log Q

(u + i)u+i
+

∫ t0

NQi0

1

tuut
t

dt +

∫ ∞

t0

1

t log2 t
· log2 t

vv
dt

0 log Q

uu
+

∫ NQi0+1

NQi0

1

tuut
t

dt +
log t0

v(to)v(t0)
0 log Q

uu
,

which implies the lemma.

Lastly, we present a lemma that will be needed in the proof of Theorem 6.4 in Section 6.3.
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Lemma 6.12. Suppose s is a positive integer and C is a residue system of a number field F/Q

with S(C) consisting of ideals whose norms are in (1, B] with multiplicity at most s. Let

C0 = {(I, r) ∈ C : P| I ⇒ ‖P‖ ≤
√

sνB},

where ν is a constant depending on F such that
∑

n≤x f(n) ≤ νx for all x. (Note that Proposition

6.1 guarantees that such a constant ν exists, and ν ≥ cF ). If δ(C0) > 0, then δ(C) > 0.

Proof. Suppose δ(C0) > 0. Let P be the set of prime ideals whose norms are in (
√

sνB,B] and let

l be the least common multiple of all I ∈ S(C0). Let P ∈ P. Since the number of ideals I ∈ S(C)

such that P| I is ≤ s
∑

n≤B/‖P‖ f(n) ≤ sνB/‖P‖ < ‖P‖, there are at most ‖P‖ − 1 ideals I

such that P| I. Call them I1, . . . , It, and let r1, . . . , rt be the corresponding residue classes. Then

there is a choice for b = b(P) such that if x ≡ b (mod P), then x is not covered by any of the

congruences x ≡ rj (mod Ij) with 1 ≤ j ≤ t.

By assumption, there is a residue class a mod l in R(C0). Let A be a solution to the system

A ≡ a (mod l) and A ≡ b(P) (mod P) for each prime ideal P ∈ P. Such A exists via the

Chinese Remainder Theorem. Then we have A +≡ r (mod I) for each (I, r) ∈ C0. Furthermore,

for each prime P ∈ P and (I, r) ∈ C with P| I , A +≡ r (mod I). Since this exhausts the pairs

(I, r) ∈ C, we have A ∈ R(C), and this completes the proof.

6.3 Proof of Theorems 6.1, 6.2 and 6.3

Proof of Theorem 6.1. We can repeat the proof of Theorem 2 of [22] using Lemmas 6.11 and 6.10

(instead of Lemma 4.1 and Lemma 3.4 of [22]).

Proof of Theorem 6. 2. We can suppose that ε > 0 is sufficiently small and K ≥ 2. Let

C0 = {(I, r) ∈ C : P| I ⇒ ‖P‖ ≤
√

sνKN},
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with ν as in Lemma 6.12. Then, by (6.3),

∑

I∈S(C0)

1

‖I‖ ≤ s
∑

N<‖I‖≤KN

1

‖I‖ − s
∑

N<‖I‖≤KN
∃ P|I: ‖P‖>

√
sνB

1

‖I‖

= s
∑

N<n≤KN

f(n)

n
− s

∑

√
sνKN<‖P‖≤KN

1

‖P‖
∑

N/‖P‖<‖I′‖≤KN/‖P‖

1

‖I ′‖

= scF log K + O
( s

N1/d

)
− s

∑

√
sνKN<‖P‖≤KN

1

‖P‖
∑

N/‖P‖<n≤KN/‖P‖

f(n)

n
.

Now,

∑

N/‖P‖<n≤KN/‖P‖

f(n)

n
=






cF log K + O((‖P‖/N)
1
d ), ‖P‖ ≤ N

cF log(KN/‖P‖) + O(1), N < ‖P‖ ≤ KN.

Thus,

∑

√
sνKN<‖P‖≤KN

1

‖P‖
∑

N/‖P‖<n≤KN/‖P‖

f(n)

n

=
∑

√
sνKN<‖P‖≤N

(
cF log K

‖P‖ + O

(
1

N
1
d‖P‖1− 1

d

))
+ cF

∑

N<‖P‖≤KN

log K

‖P‖

+ cF

∑

N<‖P‖≤KN

log N − log ‖P‖+ O(1)

‖P‖

= cF log K
∑

√
sνKN<‖P‖≤KN

1

‖P‖ + cF

∑

N<‖P‖≤KN

log N

‖P‖ − cF

∑

N<‖P‖≤KN

log ‖P‖
‖P‖

+ O




∑

√
sνKN<‖P‖≤N

1

N
1
d‖P‖1− 1

d



 + O




∑

N<‖P‖≤KN

1

‖P‖



 .

By Proposition 6.2 and partial summation,

∑

y<‖P‖≤x

1

‖P‖ =
∑

y<n≤x

g(n)

n
= log log x− log log y + O

(
1

log y

)
,
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∑

y<‖P‖≤x

log ‖P‖
‖P‖ =

∑

y<n≤x

g(n) log n

n
= log

x

y
+ O

(
1

log y

)
,

∑

y<‖P‖≤x

1

‖P‖1−1/d
=

∑

y<n≤x

g(n)

n1−1/d
= O

(
x

1
d

log y

)
.

So,

∑

√
sνKN<‖P‖≤KN

1

‖P‖
∑

N/‖P‖<n≤KN/‖P‖

f(n)

n

= cF log K
(
log log KN − log log

√
sνKN

)
+ cF log N (log log KN − log log N)

− cF log K + O(log log KN − log log N) + O(1)

= cF log K

(
log 2− log

(
1 +

log sν

log KN

))
+ cF log N log

(
1 +

log K

log N

)
− cF log K

+ O

(
log

(
1 +

log K

log N

))
+ O(1)

= cF log 2 log K + O

(
log K log sν

log KN

)
+ O(1) = (cF log 2 + o(1)) log K.

Thus,
∑

I∈S(C0)

1

‖I‖ ≤ scF ((1− log 2) + o(1)) log K.

Since

− log α(C0) ≤
∑

I∈S(C0)

1

‖I‖ + O

(
s

∑

n>N

f(n)

n2

)
=

∑

I∈S(C0)

1

‖I‖ + O
( s

N

)
,

we have

− log α(C0) ≤ scF

(
1− log 2 + o(1)

)
log K ≤

(
1− (1− log 2)ε + o(1)

)
log L(N, s).

Let Q = L(N, s)1−λ, where λ = 1
4((1 − log 2)ε − 4b2), and let C ′ = {(n, r) ∈ C0 : P (n) ≤ Q}.

72



Using Lemma 6.11 yields

δ(C ′) = 1 + O

(
s

∑

n>N
P (n)≤Q

f(n)

n

)
= 1 + o(1) (N →∞).

Thus,

α(C0)
(1+1/Q)/δ(C′) 1 L(N, s)−1+(1−log 2)ε−λ.

On the other hand,

s2(1 + log K)2 log2 Q

Q
0 L(N, s)−1+λs2(log L(N, s))4 0 L(N, s)−1+4b2+2λ.

By Lemma 6.10, we have δ(C0) > 0 for N sufficiently large. Hence δ(C) > 0 by Lemma 6.12.

Proof of Theorem 6.3. By (6.3), we have

− log α(C) ≤ s
∑

N<n≤KN

(
f(n)

n
+

f(n)

n2

)
≤ s

(
cF log K + O

(
1

N1/d

))
.

So,

α(C)1 K−scF = L(N, s)−1/2+ε.

Let λ = 1
3(ε− 4b2) and Q = L(N, s)1/2−λ. Let u = log N/ log Q, and let C ′ be as in Lemma 6.10.

By Lemma 6.11, we have

1− δ(C ′)0 s log Q

uu
0 s log N

(s log N)2+λ
=

1

(s log N)1+λ
,

so that 1/δ(C ′) = 1 + O
(
(s log N)−1−λ

)
. Using | log α(C)| ≤ log N , we have

α(C)(1+1/Q)/δ(C′) =

(
1 + O

(
1

(log N)λ

))
α(C).
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By Lemma 6.10 it suffices to show that

s2(1 + log K)2 log2 Q

Q
= O

(
α(C)

(log N)λ

)
.

But, for large N we have s2 log4 L(N, s) ≤ L(N, s)4b2+λ. Thus,

s2(1 + log K)2 log2 Q

Q
0 s2 log4 L(N, s)

L(N, s)1/2−λ
0 1

L(N, s)1/2−2λ−4b2

0 1

L(N, s)1/2−ε+λ
0 α(C)

L(N, s)λ
.

6.4 Exact coverings and near coverings in number fields

In this section, we prove analogues of Theorem 5 and Theorem 6 of [22]. As in [22], they imply

that there is an exact covering system of an arbitrary number field, where each modulus I has norm

≥ N and multiplicity near the upper bound given in Theorems 1, 2 and 3, and the density δ(C)

can be considerably smaller than that given in Theorem 6.5 if we allow K to be sufficiently large.

Theorem 6.13. Let F/Q be a number field with the ring of integers OF . For sufficiently large N

and s = exp(
√

log N log log N), there exists an exact covering system of F with squarefree moduli

whose norm is greater than N, such that the multiplicity of each modulus does not exceed s.

Proof. We follow the key idea from the proof of Theorem 5 of [22] to construct the desired cover-

ing system, and we also use the method from an older preprint version of [22] based on the Remark

4 of [22] to complete the proof.

Let P denote a prime ideal of OF , and define a sequence {Xj} by

X0 = 1 and Xj+1 = min

{
x :

∑

Xj<‖P‖≤x

[ x

‖P‖

]
≥ Xj

}
with j ≥ 0,
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where [x] denotes the greatest integer which is ≤ x. Let

Pj = {P : Xj−1 < ‖P‖ ≤ Xj}.

