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Abstract

Integer partitions play important roles in diverse areas of mathematics such as q-series, the theory of

modular forms, representation theory, symmetric functions and mathematical physics. Among these, we

study the arithmetic of partition functions and q-combinatorics via bijective methods, q-series and modular

forms. In particular, regarding arithmetic properties of partition functions, we examine partition

congruences of the overpartition function and cubic partition function and inequalities involving t-core

partitions. Concerning q-combinatorics, we establish various combinatorial proofs for q-series identities

appearing in Ramanujan’s lost notebook and give combinatorial interpretations for third and sixth order

mock theta functions.
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Chapter 1

Introduction

1.1 Overview

After L. Euler originated the study of integer partitions, many great mathematicians such as P.A.

McMahon, J.J. Sylvester, S. Ramanujan, and P. Erdös developed the theory of partitions. A partition of n

is a weakly decreasing sequence of positive integers for which the sum is n, and we define the partition

function p(n) as the number of partitions of n. Surprisingly, this simple combinatorial object plays

important roles in diverse areas of mathematics such as q-series, the theory of modular forms,

representation theory, symmetric functions and mathematical physics. Among these, this thesis concerns

the role of partitions in q-series and modular forms.

Since there was no prior reason to expect nice arithmetic properties of p(n), Ramanujan’s discovery of

his famous congruences,

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

and

p(11n+ 6) ≡ 0 (mod 11),

were ground-breaking results. Motivated by Ramanujan’s congruences, there have been many studies on

the arithmetic properties of the partition function or its variants. Since the generating function for p(n) is

essentially a modular form [6], the theory of partitions is naturally related to modular forms. Indeed, the

theory of modular forms is a very powerful tool to investigate the arithmetic of p(n) for the following

reasons: (1) the space of modular forms is a vector space, (2) there are nice combinatorial operators such

as Hecke operators, and (3) we know explicit bounds for the Fourier coefficients of certain types of modular
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forms. For example, in [97], K. Ono showed that there are infinitely many congruences for the partition

function modulo every prime p ≥ 5 by applying the theory of modular forms.

On the other hand, ever since Sylvester realized the importance of proving partition identities

bijectively, finding a bijective or combinatorial proof for a partition identity or a q-series identity has been

one of the main themes in the theory of partitions. By q-series, we mean a sum with summands containing

expressions of the type (a; q)n :=
∏n−1
k=0(1− aqk), where we understand (a; q)0 := 1 and

(a; q)∞ := limn→∞(a; q)n, |q| < 1 [27]. Since the building block of q-series, (a; q)n, is a generating function

for restricted partitions, it is not surprising that there is a close relation between q-series and partitions.

Though there have been many improvements on combinatorial methods to prove q-series identities, it has

still lagged behind the development of analytic methods. Therefore, it is important to provide more

combinatorial arguments, since the combinatorial proofs are more illustrative and give more information on

the identities, which enable us to generalize the identities or to prove new identities. Moreover,

combinatorial proofs for q-series identities often lead to new information on partitions.

1.2 Arithmetic of partition functions

Even though there has been a dramatic improvement in our knowledge of p(n) modulo primes ≥ 5, we still

do not know well the behavior of p(n) modulo 2 or 3. We even do not know whether, for any ε > 0,

lim
x→∞

|{n ≤ x : p(n) ≡ 0 (mod 2)}|
x

1
2 +ε

=∞

or not, though the conjecture is that limx→∞
|{n≤x:p(n)≡0 (mod 2)}|

x = 1
2 [100]. The best known result in this

direction is due to Serre [94, Appendix]. In this sense, finding partition congruences modulo 2 and 3 are

always interesting problems and systematic approaches are desired. For example, K. Mahlburg [90]

conjectured that p(n) ≡ 0 (mod 2k) for almost all integers n, where p(n) is the number of overpartitions of

n, and k is a fixed positive integer. An overpartition of n is a partition in which the first occurrence of a

number may be overlined. It is shown that this conjecture is true up to k = 6 by Mahlburg [90]. In

Chapter 2, we will show this conjecture holds up to k = 7, and the proof given involves theta function

identities, Dirichlet L-functions, and the arithmetic of quadratic forms.

To explain the Ramanujan congruences combinatorially, F. Dyson introduced the rank of a partition,

which can explain the congruences modulo 5 and 7. Motivated by Dyson’s rank, G.E. Andrews and F.

Garvan defined the crank of a partition, which explains all three Ramanujan congruences [20], and F.

Garvan, D. Kim and D. Stanton also introduced a new crank, which also explains all three Ramanujan
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congruences [53]. Therefore, it has been a natural and important question to seek rank or crank analogs

once we have Ramanujan-type congruences. In Chapter 3, we will define Andrews and Garvan type cranks

for certain types of partition functions, which explain the cubic partition congruences modulo 3.

Generating functions for Andrews and Garvan type cranks are often essentially modular forms. In light of

[91], we will also show that the crank for the cubic partition can explain infinitely many congruences of

cubic partitions by using the theory of modular forms. We also define Garvan, Kim and Stanton type

cranks to explain the congruences modulo 3 for linear combinations of mock theta functions in Chapter 7.

A partition is said to be a p-core if there are no hook numbers that are multiples of p. Due to its

connection to representation theory and its independent interest, the arithmetic of the p-core partition

function, ap(n), has been extensively investigated. Since the generating function for p-core partitions is

essentially a modular form of weight p−1
2 on Γ0(p), we can apply various techniques in the theory of

modular forms. In Chapter 4, by using the circle method, Petersson norm, Deligne’s bound for the Fourier

coefficients of cusp forms and automorphic L-functions, we give an explicit bound for ap(n). This answers

an open question in the paper of A. Granville and Ono [59]. This result has many applications, such as

establishing a lower bound for the number of p-blocks with defect zero in the symmetric group Sn and

proving inequalities involving p-core partitions, which extends my previous results [75] dramatically. This

also can be used to partly prove D. Stanton’s conjecture [112], at(n) ≤ at+1(n) for all n > t+ 1.

1.3 Combinatorics of q-series identities

In his lost notebook, Ramanujan recorded many identities involving partial theta functions. For example,

we can find the following two identities in [102, p. 10 and p. 28]

∞∑
n=0

qn

(q; q)2
n

=
1

(q; q)2
∞

∞∑
n=0

(−1)nqn(n+1)/2, (1.3.1)

∞∑
n=0

anqn
2

=
∞∑
n=0

(−q; q)n−1a
nqn(n+1)/2

(−aq2; q2)n
, (1.3.2)

where a partial theta function is a sum of the form

∞∑
n=0

(−1)nqn(n−1)/2xn, |q| < 1.

The appearance of partial theta function in q-series identities makes them quite interesting combinatorially,

since they indicate what remains after numerous cancellations of certain kinds of partitions. The above two
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identities are very interesting, since the left side of (1.3.1) is a generating function for stacks with summits,

which were introduced by Andrews [13], and (1.3.2) can be used to evaluate certain Dirichlet L-function as

in [89]. In Chapter 5, we establish combinatorial proofs for q-series identities in [102] including (1.3.2).

In Chapter 6, we introduce the subpartition and give properties of subpartitions. In particular, we

establish combinatorial proofs for q-series identities including (1.3.1) and we find new q-series identities by

using the notion of a subpartition of which analytic proofs remain open.

In his famous last letter to Hardy, Ramanujan introduced 17 examples of mock theta functions without

giving an explicit definition. These functions have numerous partition theoretic implications. For example,

the coefficients of a third order mock theta function f(q) defined by

f(q) :=
∞∑
n=0

qn
2

(−q; q)2
∞
,

can be interpreted as rank differences. Even equipped with harmonic Maass forms [99], this huge area of

combinatorics of mock theta functions remains to be explored. In this direction, we give combinatorial

interpretations of mock theta functions as generating functions for certain types of partitions and study

their arithmetic properties in Chapter 7.
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Chapter 2

Overpartition function mod 128

2.1 Introduction and statement of results

An overpartition of n is a weakly decreasing sequence of natural numbers whose sum is n in which the first

occurrence of a number may be overlined. Let p(n) be the number of overpartitions of an integer n. For

convenience, define p(0) = 1. For example, p(3) = 8 because there are 8 overpartitions of 3:

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

We observe that the overlined parts form a partition into distinct parts and that the unoverlined parts

form an ordinary partition. Thus, the generating function for overpartitions is

P (q) =
∑
n≥0

p(n)qn =
(−q; q)∞
(q; q)∞

.

Here we use the following standard q-series notation:

(a; q)0 := 1,

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1,

and

(a; q)∞ := lim
n→∞

(a; q)n, |q| < 1.

The overpartition function was introduced in the work of S. Corteel and J. Lovejoy [49] and it has been

used to interpret identities arising from basic hypergeometric series.

S. Treneer [115] showed that the coefficients of a wide class of weakly holomorphic modular forms have

1The content of this chapter is largely taken from my paper [73].
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infinitely many congruence relations for powers of every prime p except 2 and 3. For example, Treneer

showed that p(5l3n) ≡ 0 (mod 5) for all n which are coprime to l, where l is a prime such that l ≡ −1

(mod 5). However, much less is known modulo 2 and 3. For powers of 2, two different approaches have

been used. One method is to find the generating function for an arithmetic progression by using q-series

identities. For example, the identity

∑
n≥0

p(8n+ 7)qn = 64
(q2, q2)22

∞
(q, q)23

∞

implies that p(8n+ 7) ≡ 0 (mod 64). For more information, see J.-F. Fortin, P. Jacob and P. Mathieu [52]

and M.D. Hirschhorn and J. Sellers [63]. Another way is to use relations between p(n) and the number of

representations of n as a sum of squares. In this direction, K. Mahlburg [90] showed that p(n) ≡ 0

(mod 64) for a set of integers of arithmetic density 1. This approach uses the fact that the generating

function for the overpartition function can be represented by one of Ramanujan’s classical theta functions.

Here we will follow the method of Mahlburg [90] in order to prove the following.

Theorem 2.1.1. p(n) ≡ 0 (mod 128) for a set of integers of arithmetic density 1.

Mahlburg conjectured that for all positive integers k, p(n) ≡ 0 (mod 2k) for almost all integers n. The

method here, like Mahlburg’s method, relies on an ad-hoc argument, and therefore seems unlikely to

generalize to arbitrary powers of 2. In general, 2-adic properties of coefficients of modular form of

half-integral weight are somewhat mysterious. For example, it has long been conjectured that

|{n ≤ x : p(n) ≡ 0 (mod 2)}|
x

∼ 1
2
,

where p(n) is the number of ordinary partitions of n. This stands in contrast to the behavior exhibited by

p(n).

We will conclude this chapter with the following explicit example.

Proposition 2.1.2.

p(10672200n+ 624855) ≡ 0 (mod 128).

6



2.2 Proofs of Theorem 2.1.1 and Proposition 2.1.2

Let

θ(q) =
∞∑

n=−∞
qn

2
,

ψ(q) =
∞∑
n=0

q(n2+n)/2,

and

ϕ(q) =
∞∑
n=1

qn
2
.

Then, the coefficients rk(n) of θ(q)k =
∑
n≥0 rk(n)qn are the number of representations of n as the sum

of k squares, where different orders and signs are counted as different. Similarly, the coefficients of

ϕ(q)k =
∑
n≥0 ck(n)qn are the number of representations of n = n2

1 + · · ·+ n2
k where each ni is a positive

integer.

From Mahlburg’s paper [90, equation (5)], we have

P (q) = 1 +
∞∑
k=1

2k
∞∑
n=1

(−1)n+kck(n)qn. (2.2.1)

Reducing this expression modulo 128 we obtain

P (q) ≡1 + 2
∞∑
n=1

(−1)n+1c1(n)qn + 4
∞∑
n=1

(−1)nc2(n)qn + 8
∞∑
n=1

(−1)n+1c3(n)qn

+ 16
∞∑
n=1

(−1)nc4(n)qn + 32
∞∑
n=1

(−1)n+1c5(n)qn + 64
∞∑
n=1

(−1)nc6(n)qn (mod 128).

We will show that in each of the six sums, the coefficient of qn is zero modulo 128 for a set of

arithmetic density 1.

The following Lemma and its proof summarize results of Mahlburg [90].

Lemma 2.2.1. For almost all integers n, c1(n), c2(n), r1(n) and r2(n) are zero. If k is a fixed positive

integer, then c3(n), c4(n), r3(n) and r4(n) are almost always divisible by 2k.

Sketch of proof. First, note that by a simple combinatorial argument, we have

rk(n) = 2kck(n) +
k∑
i=1

(
k

i

)
(−1)i−1rk−i(n). (2.2.2)
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In [90], Mahlburg showed that c1(n), c2(n), r1(n) and r2(n) are almost always zero.

For c3(n) and r3(n), note that c3(n) = r3(n)/8 for almost all integers n by (2.2.2). By the famous

result of Gauss [60], we have

r3(n) =


12H(−4n), if n ≡ 1, 2, 5, 6 (mod 8),

24H(−n), if n ≡ 3 (mod 8),

r3(n/4), if n ≡ 0, 4 (mod 8).

Here H(−n) is the Hurwitz class number of positive definite binary quadratic forms. If 2m‖H(−n), then m

is at least or equal to the number of distinct odd primes dividing the squarefree part of n. Thus if n has at

least l distinct odd primes in its squarefree part, then r3(n) is divisible by 2l. By (8) of [90], if σl(x) is the

number of integers n ≤ x having at most l distinct odd prime factors, then asymptotically

σl(x) ∼ x(log log x)(l−1)

(l − 1)! log x
. (2.2.3)

Since σl(x)/x tends to 0 as x tends to infinity, for a fixed positive integer k, r3(n) is divisible by 2k for

almost all n and so the same is true for c3(n), since c3(n) = r3(n)/8 for almost all integers n.

For c4(n) and r4(n), define σ′(n) =
∑
d|n,4-d d. Then, by [28], r4(n) = 8σ′(n). Since r3(n) is almost

always divisible by 2k, by (2.2.2), c4(n) ≡ 1
2σ
′(n) (mod 2k) for almost all integers n. By (11) of [90], we

have

σ′(n) = C ·
a1∑
i=0

pi1 · · ·
am∑
i=0

pim, (2.2.4)

where n = 2a0pa1
1 · · · pamm and C = 1 or 3 according to a0 = 0 or not. Let w(n) = the number of distinct

prime factors of n with odd exponents. Then, by (2.2.4), we have 2w(n)|σ′(n). Thus if there are at least l

distinct odd primes with odd exponent in the factorization of n, then 2l|σ′(n). Since the complement of

this set is the set of integers whose squarefree parts have at most l distinct odd prime factors, by (2.2.3),

for a fixed positive integer k, 2k|σ′(n) for almost all integers n. This completes the proof.

By Lemma 2.2.1, it remains to show that c5(n) ≡ 0 (mod 4) and c6(n) ≡ 0 (mod 2) for almost all

integers n. Let us show that c5(n) ≡ 0 (mod 4) for almost all integers n.

First, note that

ϕ5(q) ≡ ϕ2(q2)ϕ(q) (mod 4). (2.2.5)
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Let ϕ2(q2)ϕ(q) =
∑∞
n=1R(n)qn. Then R(n) is the number of representations of n of the form

n = x2 + 2y2 + 2z2 where x, y and z are positive integers and different orders are counted as different. It

suffices to show that R(n) is divisible by 4 for almost all integers n.

Before going further, we need the following lemma.

Lemma 2.2.2. Let r1,2(n) be the number of representations of n = x2 + 2y2, where x and y are integers.

Then, we have r1,2(n) = 0 for almost all integers n.

Since the proof is very similar to a proof by E. Landau [84] that r2(n) is almost always 0, and we will

follow the idea of this proof as given in G.H. Hardy’s book Ramanujan [61, Sect. 4.5 and Sect. 4.6], we

give only a very brief sketch here. (As G. Hardy indicated, the idea of the proof is very similar to the proof

of the prime number theorem.)

Sketch of proof. By [28, Theorem 3.7.3], we have

r1,2(n) = 2(d1,8(n) + d3,8(n)− d5,8(n)− d7,8(n)),

where dj,8(n), j = 1, 3, 5, 7, is the number of positive divisors d of n such that d ≡ j (mod 8).

Thus r1,2(n) > 0 if and only if n = 2aµν2, where µ is a product of primes congruent to 1 or 3 (mod 8)

and ν is a product of primes congruent to 5 or 7 (mod 8). We denote primes 8n+ 1, 8n+ 3, 8n+ 5 and

8n+ 7 by q, r, u, and v, respectively.

Define b(n) as 1 when r1,2(n) > 0 and 0 otherwise. Then consider the functions:

f(s) =
∑ b(n)

ns
=

1
1− 2−s

∏
q

1
1− q−s

∏
r

1
1− r−s

∏
u

1
1− u−2s

∏
v

1
1− v−2s

,

ζ(s) =
1

1− 2−s
∏
q

1
1− q−s

∏
r

1
1− r−s

∏
u

1
1− u−s

∏
v

1
1− v−s

,

L(s, χ) =
∑ χ(n)

ns
=
∏
q

1
1− q−s

∏
r

1
1− r−s

∏
u

1
1 + u−s

∏
v

1
1 + v−s

,

where χ(n) is a Dirichlet character of conductor 8. Thus we have

f(s)2 = ξ(s)ζ(s)L(s, χ),

where ξ(s) = (1− 2−s)−1
∏
u(1− u−2s)−1

∏
v(1− v−2s)−1.