First, for J ≥ 1 and s = XJ , we construct an exact covering system CJ with squarefree moduli of

the form P1 · · · PJ with Pi ∈ Pi with the multiplicity of each modulus ≤ s. Note that such moduli

have norms greater than

NJ =
J−1∏

j=0

Xj.

We construct CJ through induction on J. Choose any prime ideal P in P1. Then, we can find

ri’s from OF such that C1 = {(P , r1), . . . , (P , r‖P‖)} is an exact covering system of F. We can

see that C1 satisfies the above conditions with J = 1.

Now, suppose that we have CJ as above for some J ≥ 1. Fix a modulus I = P1 · · · PJ , and

let (I, r1), . . . , (I, rt) be all the pairs in CJ corresponding to I. Note that t ≤ XJ . Let PJ+1 =

{Q1, . . . ,Qm}. Replace each (I, ri), i ≤ [XJ+1/‖Q1‖], by the ‖Q1‖ pairs (IQ1, ri + ak), where

I =
⋃‖Q1‖

k=1 (ak+IQ1). Note that the multiplicity of the modulus IQ1 is [XJ+1/‖Q1‖]‖Q1‖ ≤ XJ+1

and ri + I =
⋃‖Q1‖

k=1 (ri + ak + IQ1).

Next, replace each (I, ri), [XJ+1/‖Q1‖] < i ≤ [XJ+1/‖Q1‖] + [XJ+1/‖Q2‖], with the ‖Q2‖

pairs (IQ2, ri + bk), where I =
⋃‖Q2‖

k=1 (bk + IQ2). Similarly, the multiplicity of the modulus

IQ2 is ≤ XJ+1 and ri + I =
⋃‖Q2‖

k=1 (ri + bk + IQ2). Continuing this construction, all the pairs

(I, r1), . . . , (I, rt) can be replaced with sets of residue classes with moduli of the form IQi, since

t ≤ XJ ≤
∑

XJ<‖P‖≤XJ+1

[ XJ+1/‖P‖ ].

Applying this procedure for each I ∈ S(CJ) completes the inductive construction of CJ+1.

In order to complete the proof, it suffices to show that for sufficiently large N, we can take J

such that

N ≤ NJ and log2 s = log2 XJ ≤ log N log log N.
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We begin by showing that if ε ∈ (0, 1) and j is sufficiently large, say j ≥ j(ε), then

Xj+1 ≤ Xj
(1 + ε) log Xj

log log Xj
. (6.5)

Set

x =

[
Xj

(1 + ε) log Xj

log log Xj

]
.

By Proposition 6.2, we have

∑

Xj<‖P‖≤x

[ x/‖P‖ ] ≥ x
∑

Xj<n≤x

g(n)

n
−

∑

Xj<n≤x

g(n)

= x(log log x− log log Xj + O(1/ log Xj)) + O(x/ log x)

= x log

(
1 +

log log Xj + O(log log log Xj)

log Xj

)
+ O(x/ log Xj)

≥ x

(
(1− ε/3)(log log Xj)

log Xj

)
+ O(x/ log Xj)

≥ x

(
(1− ε/2)(log log Xj)

log Xj

)
> Xj.

This completes the proof of (6.5).

Next, we show that for every ε ∈ (0, 1), J sufficiently large (depending on ε), and j ≤ J, we

have

log Xj ≥ log XJ − (J − j)(log log XJ − log log log XJ + ε). (6.6)

We consider first the case that j ≥ j(ε), where we choose j(ε) such that Xj(ε) ≥ ee. It follows

from (6.5) that in the case that j ∈ [j(ε), J) we have

log Xj+1 ≤ log Xj + log log Xj − log log log Xj + log(1 + ε)

≤ log Xj + log log XJ − log log log XJ + ε.

Therefore, (6.6) holds for all j ∈ [j(ε), J). On the other hand, if J is large, the left side of (6.6)

decreases by a smaller amount as j changes from j(ε) to 1 by comparison to the amount of decrease
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on the right side of (6.6). Hence, (6.6) in fact holds for all j ≤ J provided J is sufficiently large.

Now, we complete the proof of the theorem. Fix ε ∈ (0, 1). Let N be large, and take J so that

NJ−1 =
J−2∏

j=1

Xj < N ≤ NJ =
J−1∏

j=1

Xj.

Let s = XJ , and set

∆ = log log XJ − log log log XJ + ε = log log s− log log log s + ε.

From (6.6), we have

log NJ−1 ≥
∑

i≥2
i∆≤log s

(log s− i∆) ≥ log2 s

2∆ + ε
.

Let Y denote the expression on the right side above. Then

log Y = 2 log log s− log log log s + O(1) > 2∆ + ε.

Thus,

log N ≥ log NJ−1 ≥
log2 s

log Y
≥ log2 s

log log N
,

and this completes the proof of the theorem.

Let C be a residue system of a number field F/Q, where S(C) consists of distinct ideals whose

norms are in (N, KN ]. Then, using (6.3), we have

α(C) =
∏

I∈S(C)

(
1− 1

‖I‖

)
≥

∏

N<n≤KN

(
1− 1

n

)f(n)

≥ exp

(
−

∑

N<n≤KN

(
f(n)

n
+

f(n)

n2

))

= exp
(
−cF log K + O(N−1/d)

)
.
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Thus, if K is not too large, then Theorem 6.5 implies that δ(C) has a lower bound approximately

1/KcF .

The following theorem shows that, when we allow K to be much larger than N, C can be

chosen so that δ(C) is considerably smaller than 1/KcF .

Theorem 6.14. Suppose N and K are integers sufficiently large depending on F/Q. Then there is

some residue system C consisting of distinct moduli whose norms are from (N, KN ] such that

δ(C) ≤ 1

KcF
exp

(
−c2

F

log K

3N

)
.

Before proving Theorem 6.14, we present a lemma about the expected value of δ(C). Let T be

a set of ideals and let C(T ) be the set of residue systems C with S(C) = T. Define

W0(T ) =
∏

I∈T

I and W (T ) = #C(T ) =
∏

I∈T

‖I‖ = ‖W0(T )‖.

Lemma 6.15. Let T be a set of distinct ideals. Then the expected value of δ(C) over C ∈ C(T ),

denoted by Eδ(C), is
∏

I∈T (1− 1/‖I‖).

Proof. Put W = W (T ) and W0 = W0(T ). Let (W0, m1), . . . , (W0, m‖W0‖) be an exact covering

system. Since the number of systems C ∈ C(T ) with mi ∈ R(C) is
∏

I∈T (‖I‖ − 1), we have

∑

C∈C(T )

δ(C) =
∑

C∈C(T )

1

W

W∑

i=1
mi∈R(C)

1 =
1

W

W∑

i=1

∑

C∈C(T )
mi∈R(C)

1 =
1

W

W∑

i=1

∏

I∈T

(‖I‖ − 1) =
∏

I∈T

(‖I‖ − 1).

Dividing the equations above by W , we complete the proof.

Proof of Theorem 6.14. We follow the construction of covering systems described in the proof of

Theorem 6 of [22] : We will randomly choose the values of r(I) for I with N < ‖I‖ ≤ 2N so

that each residue class modulo I is taken with the same probability 1/‖I‖ and the variables r(I)

are independent. We then select the remaining values of r(I) for I with 2N < ‖I‖ ≤ KN via a
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greedy algorithm. It suffices to show that, under our construction, the expected value of δ(C) over

all randomly chosen values of r(I) for I with N < ‖I‖ ≤ 2N is

≤ 1

KcF
exp

(
−c2

F

log K

3N

)
.

Let C2N = {(I, r(I)) : N < ‖I‖ ≤ 2N}, where each r(I) is selected randomly. Using Lemma

6.15 and (6.3), we have

Eδ(C2N) =
∏

I∈T

(1− 1/‖I‖) ≤ exp

(
−

∑

N<n≤2N

f(n)

n

)

= exp
(
−cF log 2 + O(N−1/d)

)
.

Thus, by the arithmetic mean–geometric mean inequality, it follows that

E log δ(C2N) ≤ −cF log 2 + O(N−1/d). (6.7)

Now, we describe how to choose r(J), where 2N < ‖J‖ ≤ KN. First, let Cj = {(I, r(I)) : N <

‖I‖ ≤ j} and let Ij,1, . . . , Ij,f(j) be the ideals whose norm is j. Here, if f(j) = 0, then Cj = Cj−1.

Note that the residue class r(J) (mod J) contains r (mod Ij,i) when J |Ij,i and r ≡ r(J) (mod J).

Thus, if Ij,i has a divisor J with N < ‖J‖ ≤ 2N , then there are residue classes modulo J not

intersecting R(Cj−1). Let

D(j, i) = {J : J |Ij,i, N < ‖J‖ ≤ 2N}, C̃j,i = {(J, r(J)) : J ∈ D(j, i)}.

Let h(j, i) be the number of residue classes r (mod Ij,i) for which r +≡ r(J) (mod J) for each

J ∈ D(j, i). Note that if h(j, i) = 0 or 1 for some i, then we have R(Cj−1) = ∅ or R(Cj) = ∅.

Thus, we assume that h(j, i) > 1 for all i. Then, we can select r(J) from the h(j, i) choices so that

δ(Cj) ≤
f(j)∏

i=1

(
1− 1

h(j, i)

)
δ(Cj−1). (6.8)
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Using linearity of expectation, we obtain

E log δ(Cj)− E log δ(Cj−1) ≤ E
f(j)∑

i=1

log

(
1− 1

h(j, i)

)
≤ −

f(j)∑

i=1

E

(
1

h(j, i)

)
. (6.9)

Also, Lemma 6.15 implies

Eδ
(
C̃j,i

)
=

∏

J∈D(j,i)

(
1− 1

‖J‖

)
.

We can see that δ
(
C̃j,i

)
= h(j, i)/j, since Ij,i is a common multiple of the members of D(j, i).

Thus,

Eh(j, i) = jEδ
(
C̃j,i

)
= j

∏

J∈D(j,i)

(
1− 1

‖J‖

)
,

and using the arithmetic mean-harmonic mean inequality, we also have

E

(
1

h(j, i)

)
≥ j−1

∏

J∈D(j,i)

(
1− 1

‖J‖

)−1

≥ 1

j
+

∑

J∈D(j,i)

1

‖J‖j .

From (6.9), we obtain

E log δ(Cj)− E log δ(Cj−1) ≤ −
f(j)

j
−

f(j)∑

i=1

∑

J∈D(j,i)

1

‖J‖j .

Thus, by (6.3),

E log δ(C)− E log δ(C2N) ≤ −
KN∑

j=2N+1

f(j)

j
−

KN∑

j=2N+1

f(j)∑

i=1

∑

J∈D(j,i)

1

‖J‖j

= −
KN∑

j=2N+1

f(j)

j
−

∑

N<‖J‖≤2N

∑

2N/‖J‖<‖J ′‖≤KN/‖J‖

1

‖J‖2‖J ′‖

= −
KN∑

j=2N+1

f(j)

j
−

∑

N<n≤2N

f(n)

n2

∑

2N/‖J‖<n≤KN/‖J‖

f(n)

n

= −cF log(K/2) + O(1/N1/d)− (cF log K + O(1))
∑

N<n≤2N

f(n)

n2
.
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For sufficiently large N, we have

∑

N<n≤2N

f(n)

n2
=

cF

2N
+ O(1/N1+1/d) ≥ cF

2.9N
.

Hence, by (6.7),

E log δ(C) ≤ −cF log K + O(1/N1/d)− c2
F

log K + O(1)

2.9N

≤ −cF log K − c2
F

log K

3N
,

for sufficiently large N and K.

6.5 Normal value of δ(C)

In this section, we estimate the variance of δ(C) over C ∈ C(T ), where C(T ) is the set of residue

systems C in a number field F/Q with S(C) = T. As in the case of the integers, we can expect

δ(C) ≈ α(C) for almost all C ∈ C(T ). In fact, we can establish the same result for the variance of

δ(C) as in [22].

Theorem 6.16. Let T be a set of distinct ideals with minimum norm N ≥ 3. Let α be the common

value of α(C) for C ∈ C(T ). Then,

1

W (T )

∑

C∈C(T )

|δ(C)− α|2 0 α2 log N

N2
.

Proof. Let α = α(C), W = W (T ) and W0 = W0(T ). By Lemma 6.15,

1

W

∑

C∈C(T )

|δ(C)− α|2 =
1

W

∑

C∈C(T )

(
δ(C)2 − α2

)
. (6.10)
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Put u =
∑

I∈T 1/‖I‖2, and also define

)(mi, mj) =
∏

I∈T
mi−mj∈I

‖I‖ − 1

‖I‖ − 2
,

where (W0, m1), . . . , (W0, mW ) is an exact covering system in F/Q. By an argument similar to

that in the proof of Theorem 7 of [22], we obtain

∑

C∈C(T )

δ(C)2 =
α2

W

(
1− u + O

(
∑

n≥N

f(n)

n3

))
∑

1≤i,j≤W

)(mi, mj).

=
α2

W

(
1− u + O

(
1

N2

)) ∑

1≤i,j≤W

)(mi, mj). (6.11)

Let M(S) =
∏

I∈S(‖I‖ − 2), where S is a finite set of ideals whose norms are ≥ 3,and let

L(S) denote the least common multiple of the members of S. Then

)(mi, mj) =
∏

I∈T
mi−mj∈I

(
1 +

1

‖I‖ − 2

)
=

∑

S⊆T
mi−mj∈L(S)

1

M(S)
,

and thus

∑

1≤i,j≤W

)(mi, mj) =
∑

S⊆T

1

M(S)

∑

1≤i,j≤W
mi−mj∈L(S)

1 = W 2
∑

S⊆T

1

M(S)‖L(S)‖ . (6.12)

First, considering the case when #S ≤ 1, we have

∑

S⊆T
#S≤1

1

M(S)‖L(S)‖ = 1 +
∑

I∈T

1

(‖I‖ − 2)‖I‖ = 1 + u + O
(
1/N2

)
. (6.13)

On the other hand, if S ⊆ T and #S ≥ 2, let J1, J2 be two members of S such that for I ∈ S,
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‖J1‖ ≥ ‖J2‖ ≥ ‖I‖. Then ‖L(S)‖ ≥ ‖lcm[J1, J2]‖ = ‖J1‖‖J2‖/‖ gcd(J1, J2)‖, so that

E : =
∑

S⊆T
#S≥2

1

M(S)‖L(S)‖

≤
∑

‖J1‖≥‖J2‖≥N

‖ gcd(J1, J2)‖
(‖J1‖ − 2)(‖J2‖ − 2)‖J1‖‖J2‖

∑

U⊆{I:N≤‖I‖≤‖J2‖}

1

M(U)
.

Since the inner sum is equal to

∏

N≤‖I‖≤‖J2‖

(
1 +

1

‖I‖ − 2

)
=

∏

N≤n≤‖J2‖

(
1 +

1

n− 2

)f(n)

= exp




∑

N≤n≤‖J2‖

f(n) log

(
1 +

1

n− 2

)



≤ exp




∑

N≤n≤‖J2‖

f(n)

n− 2



0 ‖J2‖
N

,

by Proposition 6.1, we have

E 0 1

N

∑

‖J1‖≥‖J2‖≥N

‖ gcd(‖J1‖, ‖J2‖)‖
‖J1‖2‖J2‖

≤ 1

N

∑

‖J‖≥1

∑

‖J1‖≥‖J2‖≥N
J |J1, J |J2

‖J‖
‖J1‖2‖J2‖

=
1

N

∑

‖J‖≥1

∑

‖V ‖≥‖V ′‖≥N/‖J‖

1

‖V ‖2‖V ′‖‖J‖2
=

1

N

∑

‖J‖≥1

∑

‖V ′‖≥N/‖J‖

1

‖V ′‖‖J‖2

∑

‖V ‖≥‖V ′‖

1

‖V ‖2

0 1

N

∑

‖J‖≥1

∑

‖V ′‖≥N/‖J‖

1

‖V ′‖2‖J‖2
0 1

N




∑

‖J‖≤N

∑

‖V ′‖≥N/‖J‖

1

‖V ′‖2‖J‖2
+

∑

‖J‖>N

1

‖J‖2





0 1

N2




∑

‖J‖≤N

1

‖J‖ + 1



0 log N

N2
. (6.14)

Combining (6.13) and (6.14), and using (6.12), we obtain

∑

1≤i,j≤W

)(mi, mj) = W 2
(
1 + u + O((log N)/N2)

)
.
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Hence, from (6.11) and u0F 1/N , we have

∑

C∈C(T )

δ(C)2 = α2W
(
1 + O((log N)/N2)

)
.

By (6.10), we complete the proof.
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Chapter 7

On the Efficiency of Covering Systems

7.1 Introduction

A famous problem of Erdös from 1950, the least modulus problem, is to determine whether the

least modulus in a covering system with distinct moduli can be arbitrarily large. As mentioned in

the Introduction, P. Nielson has recently constructed a covering system with distinct moduli ≥ 40,

which stands as the largest known least modulus. It is widely believed that the least modulus in

Erdös’ problem can be arbitrary large. If we assume that this is true, then we can consider the

”efficiency” of covering systems with distinct moduli and a given least modulus. Let

g(N) = inf
C(N)

∑

(r mod n)∈C(N)

1

n
,

where C(N) is the set of covering systems of the set of integers with distinct moduli and least

modulus N. That is, we are given the least modulus N, and we select congruence classes with little

overlap. Thus, g(N) measures the maximum efficiency of covering systems in C(N). It is known

that g(2) = g(3) = g(4) = 1, and we note that Theorem 6.1 from Chapter 6 implies that g(N) > 1

if N is sufficiently large. We can restate Theorem I with s = 1, using the function g(N).

Theorem 7.1. Suppose 0 < c < 1
3 and let N be sufficiently large, depending on the choice of c.

Then

g(N) ≥ c
log N log log log N

log log N
.

It is natural to try to find the least N for which g(N) > 1. Motivated by this question, in this

chapter, we prove an explicit version of Theorem 7.1 (but without the factor log log log N ).
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Theorem 7.2. Let N ≥ 3. Then,

g(N) > 0.056413
log N

log log N
.

We remark that this bound implies

g(N) > 1

if N ≥ 2.759×1033. For the proof of Theorem 7.2, we follow the key ideas from [22] and use some

approximate formulas for prime numbers from [50]. In Section 7.2, we prove explicit versions of

some Lemmas from [22]. In Section 7.3, we give a proof of Theorem 7.2.

7.2 Preliminary results

Throughout this chapter, n is a positive integer and p represents a prime. We let P (n) and P−(n)

denote the largest prime factor and the least prime factor of n ≥ 1, respectively. We use the

notations from Chapter 6 below, but now restricted to the case of the set of integers. If C =

{(n1, r1), . . . , (nl, rl)} is a set of congruence classes, then we call such a set a residue system. Let

S(C) = {n1, . . . , nl} be a multiset of the moduli of C. By δ(C) we denote the density of integers

not covered by congruence classes from C. We also set

α(C) =
∏

n∈S(C)

(
1− 1

n

)
=

l∏

j=1

(
1− 1

nj

)
, β(C) =

∑

i<j
gcd(ni,nj)>1

1

ninj
.