It is well known that neither ζ(s) nor L(s, χ) vanishes in a region D, stretching to the left of σ = 1, of
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type

σ > 1− B

{log (|t|+ 2)}A
,

where, as usual, s = σ + it [85]. Finally, note that ζ(s) and L(s, χ) are O((log |t|)A), as |t| tends infinity in

D and that ξ(s) has no zeros for σ > 1
2 . It follows that f(s) = (s− 1)1/2g(s), where g(s) is analytic in D

and g(1) = (L(1, χ)ξ(1))1/2. If B(x) =
∑
n≤x b(n), then B(x) is the number of representable numbers up to

x, and we can approximate B(x) by examining the integral

1
2πi

∫ c+i∞

c−i∞
f(s)

xs

s
ds

for c > 1. We can transform the path of integration into a path, stretching to the left of σ = 1 in the

zero-free region D. By approximating this integral, we can conclude that

B(x) =
∑
n≤x

b(n)� x√
log x

.

Therefore, b(n) = 0 for almost all n.

Let R(n,Q) be the number of essentially distinct representations of n by the quadratic form

Q = ax2 + by2 + cz2 where a, b and c are positive integers and x, y and z are integers. Let r(n,Q) be the

number of essentially distinct primitive representations of n by Q. Recall that essentially distinct

representation means that different orders and signs are counted as the same and primitive representation

means that the greatest common divisor of x, y and z is 1.

Then, by [101], we have

R(n,Q) =
∑
d2|n

r(
n

d2
, Q). (2.2.6)

Note that in R(n, x2 + 2y2 + 2z2), x, y or z could be 0 and a change of order between y and z is

considered as the same. On the other hand, R(n) is the number of representations of n of the form

n = x2 + 2y2 + 2z2, where x, y and z are positive integers and different orders are counted as different. By

Lemma 2.2.1 and Lemma 2.2.2, we know that R(n, 2x2 + 2y2), R(n, x2), R(n, x2 + 2y2) and R(n, 2x2) are

almost always 0. Therefore, we can conclude that R(n) = 2R(n, x2 + 2y2 + 2z2)−R(n, x2 + 4y2) for almost

all n. By Lemma 2.2.2 again, we have

R(n) = 2R(n, x2 + 2y2 + 2z2) for almost all integers n, (2.2.7)
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because x2 + 4y2 = x2 + (2y)2.

For future use, we recall Theorem 86 of W. Jones [71].

Lemma 2.2.3. Let Q be a ternary form in a genus consisting of a single class. Let d be the determinant

of Q and Ω be the greatest common divisor of the two-rowed minor determinants of Q. Then, for all

n 6= ±1 which are coprime to 2d, we have

r(n,Q) = h(−4nd/Ω2)2−t(d/Ω
2)ρ or 0,

where h(D) is the discriminant D class number, t(ω) is the number of odd prime factors of ω and ρ = 1/8,

1/6, 1/4, 1/3, 1/2, 1 or 2.

Remark. For the criterion for the value of ρ, look at [71, Theorem 86].

Let Q be the ternary quadratic form x2 + 2y2 + 2z2. Then Q is a ternary form in a genus consisting of

a single class. Thus, we can use Lemma 2.2.3 whenever n is an odd integer.

Therefore, for odd integer n, we have

r(n,Q) = h(−4n)ρ or 0.

Let t(n) be the number of odd primes dividing the squarefree part of n. Then, by simple genus theory,

recall that the exponent of 2 in h(−n) is greater than or equal to t(n)− 1. Thus if n has at least 5 distinct

odd primes in its squarefree part, then r(n,Q) is divisible by 2. Thus, by (2.2.6) and (2.2.7), we see that

R(n) is divisible by 4 for such n. By (2.2.3), R(n) ≡ 0 (mod 4) for almost all n. Thus for odd integer n, we

are done.

Let us consider the case n ≡ 2 (mod 4). Since n = x2 + 2y2 + 2z2 and n is divisible by 2, x must be an

even number. Thus, we can write n′ = 2x′2 + y2 + z2, where n = 2n′ and x = 2x′. Set Q = x2 + y2 + 2z2.

Then Q is a ternary form in a genus consisting of a single class. Since n′ is odd, the result follows again

from Lemma 2.2.3.

For the case n ≡ 0 (mod 4), we need the following identities.

θ(q) = θ(q4) + 2qψ(q8), (2.2.8)

θ2(q) = θ2(q2) + 4qψ2(q4). (2.2.9)
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Define U by

U
∑
n≥0

a(n)qn =
∑
n≥0

a(4n)qn.

Note that ϕ(q) = 1
2 (θ(q)− 1). Thus we have

ϕ2(q2)ϕ(q) = (
1
2

(θ(q2)− 1))2 1
2

(θ(q)− 1)

=
1
8

(θ2(q2)− 2θ(q2) + 1))(θ(q)− 1)

=
1
8
{θ2(q2)θ(q)− 2θ(q2)θ(q) + θ(q)− θ2(q2) + 2θ(q2)− 1}.

Therefore, the coefficient of qn in ϕ2(q2)ϕ(q) is almost always the same as the coefficient of qn in

1
8θ

2(q2)θ(q) because the coefficients of the other terms are almost always 0 by Lemma 2.2.1 and Lemma

2.2.2.

Let θ2(q2)θ(q) =
∑
n≥0R

′(n)qn. Then, by (2.2.5), it suffices to show that R′(n) ≡ 0 (mod 32) for

almost all integers n. By (2.2.8) and (2.2.9), we have

Uθ2(q2)θ(q) = U((θ2(q4) + 4q2ψ2(q8))(θ(q4) + 2qψ(q8))

= U(θ3(q4) + 2qθ2(q4)ψ(q8) + 4q2θ(q4)ψ2(q8) + 8q3ψ3(q8))

= θ3(q),

Uθ3(q) = θ3(q).

From this, we have R′(4λn) = r3(4λ−1n) = · · · = r3(n), where n is not divisible by 4. Thus by Lemma

2.2.1, c5(n) ≡ 0 (mod 4) for almost all integers n ≡ 0 (mod 4). From the last three cases, we conclude that

c5(n) ≡ 0 (mod 4) for almost all integers n.

Finally, we need to show that c6(n) is almost always even. To show this, note that

ϕ6(q) ≡ ϕ3(q2) (mod 2).

Then,

c6(n) ≡


0 (mod 2), if n is odd,

c3(n/2) (mod 2), if n is even.
(2.2.10)

Therefore, by Lemma 2.2.1 again, we conclude that c6(n) is almost always even. This completes the

proof of Theorem 2.1.1.
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Now we turn to the proof for Proposition 2.1.2.

Proof of Proposition 2.1.2. When n ≡ 7 (mod 8), c1(n), c2(n), c3(n) and c5(n) are zero. Moreover, c6(n) is

always even by (2.2.10). Thus, if c4(n) is divisible by 8, then p(n) ≡ 0 (mod 128) for such n. Recall the

proof of Lemma 2.2.1. We have c4(n) = 1
2σ
′(n), where σ′(n) =

∑
d|n,4-d d. By (2.2.4), to guarantee that

1
2σ
′(n) is divisible by 16, n must have at least four distinct odd prime factors with odd exponents.

We solve the following system of congruences:

n ≡ 7 (mod 8),

n ≡ 3 (mod 32),

n ≡ 5 (mod 52),

n ≡ 7 (mod 72),

n ≡ 11 (mod 112).

By a simple calculation, we find that n ≡ 624855 (mod 10672200). Since 3‖n, 5‖n, 7‖n, 11‖n and n ≡ 7

(mod 8), the proof of Theorem 2.1.1 implies that p(10672200n+ 624855) ≡ 0 (mod 128).

Remark. We can completely determine the residue class of p(n) modulo 8. The following classification is

given in [74], which answers an open question of Hirschhorn and Sellers [63]. Let n be a nonnegative

integer. Then

p(n) ≡ 2 (mod 8), if n is a square of an odd number,

p(n) ≡ 4 (mod 8), if n is a double of a square,

p(n) ≡ 6 (mod 8), if n is a square of an even number,

p(n) ≡ 0 (mod 8), otherwise.
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Chapter 3

Crank for the cubic partition function

3.1 Introduction and statement of results

In a series of papers ([38], [39], [37]) H.-C. Chan studied congruence properties for the partition function

a(n), which is defined by
∞∑
n=0

a(n)qn =
1

(q; q)∞(q2; q2)∞
. (3.1.1)

This partition function a(n) arises from Ramanujan’s cubic continued fraction. We can interpret a(n) as

the number of 2-color partitions of n with colors r and b subject to the restriction that the color b appears

only in even parts. For example, there are 3 such partitions of 2:

2r, 2b, 1r + 1r.

Since a(n) is closely related with Ramanujan’s cubic continued fraction (see [38] for the relation ), we will

say that a(n) is the number of cubic partitions of n.

In particular, by using identities for the cubic continued fraction, Chan found a result analogous to

“Ramanujan’s most beautiful identity” (in the words of G.H. Hardy [103, p. xxxv]), namely,

∞∑
n=0

p(5n+ 4)qn = 5
(q5; q5)5

∞
(q)6
∞

,

where p(n) is the number of ordinary partitions of n. Chan’s identity is given by

∞∑
n=0

a(3n+ 2)qn = 3
(q3; q3)∞(q6; q6)∞
(q; q)4

∞(q2; q2)∞
.

This implies immediately that

a(3n+ 2) ≡ 0 (mod 3). (3.1.2)
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To give a combinatorial explanation of the famous Ramanujan partition congruences

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

G.E. Andrews and F.G. Garvan [20] introduced the crank of a partition. For a given partition λ, the crank

c(λ) of a partition is defined as

c(λ) :=


`(λ), if r = 0,

ω(λ)− r, if r ≥ 1,

where r is the number of 1’s in λ, ω(λ) is the number of parts in λ that are strictly larger than r and `(λ)

is the largest part in λ.

Let M(m,n) be the number of ordinary partitions of n with crank m. Andrews and Garvan showed that

∞∑
n=0

∞∑
m=−∞

M(m,n)xmqn = (x− 1)q +
(q; q)∞

(xq; q)∞(x−1q; q)∞
. (3.1.3)

Let M(k,N, n) be the number of ordinary partitions of n with crank ≡ k (mod N). In [20] and [54],

Andrews and Garvan showed that for all n ≥ 0,

M(i, 5, 5n+ 4) = M(j, 5, 5n+ 4), for all 0 ≤ i ≤ j ≤ 4,

M(i, 7, 7n+ 5) = M(j, 7, 7n+ 5), for all 0 ≤ i ≤ j ≤ 6,

M(i, 11, 11n+ 6) = M(j, 11, 11n+ 6), for all 0 ≤ i ≤ j ≤ 10.

These identities clearly imply Ramanujan’s congruences.

As Chan mentioned in his paper [37], it is natural to seek an analog of the crank of the ordinary

partition to give a combinatorial explanation of (3.1.2). In light of (3.1.3), it is natural to conjecture that

F (x, q) =
(q; q)∞(q2; q2)∞

(xq; q)∞(x−1q; q)∞(xq2; q2)∞(x−1q2; q2)∞
(3.1.4)

gives an analogous crank for cubic partitions. In Section 3.2, we will review the crank of Andrews and

Garvan of the ordinary partition function and after that, by giving a combinatorial interpretation of

(3.1.4), we will define a crank analog ca that is a weighted count of cubic partitions, which we will call a
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cubic crank. By using basic q-series identities, we will prove our first theorem.

Theorem 3.1.1. Let M ′(m,N, n) be the number of cubic partitions of n with cubic crank ≡ m (mod N).

Then, we have

M ′(0, 3, 3n+ 2) ≡M ′(1, 3, 3n+ 2) ≡M ′(2, 3, 3n+ 2) (mod 3),

for all nonnegative integers n.

This immediately implies the following corollary.

Corollary 3.1.2. For all nonnegative integers n, we have a(3n+ 2) ≡ 0 (mod 3).

Let us define ck as

ck :=


7·3n+1

8 , if k is even,

5·3n+1
8 , if k is odd.

(3.1.5)

In [39], Chan proved the following congruences for cubic partitions.

Theorem 3.1.3 (Theorem 1 in [39]). For all nonnegative n, a(3kn+ ck) ≡ (mod 32bk/2c+1).

Surprisingly, our cubic crank can explain these congruences partially. To see this, we will prove the

following theorem.

Theorem 3.1.4. For all nonnegative n,

M ′(0, 3, 3kn+ ck)−M ′(1, 3, 3kn+ ck) ≡ 0 (mod 3bk/2c+1).

By (3.2.7), Theorem 3.1.4 implies that

M ′(0, 3, 3kn+ ck) ≡M ′(1, 3, 3kn+ ck) ≡M ′(2, 3, 3kn+ ck) (mod 3bk/2c+1).

Moreover, from Theorem 3.1.3, we find that

M ′(0, 3, 3kn+ ck) ≡M ′(1, 3, 3kn+ ck) ≡M ′(2, 3, 3kn+ ck) ≡ 0 (mod 3bk/2c).

Therefore, we can see that the cubic crank gives a combinatorial explanation for the following congruences.

a(3kn+ ck) ≡ 0 (mod 3bk/2c+1),
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for all nonnegative integers n. Though this cubic crank does not give a full explanation for Theorem 3.1.3,

as far as the author’s knowledge, this is the first crank which explains infinitely many congruences for a

fixed arithmetic progression. In Section 3.3, we will review some basic properties of modular forms. With

this equipment, we will prove Theorem 3.1.4 in Section 3.4.

In [91], K. Mahlburg proved that there are infinitely many arithmetic progressions An+B such that

M(m, `j , An+B) ≡ 0 (mod `τ )

simultaneously for every 0 ≤ m ≤ `j − 1, where ` ≥ 5 is a prime and τ , j are positive integers.

By using the theory of modular forms, in Section 3.4, we will prove our third theorem, which is

analogous to Mahlburg’s result.

Theorem 3.1.5. There are infinitely many arithmetic progression An+B such that

M ′(m, `j , An+B) ≡ 0 (mod `τ )

simultaneously for every 0 ≤ m ≤ `j − 1, where ` ≥ 5 is a prime and τ , j are positive integers.

3.2 A cubic crank for a(n)

We need to introduce some notation and review the definition of the crank of ordinary partitions. After

Andrews and Garvan [20], we define that, for a partition λ, #(λ) is the number of parts in λ and σ(λ) is

the sum of the parts of λ with the convention #(λ) = σ(λ) = 0 for the empty partition λ. Let P be the set

of all ordinary partitions and D be the set of all partitions into distinct parts. We define

V = {(λ1, λ2, λ3)|λ1 ∈ D, and λ2, λ3 ∈ P}.

For λ = (λ1, λ2, λ3), we define the sum of parts s, a weight w, and a crank t, by

s(λ) = σ(λ1) + σ(λ2) + σ(λ3),

w(λ) = (−1)#(λ1),

t(λ) = #(λ2)−#(λ3).
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We say λ is a vector partition of n if s(λ) = n. Let NV (m,n) denote the number of vector partitions of n

(counted according to the weight w) with crank m, so that

NV (m,n) =
∑
λ∈V
s(λ)=n
t(λ)=m

w(λ).

Then, we have
∞∑
n=0

∞∑
m=−∞

NV (m,n)xmqn =
(q; q)∞

(xq; q)∞(x−1q; q)∞
. (3.2.1)

By putting x = 1 in (3.2.1) we find
∞∑

m=−∞
NV (m,n) = p(n).

Andrews and Garvan showed that this vector crank actually gives a crank for the ordinary partitions.

Theorem 3.2.1 (Theorem 1 in [20]). For all n > 1, M(m,n) = NV (m,n).

Now, we are ready to define a cubic crank for cubic partitions. For a given cubic partition λ, we define

λr to be a partition that consists of parts with color r and λb to be a partition that is formed by dividing

each of the parts with color b by 2. The generating function (3.1.4) suggests that it is natural to define a

vector crank analog Na
V (m,n) as

Na
V (m,n) =

∑
λr,λb∈V

s(λr)+2s(λb)=n
t(λr)+t(λb)=m

w(λr)w(λb).

Then, we have

∞∑
n=0

∞∑
m=−∞

Na
V (m,n)xmqn =

(q; q)∞(q2; q2)∞
(xq; q)∞(x−1q; q)∞(xq2; q2)∞(x−1q2; q2)∞

. (3.2.2)

By putting x = 1 in (3.2.2), we find
∞∑

m=−∞
Na
V (m,n) = a(n).

From now on, if λ = (1), then we will regard λ as an element of V with s(λ) = 1, and let us define the

crank weight wt(λ) for λ ∈ P as

wt(λ) =


1, if λ 6= (1),

w(λ), λ = ((1), ∅, ∅), (∅, (1), ∅) or (∅, ∅, (1)),
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and the crank size cs(λ) as

cs(λ) =


c(λ), if λ 6= (1),

t(λ), if λ = ((1), ∅, ∅), (∅, (1), ∅) or (∅, ∅, (1)).

For a given cubic partition λ, we define a cubic crank ca(λ) as

ca(λ) = (wt(λr) · wt(λb), cs(λr) + cs(λb)).

For example, here are some ca(λ), where λ is a cubic partition:

ca((1r, 1r, 1r, 2b)) = (1 · 1,−3 + 1), (1 · 1,−3− 1), and (1 · (−1),−3 + 0),

ca((1r, 1r, 2r, 2b, 2b)) = (1 · 1,−2− 2).

Let M ′(m,n) be the number of cubic partitions of n counted according to the weight, so that

M ′(m,n) =
∑

cs(λr)+cs(λb)=m

wt(λr)wt(λb).

Since

NV (m, 1) =


1, if m = 1 or −1,

−1, if m = 0,

0, otherwise,

by Theorem 3.2.1, we have

Theorem 3.2.2. For all n ≥ 1, we have M ′(m,n) = Na
V (m,n).