Proposition 7.1 ([22], Lemma 2.1). For any residue system C, we have δ(C) ≥ α(C)− β(C).

We can factor each modulus n = nQnQ, where Q ≥ 1, nQ is the largest divisor of n composed

solely of primes≤ Q, and nQ = n/nQ. A positive integer n is called Q−smooth if P (n) ≤ Q. So,

nQ is the largest divisor of n that is Q−smooth.

Proposition 7.2 ([22], Lemma 3.1). Let C be an arbitrary residue system. Let Q ≥ 2 be arbitrary,
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and set

M = lcm{nQ : n ∈ S(C)}.

For 0 ≤ h ≤M − 1, let Ch be the set

Ch =
{(

nQ, r
)

: (n, r) ∈ C, r ≡ h (mod nQ)
}

.

Then

δ(C) =
1

M

M−1∑

h=0

δ(Ch).

Proposition 7.3. Suppose that C is a residue system, Q ≥ 2, and define M and Ch as in Proposi-

tion 7.2. Also let C ′ = {(n, r) ∈ C : n|M} = {(n, r) ∈ C : P (n) ≤ Q} and suppose δ(C ′) > 0.

Then

1

M

M−1∑

h=0

α(Ch) ≥ (α(C))(1+1/Q)/δ(C′) .

We present some approximate formulas for some functions of prime numbers from [50].

Proposition 7.4 ([50], (3.5), (3.6) and (3.7)). For x ≥ 17,

π(x) >
x

log x
. (7.1)

For x > 1,

π(x) < 1.25506
x

log x
. (7.2)

For 1 < x < 113 and x ≥ 113.6,

π(x) < 1.25
x

log x
. (7.3)
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Proposition 7.5 ([50], (3.18)). For x ≥ 286,

∑

p≤x

1

p
< log log x + B +

1

2 log2 x
,

where B = 0.2614972....

Proposition 7.6 ([50], (3.21) and (3.22)). For x > 1,

∑

p≤x

log p

p
> log x + E +

1

2 log x
,

and for x ≥ 319,
∑

p≤x

log p

p
< log x + E +

1

2 log x
,

where E = −1.3325822....

Proposition 7.7 ([50], (3.30)). For x > 1,

∏

p≤x

p

p− 1
< eγ log x

(
1 +

1

log2 x

)
.

We now give an explicit upper bound for the average of β(Ch) (this is an explicit version of

Lemma 3.2 with s = 1 in [22]).

Lemma 7.3. Let K ≥ 17 and Q ≥ 17. Suppose C is a residue system with distinct moduli in

[N, KN ]. If we define M and Ch as in Proposition 7.2, then

1

M

M−1∑

h=0

β(Ch) ≤ 0.1725
(log K + 44.5)2 log2 Q

Q

(
1 +

1

log2 Q

)3

.

Proof. As in [22], for each m|M, we let Sm be the set of distinct numbers nQ = n/ gcd(n, M),

where n ∈ S(C) and nQ = gcd(n, M) = m. For m, m′ | M , we define

F (r,m, r′, m′) = #{0 ≤ h ≤M − 1 : h ≡ r (mod m), h ≡ r′ (mod m′)}.
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Then, we have

1

M

M−1∑

h=0

β(Ch) ≤
1

M

∑

m|M
m′|M

∑

n∈Sm
n′∈Sm′

gcd(n,n′)>1

1

nn′

∑

(nm,r)∈C
(n′m′,r′)∈C

F (r,m, r′, m′)

≤
∑

m|M
m′|M

1

lcm[m, m′]

∑

n∈Sm
n′∈Sm′

gcd(n,n′)>1

1

nn′

≤
∑

m|M
m′|M

1

lcm[m, m′]

∑

p>Q

∑

n∈Sm
n′∈Sm′
p|n, p|n′

1

nn′

=
∑

m|M
m′|M

1

lcm[m, m′]

∑

p>Q

(
∑

N/m≤n≤KN/m
p|n, P−(n)>Q

1

n

)(
∑

N/m′≤n′≤KN/m′

p|n′, P−(n′)>Q

1

n′

)
.

Next,

∑

N/m≤n≤KN/m
p|n, P−(n)>Q

1

n
=

1

p

∑

N
pm≤t≤KN

pm

P−(t)>Q

1

t
≤ 1

p

( ∑

t≤KN
pm

P−(t)>17

1

t
−

∑

t< N
pm

P−(t)>17

1

t

)
.

In order to find an estimate of the above, we consider

∑

n≤x

1

n
=

[x]

x
+

∫ x

1

[t]

t2
dt

= 1− {x}
x

+

∫ x

1

1

t
dt−

∫ x

1

{t}
t2

dt

= log x + γ − {x}
x

+

∫ ∞

x

{t}
t2

dt,

so that

log x + γ − 1

x
≤

∑

n≤x

1

n
≤ log x + γ +

1

x
. (7.4)
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Let P =
∏

p≤17 p. Then, by (7.4)

∑

t≤x
P−(t)>17

1

t
=

∑

t≤x

1

t

∑

d|(t,P )

µ(d) =
∑

d|P

µ(d)

d

∑

m≤x/d

1

m

≤
∑

d|P

µ(d)

d
(log x− log d + γ) +

1

x

∑

d|P

1

=
3072

17017
(log x + γ)−

∑

d|P

µ(d)

d
log d +

128

x
.

Similarly, we also have

∑

t≤x
P−(t)>17

1

t
≥ 3072

17017
(log x + γ)−

∑

d|P

µ(d)

d
log d− 128

x
.

Thus, if N/pm ≥ 17, then

∑

t≤KN
pm

P−(t)>17

1

t
−

∑

t< N
pm

P−(t)>17

1

t
≤ 3072

17017
log K + 128

pm

KN
+ 129

pm

N

≤ 3072

17017
log K + 8.032 ≤ 0.18053(log K + 44.5).

If N/pm < 17, then

∑

t≤KN
pm

P−(t)>17

1

t
−

∑

t< N
pm

P−(t)>17

1

t
≤

∑

t≤17K
P−(t)>17

1

t
≤ 0.18053(log 17K + γ) + 0.47 +

128

17K

≤ 0.18053(log K + 8.5).

So, we have
∑

t≤KN
pm

P−(t)>17

1

t
−

∑

t< N
pm

P−(t)>17

1

t
≤ 0.18053(log K + 44.5).
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Thus,

∑

p>Q

(
∑

N/m≤n≤KN/m
p|n, P−(n)>Q

1

n

)(
∑

N/m′≤n′≤KN/m′

p|n′, P−(n′)>Q

1

n′

)
≤ 0.180532(log K + 44.5)2

∑

p>Q

1

p2
.

Using partial summation, (7.1) and (7.2), we obtain

∑

p>Q

1

p2
= −π(Q)

Q2
+ 2

∫ ∞

Q

π(x)

x3
dx < − Q

log Q
+ 2.52

∫ ∞

Q

1

x2 log x
dx ≤ 1.52

Q log Q
.

Also, in [22], it was shown that

∑

m|M
m′|M

1

lcm[m, m′]
≤

∏

p≤Q

1 + 1/p

(1− 1/p)2
.

Thus,

1

M

M−1∑

h=0

β(Ch) ≤ 0.04954
(log K + 44.5)2

Q log Q

∑

m|M
m′|M

1

lcm[m, m′]

≤ 0.04954
(log K + 44.5)2

Q log Q

∏

p≤Q

1 + 1/p

(1− 1/p)2

= 0.04954
(log K + 44.5)2

Q log Q

∏

p≤Q

(
1− 1

p2

) ∏

p≤Q

(
p

p− 1

)3

.

Since, by Proposition 7.7,

∏

p≤Q

(
p

p− 1

)3

< e3γ log3 Q

(
1 +

1

log2 Q

)3

and
∏

p≤Q

(
1− 1

p2

)
≤

∏

p≤17

(
1− 1

p2

)
≤ 0.616,
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we have
1

M

M−1∑

h=0

β(Ch) ≤ 0.1725
(log K + 44.5)2 log2 Q

Q

(
1 +

1

log2 Q

)3
,

which completes the proof.

Lemma 7.4. Suppose K ≥ 17, N is a positive integer, and C is a residue system with distinct

moduli from the interval [N, KN ]. Let Q ≥ 17 and C ′ = {(n, r) ∈ C : P (n) ≤ Q}. If δ(C ′) > 0,

then

δ(C) ≥ α(C)(1+1/Q)/δ(C′) − 0.1725
(log K + 44.5)2 log2 Q

Q

(
1 +

1

log2 Q

)3
,

Proof. By combining Propositions 7.1, 7.2, 7.3 and Lemma 7.3, we complete the proof.

Next, we give an explicit estimate for sums of reciprocals of smooth numbers.

Lemma A ([22], Lemma 4.1). Suppose Q ≥ 2 and Q < N ≤ exp(
√

Q). Then

∑

n>N
P (n)≤Q

1

n
0 (log Q)e−u log u, where u =

log N

log Q
.

For the proof of Lemma A, the authors of [22] applied standard upper-bound estimates for the

distribution of smooth numbers: The number of Q-smooth numbers at most t is 0 t/uut
t , where

ut = log t/ log Q, provided Q ≤ t ≤ exp (Q1−ε) ([34], Theorem 1.2 and Corollary 2.3). We use

a technique called ”Rankin’s Method” ( see [34, p. 414] or [49]) to derive an explicit version of a

slightly weaker form of Lemma A.

Lemma 7.5. If Q ≥ 319, then

∑

n≥N
P (n)≤Q

1

n
≤ e5.8417+A(σ) log Q

e2.5u
,

where u = log N/ log Q, A(σ) =
∑∞

k=2

∑
p≤Q 1/(kpkσ) and σ = 1− 2.5/ log Q.
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Proof. We begin with

∑

n≥N
P (n)≤Q

1

n
≤ 1

N1−σ

∑

P (n)≤Q

1

nσ
=

1

N1−σ

∏

p≤Q

(
1− 1

pσ

)−1

=
1

N1−σ
exp

{ ∑

p≤Q

− log

(
1− 1

pσ

) }

=
1

e2.5u
exp

{ ∑

p≤Q

1

pσ
+

∞∑

k=2

∑

p≤Q

1

kpkσ

}
.

Next,

∑

p≤Q

1

pσ
=

∑

p≤Q

p
2.5

log Q

p
=

∑

p≤Q

e2.5 log p
log Q

p
.

If x ≤ 2.5, then we obtain

ex ≤ 1 +
10∑

n=1

xn

n!
+ 3.149× 10−8x11. (7.5)

Also, by partial summation and Proposition 7.6, we have

∑

p≤Q

log2 p

p
= log Q

∑

p≤Q

log p

p
−

∫ Q

2

1

t

∑

p≤t

log p

p
dt

≤ log2 Q + E log Q +
1

2
−

∫ Q

2

log t

t
+

E

t
− 1

2t log t
dt

≤ 1

2
log2 Q +

1

2
log log Q +

1

2
+

log2 2

2
+ E log 2− log log 2

2

≤ 1

2
log2 Q +

1

2
log log Q− 0.00019. (7.6)

Similarly, we can derive

∑

p≤Q

logn p

p
≤ 1

n
logn Q +

2n− 3

2n− 4
logn−2 Q +

n− 1

n
logn 2

+ E logn−1 2− n− 1

2n− 4
logn−2 2, for n ≥ 3
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=
1

n
logn Q +

2n− 3

2n− 4
logn−2 Q + T (n), for n ≥ 3. (7.7)

Thus, by (7.5), (7.6), (7.7) and Proposition 7.5, we have

∑

p≤Q

1

pσ
≤

∑

p≤Q

1

p
+

10∑

n=1

2.5n

n! logn Q

∑

p≤Q

logn p

p
+

3.149× 10−8 × 2.511

log11 Q

∑

p≤Q

log11 p

p

≤ log log Q + B +
1

2 log2 Q

+
10∑

n=1

2.5n

n! logn Q

∑

p≤Q

logn p

p
+

3.149× 2.511

108 × log11 Q

∑

p≤Q

log11 p

p

≤ log log Q + B +
10∑

n=1

2.5n

n!n
+

3.149× 2.511

108 × 11
+

2.5E + 1.25

log Q
+

2.52 log log Q

4 log2 Q

+
1− 2.52 × 0.00019

2 log2 Q
+

10∑

n=3

2.5n

n!n

(
2n− 3

(2n− 4) log2 Q
+

T (n)

logn Q

)

≤ log log Q + B +
10∑

n=1

2.5n

n!n
+

3.149× 2.511

108 × 11

≤ log log Q + 5.84177.

Corollary 7.6. If Q ≥ 108, then

∑

n≥N
P (n)≤Q

1

n
≤ 539.365

log Q

e2.5u
,

where u = log N/ log Q.

Proof. Using σ = 1− 2.5/ log Q ≥ 0.86428, we have by (7.3),

A(σ) ≤
∑

p≤200

∞∑

k=2

1

kp0.86428k
+

1

2

∑

p≥211

1

pσ(pσ − 1)

≤
∑

p≤200

(
− log

(
1− 1

p0.86428

)
− 1

p0.86428

)
+

1.01

2

∑

p≥211

1

p2σ
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≤ 0.443228 +
2.5 · 1.01σ

2

∫ ∞

211

1

x2σ log x
dx

≤ 0.443228 + 0.005394

≤ 0.448622.

Since e5.8417+0.448622 ≤ 539.365, we complete the proof.

7.3 Proof of Theorem 7.2

Proof of Theorem 7.2. Let C be a covering system with S(C) consisting of distinct integers n ≥

N. Define

f(N) =
0.05416 log N

0.96 log log N
.

We shall show that for N ≥ e77,
∑

n∈S(C)

1

n
> f(N). (7.8)

Since 0.05416/0.96 > 0.056413 and

0.056413
77

log 77
< 1,

(7.8) implies Theorem 7.2. Suppose

∑

n∈S(C)

1

n
≤ f(N).

Then, we have

− log α(C) ≤
∑

n∈S(C)

(
1

n
+

1

n2

)
≤

(
1 +

1

N

) ∑

n∈S(C)

1

n
≤

(
1 +

1

N

)
f(N).
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Set a = 0.216035, b = 0.461 and d = 0.076885. Define, for j ≥ 1,

Q0 = exp
( log N

0.96 log log N

)
, Qj = exp(Qa

j−1), Kj = exp(Qb
j−1/ log Qj−1).

Let

Cj = {(n, r) ∈ C : P (n) ≤ Qj},

and define

δ0 = 0.70443, δj = e−f(N)(1+1/N)(1+1/Q0)/δj−1 .

We will show that

δ(C0) ≥ δ0, δ(Cj) ≥ 0.0001δj > 0 (j ≥ 1).

First, by Corollary 7.6,

1− δ(C0) ≤ 539.365
log Q0

exp{2.5 log N
log Q0

}
=

539.365

0.96 log log N(log N)1.4
≤ 0.29557.

Thus, we have

δ(C0) ≥ 0.70443 = δ0.

Next, suppose j ≥ 1, and δ(Cj−1) ≥ δj−1. Let

C ′
j = {(n, r) ∈ Cj : n ≤ Kj}, C ′′

j = {(n, r) ∈ Cj : n > Kj}.

Then, by Lemma 7.4, we have

δ(C ′
j) ≥ α(C ′

j)
(1+1/Q0)/δj−1 − 0.1725

(log Kj/N + 44.5)2 log2 Qj−1

Qj−1

(
1 +

1

log2 Qj−1

)3

≥ e−f(N)(1+1/N)(1+1/Q0)/δj−1 − 0.1725
(
1 +

1

log2 Qj−1

)3
Q−1+2b

j−1

≥ δj − 0.1725
(
1 +

1

log2 Qj−1

)3

Q−1+2b
j−1 .
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Also, by Corollary 7.6,

1− δ(C ′′
j ) ≤

∑

n>Kj

P (n)≤Qj

1

n
≤ 539.365

log Qj

exp{ 2.5Qb−a
j−1

log Qj−1
}

= 539.365
Qa

j−1

exp{ 2.5Qb−a
j−1

log Qj−1
}
.

If N ≥ e77, then Qj−1 ≥ Q0 > 108. So, we have

0.1725
(
1 +

1

log2 Qj−1

)3

Q−1+2b
j−1 + 539.365

Qa
j−1

exp{ 2.5Qb−a
j−1

log Qj−1
}
≤ 0.9999Q−d

j−1,

so that

δ(Cj) ≥ δ(C ′
j)− (1− δ(C ′′

j )) ≥ δj − 0.9999Q−d
j−1.

Thus, it suffices to prove that

Q−d
j−1 ≤ δj, (7.9)

or equivalently,

d log Qj−1 ≥ f(N)(1 + 1/N)(1 + 1/Qj−1)/δj−1

= 0.05416 log Q0(1 + 1/N)(1 + 1/Qj−1)/δj−1. (7.10)

We have

d log Q0 ≥ 0.05416 log Q0(1 + 1/N)(1 + 1/Q0)/δ0,

since 0.05416(1 + 1/N)(1 + 1/Q0)/δ0 < d. This proves (7.10) when j = 1. Now suppose that

(7.9) and (7.10) hold for some j ≥ 1. We show that

d log Qj ≥ 0.05416 log Q0(1 + 1/N)(1 + 1/Qj)/δj.
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By (7.9), it suffices to show that

d log Qj ≥ 0.05416 log Q0(1 + 1/N)(1 + 1/Qj)Q
d
j−1

or equivalently,

dQa−d
j−1 ≥ 0.05416 log Q0(1 + 1/N)(1 + 1/Qj). (7.11)

Since (7.11) holds for Q0 ≥ 108, we deduce

Q−d
j ≤ δj+1.

By induction, (7.9) holds for all j ≥ 1. This completes the proof that for N ≥ e77,

∑

n∈S(C)

1

n
> f(N).
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Chapter 8

Exact Covering Systems in Quadratic
Number Fields

8.1 Introduction

In this chapter, we consider exact covering systems in quadratic number fields. As mentioned

earlier in the Introduction, we give a partial answer to the question:

Does there exist an exact covering system with distinct moduli in a number field?

Let Q(
√

m) be a quadratic field. Then, the ring of integers is ([41])

Z[
√

m] if m ≡ 2, 3 (mod 4), and Z
[1 +

√
m

2

]
if m ≡ 1 (mod 4).

For each ideal I, we write I = [α, β] where {α, β} is an integral basis of I. We first present the

results for imaginary quadratic fields. In the proof, we use the following result.

Proposition 8.1 ([42], page 300). In an imaginary quadratic field with discriminant −∆, every

ideal is equivalent to one and only one of the ideals [a, (b+
√
−∆)/2] such that b2 +∆ is divisible

by 4a, and either −a < b ≤ a, b2 + ∆ > 4a2, or 0 ≤ b ≤ a, b2 + ∆ = 4a2.