Therefore, we have
∞∑
n=0

∞∑
m=−∞

M ′(m,n)xmqn = F (x, q). (3.2.3)

By an abuse of notation, we will say that M ′(m,n) is the number of cubic partitions of n with cubic crank

m. Let M ′(m,N, n) be the number of cubic partitions of n with cubic crank ≡ m (mod N). Now, we are

ready to give a proof for Theorem 3.1.1.
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Proof of Theorem 3.1.1. By a simple argument, we have

F (ζ, q) =
(q; q)∞(q2; q2)∞

(ζq; q)∞(ζ−1q; q)∞(ζq2; q2)∞(ζ−1q2; q2)∞
=
∞∑
n=0

2∑
k=0

M ′(k, 3, n)ζkqn,

where ζ is a primitive third root of unity.

To find the coefficient of q3n+2 of F (ζ, q), we multiply the numerator and the denominator by

(q; q)∞(q2; q2)∞. Then, we have

F (ζ, q) =
(q; q)2

∞(q2; q2)2
∞

(q3; q3)∞(q6; q6)∞
(3.2.4)

=
(q; q2)2

∞(q2; q2)∞(q2; q2)3
∞

(q3; q3)∞(q6; q6)∞
(3.2.5)

=

(∑∞
n=−∞(−1)nqn

2
) (∑∞

m=0(−1)m(2m+ 1)qm(m+1)
)

(q3; q3)∞(q6; q6)∞
.

For the last equality, we used the Jacobi triple product identity and Jacobi’s identity. (See [28, pp. 12 – 14]

for the proof of these identities.) Since n2 ≡ 0 or 1 (mod 3) and m(m+ 1) ≡ 0 or 2 (mod 3), the

coefficient of q3n+2 of F (ζ, q) is the same as the coefficient of q3n+2 of

(∑∞
n=−∞(−1)nq9n2

)(∑∞
m=0(−1)3m+1(6m+ 3)q9m2+9m+2

)
(q3; q3)∞(q6; q6)∞

. (3.2.6)

Note that the coefficients of (3.2.6) are multiples of 3. Thus, we have

2∑
k=0

M ′(k, 3, 3n+ 2)ζk = 3N,

for some integer N . Since 1 + ζ + ζ2 is a minimal polynomial in Z[ζ], we must have

M ′(0, 3, 3n+ 2) ≡M ′(1, 3, 3n+ 2) ≡M ′(2, 3, 3n+ 2) (mod 3).

This completes the proof of Theorem 3.1.1.

Recall that

a(n) =
∞∑

m=−∞
M ′(m,n).

Therefore, Theorem 3.1.1 immediately implies Corollary 2.
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From (3.2.4), we see that

M ′(1, 3, n) = M ′(2, 3, n), for all n ≥ 1. (3.2.7)

Therefore, by (3.2.5), we arrive at

∞∑
n=0

(M ′(0, 3, n)−M ′(1, 3, n)) qn =
(q; q)2

∞(q2; q2)2
∞

(q3; q3)∞(q6; q6)∞
. (3.2.8)

By (3.2.6) and the Jacobi triple product identity, we obtain that

∞∑
n=0

(M ′(0, 3, 3n+ 2)−M ′(1, 3, 3n+ 2)) qn = −3
(q3; q3)2

∞(q6; q6)2
∞

(q; q)∞(q2; q2)∞
. (3.2.9)

Moreover, by using [51, (33.124)], we can see that

∞∑
n=0

(M ′(0, 3, 9n+ 8)−M ′(1, 3, 9n+ 8)) qn = −9
(q3; q3)3

∞(q6; q6)3
∞

(q; q)2
∞(q2; q2)2

∞
.

These identities illuminate the possibility that there are further congruences modulo powers of 3 for cubic

crank differences.

3.3 Preliminary results

This section contains the basic definitions and properties of modular forms that we will use in Section 3.4.

For additional basic properties of modular forms, see [98, Chaps. 1, 2, and 3].

Define Γ = SL2(Z), Γ0(N) :=


a b

c d

 ∈ Γ : c ≡ 0 (mod N)

, and

Γ1(N) :=


a b

c d

 ∈ Γ : a ≡ d ≡ 1 (mod N) and c ≡ 0 (mod N)

. For a meromorphic function f on the

complex upper half plane H, define the slash operator by

f |k

a b

c d

 := (cz + d)−kf(
az + b

cz + d
).

Let Mk(Γ) (resp. Sk(Γ)) denote the vector space of weakly holomorphic forms (resp. cusp forms) of

weight k. Let Mk(Γ0(N), χ) (resp. Sk(Γ0(N), χ)) denote the vector space of weakly holomorphic forms

(resp. cusp forms) on Γ0(N) with character χ. For a prime p and a positive integer m, we need to define

the Hecke operators Tp, the Um-operator and the Vm-operator on Mk(Γ0(N), χ). If f(z) has a Fourier
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expansion f(z) =
∑
a(n)qn, then

f |Tp :=
∑(

a(pn) + χ(p)pk−1a(
n

p
)
)
qn,

f |Um :=
∑

a(mn)qn = m
k
2−1

m−1∑
v=0

f |k

 1 v

0 m

 ,

f |Vm :=
∑

a(n)qmn.

Recall that the Dedekind eta function η(z) is defined by

η(z) = q
1
24 (q; q)∞, (3.3.1)

where q = exp(2πiz) and z ∈ H, the upper complex half plane. For a fixed N and integers ri, a function of

the form

f(z) :=
∏
n|N
n>0

η(nz)rn .

is called an η-quotient. The following theorem in [93] shows when an η-quotient becomes a modular form.

Theorem 3.3.1. The η-quotient is in M0(Γ0(N)) if and only if

(1)
∑
n|N rn = 0,

(2)
∑
n|N nrn ≡ 0 (mod 24),

(3)
∑
n|N

N
n rn ≡ 0 (mod 24),

(4)
∏
n|N n

rn is a square of a rational number.

The following theorem in [87] gives the order of the η-quotient f at the cusps c/d of Γ0(N) provided

f ∈M0(Γ0(N)).

Theorem 3.3.2. If the η-quotient f ∈M0(Γ0(N)), then its order at the cusp c/d of Γ0(N) is

1
24

∑
n|N

N(d, n)2rn
(d,N/d)dn

.

Recall that if p|N and f ∈M0(Γ0(pN)), then f |Up ∈M0(Γ0(N)). Also, the following theorem in [57]

gives bounds on the order of f |U(p) at cusps of Γ0(N) in terms of the order of f at cusps of Γ0(pN).
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Theorem 3.3.3. Let p be a prime and π(n) be the highest power of p dividing n. Suppose that

f ∈M0(Γ0(pN)), where p|N and α = c/d is a cusp of Γ0(N). Then,

ordαf |Up ≥



1
pordα/pf, if π(d) ≥ 1

2π(N),

ordα/pf, if 0 < π(d) < π(N)
2 ,

min0≤β≤p−1 ord(α+β)/pf, if π(d) = 0.

The following eta-quotient E`,t(z) will play an important role in our proof. Given a prime ` ≥ 5 and a

positive integer t, we define

E`,t(z) =
η`
t

(z)
η(`tz)

.

The following lemma summarizes necessary and well-known properties of E`,t(z).

Lemma 3.3.4. The eta-quotient E`,t satisfies the following:

(i) For a prime ` ≥ 5,

E`,t(z) ∈M(`t−1)/2

(
Γ0(`t), χ`,t

)
,

where χ`,t(·) =
(

(−1)(`
t−1)/2`t

·

)
denotes the Legendre-Jacobi symbol,

(ii) E`,t(z)`
j ≡ 1 (mod `j+1) for j ≥ 0,

(iii) E`,t(z) vanishes at every cusp a/c with `t - c.

The following Theorem 3.3.5 is an integer weight version of Theorem 2.2 of [91].

Theorem 3.3.5. For 0 ≤ i ≤ r, let Ni and ki be positive integers and let gi ∈ Ski(Γ1(Ni)), where the

Fourier coefficients of gi are algebraic integers. If M ≥ 1, then a positive proportion of primes p ≡ −1

(mod N1 · · ·NrM) have the property that for every i,

gi(z)|Tp ≡ 0 (mod M).

If ζ = exp(2πi/N), then for 1 ≤ s ≤ N − 1, we define the (0, s)-Klein form by

t0,s(z) =
ωs
2πi

(ζsq; q)∞(ζ−sq; q)∞
(q; q)2

∞
, for 1 ≤ s ≤ N − 1, (3.3.2)

where ωs := ζs/2(1− ζ−s).

The following proposition gives a transformation formula under Γ0(N).
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Proposition 3.3.6 (Proposition 3.2 in [91], eqn. K2 (p. 28) in [82] ). If

a b

c d

 ∈ Γ0(N), then

t0,s(z)|−1

a b

c d

 = β · t0,ds(z),

where β is given by exp
(
cs+(ds−ds)

2N − cds2

2N2

)
.

For certain congruence subgroups, a Klein form is a weakly holomorphic modular form.

Proposition 3.3.7 (Corollary 3.3 of [91]). If 1 ≤ s ≤ N − 1, then t0,s(z) ∈M−1(Γ1(2N2)).

3.4 Proof of Theorem 3.1.4 and Theorem 3.1.5

Since we will follow the argument of B. Gordon and K. Hughes [57] for the proof of Theorem 3.1.4, we do

not give every detail. Let us define

F (z) :=
η2(z)η2(2z)η(27z)η(54z)
η(3z)η(6z)η2(9z)η2(18z)

, (3.4.1)

G(z) :=
η(9z)η(18z)
η(z)η(2z)

. (3.4.2)

Then, by Theorem 3.3.1, F (z) ∈M0(Γ0(54)), and G(z) ∈M0(Γ0(18)). By Theorem 3.3.2, their orders as

modular functions of level 54 at the cusps are as follows.

d 1 2 3 6 9 18 27 54
ord F 5 5 −1 −1 −2 −2 1 1
ord G −3 −3 0 0 1 1 1 1

Table 3.1: Orders for F (z) and G(z) at the cusps for Γ0(54)

Note that Gi|U3, FGi|U3, and G(z) ∈M0(Γ0(18)). By Theorem 3.3.3, their orders at the cusps are as

follows. By comparing the order at the cusps, we can see that F |U3
G is a holomorphic modular function, i.e.

d 1 2 3 6 9 18
ord G −1 −1 0 0 1 1

ord Gi|U3 ≥ −3i −3i i i i i

ord FGi|U3 ≥ min{5− 3i,−1} min{5− 3i,−1} i−2
3

i−2
3

i+1
3

i+1
3

Table 3.2: Orders for G(z), Gi|U3, and FGi|U3 at the cusps for Γ0(18)
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a constant. Therefore, we can see that

F |U3 = −3G.

Remark. This can be proved by an elementary argument by using (3.2.8) and (3.2.9).

By using a similar argument, we can see the following:

G|U3 = 3G+ 9G2 + 27G3,

G2|U3 = 2G+ 33G2 + 180G3 + 729G4 + 1458G5 + 2187G6,

G3|U3 = G+ 30G2 + 414G3 + 2916G4 + 14580G5 + 48114G6

+ 118098G7 + 177147G8 + 177147G9,

FG|U3 = −G,

FG2|U3 = G,

FG3|U3 = 3G2 + 9G3 + 27G4.

By using Newton’s formula, we obtain for i ≥ 3, a recurrence formula for Gi|U3,

Gi|U3 = σ1G
i−1|U3 + σ2G

i−2|U3 + σ3G
i−3|U3,

where σ1 = 9G+ 27G2 + 81G3, σ2 = −3G = 9G2 − 27G3, and σ3 = G+ 3G2 + 9G3. Since FGi|U3 satisfies

the same recurrence formula, for all i ≥ 1, we can write Gi|U3 and FGi|U3 as linear sums of Gi’s, namely,

Gi|U3 =
∞∑
j=1

ai,jG
j and FGi|U3 =

∞∑
j=1

bi,jG
j , (3.4.3)

where ai,j and bi,j are integers. We define a sequence of functions Lk (k ≥ 0) inductively, by

L0 := 1, L2k+1 = FL2k|U3, and L2k+2 = L2k+1|U3.

Be (3.4.3), each Lk for k ≥ 1 is a linear sum of Gi. If Lk =
∑∞
j=1 lj(k)Gj , we will denote

25



Lk = (l1(k), l2(k), l3(k), . . .). By setting A := (ai,j) and B := (bi,j), we obtain that

L1 = −3G = (−3, 0, 0, . . .),

L2k+1 = (−3, 0, 0, . . .)(AB)k,

L2k+2 = (−3, 0, 0, . . .)(AB)kA.

It is not hard to see that Theorem 3.1.4 is equivalent to the following for all k ≥ 0:

π(lj(2k + 1) ≥ k + 1 +
⌊
j

2

⌋
,

π(lj(2k + 2) ≥ k + 1 +
⌊
j + 1

2

⌋
,

(3.4.4)

where π(n) is the 3-adic order of n. By using recurrence formulas for Gi|U3 and FGi|U3 and induction, we

find that

π(ai,j) ≥
⌊

3j − i+ 1
3

⌋
and π(bi,j) ≥

⌊
3j − i

3

⌋
.

From this, again by induction, we can derive (3.4.4), which completes the proof for Theorem 3.1.4.

Now we turn to the proof of Theorem 3.1.5. For the rest of this section, we define N := `j , where ` is a

fixed prime ≥ 5, and j is a fixed positive integer. Since our proof follows the works of K. Ono and S.

Ahlgren ([7], [98]) and Mahlburg [91], we will not give every detail of each step.

Recall that

F (x, q) =
∞∑

m=−∞

∞∑
n=0

M ′(m,n)xmqn,

where q = exp(2πiz) and z ∈ H. Then, by a simple argument,

∞∑
n=0

M ′(m,N, n)qn =
1
N

N−1∑
s=0

F (ζs, z)ζ−ms, (3.4.5)

where ζ = exp(2πi/N).

By (3.3.1) and (3.3.2), we deduce that

F (ζs, z) =
−ω2

sq
1/8

4π2

1
η(z)η(2z)t0,s(z)t0,s(2z)

. (3.4.6)
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Therefore, by (3.4.5) and (3.4.6),

∞∑
n=0

N ·M ′(m,N, n)qn =
−1
4π2

N−1∑
s=1

ω2
sζ
−msq1/8

η(z)η(2z)t0,s(z)t0,s(2z)
+
∞∑
n=0

a(n)qn.

Remark. We have multiplied (3.4.5) by N , so as to ensure that the Fourier coefficients of

−1
4π2

N−1∑
s=1

ω2
sζ
−msq1/8

η(z)η(2z)t0,s(z)t0,s(2z)

are algebraic integers with a view toward applying Theorem 3.3.5.

Define δ` = `2−1
24 , and δ` = 3δ`. We also define

gm(z) =

( ∞∑
n=0

N ·M ′(m,N, n)qn+δ`

)
(q`; q`)`∞(q2`; q2`)`∞. (3.4.7)

Then, we have

gm(z) =
−1
4π2

N−1∑
s=1

η`(`z)η`(2`z)
η(z)η(2z)

ω2
sζ
−ms

t0,s(z)t0,s(2z)
+
η`(`z)η`(2`z)
η(z)η(2z)

=:
1

4π2

N−1∑
s=1

Gm,s(z) + P (z).

In [37], Chan proved that, for sufficiently large τ ,

(
P (z)|U`

η`(z)η`(2z)
E`

τ

`,1

)
|V8∈ Sk(Γ0(128`, χ), (3.4.8)

for some positive integer k and Dirichlet character χ. Here, we prove a similar result.

Theorem 3.4.1. For sufficiently large τ , there is a positive integer k′ such that

(
Gm,s(z)|U`
η`(z)η`(2z)

E`
τ

`,j+1

)
|V8 ∈ Sk′(Γ1(128N2)), for all 1 ≤ s ≤ N − 1. (3.4.9)

Throughout the proof, we will use the notation

qm = e2πiz/m = q1/m, and λ = e2πi/`.

Proof. First, note that η`(`z)
η(z) ∈M(`−1)/2(Γ0(`), ( ·` )). Thus, by Lemma 3.3.7, Gm,s(z) ∈M`+1(Γ1(4N2)).

Since η(8z)η(16z) ∈ S1(Γ1(128)), the left side of (3.4.9) transforms correctly on Γ1(128N2). By Lemma
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3.3.4, if τ is sufficiently large, then we only need to show that Gm,s(z)|U`
η`(z)η`(2z)

vanishes at each cusp a
c with `N |c.

Since the Fourier expansion of η(z)η(2z) at such cusps is of the form B0q
`/8
2 + · · · , where B0 is a nonzero

constant, it suffices to show that the Fourier expansion of Gm,s|U` at such cusps is of the form B1q
h
2 + · · · ,

where B1 is a constant and h > `/8. Suppose that

a b

c d

 ∈ Γ0(`N). Then,

Gm,s(z)|U`|`+1

a b

c d

 = `(`−1)/2
`−1∑
j=0

Gm,s(z)|`+1

1 j

0 `

 |`+1

a b

c d

 . (3.4.10)

Note that, for any

a b

c d

, we have

1 j

0 `


a b

c d

 =

a′ b′
c′ d′


1 j′

0 `

 ,

where a′ b′
c′ d′

 =

a+ cj (−aj′ − cjj′ + b+ dj)/`

c` −cj′ + d

 .