Theorem 8.1. Let S = {r1 + I1, . . . , rk + Ik} be an exact covering system of the ring of integers

of an imaginary quadratic field Q(
√
−m) with ‖I1‖ ≤ · · · ≤ ‖Ik‖. If Ik is principal, then it must

be repeated.

We next consider imaginary quadratic number fields with two ideal classes. The complete list

of imaginary quadratic fields Q(
√
−m) with class number two is the following [12].

m = 5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427
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By straightforward calculation, we can see that Q(
√
−m) has an reduced ideal [a, (b +

√
−∆)/2]

with b2 + ∆ = 4a2 precisely when m = 15, 35, 91, 187 and 403.

Theorem 8.2. Let Q(
√
−m) be an imaginary quadratic fields with class number two and m +=

15, 35, 91, 187, 403. If S = {r1 + I1, . . . , rk + Ik} is an exact covering system of the of ring of the

integers, then the moduli can not be distinct.

The key idea of the proofs is analogous to that of Proposition 1.1. We first express each element

in a coset ri + Ii using the basis of Ii, in order to find an explicit identity for

1

1− z

1

1− w
=

∑

u,v≥0

zuwv

After some manipulation, we consider the terms with double poles when z and w tend to some

‖Ik‖−th roots of 1, where ‖Ik‖ is the largest norm. Since there is no pole at these points on the

left-hand side, we must have at least two terms with double poles from the other side. If all the

ideals are principal, then any ideal Ij that produces a term with a double pole must be equal to

Ik, which proves Theorem 8.1. On the other hand, if some of the moduli are not principal as in

Theorem 8.2, then we need to classify the ideals according to the ideal classes of the field and also,

we should consider the coefficients of terms with double poles.

It turns out that the case of real quadratic fields is more difficult. We could succeed only when

we assume all the ideals are principal.

Theorem 8.3. Let m be a positive integer. If S = {r1 + I1, . . . , rk + Ik} is an exact covering

system of the ring of integers of Q(
√

m) and all the moduli are principal, then any modulus of the

largest norm must be repeated.

We remark that Theorems 8.1 and 8.3 imply that if the ring of integers of a quadratic field is a

PID, then there is no exact covering systems with distinct moduli in this number field. We also note

that there are only finitely many imaginary quadratic fields with class number one (for precisely

following values m = −1,−2,−3,−7,−11,−19,−43,−67,−163), while Gauss’ conjecture that
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there are infinitely many real quadratic fields with class number one remains open. More precisely,

H. Cohen and H. Lenstra [12] predict that about 75.446% of real quadratic fields will have class

number one.

In Section 8.2, we provide proofs of Theorems 8.1, 8.2 and 8.3. Since the arguments in Theo-

rems 8.2 and 8.3 are similar to that of Theorem 8.1, we skip some details in their proofs.

The methods described above also work for some higher degree fields. For example, we also

examined the number field Q( 3
√

2), whose ring of integers is a PID, and confirmed that any ideal

with the largest norm in an exact covering system must be repeated. We conjecture that there is

no exact covering system with distinct moduli in any number field. This is the subject of ongoing

investigations.

8.2 Proofs of Theorems 8.1, 8.2 and 8.3

Proof of Theorem 8.1. We first consider the case −m ≡ 2, 3 (mod 4). Note that b is even in

Proposition 8.1. Thus, for each i, Ii is equivalent to [ηi, τi +
√
−m]. Since η2

i ≤ τ 2
i + m ≤

η2
i /4+m, we have ηi ≤

√
4m/3. Also, if an ideal I is principal, then I is equivalent to [1,

√
−m] =

Z[
√
−m].

For each i, there exist xi, yi and zi with gcd(xi, yi, zi) = 1 such that

Ii =
yi + zi

√
−m

xi
[ηi, τi +

√
−m]

=

[
η

xi
(yi + zi

√
−m),

yiτi −mzi

xi
+

ziτi + yi

xi

√
−m

]

=
[
αi + βi

√
−m, Xi + Yi

√
−m

]
,

where αi = ηiyi/xi, βi = ηizi/xi, Xi = (αiτi −mβi)/ηi and Yi = (αi + τiβi)/ηi. Note that

‖Ii‖ =

∣∣∣∣∣∣∣

αi βi

Xi Yi

∣∣∣∣∣∣∣
=

αi
2 + mβi

2

ηi
.
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Letting ri = γi + δi

√
−m, we have

ri + Ii =
{

aαi + bXi + γi + (aβi + bYi + δi)
√
−m : a, b ∈ Z

}
.

We define

D1 = {1 ≤ i ≤ k : αi = 0, βi > 0}, D2 = {1 ≤ i ≤ k : αi > 0, βi = 0},

D3 = {1 ≤ i ≤ k : αi > 0, βi > 0}, D4 = {1 ≤ i ≤ k : αi > 0, βi < 0}.

Then, note that for each 1 ≤ i ≤ k, there exists j with 1 ≤ j ≤ 4, such that i ∈ Dj.

For convenience, we assume

0 ≤ βiγi − αiδi < ‖Ii‖

for i ∈ Dj, j = 1, 3, 4, and if i ∈ D2, we assume

−‖Ii‖ < βiγi − αiδi = −αiδi ≤ 0.

Note that the above is possible since we can replace γi+δi

√
−m by γi+δi

√
−m+n(Xi+Yi

√
−m)

for n ∈ Z and

βi(γi + nXi)− αi(δi + nYi) = βiγi − αiδi + n‖Ii‖.

Define

A(i) = {(a, b) ∈ Z : aαi + bXi + γi ≥ 0, aβi + bYi + δi ≥ 0}.

Since S is an exact covering system of Z[
√
−m], we have

1

1− z

1

1− w
=

∑

u,v≥0

zuwv
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=
k∑

i=1

∑

(a,b)∈A(i)

zaαi+bXi+γiwaβi+bYi+δi .

We define for each 1 ≤ i ≤ k and αi, βi += 0,

λi(t) =
⌈−tXi − γi

αi

⌉
, µi(t) =

⌈−tYi − δi

βi

⌉
, µ′i(t) =

⌊−tYi − δi

βi

⌋
.

If i ∈ D1, then

∑

(a,b)∈A(i)

zaαi+bXi+γiwaβi+bYi+δi = zγiwδi
∑

b≤ γiηi
mβi

=
γiβi
‖Ii‖

(zXiwYi)b
∑

a≥−bYi−δi
βi

(wβi)a

=
zγiwδi

1− wβi

∑

b≤0

(zXiwYi)b(wβi)

⌈
−bYi−δi

βi

⌉

=
zγiwδi

1− wβi

0∑

t=1−βi

∑

cβi+t≤0

zcXiβi+XitwtYi+βiµi(t)

=
zγiwδi

1− wβi

∑

c≤0

(zXiβi)c
βi∑

t=1

(zXiwYi)twβiµi(t)

=
zγiwδi

1− wβi

∑

c≥0

(z−Xiβi)c
βi∑

t=1

(zXiwYi)twβiµi(t)

=
zγiwδi

(1− wβi)(1− z‖Ii‖)

βi∑

t=1

(zXiwYi)twβiµi(t).

Similarly, for i ∈ D2, we have

∑

(a,b)∈A(i)

zaαi+bXi+γiwaβi+bYi+δi = zγiwδi
∑

b≥−δiαi
‖Ii‖

(zXiwYi)b
∑

a≥−bXi−γi
αi

(zαi)a

=
zγiwδi

(1− zαi)(1− w‖Ii‖)

αi−1∑

t=0

(zXiwYi)tzαiλi(t).

Now, let i ∈ D3. Observe that

aαi + bXi + γi ≥ 0 ⇔ a ≥ −bXi − γi

αi
,

103



aβi + bYi + δi ≥ 0 ⇔ a ≥ −bYi − δi

βi
,

and

−bXi − γi

αi
>
−bYi − δi

βi
⇔ b >

βiγi − αiδi

‖Ii‖
.

Thus, we have

∑

(a,b)∈A(i)

zaαi+bXi+γiwaβi+bYi+δi

= zγiwδi
∑

b>
βiγi−αiδi

‖Ii‖

(zXiwYi)b
∑

a≥−bXi−γi
αi

(zαiwβi)a + zγiwδi
∑

b≤βiγi−αiδi
‖Ii‖

(zXiwYi)b
∑

a≥−bYi−δi
βi

(zαiwβi)a

=
zγiwδi

1− zαiwβi

∑

b≥1

(zXiwYi)b(zαiwβi)

⌈
−bXi−γi

αi

⌉
+

zγiwδi

1− zαiwβi

∑

b≤0

(zXiwYi)b(zαiwβi)

⌈
−bYi−δi

βi

⌉

=
zγiwδi

1− zαiwβi

∑

c≥0

(wαiYi−βiXi)c
αi∑

t=1

(zXiwYi)t(zαiwβi)λi(t)

+
zγiwδi

1− zαiwβi

∑

c≤0

(zβiXi−αiYi)c
0∑

t=1−βi

(zXiwYi)t(zαiwβi)µi(t)

=
zγiwδi

(1− zαiwβi)(1− w‖Ii‖)

αi∑

t=1

(zXiwYi)t(zαiwβi)λi(t)

+
zγiwδi

(1− zαiwβi)(1− z‖Ii‖)

0∑

t=1−βi

(zXiwYi)t(zαiwβi)µi(t).