By choosing j′ ∈ {0, 1, . . . , j − 1} such that −aj′ + b+ dj ≡ 0 (mod `), we have

a′ b′
c′ d′

 ∈ Γ0(`N). Note

that as j runs over a complete residue system modulo `, j′ does as well. Thus,

Gm,s(z)|U`|`+1

a b

c d

 = `(`−1)/2
`−1∑
j′=0

Gm,s(z)|`+1

a′ b′
c′ d′


1 j′

0 `

 .

From the fact that 2 0

0 1


a′ b′
c′ d′

 =

2a′ −a′v + b′

c′ (d′ − c′v)/2


1 v

0 2

 , (3.4.11)

where

v =


0 , if d′ is even,

1 , if d′ is odd.
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we deduce that, by setting u = (z + v)/2,

Gm,s(z)|`+1

a′ b′
c′ d′

 =
(
η`(`z)η`(2`z)
η(z)η(2z)

ω2
sζ
−ms

t0,s(z)t0,s(2z)

)
|`+1

a′ b′
c′ d′


= χ(d′)χ((d′ − c′v)/2)

η`(`z)
η(z)

η`(`u)
η(u)

ω2
sζ
−ms

βt0,d′s(z)β′t0,(d′−c′v)s/2
(u)

,

where β and β′ are the roots of unity defined in Proposition 3.3.6, and χ(d) =
( ·
`

)
. Since `N |c, after some

calculation, we can check that β, β′, χ(d′) and χ((d′ − c′v)/2) do not depend on j′. In summary, we obtain

Gm,s(z)|`+1

a′ b′
c′ d′

 = A1q
δ`
2 (−1)δ`v

1 +
∑
n≥0

c1(n, j′)qn2

 , (3.4.12)

where A1 is a nonzero constant not depending on j′.

Thus, we finally arrive at

Gm,s(z)|U`|`+1

a b

c d

 = A1

`−1∑
j′=0

qδ`2 (−1)δ`v

1 +
∑
n≥0

c1(n, j′)qn2

 |
1 j′

0 `


= A2q

δ`
2`

`−1∑
j′=0

λδ`j
′/2(−1)δ`v

1 +
∑
n≥1

c2(n, j′)qn2`


= qδ`2`(

∑
n≥1

c3(n)qn2`),

since
`−1∑
j′=0

λδ`j
′/2(−1)δ`v = 0,

by a simple calculation. Since 1 + δ` − `2/8 > 0, we are done.

Now, we are ready to prove our Theorem 3.1.5. To that end,

gm(z)|U` =

( ∞∑
n=0

N ·M ′(m,N, n)qn+δ`

)
|U`(q; q)`∞(q2; q2)`∞

and so
gm(z)|U`
η`(z)η`(2z)

=
∞∑
n=0

N ·M ′(m,N, `n− δ`)qn−
`
8 .
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Thus, by Theorem 3.4.1, for sufficiently large t,

(
gm(z)|U`
η`(z)η`(2z)

E`
t

`,j+1

)
|V8 ≡

∑
n≥0

`n≡−1 (mod 8)

N ·M ′(m,N, `n+ 1
8

)qn (mod `τ+j),

≡ H1 +H2 (mod `τ+j),

where H1 ∈ Sk′(Γ1(128N2)) and H2 ∈ Sk(Γ0(128`), χ). Then, by Theorem 3.3.5, a positive proportion of

primes Q ≡ −1 (mod 128N2) have the property that

H1|TQ = H2|TQ ≡ 0 (mod `τ+j).

This implies that

N ·M ′(m,N, `nQ+ 1
8

) ≡ 0 (mod `τ+j), whenever (n,Q) = 1.

This completes the proof of Theorem 3.1.5.

3.5 Remarks

In [72], the overpartition analog of the cubic partition, namely the overcubic partition is introduced. An

overcubic partition of n is a 2-color partition of n with colors r and b subject to the restriction that the

color b appears only in even parts, and we may overline the first occurrence of a part. For example, there

are 6 such partitions of 2:

2r, 2r, 2b, 2b, 1r + 1r, 1r + 1r.

Define a(n) as the number of overcubic partitions of n. Then, we can easily see that

∞∑
n=0

a(n)qn =
(−q; q)∞(−q2; q2)∞

(q; q)∞(q2; q2)∞
.

In the same paper [72], the following Ramanujan type congruence is proven.

a(3n+ 2) ≡ 0 (mod 3). (3.5.1)

One can also define an Andrews-Garvan type crank as follows. Let us define the crank for an overcubic

partition of n as the number of even parts with color r minus the number of even parts with color b. Let
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CA(m,n) be the number of overcubic partitions of n with crank m. Then, from the fact that

1
(zq; q)∞

=
∞∑
m=0

p(m,n)zmqn

, where p(m,n) denotes the number of partitions of n with the number of parts equaling m, we can easily

derive that
∞∑

m=−∞

∞∑
n=0

CA(m,n)zmqn =
(−q; q)∞(−q2; q2)∞

(q; q2)∞(zq2; q2)∞(z−1q2; q2)∞
.

Let CA(m,N, n) be the number of overcubic partitions of n with crank ≡ m (mod N). Then, we can

prove the following. For all nonnegative integers n,

M(0, 3, 3n+ 2) ≡M(1, 3, 3n+ 2) ≡M(2, 3, 3n+ 2) (mod 3).

Since M(0, 3, 3n+ 2) +M(1, 3, 3n+ 2) +M(2, 3, 3n+ 2) = a(3n+ 2), this immediately implies the

congruence (3.5.1) for overcubic partitions.
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Chapter 4

t-core partitions

4.1 Introduction and statement of results

A partition λ is a non-increasing sequence of natural numbers whose sum is n. Partitions are represented

as Ferrers-Young diagrams, where the summands in the partition are arranged in rows. For example, the

Ferrers-Young diagram for 12 = 5 + 4 + 2 + 1 is below.

Figure 4.1: a Ferrers-Young diagram for λ = (5, 4, 2, 1).

The hook number hi,j of a node (i, j) in the Ferrers-Young diagram is the number of nodes in the hook

containing that node. For example, the hook numbers of the nodes in the first row above are 8, 6, 4, 3, and

1, respectively. If t is a positive integer, a partition is called t-core if none of the hook numbers are

multiples of t. For example, examine Figure 4.2.

8 6 4 3 1

6 4 2 1

3 1

1

Figure 4.2: a 5-core partition λ = (5, 4, 2, 1) with hook numbers.

2The content of this chapter is based upon a joint paper with Jeremy Rouse [77]. I am grateful to Dr. Rouse for his
permission to include our joint work here.

32



If pct(n) is the number of t-core partitions of n, then it is well-known [53] that

∞∑
n=0

pct(n)qn =
∞∏
n=1

(1− qtn)t

1− qn
. (4.1.1)

One motivation for studying t-core partitions comes from the representation theory of the symmetric

group. Each partition α of n corresponds naturally to an irreducible representation ρ : Sn → GLd(C). Here

the dimension d is given by the Frame-Robinson-Thrall hook formula (see [69], Theorem 2.3.21)

d =
n!∏
i,j hi,j

, (4.1.2)

where the denominator is the product of the hook numbers of the partition α. Alfred Young showed that a

basis can be chosen for the d-dimensional space on which Sn acts so that the image of ρ lies in GLd(Z) (see

[69], Section 3.4). As a consequence, one obtains for each partition α a representation Sn → GLd(Fp), by

composing ρ with the natural map GLd(Z)→ GLd(Fp). This resulting p-modular representation is

irreducible if and only if the power of p dividing d is equal to the power of p dividing n!. From (4.1.2), this

occurs if and only if the original partition is a p-core partition.

A number of papers (see [33], [53], [55]) have investigated the combinatorial properties of pct(n). Of

particular note is the paper [53] of Garvan, Kim and Stanton, in which t-core partitions are used to

produce cranks that combinatorially prove Ramanujan’s congruences

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11),

where p(n) is the number of partitions of n.

Because of the connections with representation theory, the positivity of and asymptotics for pct(n) have

been extensively studied (see the papers by Ono [95, 96], Granville and Ono [59], and by Anderson [10]).

In [112], Stanton stated (a slight variant) of the following conjecture.

Conjecture (Stanton’s Conjecture). If t ≥ 4 and n 6= t+ 1, then

pct+1(n) ≥ pct(n).

The restriction on n is necessary since pct+1(t+ 1) = pct(t+ 1)− 1. Motivated by this conjecture,
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Anderson [10] uses the circle method to establish asymptotics for pct(n) and to verify that Stanton’s

conjecture is true for a fixed t provided n is sufficiently large. In [59], Granville and Ono prove that if

t ≥ 4, then pct(n) > 0 for all n > 0. When t ≥ 17, Granville and Ono use an expression (due to Garvan,

Kim, and Stanton) for pct(n) as the number of representations of n by a particular quadratic form to prove

positivity. The previous papers [95, 96] of Ono established positivity in all other cases t ≤ 16 with the

exception of t = 13. To describe Granville and Ono’s approach in this case, we need some notation.

Let p ≥ 7 be prime. Let χp(n) =
(
n
p

)
. The modular form

f(z) :=
ηp(pz)
η(z)

=
∞∑
n=0

ap(n)qn =
∞∑
n=0

pcp(n)qn+ p2−1
24 ∈M p−1

2
(Γ0(p), χp)

is essentially the generating function for pcp(n). Let

σ p−1
2 ,χp

(n) =
∑
d|n

χp

(n
d

)
d
p−3
2 ,

and

E p−1
2

(z) :=
∞∑
n=1

σ p−1
2 ,χp

(n)qn

be one of the Eisenstein series of weight p−1
2 and level p. If ep is the constant defined by

1
ep

=

(
p−3

2

)
!p
p
2

(2π)
p−1
2

L

(
p− 1

2
, χp

)
, (4.1.3)

then f(z) can be decomposed as

f(z) = epE p−1
2

(z) + g(z)

where g(z) is a cusp form in S p−1
2

(Γ0(p), χp). The form g(z) can be expressed as a linear combination

g(z) =
s∑
i=1

rigi(z), (4.1.4)

of normalized Hecke eigenforms, where s = dimS p−1
2

(Γ0(p), χp). As a consequence of the Weil conjectures,

Deligne proved that the nth Fourier coefficient of gi(z) is bounded by d(n)n
p−3
4 . To compute an explicit

bound on pcp(n), the problem is therefore to bound the “cusp constant”

R(p) :=
s∑
i=1

|ri|. (4.1.5)
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In [108], J. Rouse found asymptotics for the cusp constants of powers of ∆(z) = q
∏∞
n=1(1− qn)24. The

problem of bounding R(p) is significantly more challenging for two reasons: (i) the levels of the forms in

question are tending to infinity, and (ii) the form f(z) is not a cusp form, and so we must understand the

“size” of the difference between f(z) and epE p−1
2

(z). In [59], Granville and Ono explicitly calculate R(p)

for p = 13 by working in the 6-dimensional vector space S6(Γ0(13), χ13), and leave the remaining cases as

an unsolved problem. We are able to determine an explicit upper bound on R(p) valid for all primes p. As

a consequence, we obtain the following explicit upper and lower bounds on pcp(n).

Theorem 4.1.1. If p ≥ 7 is an odd prime, ap(n) = pcp

(
n− p2−1

24

)
, and ep is defined by (4.1.3), then

|ap(n)− epσ p−1
2 ,χp

(n)| ≤


98304e6πp4 log(p)

(
e1.5

8π

) p−1
4
d(n)n

p−3
4 , if p ≡ 1 (mod 4),

388535e6πp
9
2 log(p)11/4

(
e1.5

8π

) p−1
4
d(n)n

p−3
4 , if p ≡ 3 (mod 4).

Noting that e1.5 ≈ 4.48 < 25.13 ≈ 8π, we immediately see the following.

Corollary 4.1.2. Under the same assumptions as Theorem 4.1.1, R(p) =
∑s
i=1 |ri| tends to zero as p

tends to infinity.

Remark. The bound in Theorem 4.1.1 is far from optimal. Numerical evidence suggests that R(p) is not

too far from the lower bound of about
(2π2/3)(p−3)/4(

p−3
2

)
!

.

We briefly describe our approach to the problem. First, we derive bounds on pcp(n) using the circle

method. From these bounds, we derive an upper bound A on the Petersson inner product 〈f, gi〉, defined by

〈f, gi〉 :=
3

π[SL2(Z) : Γ0(p)]

∫
H/Γ0(p)

f(z)gi(z)y
p−1
2
dx dy

y2
.

It is known that the forms {E p−1
2
, g1, . . . , gs} are pairwise orthogonal, and so we have

〈f, gi〉 = ri〈gi, gi〉.

Hence if B is a lower bound for 〈gi, gi〉, then ri ≤ A/B.

To derive a lower bound on 〈gi, gi〉, we use the fact that this quantity is essentially the special value at

s = 1 of the adjoint square L-function associated to gi. Goldfeld, Hoffstein, and Lieman showed in the

appendix to [65] that this L-function has no Siegel zeroes, and we make their argument effective. An

argument of Hoffstein [64] translates this zero-free region into a lower bound for the special value. In order
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to do this, we need to compute the local factors at p of the adjoint square and symmetric fourth powers of

the gi. This is done using the local Langlands correspondence.

As a consequence of Theorem 4.1.1, we obtain the following more precise version of [59, Theorem 4].

Recall that there is a bijection between the defect zero p-blocks of Sn and the p-core partitions of n.

Corollary 4.1.3. Let p ≥ 7 be an odd prime and let ep and R(p) be the constants defined by (4.1.3) and

(4.1.5). Then there are more than 2ep
5 n

p−3
2 p-blocks with defect zero provided n > ( 10R(p)

ep
)

4
p−5 .

Remark. Note that
(

10R(p)
ep

) 4
p−5 ≤ p4 for large primes p.

As a second application, we will prove an inequality involving pcp(n). Recently, many interesting

inequalities for the number of p-core partitions have been investigated using either modular equations or

modular forms (see [26], [25], and [75]). The following inequality gives an explicit version of [75, Theorem

4].

Corollary 4.1.4. Suppose that p ≥ 7 is prime, t is a positive integer ≥ 2, and k ≥ 1. Let δp = p2−1
24 , and

let ep and R(p) be the constants defined by (4.1.3) and (4.1.5). Then for all

n >

(
2ζ
(
p−3

2

)
ep

R(p)
(

(k + 1)t
k(p−3)

4 + σ p−1
2 ,χp

(tk)− 1
)) 4

p−5

with (n, t) = 1, we have

pcp(tkn+ δp(tk − 1)) >
(
σ p−1

2 ,χp
(tk)− 1

)
pcp(n). (4.1.6)

Remark. For large primes p, the bound on n in Corollary 4.1.4 is less than or equal to p4+k.

Finally, the bounds we obtain on pct(n) using the circle method allow us to derive an explicit bound on

possible counterexamples to Stanton’s conjecture.

Theorem 4.1.5. For all integers t ≥ 7, if

n ≥


(

45503t
2t+1

2

(
1

27π3
√
e

) t−1
4
) 4
t−4

, if t ≥ 36,(
288305t

3t+7
4

(
1

4π3
√
e

) t−1
4
) 4
t−4

, if 7 ≤ t ≤ 35,

and n ≥ (t+ 1)2, then pct+1(n) > pct(n).

Applying this theorem when t ≥ 12, as well as more specialized arguments when 4 ≤ t ≤ 11, we can

verify Stanton’s conjecture.
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Corollary 4.1.6. For 4 ≤ t ≤ 198, Stanton’s conjecture holds.

This chapter is organized as follows. In Section 4.2, we will review basic facts on the circle method and

modular forms. In Sections 4.3 the circle method is used to derive explicit bounds on pct(n) and also on

〈f, gi〉. In Section 4.4, the result of Goldfeld, Hoffstein and Lieman is made effective and a lower bound on

〈gi, gi〉 is computed. In Section 4.5, we will prove Theorem 4.1.1 and its corollaries. In Section 4.6, we will

prove Theorem 4.1.5 and Corollary 4.1.6.

4.2 Preliminaries

In this section, we give a brief background on modular forms and basic tools for the circle method. For

additional properties of modular forms, see [98, Chaps. 1, 2, and 3].

As usual, let η(z) be Dedekind’s eta function defined by

η(z) = q
1
24

∞∏
n=1

(1− qn),

where q = exp(2πiz) and z is in the complex upper half plane H.

We define Γ = SL2(Z), and Γ0(N) :=


a b

c d

 ∈ Γ : c ≡ 0 (mod N)

. For a meromorphic function f

on H, we define the slash operator by

(f |kγ)(z) := (det γ)
k
2 (cz + d)−kf(γz),

where γ =

a b

c d

 ∈ GL+
2 (R). Suppose that f is a holomorphic function on H and χ is a Dirichlet character

modulo N . We say f is a holomorphic modular (resp. cusp) form of weight k on Γ0(N) with character χ if

f is holomorphic (resp. vanishing) at the cusps of Γ0(N) and f |kγ(z) = χ(d)f(z) for all γ ∈ Γ0(N). Let

Mk(Γ0(N), χ) (resp. Sk(Γ0(N), χ)) denote the vector space of holomorphic forms (resp. cusp forms) on

Γ0(N) with character χ. It is well-known that for primes p ≥ 5, we have ηp(pz)
η(z) ∈M(p−1)/2(Γ0(p), χp).

For each prime p, recall that the Hecke operator Tp is a linear operator on Sk(Γ0(N), χ). If

f(z) ∈ Sk(Γ0(N), χ) has the Fourier expansion f(z) =
∑
n≥0 a(n)qn, then

f |Tp :=
∑
n≥0

(
a(pn) + χ(p)pk−1a

(
n

p

))
qn.