Lastly, let i ∈ D4. Then,

aαi + bXi + γi ≥ 0 ⇔ a ≥ −bXi − γi

αi
,

aβi + bYi + δi ≥ 0 ⇔ a ≤ −bYi − δi

βi
.
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Thus, we have

∑

(a,b)∈A(i)

zaαi+bXi+γiwaβi+bYi+δi = zγiwδi
∑

b≤βiγi−αiδi
‖Ii‖

(zXiwYi)b
∑

−bXi−γi
αi

≤a≤−bYi−δi
βi

(zαiwβi)a

=
zγiwδi

1− zαiwβi

∑

b≤0

(zXiwYi)b
{

(zαiwβi)

⌈
−bXi−γi

αi

⌉
− (zαiwβi)

⌊
−bYi−δi

βi

⌋
+1

}

=
zγiwδi

1− zαiwβi

∑

c≤0

(wαiYi−βiXi)c
0∑

t=1−αi

(zXiwYi)t(zαiwβi)λi(t)

− zαi+γiwβi+δi

1− zαiwβi

∑

c≥0

(zβiXi−αiYi)c
βi−1∑

t=0

(zXiwYi)t(zαiwβi)µ′i(t)

=
zγiwδi

(1− zαiwβi)(1− w‖Ii‖)

0∑

t=1−αi

(zXiwYi)t(zαiwβi)λi(t)

− zαi+γiwβi+δi

(1− zαiwβi)(1− z‖Ii‖)

βi−1∑

t=0

(zXiwYi)t(zαiwβi)µ′i(t).

Therefore, we obtain

1

1− z

1

1− w
=

∑

i∈D1

zγiwδi

(1− wβi)(1− z‖Ii‖)

βi∑

t=1

(zXiwYi)twβiµi(t)

+
∑

i∈D2

zγiwδi

(1− zαi)(1− w‖Ii‖)

αi−1∑

t=0

(zXiwYi)tzαiλi(t)

+
∑

i∈D3

zγiwδi

(1− zαiwβi)(1− w‖Ii‖)

αi∑

t=1

(zXiwYi)t(zαiwβi)λi(t)

+
∑

i∈D3

zγiwδi

(1− zαiwβi)(1− z‖Ii‖)

0∑

t=1−βi

(zXiwYi)t(zαiwβi)µi(t)

+
∑

i∈D4

zγiwδi

(1− zαiwβi)(1− w‖Ii‖)

0∑

t=1−αi

(zXiwYi)t(zαiwβi)λi(t)

−
∑

i∈D4

zαi+γiwβi+δi

(1− zαiwβi)(1− z‖Ii‖)

βi−1∑

t=0

(zXiwYi)t(zαiwβi)µ′i(t). (8.1)
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Now, we show that Ik must repeated. First, we find some p > 0 such that

αk ± pβk += 0.

Next, in (8.1) we let

z = (1− ε)e
2πi

βk
‖Ik‖ , w = (1− pε)e

−2πi
αk
‖Ik‖ and ε→ 0.

Then we can see that the terms with i = k tend to

e
2πi
‖Ik‖

(βkγk−αkδk)

1− (1− ε)αk(1− pε)βk

{ αk

1− (1− pε)‖Ik‖
± βk

1− (1− ε)‖Ik‖

}

≈ e
2πi
‖Ik‖

(βkγk−αkδk)

1− (1− αkε)(1− βkpε)

{ αk

1− (1− pε‖Ik‖)
± βk

1− (1− ε‖Ik‖)

}

≈ e
2πi
‖Ik‖

(βkγk−αkδk)

(αk + pβk)ε

{ αk

pε‖Ik‖
± βk

ε‖Ik‖

}

=
e

2πi
‖Ik‖

(βkγk−αkδk)
(αk ± pβk)

p‖Ik‖(αk + pβk)

1

ε2
+= 0.

Thus, we can see that the above has a pole of order 2 as ε → 0. Since the left-hand side of (8.1)

cannot have a pole of order 2, there must be more terms on the right -hand side that also have a

pole of order 2, say i = j. In other words, both of zαjwβj and w‖Ij‖ tend to 1 and the corresponding

inner sum on t does not tend to 0 or both of zαjwβj and z‖Ij‖ tend to 1 and the corresponding inner

sum on t does not tend to 0 as ε→ 0. We first assume the first case. Then we have

‖Ik‖
∣∣∣ αjβk − βjαk, and ‖Ik‖

∣∣∣ αk‖Ij‖.

Note that
∑

t

(zXiwYi)t(zαiwβi)λi(t) →
∑

t

e
2πi
‖Ik‖

(βkXj−αkYj)t,
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and e2πi(βkXj−αkYj)/‖Ik‖ is an αj−th root of unity since

(βkXj − αkYj)αj = Xj(αjβk − βjαk) + αk‖Ij‖.

Thus we have

‖Ik‖
∣∣∣ βkXj − αkYj

so that
∑

t

(zXiwYi)t(zαiwβi)λi(t) →
∑

t

1 = αj.

In a very similar way, we can show that the second case also implies ‖Ik‖
∣∣∣ βkXj −αkYj using

‖Ik‖
∣∣∣ αjβk − βjαk and ‖Ik‖

∣∣∣ βk‖Ij‖.

Now, let A and B be integers such that

βkαj − αkβj = A‖Ik‖ and βkXj − αkYj = B‖Ik‖. (8.2)

Solving (8.2), we obtain

αj + βj

√
−m =

αk + βk

√
−m

ηk

(
τjA− ηjB − A

√
−m

)
(8.3)

= (αk + βk

√
−m)

(
τjA− ηjB − A

√
−m

)
.

Note that ηk = 1 since Ik is principal. Taking norms, we derive

‖Ij‖ = ‖Ik‖
(τjA− ηjB)2 + mA2

ηj
≤ ‖Ik‖,

and so (τjA− ηjB)2 +mA2 ≤ ηj ≤
√

4m/3 by the remark below Proposition 8.1. If m = 1, then

Z[
√
−m] = Z[

√
−1] is a PID and ηj = 1. Then, since τjA− ηjB − A

√
−m is a unit, Ij = Ik.

Suppose m ≥ 2. Then A = 0 and we have 0 < ηjB2 ≤ 1, and so ηj = |B| = 1. Hence Ij = Ik,

which completes the proof of the case −m ≡ 2, 3 (mod 4).
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Now, consider the case −m ≡ 1 (mod 4). We note that b is odd in Proposition 8.1. Let

M = 1+
√
−m

2 . Then, each ideal Ii, 1 ≤ i ≤ k, is equivalent to [ηi, τi + M ], and we can show

that ηi ≤
√

m/3 from the conditions of Proposition 8.1. Also, any principal ideal is equivalent to

[1, M ]. Similarly, we have, for each i,

Ii =
yi + zi

√
−m

xi
[ηi, τi + M ]

= [
η

xi
(yi + ziM),

yiτi

xi
− (1 + m)zi

4
xi +

zi(1 + τi) + yi

xi
M ]

= [αi + βiM, Xi + YiM ]

where αi = ηiyi/xi, βi = ηizi/xi, Xi = (αiτi − 1+m
4 βi)/ηi and Yi = (αi + βi(1 + τi))/ηi.

Also,

‖Ii‖ =

∣∣∣∣∣∣∣

αi βi

Xi Yi

∣∣∣∣∣∣∣
=

1

ηi
(αi

2 + αiβi +
1 + m

4
βi

2).

By repeating the same argument, we can show that for some j, we have

αj + βjM =
αk + βkM

ηk
((1 + τj)A− ηjB − AM) (8.4)

= (αk + βkM)((1 + τj)A− ηjB − AM).

Since ‖Ij‖ ≤ ‖Ik‖, we obtain

((1 + τj)A− ηjB −
1

2
A)2 +

m

4
A2 ≤ ηj ≤

√
m

3
.

If m = 3, then (1 + τj)A − ηjB − AM is a unit and Ij is also principal. Thus, we have Ik = Ij.

And, if m ≥ 7, then A = 0, so ηj = |B| = 1. Hence, we have Ik = Ij, which completes the

proof.

Proof of Theorem 8.2. We suppose that S is an exact covering system with distinct moduli and Ik

is an ideal of the largest norm. In this proof, we follow the notations and the proof of Theorem 8.1
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except for the choice of p. We first consider the case when −m ≡ 2, 3 (mod 4). We choose p > 0

such that for all the pairs (e1, e2) = (1, 0), (0, 1) and (1, 1),

|αk ± pβk| += 2|e1αk ± e2pβk|. (8.5)

Repeating the argument from Theorem 8.1, by (8.3), we have

αj + βj

√
−m =

αk + βk

√
−m

ηk

(
τjA− ηjB − A

√
−m

)
, (8.6)

for some j += k, and some integers A and B. Since

‖Ij‖ =
‖Ik‖
ηkηj

(
(τjA− ηjB)2 + mA2

)
≤ ‖Ik‖,

we have

(τjA− ηjB)2 + mA2 ≤ ηkηj.

It is easy to see that the ideals [2,
√
−m] and [2, 1 +

√
−m] satisfy the condition described in

Proposition 8.1 when m is even and odd, respectively. Thus, ηi = 1 or 2 for each 1 ≤ i ≤ k. By

Theorem 8.1, we can assume that Ik is not principal, i.e., ηk = 2.

We first assume that ηj = ηk = 2. Since m ≥ 5 and

(τjA− 2B)2 + mA2 ≤ 4,

we see that A = 0 and |B| = 1, whence Ij = Ik by (8.6). Thus, we can assume that ηk = 2 and

ηj = 1. Then we have

(τjA−B)2 + mA2 ≤ 2,

which implies that A = 0 and |B| = 1. Thus,

αj + βj

√
−m =

1

2
(αk + βk

√
−m), (8.7)

109



and so

αj =
1

2
αk, and βj =

1

2
βk.