We say that f(z) is an eigenform of Tp if there is a λp ∈ C such that f |Tp = λpf . We call
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f(z) ∈Mk(Γ0(N), χ) a Hecke eigenform if f(z) is an eigenform of Tp for all primes p. It is well-known that

Sk(Γ0(p), χp) has basis of Hecke eigenforms (since in this case the old space is trivial), and these can be

normalized so that the leading Fourier coefficient is 1. With this normalization, these forms are referred to

as newforms. The Atkin-Lehner involution on Mk(Γ0(p), χp) is defined by f |k

0 −1

p 0

.

Now, we turn to the basic facts about the circle method. If f(z) :=
∑∞
n=0 a(n)qn, then the residue

theorem implies that

a(n) =
1

2πi

∫
|q|=r

f(z)
qn+1

dq. (4.2.1)

We choose r = e
−2π
N2 := e−2πρ for a positive N to be determined later. By following the dissection given in

[15, Chap. 5] or [41, pp. 115–117] and setting z = k(ρ− iϕ) and τ = h+iz
k , we arrive at

a(n) =
∑

1≤k≤N

∑
0≤h≤k
(h,k)=1

e
−2πinh

k

∫
ξh,k

f(τ)e2πnρe−2πinϕdϕ, (4.2.2)

where ξh,k = [−θ′h,k, θ′′h,k], and

θ′h,k =
h

k
− h0 + h

k0 + k

θ′′h,k =
h1 + h

k1 + h
− h

k
.

Here h0
k0
, hk ,

h1
k1

are three consecutive terms of the Farey sequence of order N . Note that each θ satisfies

1
2kN ≤ θ ≤

1
kN .

The following transformation formulas for the Dedekind η function will play an important role in the

next section. For a proof of the transformation formulas, see [24, pp. 52–61].

Theorem 4.2.1. For γ =

a b

c d

 ∈ Γ, we have

η(γz) = e−πis(d,c)e
πi(a+d)

12c
√
−i(cz + d)η(z),

where s(d, c) is the Dedekind sum defined by s(d, c) =
∑c−1
r=1

(
r
c −

[
r
c

]
− 1

2

) (
dr
c −

[
dr
c

]
− 1

2

)
.

We prove the following two lemmas by using Theorem 4.2.1. We omit the proofs.

Lemma 4.2.2. Let h, k be integers such that k > 0 and (h, k) = 1. Let hh′ ≡ −1 (mod k) and z ∈ H.
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Then

η

(
h′ + iz−1

k

)
= e−πis(−h,k)eπi

h′−h
12k
√
zη (τ) .

Lemma 4.2.3. Let h, k be integers such that k > 0 and (h, k) = 1. Let hh′ ≡ −1 (mod k) and

thh′′ ≡ −(t, k) (mod k). Then

η

(
(t, k)h′′

k
+ i

(t, k)2

ktz

)
= e−πis(−

−th
(t,k) ,

k
(t,k) )e

πi
h′′− th

(t,k)

12 k
(t,k)

√
t

(t, k)
zη (tτ) .

We obtain the following lemma by modifying the argument in [41, Lemma 3.2].

Lemma 4.2.4. Let

I :=
∫
ξh,k

z−
p−1
2 e2πnρe−2πinϕdϕ.

Then we have

I =
(2π)

p−1
2

k
p−1
2 Γ(p−1

2 )
n
p−3
2 + E(I), (4.2.3)

where |E(I)| ≤ 2
p+1
2 N

p−1
2 e2πnρ

2πn .

The following estimate will play an important role in Sections 3 and 6. Let

F (q) =
∞∏
n=0

(1− qn)−1 =
∞∑
n=0

p(n)qn.

Then from the upper bound

p(n) < eπ
√

2n/3

(see Theorem 14.5 of [24, p. 316]), we have

|F (q)| ≤
∞∑
n=0

p(n)|q|n ≤
∞∑
n=0

eπ
√

2n
3 e−2πyn. (4.2.4)

It is easy to see that π
√

2n/3− 2πny ≤ −πny if n ≥ 2
3y2 . It follows that

|F (q)| ≤
∑

0≤n< 2
3y2

e
π

12y +
∑
n≥ 2

3y2

e−πyn ≤ 2
3y2

e
π

12y +
e−

2π
3y

1− e−πy
. (4.2.5)

We will use this estimate with y = 1
2t . When t is small, we will use the estimate

∞∑
n=0

p(n)e−2πyn ≤ exp
(

e−2πy

(1− e−2πy)2

)
, (4.2.6)
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given by Chan [41, Equation (3.19)].

4.3 An upper bound for |〈f, g〉|

Recall that p ≥ 7 is prime, f(z) = ηp(pz)
η(z) , and g(z) ∈ S p−1

2
(Γ0(p), χp) is a normalized Hecke eigenform. In

this section, we will get an upper bound for

〈f, g〉 =
3
π

1
[Γ : Γ0(p)]

[Γ:Γ0(p)]∑
j=1

∫
F

f |α−1
j

(z)g|α−1
j

(z)y
p−1
2
dx dy

y2
. (4.3.1)

Here Γ := SL2(Z) is the union of right cosets Γ =
⋃
j αjΓ0(p) and F is the usual fundamental domain for

SL2(Z). Note that

f | p−1
2

0 −1

1 0

 (z) = (−i)
p−1
2 p

−p
2
ηp(z)
η(pz)

:= (−i)
p−1
2 p−

p
2

∞∑
n=0

bp(n)qnp . (4.3.2)

Recall that ap(n) is the n-th Fourier coefficient of f(z). Before calculating |〈f, g〉|, we need to obtain an

upper bound for |ap(n)| and |bp(n)|.

Lemma 4.3.1. For all integers n ≥ 1 and odd primes p ≥ 7, we have

|ap(n)| ≤ A∞(p)n
p−3
2 +B∞(p)n

p−1
4 , (4.3.3)

|bp(n)| ≤ A0(p)n
p−3
2 +B0(p)n

p−1
4 , (4.3.4)

where A∞(p), A0(p), B∞(p), and B0(p) are constants (depending only on p) defined by

A∞(p) = p−
p
2

(2π)
p−1
2 ζ(p−3

2 )
Γ(p−1

2 )
, (4.3.5)

B∞(p) = e6π

(
2e

π
p (C(p)− 1)

p
p
2

(
p(p− 1)

8πe

) p−1
4

+ 2.1
(

3
eπ(p+ 1)

) p−1
4

+ p−
p
2

2
p−1
2

π

)
, (4.3.6)

A0(p) =
(2π)

p−1
2 ζ(p−3

2 )
Γ(p−1

2 )
, (4.3.7)

B0(p) = e6π

2C(p)
√
p

(
3(p− 1)
eπ(p− 1

p )

) p−1
4

+ 2.1
(
p− 1
8πe

) p−1
4

+
2
p−1
2

π

 , (4.3.8)

and C(p) := 8p2

3 e
πp
6 + e

−4πp
3

1−e
−π
2p

.
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We will prove this lemma at the end of the section.

Let g(z) =
∑∞
n=1 c(n)qn ∈ S p−1

2
(Γ0(p), χp). If d(n) is the number of divisors of n, then Deligne’s bound

is

|c(n)| ≤ d(n)n
p−3
4 .

Note that g is an eigenform of the Atkin-Lehner involution with eigenvalue λp where |λp| = 1. Thus,

g| p−1
2

0 −1

1 0

 (z) = λpp
− p−1

4

∞∑
n=1

c(n)qnp .

Now we are ready to calculate an upper bound for |〈f, g〉|. It is well known that αj = I or T−kS, where

k = 0, 1, . . . , p− 1. When we set αj = I in (4.3.1), we have

∣∣∣∣∫
F

f(z)g(z)y
p−1
2
dx dy

y2

∣∣∣∣ (4.3.9)

≤
∫ ∞
√

3
2

∞∑
k=2

(
k−1∑
n=1

|ap(k − n)||c(n)|

)
e−2πkyy

p−5
2 dy

≤ 1

(2π)
p−3
2

∫ ∞
π
√

3

e−uu
p−5
2

∑
k≤u

1

k
p−3
2

(
k−1∑
n=1

|ap(k − n)||c(n)|

)
du.

By using the summation by parts formula and Lemma 4.3.1, we obtain

k−1∑
n=1

|ap(k − n)||c(n)| ≤ A∞(p)
k∑

n=1

d(n)(k − n)
p−3
2 n

p−3
4 +B∞(p)

k∑
n=1

d(n)(k − n)
p−1
4 n

p−3
4

≤ A∞(p)
p− 3

2
k

∫ k

1

D(t)t
p−7
4 (k − t)

p−5
2 dt

+B∞(p)
p− 1

4
k

∫ k

1

D(t)t
p−7
4 (k − t)

p−5
4 dt,

where D(t) :=
∑
n≤t d(n). Therefore, by using the Beta integral

∫ 1

0

tx−1(1− t)y−1 dt =
Γ(x)Γ(y)
Γ(x+ y)

,

and D(t) ≤ 1.8t5/4 + 3.6t1/4, we arrive at

k−1∑
n=1

|ap(k − n)||c(n)| ≤ A∞(p)
9(p− 3)

10

(
k

3p−4
4

Γ
(
p+2

4

)
Γ
(
p−3

2

)
Γ
(

3p−4
4

) + 2k
3p−8

4
Γ
(
p−2

4

)
Γ
(
p−3

2

)
Γ
(

3p−8
4

) )

+B∞(p)
9(p− 1)

20

(
k

2p+1
4

Γ
(
p+2

4

)
Γ
(
p−1

4

)
Γ
(

2p+1
4

) + 2k
2p−3

4
Γ
(
p−2

4

)
Γ
(
p−1

4

)
Γ
(

2p−3
4

) )
.
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Note that for all real numbers x ≥ 1,
∑
k≤u k

x ≤ 1
x+1u

x+1 + ux. Applying this to (4.3.9), we arrive at

∣∣∣∣∫
F

f(z)g(z)y
p−1
2
dx dy

y2

∣∣∣∣ (4.3.10)

≤ 36A∞(p)p

5(2π)
p−3
2

Γ
(
p− 2

4

)
Γ
(
p− 3

2

)
+

2B∞(p)p2

7(2π)
p−3
2

Γ
(
p− 2

4

)
Γ
(
p− 1

4

)
:= U∞(p).

Similarly, for other αj ,

∣∣∣∣∫
F

f(z)|α−1
j
g(z)|α−1

j
y
p−1
2
dx dy

y2

∣∣∣∣
≤ 1

(2π)
p−3
2

(
1
p

) p+5
4
∫ ∞
π
√

3
p

e−uu
p−5
2

∑
k≤u

1

k
p−3
2

(
k∑

n=1

|bp(k − n)||c(n)|

)
du.

By using a similar argument, we arrive at

∣∣∣∣∫
F

f(z)g(z)y
p−1
2
dx dy

y2

∣∣∣∣ (4.3.11)

≤ p−
p+5
4

(2π)
p−3
2

(
36A0(p)p

5
Γ
(
p−2

4

)
Γ
(
p−3

2

)
+

2B0(p)p2

7
Γ
(
p−2

4

)
Γ
(
p−1

4

)
+ Γ

(
p−1

2

))
:= U0(p).

By using Lemma 4.3.1, (4.3.10) and (4.3.11), we obtain the following theorem.

Theorem 4.3.2. Let f(z) = ηp(pz)
η(z) ∈M p−1

2
(Γ0(p), χp), and let g(z) be a normalized newform in

S p−1
2

(Γ0(p), χp). Then,

π[Γ : Γ0(p)]
3

|〈f, g〉| ≤161.6 · e6πΓ
(
p− 2

4

)
Γ
(
p− 1

4

)
p

7
2

(
e1.5

32π3

) p−1
4

.

Now we will prove Lemma 4.3.1 by using the circle method. This is very similar to the argument of

Anderson in [10].

Proof of Lemma 4.3.1. By (4.2.2), we have

ap(n) =

 ∑
1≤k≤N
(k,p)=1

+
∑

1≤k≤N
p|k

 ∑
0≤h≤k
(h,k)=1

e
−2πinh

k

∫
ξh,k

ηp(pτ)
η(τ)

e2πnρe−2πinϕdϕ

=: S1(A) + S2(A),
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where A is the integrand.

First, we consider S1(A). By (4.2.2) and (4.2.3), we have

A = p−
p
2ωh,kz

− p−1
2

ηt
(

exp
(

2πih
′′

k − 2π 1
kpz

))
η
(

exp
(

2πih′k − 2π 1
pz

)) , (4.3.12)

where ωh,k is a constant depending on h and k with |ωh,k| = 1. Then,

S1(A) = p−
p
2

∑
1≤k≤N
(k,p)=1

∑
0≤h≤k
(h,k)=1

e
−2πinh

k

∫
ξh,k

ωh,kz
− p−1

2 e2πnρe−2πinϕdϕ

+ p−
p
2

∑
1≤k≤N
(k,p)=1

∑
0≤h≤k
(h,k)=1

e
−2πinh

k

∫
ξh,k

ωh,k×

ηp
(

exp
(

2πih
′′

k − 2π 1
kpz

))
η
(
exp

(
2πih′k − 2π 1

kz

)) − 1

 z−
p−1
2 e2πnρe−2πinϕdϕ

:= T1 + T2.

By Lemma 4.2.4, we have

|T1| ≤ p−
p
2

(2π)
p−1
2 ζ(p−3

2 )
Γ(p−1

2 )
n
p−3
2 + e6πp−

p
2 n

p−1
4

2
p−1
2

π
,

by setting N = [
√
n], because n

[
√
n]2
≤ 3 for all n ≥ 1.

For T2, note that we can set h′ = th′′. Thus, if we set α = h′′

k + 2πi 1
kpz , then we have, by (4.2.4) and

(4.2.5),

∣∣∣∣∣∣
ηp
(

exp
(

2πih
′′

k − 2π 1
kpz

))
η
(
exp

(
2πih′k − 2π 1

kz

)) − 1

∣∣∣∣∣∣ ≤
∣∣∣∣∣
∞∏
n=1

(1− qn)p

1− qpn
− 1

∣∣∣∣∣ ≤
∞∑
n=1

aa(n)|q|n

≤ |q|
∞∑
n=1

p(n)|q|n−1 ≤ e−
2π
k Re 1

pz e
π
p (C(p)− 1) .

Here, q = exp 2πiα and aa(n) is the number of partitions of n such that parts which are not multiples of p

can be repeated up to p times and parts which are a multiple of p can be repeated at most p− 1 times.

43



Therefore, we have

∣∣∣∣∣∣
∫
ξh,k

ωh,k

ηp
(

exp
(

2πih
′′

k − 2π 1
kpz

))
η
(
exp

(
2πih′k − 2π 1

kz

)) − 1

 z−
p−1
2 e2πnρdϕ

∣∣∣∣∣∣
≤ e

π
p (C(p)− 1)

∫
ξh,k

|z|−
p−1
2 e−

2π
k Re 1

pz e2πnρdϕ

= e
π
p (C(p)− 1)

∫
ξh,k

(
p

2πρ

) p−1
4
(

2πρ
pk2(ρ2 + ϕ2)

) p−1
4

exp
(

−2πρ
pk2(ρ2 + ϕ2)

)
e2πnρdϕ

≤ e
π
p (C(p)− 1)

(
p(p− 1)

8πe

) p−1
4

n
p−1
4 e2πnρ 2

kN
,

where for the last inequality, we used the fact that the maximum of x
p−1
4 e−x on [0,∞) is

(
p−1
4e

) p−1
4 and the

length of path is at most 2
kN . Thus, by setting N = [

√
n], we arrive at

|T2| ≤
2e

π
p+6π (C(p)− 1)

p
p
2

(
p(p− 1)

8πe

) p−1
4

n
p−1
4 .

Similarly, we obtain the following upper bound for |S2(A)|:

|S2(A)| ≤ 2.1e6π

(
3

eπ(p+ 1)

) p−1
4

n
p−1
4 .

In summary, we have deduced that

A∞(p) = p−
p
2

(2π)
p−1
2 ζ(p−3

2 )
Γ(p−1

2 )
,

and

B∞(p) = e6π

(
2e

π
p (C(p)− 1)

p
p
2

(
p(p− 1)

8πe

) p−1
4

+ 2.1
(

3
eπ(p+ 1)

) p−1
4

+ p−
p
2

2
p−1
2

π

)
,

as desired. The calculation of A0(p) and B0(p) is analogous, so we omit it.

4.4 A lower bound for 〈g, g〉

In this section, we will derive a lower bound for 〈g, g〉, where g ∈ S p−1
2

(Γ0(p), χp) is a normalized Hecke

eigenform. Our approach is to use that the number 〈g, g〉 arises in a formula for the special value at s = 1
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of the adjoint square L-function L(s,Ad2(g)). In the appendix to [65], Goldfeld, Hoffstein and Lieman

proved that this L-function has no zeroes close to s = 1. We make their argument effective, and use this to

derive a lower bound on the special value at s = 1. In this section, we state all of our results at the

beginning and provide proofs later in the section.

Write

g(z) =
∞∑
n=1

a(n)qn,

and for primes q, define αq, βq ∈ C by

αq + βq = a(q)/q
p−1
4 , αqβq = χp(q).

Define the adjoint square L-function by

L(s,Ad2(g)) =
∏
q

(1− α2
qχp(q)q

−s)−1(1− q−s)−1(1− β2
qχp(q)q

−s)−1,

and define the completed L-function by

Λ(s,Ad2(g)) = psπ−3s/2Γ
(
s+ 1

2

)
Γ
(
s+ k − 1

2

)
Γ
(
s+ k

2

)
L(s,Ad2(g)).

In [56], Gelbart and Jacquet show that L(s,Ad2(g)) is the L-function of an automorphic form on GL(3),

and hence that it has an analytic continuation and functional equation of the usual type. However, it is

not immediately clear that the local factors at p and ∞ of Gelbart and Jacquet match the definition given

above. The content of the next theorem is a computation of these local factors using the local Langlands

correspondence.

Theorem 4.4.1. Assume the notation above. Then, L(s,Ad2(g)) has an analytic continuation to all of C

and satisfies the functional equation

Λ(s,Ad2(g)) = Λ(1− s,Ad2(g)).

The fact that L(s, g ⊗ g) = ζ(s)L(s,Ad2(g)) and the classical Rankin-Selberg theory (see Chapter 13 of

[67]) imply the following special value formula. Recall that

〈g, g〉 =
3

π[Γ : Γ0(p)]

∫
H/Γ0(p)

|g(x+ iy)|2y
p−1
2
dx dy

y2
.

45



Then

L(1,Ad2(g)) =
π

2

(
1 +

1
p

)
(4π)

p−1
2(

p−3
2

)
!
〈g, g〉. (4.4.1)

We say that a modular form g(z) =
∑∞
n=1 a(n)qn of weight k ≥ 2 has complex multiplication (or CM) if

there is a Hecke character ξ associated to a quadratic field K so that

g(z) =
∑

a⊆OK

ξ(a)qN(a).

Equivalently, g(z) has CM if and only if there is a discriminant D so that a(p) = 0 whenever
(
D
p

)
= −1.

In order to apply Goldfeld, Hoffstein, and Lieman’s argument, we need information about the

symmetric fourth power L-function attached to g. It is defined by

L(s,Sym4(g)) =
∏
q

(1− α4
qq
−s)−1(1− α2

qχp(q)q
−s)−1(1− q−s)−1(1− α−2

q χp(q)q−s)−1(1− α−4
q q−s)−1,

and the completed L-function is given by

Λ(s,Sym4(g)) :=psπ−3s/2Γ
(s

2

)
Γ

(
s+ p−3

2

2

)
Γ

(
s+ p−1

2

2

)
·

Γ
(
s+ p− 3

2

)
Γ
(
s+ p− 1

2

)
L(s,Sym4(g)).

In [78], H. Kim established the connection between this L-function and an automorphic form on GL(5). As

a consequence, the symmetric fourth power L-function has the desired analytic properties. Again, we must

compute the local factors at p and ∞ using the local Langlands correspondence.

Theorem 4.4.2. Assume the notation above. Then L(s,Sym4(g)) has a meromorphic continuation to all

of C and satisfies the functional equation

Λ(s,Sym4(g)) = Λ(1− s,Sym4(g)).

Moreover, if g does not have CM, then L(s,Sym4(g)) is entire.

Remark. When g does have CM and corresponds to a Hecke character ξ, we have

L(s,Sym4(g)) = ζ(s)L(s, ξ2)L(s, ξ4).
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Consequently, L(s,Sym4(g)) has a pole at s = 1.

The next result is an explicit version of the result of Goldfeld, Hoffstein, and Lieman.

Theorem 4.4.3. Assume the notation above. If g does not have CM, then

L(s,Ad2(g)) 6= 0

for s real with

s > 1− 7− 4
√

3
9 log(p)

.

We next translate this zero-free region into a lower bound on L(1,Ad2(g)).

Theorem 4.4.4. Suppose that g ∈ S p−1
2

(Γ0(p), χp) is a normalized newform. If g has CM, then

L(1,Ad2(g)) ≥ 1
332
√
p log(p)11/4

.

If g does not have CM, then

L(1,Ad2(g)) ≥ 1
84 log(p)

.

Remark. There are CM forms in S p−1
2

(Γ0(p), χp) if and only if p ≡ 3 (mod 4).

Proof of Theorem 4.4.1. The newform g in the statement of the theorem corresponds to an irreducible

cuspidal automorphic representation π of GL2(AQ), where AQ is the adele ring of Q (for details about this

correspondence, see [36], Chapter 7). The representation π admits a factorization

π = ⊕q≤∞πq,

where each πq is a representation of the group GL2(Qq). In [56], Gelbart and Jacquet prove that there is

an automorphic representation Ad2(π) of GL3(AQ) so that

Ad2(π) = ⊕q≤∞Ad2(πq).

The L-function L(s,Ad2(π)) is defined by
∏
q≤∞ L(s,Ad2(πq)). Let ψ : AQ/Q→ C× be a global additive

character. The ε-factor is given by

ε(s,Ad2(π), ψ) =
∏
q≤∞

ε(s,Ad2(πq), ψq).
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The above definition does not depend on the choice of ψ. Finally, the functional equation takes the form

L(s,Ad2(π)) = ε(s, π)L(1− s,Ad2(π)),

since Ad2(π) is self-contragredient.

The definition of Ad2(πq) is given by the local Langlands correspondence. If F is a local field, the local

Langlands correspondence gives a bijection between the set of smooth, irreducible representations of

GLn(F ), and the set of admissible degree n complex representations of W ′F , the Weil-Deligne group of F .

For an introduction to the local Langlands correspondence, see [83], and Section 10.3 of [36]. The

representations of W ′F that we consider will all be representations of the Weil group WF , which is a

quotient of W ′F .

The representation πq corresponds to a representation ρq : W ′F → GL2(C). Using the embedding

Ad2 : GL2(C)→ GL3(C), one constructs Ad2(ρq) : W ′F → GL3(C). The local Langlands correspondence

for GL3 associates to Ad2(ρq) a representation Ad2(πq). We shall now compute this in the cases q =∞

and q = p.

When q =∞, πq is the discrete series of weight k = p−1
2 (we follow the normalization of Cogdell [47]).

This corresponds by the local Langlands correspondence to a representation of the Weil group of R. This is

the group C× ∪ jC× with j2 = −1 and jzj−1 = z for z in C×. The representation in question is

ρk(reiθ) =

ei(k−1)θ 0

0 e−i(k−1)θ

 , ρk(j) =

0 (−1)k−1

1 0

 .
The adjoint square lift of ρ is

Ad2(ρk)(reiθ) =


1 0 0

0 ei(2k−2)θ 0

0 0 e−i(2k−2)θ

 , Ad2(ρk(j)) =


−1 0 0

0 0 (−1)k−1

0 (−1)k−1 0

 .

One can see that Ad2(ρq) = ρ−0 ⊕ ρ2k−1. Here ρ−0 is the 1-dimensional representation given by ρ−0 (z) = 1

and ρ−0 (j) = −1. We have L(s,D−0 ) = π−s/2Γ
(
s+1

2

)
, and L(s,D2k−1) = π−sΓ

(
s+k−1

2

)
Γ
(
s+k

2

)
. The L and

ε factors are defined so that they are inductive. In particular, L(s, ρ1 ⊕ ρ2) = L(s, ρ1)L(s, ρ2), and

ε(s, ρ1 ⊕ ρ2, ψq) = ε(s, ρ1, ψq)ε(s, ρ2, ψq). It follows that

L(s,Ad2(ρ∞)) = L(s,D−0 )L(s,D2k−1).
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The local root number is ε( 1
2 , D

−
0 , ψ)ε( 1

2 , D2k−1, ψ) = i · i2k−1 = (−1)k. Here, ψ(x) = e2πix is the standard

additive character.

When q = p, the local representation πp has central character χp (the usual Dirichlet character thought

of as a character of Q×p ). The conductor of πp is the power of ps/2 that occurs in the functional equation

for L(s, π), and since the newform g has level p, the conductor of πp is one. This can be determined from

ε(s, πp, ψp), and also from more intrinsic representation-theoretic data. For any representation σ, we will

denote its conductor by c(σ).

In Schmidt [110], a list of possibilities for local representations π together with their conductors is

given. A simple calculation shows that the only possibility for a representation with conductor one and

central character χp is a principal series π(χ1, χ2), where χ1 is unramified, and χ2 = χ−1
1 χp.

The Weil group WQp can be taken to be the subgroup of Gal(Qp/Qp) consisting of all elements

restricting to some power of the Frobenius on Fp (see [114]). Under the local Langlands correspondence,

π(χ1, χ2) corresponds to a two-dimensional representation of WQp which is a direct sum of two characters.

These characters ρ1 and ρ2 of WQp are constructed so that

ρi(σ) = χi(r(σ)),

where r : Gal(Qab
p /Qp)→ Q×p is the reciprocity law isomorphism of local class field theory, normalized so

that r(Frobp) ∈ p−1Zp.

One can easily compute that Ad2(ρ1 ⊕ ρ2) = 1⊕ ρ1ρ
−1
2 ⊕ ρ

−1
1 ρ2 (here 1 denotes the trivial character).

Since ρ1ρ
−1
2 and ρ−1

1 ρ2 both have conductor 1, it follows that c(Ad2(πp)) = 2. From the usual definition of

the L-factors, and the compatibility with the local Langlands correspondence, we see that

L(s,Ad2(πp)) = L(s,Ad2(ρ1 ⊕ ρ2)) = (1− p−s)−1.

Moreover, we have

ε

(
1
2
,Ad2(πp), ψp

)
= ε

(
1
2
, 1, ψp

)
ε

(
1
2
, χ1χ

−1
2 , ψp

)
ε

(
1
2
, χ−1

1 χ2, ψp

)
.

Equation 4 on page 117 of [110] states that if χ and ψp are unramified, then ε
(

1
2 , χ, ψp

)
= 1. Equation 7

on page 118 of [110] implies that for any character χ,

we have ε
(

1
2 , χ, ψp

)
ε
(

1
2 , χ
−1, ψp

)
= χ(−1). It follows that the local root number of Ad2(πp) is

χ1χ
−1
2 (−1). Since χ1 is unramified, χ1(−1) = 1, while χ−1

2 (−1) =
(−1
p

)
.
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The global conductor of Ad2(ρ) is therefore p2 and the global root number is (−1)k ·
(−1
p

)
. Since

k = p−1
2 , the global root number is 1. These facts, combined with the meromorphic continuation and

functional equation for L-functions of automorphic representations yield the desired result. If g does not

have CM, then π⊗ χ 6∼= π for any character χ of A×Q/Q×, and then Theorem 9.3 of [56] implies that Ad2(π)

is cuspidal, which implies that L(s,Ad2(π)) is entire. If g does have CM, then g corresponds to a Hecke

character ξ, and one can check that

L(s,Ad2(π)) = L(s, χp)L(s, ξ2),

which is again entire.

Proof of Theorem 4.4.2. This is entirely analogous to the case of the adjoint square lifting, thanks to the

deep result of Henry Kim on the functoriality of the symmetric fourth power lifting [78]. The local factor

at infinity is worked out in [47], with the desired result, and with the local root number equal to (−1)k.

At q = p, Sym4(ρ1 ⊕ ρ2) is ρ4
1 ⊕ ρ3

1ρ2 ⊕ ρ2
1ρ

2
2 ⊕ ρ1ρ

3
2 ⊕ ρ4

2. Note that ρ2 is ramified, but ρ2
2 is not. Thus,

the local L-factor has degree 3 and is given by

(1− α4
pp
−s)−1(1− p−s)−1(1− α−4

p p−s)−1,

where αp = a(p)/p
p−1
4 . Similar to the above case, the conductor of Sym4(ρ1 ⊕ ρ2) is 2, and the local root

number is
(−1
p

)
= (−1)

p−1
2 = (−1)k. Thus, the global conductor is p2 and the global root number is 1.

Finally, we must show that under the stated hypotheses, Sym4(π) is cuspidal. The main result of [79] is

that Sym4(π) is cuspidal unless π is monomial (equivalently g has CM), or π is of tetrahedral or octahedral

type. This means that π arises from a representation of the global Weil group WQ, but this cannot be the

case if the weight of g is greater than 1. The only case when the weight can be one is when p = 3. However

in this case, any nonzero g ∈ S1(Γ0(3), χ3) has f2 ∈ S2(Γ0(3)), but since dimS2(Γ0(3)) = 0, no such g

exists. Thus, Sym4(π) is cuspidal and L(s,Sym4(π)) = L(s,Sym4(g)) is entire.

Proof of Theorem 4.4.3. Let

L(s) = ζ(s)2L(s,Ad2(g))3L(s,Sym4(g)).

Let k = p−1
2 and

G(s) = p4sπ−8sΓ
(
s
2

)3 Γ
(
s+1

2

)3 Γ
(
s+k−1

2

)4
Γ
(
s+k

2

)4
Γ
(
s+2k−2

2

)
Γ
(
s+2k−1

2

)
.

50



If Λ(s) = s2(1− s)2G(s)L(s), then Λ(s) is entire and Λ(s) = Λ(1− s). One may verify from Theorems 4.4.1

and 4.4.2 that if L(s) =
∑∞
n=1

b(n)
ns , then b(n) ≥ 0 for all n. For the remainder of the proof, we will take s

real and greater than 1. In this region, one has L(s) > 0 and L′(s) =
∑∞
n=2

−b(n) log(n)
ns < 0. The function

Λ(s) is an entire function of order 1, and so admits a product expansion

Λ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ.

Taking the logarithmic derivative gives

∑
ρ

1
s− ρ

+
1
ρ

=
2
s
− 2

1− s
+
L′(s)
L(s)

+
G′(s)
G(s)

−B.

Taking the real part of both sides and using the relation Re (B) = −
∑
ρ Re

(
1
ρ

)
(see Theorem 5.6, part 3

of [68]), we obtain ∑
ρ

Re
(

1
s− ρ

)
≤ 2
s

+
2

s− 1
+
G′(s)
G(s)

.

Suppose that β is a real zero of L(s,Ad2(g)). Then we get

3
s− β

≤ 2
s− 1

+ 2 +
G′(s)
G(s)

.

We have

G′(s)
G(s)

= 4 log(p)− 8 log(π) + 3/2ψ(s/2) + (3/2)ψ((s+ 1)/2) + 2ψ((s+ k − 1)/2)

+ 2ψ((s+ k)/2) +
1
2
ψ((s+ 2k − 2)/2) +

1
2
ψ((s+ 2k − 1)/2),

where ψ(s) = Γ′(s)
Γ(s) . The formula ψ(s) = log(s)− 1

2s −
∫∞

0
2t dt

(s2+t2)(e2πt−1) (see for example [16], Exercise

1.43(b)) implies that ψ(s) is increasing as a function of s, and that ψ(s) ≤ log(s)− 1
2s . It follows that for

1 < s ≤ 1.1, G′(s)
G(s) ≤ 9 log(p)− 2.

Now, set s = 1 + α, where 0 < α ≤ 0.1. We obtain 3
1+α−β ≤

2
α + 9 log(p). Solving for β and making the

optimal choice of α gives α =
√

6−2
9 log(p) , which is always less than 0.1. This yields

β ≤ 1− 5− 2
√

6
9 log(p)

.

Note that 5− 2
√

6 > 7− 4
√

3, and so the desired result holds.
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Proof of Theorem 4.4.4. First, assume that g is a CM form corresponding to the Hecke character ξ. In this

case, L(s,Ad2(g)) = L(s, χp)L(s, ξ2). We derive a lower bound on L(1, ξ2) and apply the Dirichlet class

number formula to bound L(1, χp). We wish to bound

logL(1, ξ2) =
∫ ∞

1

−L
′(s, ξ2)
L(s, ξ2)

.

We have the trivial bound ∣∣∣∣L′(s, ξ2)
L(s, ξ2)

∣∣∣∣ ≤ −2ζ ′(s)
ζ(s)

. (4.4.2)

Also, a virtually identical argument to that in the proof of Theorem 4.4.3 establishes a zero-free region for

L(s, ξ2) and gives that ∑
ρ

Re
(

1
s− ρ

)
≤ 3
s− 1

+ 9 log(p) (4.4.3)

provided 1 ≤ s ≤ 1.1, where the sum is over non-trivial zeroes of ζ(s)3L(s, ξ2)4L(s, ξ4). It follows from

this, and the equation ∑
ρ

1
s− ρ

=
L′(s, ξ2)
L(s, ξ2)

+
G′(s)
G(s)

, (4.4.4)

where G(s) = ps/2(2π)−sΓ
(
s+ p−3

2

)
, that

∣∣∣∣L′(s, ξ2)
L(s, ξ2)

∣∣∣∣ ≤ 3
4(s− 1)

+
15
4

log(p) (4.4.5)

for 1 ≤ s ≤ 1.1. Finally, we must derive a bound on L′/L near s = 1.

To do this, we use (4.4.4) with s = 2 to derive the bound

∑
ρ

Re
(

1
2− ρ

)
≤ 3

2
log(p).

By pairing ρ with 1− ρ, we see that

∑
ρ

γ≥
√

3/2

1
4 + γ2

+
1/2

1 + γ2
≤ 3

2
log(p).

The equation (4.4.3) also implies that L(s, ξ2) has no zeroes in the region {σ + it : σ ≥ β0, |t| ≤ s0 − β0},

where s0 = 1 + 2
√

3−3
9 log(p) and β0 = 1− 7−4

√
3

9 log(p) . Plugging this into (4.4.4) and using the bounds on sums over
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zeroes derived above, we obtain

∣∣∣∣L′(s, ξ2)
L(s, ξ2)

∣∣∣∣ ≤ 19
6

log(p) +
30

7− 4
√

3
log2(p). (4.4.6)

We apply (4.4.6) for 1 ≤ s ≤ 1 + 7−4
√

3
40 log2(p)

, (4.4.5) for s up to 1 + 1
3 log(p) and (4.4.2) for the remaining s to

derive a bound on L(1, ξ2). Combining this bound with the bound L(1, χp) ≥ 3π√
p when p > 163, we obtain

L(1,Ad2(g)) ≥ 1
332
√
p log(p)11/4

.

One can verify that this bound is satisfied with p ≤ 163 as well.