Also,

‖Ij‖ = αj
2 + mβj

2 =
αk

2 + mβk
2

4
=

1

2
‖Ik‖.

If there exists t += j, k such that the term with i = t has a pole of order 2 as ε → 0, then by

repeating the same argument, we have It = Ik or It = Ij. Therefore the terms can have a pole

of order 2 only when i = j and i = k. Now we consider the coefficients of the poles of order 2.

Since (1 − z)−1(1 − w)−1 has no such pole, the sum of the coefficients of ε−2 of the terms when

i = j and i = k should be 0 as ε → 0. However, from the proof of Theorem 8.1, the sum of the

coefficients is

e
2πi
‖Ik‖

(βkγk−αkδk)
(αk ± pβk)

p‖Ik‖(αk + pβk)
+

e
2πi
‖Ik‖

(βkγj−αkδj)(e1αj ± e2pβj)

p‖Ij‖(αj + pβj)

=
1

p‖Ik‖(αk + pβk)

{
(αk ± pβk)e

2πi
‖Ik‖

(βkγk−αkδk)
+ 2(e1αk ± e2pβk)e

2πi
‖Ik‖

(βkγj−αkδj)
}

+= 0

by (8.5), which is a contradiction. Hence, we complete the proof of the case when −m ≡ 2, 3

(mod 4).

Next, if −m ≡ 1 (mod 4), then by (8.4), we have

αj + βjM =
αk + βkM

ηk

(
(1 + τj)A− ηjB − AM

)

for some j += k, and some integers A and B. Similarly, we can assume that ηk > 1 by Theorem

8.1. By Proposition 8.1, we can see that ηk = 3 if m = 51, 123, 267, ηk = 5 if m = 115, 235 and

ηk = 7 if m = 427.
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Using ‖Ij‖ ≤ ‖Ik‖, we obtain

(
(1 + τj)A− ηjB −

1

2
A

)2

+
m

4
A2 ≤ ηjηk.

We first assume that ηj = ηk. Since m/4 > η2
k, we have A = 0 and |B| = 1, whence Ij = Ik.

If we assume that ηj = 1, then since ηk ≤
√

m/3, we see that A = 0, B2 ≤ ηk and

αj + βjM = −B

ηk
(αk + βkM).

If m = 51, 123 or 267, then since |B| = 1,

αj =
1

3
αk, and βj =

1

3
βk.

We choose p > 0 such that for all the pairs (e1, e2) = (1, 0), (0, 1) and (1, 1),

|αk ± pβk| += 3|e1αk ± e2pβk|.

Then, similarly, the sum of the coefficients of ε−2 in (8.1) is

1

p‖Ik‖(αk + pβk)

{
(αk ± pβk)e

2πi
‖Ik‖

(βkγk−αkδk)
+ 3(e1αk ± e2pβk)e

2πi
‖Ik‖

(βkγj−αkδj)
}
+= 0,

which is a contradiction.

Now, if m = 115, 235 or 427, then since |B| = 1 or 2, we have two possibilities for Ij, say Ij1

and Ij2. And, we have

αj1 =
1

ηk
αk, βj1 =

1

ηk
βk and αj2 =

2

ηk
αk βj2 =

2

ηk
βk.

Let κi with i = 1, 2 and ei with 1 ≤ i ≤ 4 to be 0 or 1. Then the sum of the coefficients of ε−2 in
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(8.1) is

1

p‖Ik‖(αk + pβk)

{
(αk ± pβk)e

2πi
‖Ik‖

(βkγk−αkδk)
+ κ1ηk(e1αk ± e2pβk)e

2πi
‖Ik‖

(βkγj1−αkδj1)

+
1

4
κ2ηk(e3αk ± e4pβk)e

2πi
‖Ik‖

(βkγj2−αkδj2)
}

=
1

p‖Ik‖(αk + pβk)

{
αk

(
e

2πi
‖Ik‖

(βkγk−αkδk)
+ κ1e1ηkε

2πi
‖Ik‖

(βkγj1−αkδj1)
+

1

4
κ2e3ηke

2πi
‖Ik‖

(βkγj2−αkδj2)
)

+ pβk

(
e

2πi
‖Ik‖

(βkγk−αkδk)
+ κ1e2ηke

2πi
‖Ik‖

(βkγj1−αkδj1)
+

1

4
κ2e4ηke

2πi
‖Ik‖

(βkγj2−αkδj2)
)}

(8.8)

Since for (s, t) = (1, 3) and (2, 4),

e
2πi
‖Ik‖

(βkγk−αkδk)
+ κ1esηke

2πi
‖Ik‖

(βkγj1−αkδj1)
+

1

4
κ2etηke

2πi
‖Ik‖

(βkγj2−αkδj2) += 0,

we can take p so that both sides of (8.8) are nonzero, which completes the proof.

Proof of Theorem 8.3. We adopt the same notation and use a similar argument from Theorem 8.1.

We can assume that ‖I1‖ ≤ · · · ≤ ‖Ik‖. We first consider the case : m ≡ 2, 3 (mod 4). Since all

the ideals are principal, we put ηi = 1 and τi = 0 for all 1 ≤ i ≤ k in the proof of Theorem 8.1,

and also replace −m by m. Then, we have

Ii =
[
αi + βi

√
m, mβi + αi

√
m

]
,

with αi ≥ 0. Also, we set ri = γi + δi
√

m. Now, we define

D1 = {1 ≤ i ≤ k : αi = 0, βi > 0},

D2 = {1 ≤ i ≤ k : αi > 0, βi = 0},

D3 = {1 ≤ i ≤ k : αi > 0, βi > 0, αi
2 −mβi

2 > 0},

D4 = {1 ≤ i ≤ k : αi > 0, βi > 0, αi
2 −mβi

2 < 0},

D5 = {1 ≤ i ≤ k : αi > 0, βi < 0, αi
2 −mβi

2 > 0},
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D6 = {1 ≤ i ≤ k : αi > 0, βi < 0, αi
2 −mβi

2 < 0}.

Then, for each 1 ≤ i ≤ k, we have exactly one l, 1 ≤ l ≤ 6, such that i ∈ Dl. Also, for each i, we

have the redefined functions

λi(t) =
⌈−mβit− γi

αi

⌉
, µi(t) =

⌈−αit− δi

βi

⌉
, µ′i(t) =

⌊−αit− δi

βi

⌋

Using the argument from Theorem 8.1, we obtain

1

1− z

1

1− ω
=

∑

i∈D1

zγiwδi+βi

⌊
−δi
βi

⌋

(1− zmβi)(1− wβi)
+

∑

i∈D2

zγi+αi

⌊
−γi
αi

⌋
wδi

(1− zαi)(1− wαi)

+
∑

i∈D3

zγiωδi

1− zαiωβi

{ 1

1− w‖Ii‖

αi−1∑

t=0

zmβit+αiλi(t)ωtαi+βiλi(t)

+
1

1− z‖Ii‖

−1∑

t=−βi

zmβit+αiµi(t)ωtαi+βiµi(t)
}

+
∑

i∈D4

zγiωδi

1− zαiωβi

{ 1

1− w‖Ii‖

0∑

t=1−αi

zmβit+αiλi(t)ωtαi+βiλi(t)

+
1

1− z‖Ii‖

βi∑

t=1

zmβit+αiµi(t)ωtαi+βiµi(t)
}

+
∑

i∈D5

zγiωδi

1− zαiωβi

{ 1

1− w‖Ii‖

αi−1∑

t=0

zmβit+αiλi(t)ωtαi+βiλi(t)

− zαiωβi

1− z‖Ii‖

0∑

t=−βi+1

zmβit+αiµ′i(t)ωtαi+βiµ′i(t)
}

+
∑

i∈D6

zγiωδi

1− zαiωβi

{ 1

1− w‖Ii‖

0∑

t=1−αi

zmβit+αiλi(t)ωtαi+βiλi(t)

− zαiωβi

1− z‖Ii‖

βi−1∑

t=0

zmβit+αiµ′i(t)ωtαi+βiµ′i(t)
}

.
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Here, we note that

∑

i∈D1

zγiwδi+βi

⌊
−δi
βi

⌋

(1− zmβi)(1− wβi)
+

∑

i∈D2

zγi+αi

⌊
−γi
αi

⌋
wδi

(1− zαi)(1− wαi)

=
∑

i∈D1

zγiωδi

1− ωβi

1

1− z‖Ii‖

βi−1∑

t=0

zmβitωβiµi(t) +
∑

i∈D3

zγiωδi

1− zαi

1

1− w‖Ii‖

αi−1∑

t=0

zαiλi(t)ωtαi .

Now, we repeat the same argument regarding poles of order 2 by letting

z = (1− ε)e
2πi

βk
‖Ik‖ , w = (1− pε)e

−2πi
αk
‖Ik‖ and ε→ 0,

where p is a nonzero number such that αk ± pβk += 0. Then, for some j += k, we have

αj + βj

√
m = (αk + βk

√
m)(−B − A

√
m),

where A, B are integers. Since

‖Ij‖ = ‖Ik‖|B2 −mA2| ≤‖ Ik‖,

|B2 −mA2| = 1, which implies that −B − A
√

m is a unit. Hence, we have Ij = Ik.

Now, consider the case m ≡ 1 (mod 4). Similarly, we can let, for each i,

Ii =
[
αi + βiM,

m− 1

4
βi + (αi + βi)M

]
, where M =

1 +
√

m

2
.

Repeating the same argument again, we obtain

αj + βj

√
m = (αk + βk

√
m)(A−B − AM),

for some j and integers A, B. Similarly, since the norm of A − B − AM is 1, it is a unit. Hence,

Ik = Ij, which completes the proof.
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