Now, we assume that g does not have CM. We mimic the argument of Lemma 3 of [108], which is in

turn based on Hoffstein’s argument for Dirichlet L-functions from [64]. Assume that p ≥ 17 and set

L(s, g ⊗ g) = ζ(s)L(s,Ad2(g)) =
∞∑
n=1

b(n)
ns

.

A careful inspection of the Euler factors given in Theorem 4.4.1 shows that b(n) ≥ 0 for all n, and also that

b(n2) ≥ 1 for all n. Let β = 1− 7−4
√

3
9 log(p) and note that 3/4 < β < 1. We set x = pA and choose A at the end

of the proof (we will choose it to be equal to 16/5). Consider

I =
1

2πi

∫ ∞
−∞

L(s+ β, g ⊗ g)xs ds
s
∏10
r=2(s+ r)

.

We use the fact that

1
2πi

∫ 2+i∞

2−i∞

xs ds

s
∏10
r=2(s+ r)

=


(x+9)(x−1)9

10!x10 if x > 1

0 if x < 1.

This gives

I =
∑
n≤x

b(n)(x/n+ 9)(x/n− 1)9

10!nβ(x/n)10
.

We consider only those terms where x/n ≥ 44. This gives

I ≥ 1
10!

(44 + 9)(44− 1)9

4410

∑
n≤
√
x/44

1
n2
≥ 1.54354

for p ≥ 17. We move the contour in I to Re (s) = α := −3/2− β and pick up poles at s = 1− β, s = 0 and
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s = −2. This gives

I =
1

2πi

∫ α+i∞

α−i∞

L(s+ β, g ⊗ g)xs ds
s
∏10
r=2(s+ r)

+
L(1,Ad2(g))x1−β

(1− β)
∏10
r=2(1− β + r)

+
L(β, g ⊗ g)

10!
− L(−2 + β, g ⊗ g)x−2

2 · 8!
.

Since g does not have CM, Theorem 4.4.3 implies that L(s,Ad2(g)) has no real zeroes to the right of β.

Therefore, we have L(β,Ad2(g)) ≥ 0 and since ζ(β) < 0, L(β, g ⊗ g) < 0. Since β < 1, we have

−2 + β < −1 and so L(s,Ad2(g)) < 0. Since ζ(−2 + β) < 0, it follows that L(−2 + β, g⊗ g) > 0. This gives

I − I2 ≤
L(1,Ad2(g))x1−β

(1− β)
∏10
r=2(1− β + r)

,

where

I2 =
1

2πi

∫ α+i∞

α−i∞

L(s+ β, g ⊗ g)xs ds
s
∏10
r=2(s+ r)

.

It suffices to bound I2 in the above inequality. Using the functional equation for L(s, g ⊗ g), we have

|L(−3/2 + it, g ⊗ g)| =p4π−8|1/4 + it/2|2|3/4 + it/2|2|k/2− 1/4− it/2||k/2− 5/4− it/2|

|k/2 + 1/4− it/2||k/2− 3/4− it/2||L(5/2− it, g ⊗ g)|.

We have L(5/2− it, g ⊗ g)| ≤ ζ(5/2)4, and |xs| = pA(−3/2−β). Note that

1
| − 3/2− β + it|

∏10
r=2 |r − 3/2− β + it|

≤ 1
|9/4 + it||1/4 + it|

∏10
r=3 |r − 5/2 + it|

.

Putting these estimates together, we get

|I2| ≤
ζ(5/2)4p8+A(−3/2−β)

213π9
·
∫ ∞
−∞

|1/2 + it|2|3/2 + it|2|1 + it|4

|1/4 + it||9/4 + it|
∏10
r=3 |r − 5/2 + it|

dt

≤ 0.011322p8+A(−3/2−β)

10!
.

Thus, we have

L(1,Ad2(g)) ≥ (1− β)
(

1.54354pA(β−1) − 0.011322p8−5A/2
)
.

Setting A = 16/5, we obtain

L(1,Ad2(g)) ≥ 1
84 log(p)

,
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Numerically, we evaluate L(1,Ad2(g)) for all newforms in S p−1
2

(Γ0(p), χp) for p < 17 and check that the

same relation holds. This completes the proof.

4.5 Proof of Theorem 4.1.1 and its corollaries

Recall that

f(z) =
ηp(pz)
η(z)

=
∞∑
n=0

pcp(n)qn+ p2−1
24 .

We decompose

f(z) = epE p−1
2

(z) +
s∑
i=1

rigi(z)

where gi(z) are the normalized Hecke eigenforms in S p−1
2

(Γ0(p), χp). To bound R(p) =
∑s
i=1 |ri|, we use

that

ri =
〈f, gi〉
〈gi, gi〉

.

We derived an upper bound on the numerator in Section 4.3 and a lower bound on the denominator in

Section 4.4. Now we prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Define

L(p) :=


2
π

(
1 + 1

p

)−1 ( p−3
2 )!

(4π)
p−1
2

1
84 log(p) , if p ≡ 1 (mod 4),

2
π

(
1 + 1

p

)−1 ( p−3
2 )!

(4π)
p−1
2

1
332
√
p log(p)11/4

, if p ≡ 3 (mod 4).
(4.5.1)

Then, Theorem 4.4.4 states that 〈gi, gi〉 ≥ L(p) for all i. Sturm’s theorem [113] states that a modular form

f ∈Mk(Γ0(N), χ) is determined by its first k
12 [Γ : Γ0(N)] Fourier coefficients. It follows that the dimension

of S p−1
2

(Γ0(p), χ) ≤ p−1
24 [Γ : Γ0(p)]. In summary, we have

s∑
i=1

|ri| ≤
p− 1

24
[Γ : Γ0(p)]

A

L(p)
,

where A is an upper bound on |〈f, g〉|.
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Therefore, by Theorem 4.3.2 and (4.5.1) , we arrive at

s∑
i=1

|ri| ≤
(p− 1)π

8
U∞(p) + pU0(p)

L(p)

≤


98304 · e6πp4 log p

(
e1.5

8π

) p−1
4
, if p ≡ 1 (mod 4),

388535 · e6πp
9
2 (log p)

11
4

(
e1.5

8π

) p−1
4
, if p ≡ 3 (mod 4),

where we have used the inequality xx−γ

ex−1 < Γ(x) < xx−
1
2

ex−1 from [86], and γ is the Euler constant.

Before we prove our corollaries, note that for p > 5, we have

σ p−1
2 ,χp

(n) ≥ n
p−3
2 ζ

(
p− 3

2

)−1

, (4.5.2)

where ζ(s) is the Riemann zeta function.

Proof of Corollary 4.1.3. By Theorem 4.1.1,

|ap(n)| ≥ ep

ζ
(
p−3

2

)n p−3
2 −R(p)d(n)n

p−3
4

≥ epn
p−3
2

(
1

ζ
(
p−3

2

) − 2R(p)

epn
p−5
4

)
,

where we have used the fact that d(n) ≤ 2
√
n. Since ζ(2)− 1

5 >
2
5 , we arrive at ap(n) > 2ep

5 n
p−3
2 once

n ≥ ( 10R(p)
ep

)
4
p−5 , as desired.

Proof of Corollary 4.1.4. Since σ p−1
2 ,χp

is multiplicative and n is coprime to t, we have

ap(tkn)− (σ p−1
2 ,χp

(tk)− 1)ap(n)

≥ epσ p−1
2 ,χp

(n)−R(p)d(n)n
p−3
4

(
(k + 1)t

k(p−3)
4 + σ p−1

2 ,χp
(tk)− 1

)
≥ n

p−1
4

(
epζ

(
p− 3

2

)−1

n
p−5
4 − 2R(p)

(
(k + 1)t

k(p−3)
4 + σ p−1

2 ,χp
(tk)− 1

))
.

Thus, for

n >

(
ζ(p−3

2 )
ep

2R(p)
(

(k + 1)t
k(p−3)

4 + σ p−1
2 ,χp

(tk)− 1
)) 4

p−5

,

we have

ap(tkn)− (σ p−1
2 ,χp

(tk)− 1)ap(n) > 0.
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4.6 Proof of Theorem 4.1.5

Recall that F (q) = q1/24

η(z) and that the generating function Ft(q) for the number of t-core partitions is

Ft(q) := F (q)
F (qt)t . By using the transformation formula for the Dedekind eta function (Theorem 4.2.1) we

can easily derive the transformation formula for F (q):

F (e2πiτ ) = eπi(τ−γτ)/12e−πis(d,c)eπi(a+d)/12c
√
−i(cτ + d)F (e2πiγτ ), for γ ∈ Γ.

Using this, we can derive a similar transformation formula for Ft(q). By using this transformation formula

and [10, Proposition 6], we can prove the following lemma.

Lemma 4.6.1. Let A(t) and B(t) be the constants (depending only on t) defined by

A(t) =


0.05·(2π)

t−1
2

Γ( t−1
2 )t

t
2
, if t = 6,

(2π)
t−1
2

Γ( t−1
2 )t

t
2

(
2− ζ

(
t−3

2

))
, if t ≥ 7,

and

B(t) =
(2π)

t−1
2

Γ
(
t−1

2

)
t
t
2
ζ

(
t− 3

2

)
.

Define e−2π(1+ 2
t )− π

12 (1− 1
t2

)E(t) by

2e
π
t (C(t)− 1)

t
t
2

(
t(t− 1)

8πe

) t−1
4

+

∑
2≤d|t

(
1

d2 − 1

) t−1
4

d
t
2

 2.1C(t)
t
t
2

(
3(t− 1)
eπ

) t−1
4

+
2
t−1
2

πt
t
2
.

Then for all integers n ≥ t2 and t ≥ 6, we have

A(t)
(
n+

t2 − 1
24

) t−3
2

− E(t)n
t−1
4 ≤ pct(n) ≤ B(t)

(
n+

t2 − 1
24

) t−3
2

+ E(t)n
t−1
4 .

Since the proof of this lemma is identical to Lemma 4.3.1 (except for the estimate of S2), we omit it.

Now we are ready to prove Theorem 4.1.5.
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Proof of Theorem 4.1.5. By Lemma 4.6.1, for all n ≥ (t+ 1)2, we have

pct+1(n)− pct(n)

≥ A(t+ 1)
(
n+

t2 + 2t
24

) t−2
2

−B(t)
(
n+

t2 − 1
24

) t−3
2

− E(t+ 1)n
t
4 − E(t)n

t−1
4

≥ n
t−3
2
(
A(t+ 1)

√
n−B(t)

)
− n t

4

(
E(t+ 1) +

E(t)√
t

)
.

Take n1 such that if n > n1, then A(t+ 1)
√
n > 2B(t). We note that

2B(t)
A(t+ 1)

≤
ζ
(
t−3

2

)
√
π(2− ζ

(
t−3

2

) t(1 +
1
t

) t
2

.

Therefore, we can choose n1 = 0.3 · t2. Since n > (t+ 1)2, we always have

pct+1(n)− pct(n) ≥ B(t)n
t−2
2 − n t

4

(
E(t+ 1) +

E(t)√
t

)
.

We estimate E(t) as follows

e−2π(1+ 2
t )− π

12 (1− 1
t2

)E(t) ≤


6t

3
2 e

π
t

(
e1.5

8π

) t−1
4
, if t ≥ 36,

9t
5
2

(
4e1.5

tπ

) t−1
4
, if 7 ≤ t ≤ 36.

Therefore, we have deduced that if

n ≥


(

45503t
2t+1

2

(
1

27π3
√
e

) t−1
4
) 4
t−4

, if t ≥ 36,(
288305t

3t+7
4

(
1

4π3
√
e

) t−1
4
) 4
t−4

, if 7 ≤ t ≤ 35,

and n ≥ (t+ 1)2, then pct+1(n) > pct(n), as desired.

Now we will prove Stanton’s conjecture in the cases where t ≤ 198. Since the bound in Theorem 4.1.5 is

quite big for t ≤ 12, we need to get sharper estimates for pct(n) for 4 ≤ t ≤ 13. We will achieve this goal by

using various arguments. For t = 4, we will use the result of Ono and Sze [101], which relates pc4(n) to the

class number of an imaginary quadratic field. For t = 5 and t = 7 we use that R(5) = 0 and R(7) = 1/8.

For t = 6, we use that the generating function for pc6(n) is a weight 5/2 modular form. For 8 ≤ t ≤ 13, we

will use the circle method as in Lemma 4.6.1, but we will set N = d
√

2πne and estimate C(t) by (4.2.6)

instead of (4.2.5) if t ≤ 11.
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For the t = 4 case, we first need to find an upper bound for class numbers.

Proposition 4.6.2. For any discriminant −D < 0, we have

h(−D) ≤ w−D
π

√
D log(D).

Here w−D is half the number of units in the imaginary quadratic order of discriminant −D. (Note that

w−D = 1 if −D > 4).

Proof. One can use the Dirichlet class number formula together with the elementary bound on the sum of

a Dirichlet character mod q ∣∣∣∣∣∣
∑
n≤x

χ(n)

∣∣∣∣∣∣ ≤ min(x mod q, q − x mod q)

to prove this result.

Now, from Ono and Sze [101], we have

pc4(n) =
1
2

∑
d2|8n+5

h

(
−32n− 20

d2

)
.

Note that (−32n− 20)/d2 cannot be equal to −3 or −4, since it is always greater than or equal to 4, and

d2 6= 8n+ 5 since d2 ≡ 0, 1, 4 (mod 8). Thus, we have

pc4(n) ≤ 1
2π

∑
d2|8n+5

√
(32n+ 20)/d2 log((32n+ 20)/d2)

≤ 1
2π
√

32n+ 20 log(32n+ 20)
∑

d2|8n+5

1
d
.

If sq(8n+ 5) is the largest positive integer so that sq(8n+ 5)2|8n+ 5, then we have

∑
d2|8n+5

1
d

=
∑

d|sq(8n+5)

1
d

=
σ(sq(8n+ 5))
sq(8n+ 5)

.

Combining this with the result of Ivić [66] that σ(n) < 2.59n log(log(n)) for n ≥ 7, we see that

pc4(n) ≤ 2.59
π

√
8n+ 5 log(32n+ 20) log(log(8n+ 5)).
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Now, we have pc5(n) = σ2,χ(n+ 1) ≥ n
∏
p|n

(
1− 1

p

)
= φ(n). Since 6

π2 <
φ(n)σ(n)

n2 , we have

pc5(n) >
6

2.59π2

n+ 1
log(log(n+ 1))

for n > 6. It follows from these inequalities that pc4(n) < pc5(n) provided n ≥ 1750513. A computation

verifies that the desired inequality holds if n < 1750513.

Now, we turn to the t = 5 case. Arguing as above, we have that

σ2,χ(n) ≤ n2

φ(n)
<
π2

6
σ(n) ≤ 2.59

6
π2(n+ 1) log(log(n+ 1))

provided n ≥ 7.

Now we will estimate pc6(n). Let

F (z) = η(z)2η(2z)2η(3z)2η(6z)2 =
∞∑
n=1

a(n)qn ∈ S4(Γ0(6))

be the unique weight 4 newform of level 6. If D is a fundamental discriminant, define

L(F ⊗ χD, s) =
∞∑
n=1

a(n)χD(n)
ns+5/2

.

Proposition 4.6.3. Let n be a positive integer, and write 72n+ 105 = Df2, where D is a fundamental

discriminant and f ≥ 1. Then,

pc6(n) =
D3/2L(2, χD)

240π2

∑
d|f

µ(d)χD(d)dσ3(f/d)

± (D/33)3/4

10

√
L(F ⊗ χD, 1/2)
L(F ⊗ χ33, 1/2)

∑
d|f

µ(d)dχD(d)a(f/d).

Proof. This follows from writing

η(144z)6

η(24z)
= q24

∞∑
n=0

pc6(n)q24n+11,

a modular form of weight 5/2 on Γ0(576) with character χ12, as the sum of an Eisenstein series and a cusp

form. Cohen[48] has shown that the coefficients of the Eisenstein series involve the values at 2 of Dirichlet

L-functions, and Waldspurger[116] has shown that the cusp form coefficients are essentially the square root

of the twisted L-value L(F ⊗ χD, 1/2). Combining these two results, we get the stated formula.
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A simple estimate shows that the first term above is bounded below by 1
40π4 (72n+ 105)3/2, and that

∣∣∣∣∣∣
∑
d|f

µ(d)dχD(d)a(f/d)

∣∣∣∣∣∣ ≤ d(f)f3/2
∏
p|f

(
1 +

1
√
p

)
.

Next, we need an upper bound on L(F ⊗ χD, 1/2). A variant of the standard convexity bound (see [62],

Theorem F.4.1.9 for example) gives the following result.

Lemma 4.6.4. Assume the notation above. Suppose that g is a newform in Sk(Γ0(N)). Then

L(g, 1/2) ≤ e1/2

(
N

2π

)1/4 Γ
(
k+1

2 + 1
2α

)
Γ
(
k
2

) (1 + 2α)2,

where α = log
(
N
2π

)
.

Specializing to the case at hand, we have that k = 4 and the conductor of F ⊗ χD is bounded by 2D2.

From this we get

|L(F ⊗ χD, 1/2)| ≤ 5.9(2D2)1/4 log2(2D2).

Combining this bound with the elementary bound d(n) ≤
(

1536
35

)1/3
n1/3, we obtain an upper bound on the

second term in Proposition 4.6.3 of

0.744(72n+ 105) log(72n+ 105).

We see from these bounds that pc6(n) > pc5(n) provided n ≥ 58000548. We refine this estimate by using

the bounds L(2, χD) ≥ 6
π2 , L(F ⊗ χD, 1/2) ≤ 5.9(2D2)1/4 log2(2D2), and computing the rest of the terms

in Proposition 4.6.3 exactly. This requires knowing the first 12000 coefficients of F (z), and shows that

pc6(n) > pc5(n) for n > 110868. It is easy to check up to this bound and verify Stanton’s conjecture in this

case.

For t = 7, one can compute that

η7(7z)
η(z)

=
1
8
E3(z)− 1

8
η(z)3η(7z)3.

The latter form is a Hecke eigenform and from this it follows that

3
4π2

(n+ 2)2 − 1
8
d(n)n ≤ pc7(n) ≤ π2

48
(n+ 2)2 +

1
8
d(n)n.
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This bound makes it easy to check Stanton’s conjecture.

For 8 ≤ t ≤ 13, as we mentioned above, we can get sharper estimates than Lemma 4.6.1 by setting

N =
√

2πn. For n ≥ t2,

A(t)
(
n+

t2 − 1
24

) t−3
2

− E′(t)d
√

2πne
t−1
2 ≤ pct(n) ≤ B(t)

(
n+

t2 − 1
24

) t−3
2

+ E′(t)d
√

2πne
t−1
2 ,

where the A(t) and B(t) are the constants defined in Lemma 4.6.1 and

E′(t) := e
25
24 e−2π(1+ 2

t )− π
12 (1− 1

t2
)E(t).

By using the bounds mentioned above together with MAGMA, we can verify Stanton’s conjecture for

t ≤ 198.
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Chapter 5

Combinatorial proofs for q-series
identities in Ramanujan’s lost
notebook

5.1 Introduction

In [32], B. C. Berndt and A. J. Yee provided bijective proofs for several entries found in Ramanujan’s lost

notebook [102]. The entries for which combinatorial proofs were given arise from the Rogers–Fine identity

and false theta functions, and are found in Chapter 9 of [17]. Although G. E. Andrews [12] had previously

devised a combinatorial proof of the Rogers–Fine identity, the combinatorics of each of the identities

proved in [32] is substantially different from that in Andrews’s proof, so that even what might be

considered small or subtle changes in an identity markedly alter the combinatorics. This chapter is a sequel

to [32] in that we combinatorially prove further entries from Ramanujan’s lost notebook. The entries to be

examined in this chapter are connected with either Heine’s transformation or partial theta functions.

Readers may have difficulty discerning the connections of some of the entries with either Heine’s

transformation or partial theta functions. To see these relationships, consult the book [18] by Andrews and

Berndt, where all of the identities established in this chapter are proved analytically.

Algorithm Z of D. Zeilberger plays an important role. Euler’s partition identity and Sylvester’s

bijective proof of it also play leading roles. We will recall these and other bijections in Section 5.2. In

Section 5.3, we present combinatorial proofs of some identities arising from Euler’s identity. The next goal

is to provide combinatorial proofs of entries that are related to Heine’s 2φ1 transformation formula. Some

of the proofs follow along the lines of Andrews’s proof of Heine’s 2φ1 transformation formula [11], but

others do not. In Section 5.5, we introduce a new class of partitions, namely partitions with the parity

sequence. We obtain the generating function of these partitions analytically and bijectively. Using this

generating function, we give a combinatorial proof of an identity that is related to partial theta functions.
3This chapter is based on the joint paper with Bruce Berndt and Ae Ja Yee [30]. I am grateful to my coauthors, Berndt

and Yee, for their permission to include our joint work here.
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5.2 Preliminary results

A partition of a positive integer n is a weakly decreasing sequence of positive integers (λ1, . . . , λr) such

that λ1 + · · ·+ λr = n, and we shall write λ ` n (see [15].) We relax our definition of a partition by

including 0 as a part, if necessary. We denote the number of parts of a partition λ by `(λ). As a

convention, we denote the partition of 0 by ∅.

We recall some familiar bijections that are used in the sequel.

Sylvester’s bijection. Sylvester’s map for Euler’s identity

1
(q; q2)∞

= (−q; q)∞ (5.2.1)

and many further contributions of Sylvester have been discussed by Andrews in [14]. We note here that

Sylvester’s bijection preserves the following statistic [50, 51, 109]:

`(λ) + (λ1 − 1)/2 = µ1, (5.2.2)

where λ is a partition into odd parts and µ is the partition into distinct parts associated with λ under

Sylvester’s bijection.

Franklin’s involution. Recall that Franklin’s involution provides a bijective proof of Euler’s pentagonal

number theorem [15, pp. 10–11]

(q; q)∞ =
∞∑

n=−∞
(−1)nqn(3n+1)/2. (5.2.3)

Wright’s bijection. Recall that Wright’s bijection [119] gives a bijective proof for the Jacobi triple

product identity

(−zq; q)∞(−z−1; q)∞ =
1

(q; q)∞

∞∑
n=−∞

znqn(n+1)/2. (5.2.4)

Algorithm Z and its application. The following bijection is an application of Algorithm Z discovered

by D. Zeilberger [19, 35]. It was first observed by J. T. Joichi and D. Stanton [70] that Algorithm Z can

apply in this way to the q-binomial theorem and used by Yee in [120] to establish a combinatorial proof for

Ramanujan’s 1ψ1 summation formula.
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5.3 Bijective proofs of identities arising from the Euler identity

A combinatorial proof of the following theorem was given by Berndt and Yee in the process of

combinatorially proving another entry from Ramanujan’s lost notebook [32, p. 413]. We now provide a

shorter proof.

Theorem 5.3.1. [102, p. 38], [18, Entry 1.6.4] For each complex number a,

∞∑
n=0

(−aq)n

(−aq2; q2)n
=
∞∑
n=0

(−a)nqn(n+1)/2

(−aq; q)n
. (5.3.1)

Proof. Replace a by −a in (5.3.1). Then the left-hand side generates partitions λ into odd parts, and the

exponent of a equals `(λ) + (λ1 − 1)/2. The right-hand side of (5.3.1) generates partitions into distinct

parts, and the exponent of a is the largest part. The identity now follows by Sylvester’s bijection and its

preserved statistic (5.2.2).

Theorem 5.3.2. [102, p. 31], [18, Entry 6.5.1] We have

∞∑
n=0

qn

(−q; q)2n
=
∞∑
n=0

q12n2+n(1− q22n+11) + q

∞∑
n=0

q12n2+7n(1− q10n+5) (5.3.2)

and

∞∑
n=0

qn

(−q; q)2n+1
=
∞∑
n=0

q12n2+5n(1− q14n+7) + q2
∞∑
n=0

q12n2+11n(1− q2n+1). (5.3.3)

Proof. We prove the first identity. The second one can be proved in a similar way and we omit its proof.

Replacing q by q2 in (5.3.2), we obtain the identity

∞∑
n=0

q2n

(−q2; q2)2n
=
∞∑
n=0

q24n2+2n(1− q44n+22) + q2
∞∑
n=0

q24n2+14n(1− q20n+10). (5.3.4)

The left-hand side generates partitions λ into an even number of odd parts with weight (−1)(λ1−1)/2.

Clearly, λ is a partition of an even number 2N . Thus, we obtain

∞∑
n=0

q2n

(−q2; q2)2n
=
∞∑
N=0

∑
λ∈O(2N)

(−1)(λ1−1)/2q2N , (5.3.5)

where O(2N) is the set of partitions of 2N into odd parts. Let D(2N) be the set of partitions of 2N into

distinct parts. It follows from Euler’s identity (5.2.1) that O(2N) and D(2N) are equinumerous. Let µ be
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the image of λ under Sylvester’s bijection, which is a partition in D(2N). Since λ is a partition of 2N into

odd parts, `(λ) is even. Thus we see from (5.2.2) that

(−1)(λ1−1)/2 = (−1)µ1 .

It then follows that

∞∑
N=0

∑
λ∈O(2N)

(−1)(λ1−1)/2q2N =
∞∑
N=0

∑
µ∈D(2N)

(−1)µ1q2N . (5.3.6)

We now apply Franklin’s involution for Euler’s pentagonal number theorem (5.2.3), in which we compare

the smallest part and the number of consecutive parts including the largest part. Note that in the

pentagonal number theorem, partitions π have weight (−1)`(π). However, the involutive proof still works in

our setting, since we move the smallest part to the right of the consecutive parts or subtract 1 from each of

the consecutive parts in order to add the number of consecutive parts as a new part. Thus only the

partitions of the even pentagonal numbers survive under the involution in our setting, too. Under the

involution, only partitions λ of the form (2n, 2n− 1, . . . , n+ 1) or (2n− 1, 2n− 2, . . . , n) survive. That is,

λ ` n(3n± 1)/2. It is easy to see that

n(3n+ 1)/2 ≡ 0 (mod 2), if n ≡ 0, 1 (mod 4),

n(3n− 1)/2 ≡ 0 (mod 2), if n ≡ 0, 3 (mod 4).

When n ≡ 0, 1 (mod 4), the surviving partition of n(3n+ 1)/2 has parts 2n, 2n− 1, . . . , n+ 1. The largest

part of the partition is even. When n ≡ 0, 3 (mod 4), the largest part of the partition of n(3n− 1)/2 is

odd. Then

∞∑
N=0

∑
µ∈D(2N)

(−1)µ1q2N =
∞∑
n=0

n(3n+1)/2≡0 (mod 2)

qn(3n+1)/2 −
∞∑
n=1

n(3n−1)/2≡0 (mod 2)

qn(3n−1)/2

=
∞∑
n=0

q24n2+2n(1− q44n+22) + q2
∞∑
n=0

q24n2+14n(1− q20n+10). (5.3.7)

Hence, by (5.3.5), (5.3.6) and (5.3.7), we complete the proof of (5.3.4) and therefore also of Theorem

5.3.2.

In the formulation of Ramanujan’s next two identities, it will be convenient to use the notation for
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Ramanujan’s theta functions, namely,

f(a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1.

Theorem 5.3.3. [102, p. 31], [18, Entry 6.5.2] We have

∞∑
n=0

qn

(q; q)2n
=
f(q5, q3)
(q; q)∞

(5.3.8)

and

∞∑
n=0

qn

(q; q)2n+1
=
f(q7, q)
(q; q)∞

. (5.3.9)

Proof. We prove the first identity. The second one can be proved in a similar way. In (5.3.8), replace q by

q2. Then we obtain
∞∑
n=0

q2n

(q2; q2)2n
=
f(q10, q6)
(q2; q2)∞

. (5.3.10)

The left-hand side generates partitions into an even number of odd parts. Equivalently, it generates

partitions of an even number into odd parts. Thus, we obtain

∞∑
n=0

q2n

(q2; q2)2n
=
∞∑
N=0

∑
λ∈O(2N)

q2N =
∞∑
N=0

∑
µ∈D(2N)

q2N ,

where the second equality follows from Sylvester’s bijection. By decomposing the parts of µ into even parts

and odd parts, we obtain

∞∑
N=0

∑
µ∈D(2N)

q2N = (−q2; q2)∞
∞∑
n=0

∑
ν∈DO(2n)

q2n,

where DO(2n) is the set of partitions on 2n into distinct odd parts. Let ν1 and ν3 be the partitions

consisting of parts of ν congruent to 1 and 3 modulo 4, respectively. Note that since ν is a partition of 2n,

the number of parts of ν is even. Thus `(ν1) ≡ `(ν3) (mod 2). We now use staircase 4-modular Ferrers

diagrams for the partitions ν1 and ν3, in which the triangles on the main diagonal have the residue 1 or 3

and the remaining boxes have 4. We then apply Wright’s bijection to the pair (ν1, ν3). Since `(ν1) ≡ `(ν3)

(mod 2), we collect only even powers of z from the summation on the right-hand side of the Jacobi triple
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product identity (5.2.4). By substituting q−1 and q4 for z and q, respectively, we obtain

∞∑
n=0

∑
ν∈DO(2n)

q2n =
1

(q4; q4)∞

∞∑
k=−∞

q8k2+2k.

Thus it follows that

(−q2; q2)∞
∞∑
n=0

∑
ν∈DO(2n)

q2n =
(−q2; q2)∞
(q4; q4)∞

∞∑
k=−∞

q8k2+2k =
1

(q2; q2)∞
f(q10, q6).

This completes our bijective proof of (5.3.10).

Corollary 5.3.4. [102, p. 35], [18, Entry 1.7.7] We have

∞∑
n=0

(−1)nq(n+1)(n+2)/2

(q)n(1− q2n+1)
= qf(q, q7).

Proof. By Theorem 5.3.3, it suffices to show that

∞∑
n=0

(−1)nq(n+1)(n+2)/2

(q)n(1− q2n+1)
= q(q)∞

∞∑
m=0

qm

(q)2m+1
=
∞∑
m=0

qm+1(q2m+2)∞.

Let λ be a partition arising from (q2m+2)∞. Then the parts of λ are distinct and larger than 2m+ 1. Let

n = `(λ). Detach 2m from each of the n parts. By combining this with m from qm+1, we have (2n+ 1)m,

which is generated by 1/(1− q2n+1). The resulting parts of λ form a partition into distinct parts that are

larger than 1 with weight (−1)n. Such partitions are generated by

(−1)nq2+3+···+(n+1)

(q)n
.

Combining them with q that was left from qm+1, we arrive at

(−1)nq(n+1)(n+2)/2

(q)n
.

This completes the proof.

The following corollary can be proved by a similar argument, and so we omit the proof.

Corollary 5.3.5. [102, p. 35], [18, Entry 1.7.9] We have

∞∑
n=0

(−1)nqn(n+1)/2

(q)n(1− q2n+1)
= f(q3, q5).
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5.4 Bijective proofs of identities arising from Heine’s

transformation

The identities in this section are proved in [18, Chapter 1] by appealing to Heine’s transformation or some

variant or generalization thereof.

Theorem 5.4.1. [102, p. 16], [18, Entry 1.4.8] For arbitrary complex numbers a, b,

1
(aq)∞

∞∑
n=0

(aq; q)nbnqn
2

(q2; q2)n
= (−bq; q2)∞

∞∑
n=0

(aq)2n

(q; q)2n(−bq; q2)n

+ (−bq2; q2)∞
∞∑
n=0

(aq)2n+1

(q; q)2n+1(−bq2; q2)n
. (5.4.1)

Proof. Rewrite the left-hand side of (5.4.1) as

1
(aq)∞

∞∑
n=0

(aq; q)nbnqn
2

(q2; q2)n
=
∞∑
n=0

bnqn
2

(aqn+1; q)∞(q2; q2)n
. (5.4.2)

The right-hand side is a generating function for vector partitions (π,ν) such that π is a partition into parts

that are strictly larger than n, and ν is a partition into n distinct odd parts. We examine these partitions

in two cases.

Case 1: π has an even number of parts. Let 2k be the number of parts in π. Detach n from each part of π

and attach 2k to each part of ν. Denote the resulting partitions by σ and λ, respectively. It is clear that σ

is a partition into 2k parts, and λ is a partition into distinct odd parts that are greater than or equal to

2k + 1. These are generated by
∞∑
k=0

(aq)2k

(q; q)2k
(−bq2k+1; q2)∞. (5.4.3)

Case 2: π has an odd number of parts. Let 2k + 1 be the number of parts in π. Detach 2k + 1 from each

part of π and attach 2k + 1 to each part of ν. By reasoning similar to that above, we can see that the

resulting partition pairs are generated by

∞∑
k=0

(aq)2k+1

(q; q)2k+1
(−bq2k+2; q2)∞. (5.4.4)

Combining the two generating functions (5.4.3) and (5.4.4) together with (5.4.2), we complete the

proof.
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Theorem 5.4.2. [102, p. 10], [18, Entry 1.4.9] We have

∞∑
n=0

qn(n+1)/2

(q)2
n

=
(−q)∞
(q)∞

∞∑
n=0

(−1)nqn(n+1)/2

(q2; q2)n
. (5.4.5)

Proof. Multiplying both sides of (5.4.5) by (q)∞, we obtain the equivalent identity

∞∑
n=0

qn(n+1)/2

(q)n
(qn+1; q)∞ =

∞∑
n=0

(−1)nqn(n+1)/2

(q)n
(−qn+1; q)∞, (5.4.6)

since (q2; q2)∞ = (−q; q)∞(q; q)∞. The left side of (5.4.6) is a generating function for the pair of partitions

(π,ν), such that π is a partition into n distinct parts and ν is a partition into distinct parts that are

strictly larger than n, and where the exponent of (−1) is the number of parts in ν. For a given partition

pair (π, ν) generated by the left side of (5.4.6), let k be the number of parts in ν. Detach n from each part

of ν and attach k to each part of π. Then we obtain partition pairs (σ, λ), such that σ is a partition into k

distinct parts and λ is a partition into distinct parts that are strictly larger than k, and the exponent of

(−1) is the number of parts in σ. These partitions are generated by the right side of (5.4.6). Since this

process is easily reversible, our proof is complete.

The identity in Theorem 5.4.2 is connected with the theory of gradual stacks with summits [13].

Theorem 5.4.3. [102, p. 10], [18, Entry 1.4.12] For each n > 0,

∞∑
m=0

amqm(m+1)/2

(q)m
(−bqnm+n; qn)∞ =

∞∑
m=0

bmqnm(m+1)/2

(qn; qn)m
(−aqnm+1; q)∞.

Proof. First observe that amqm(m+1)/2

(q)m
generates partitions into m distinct parts, where the exponent of a is

the number of parts. Second, (−bqnm+n; qn)∞ generates partitions into distinct parts, where each part is

at least nm+ n, each part is a multiple of n, and the exponent of b equals the number of parts. Let (π, ν)

be the partition pair generated by amqm(m+1)/2

(q)m
and (−bqnm+n; qn)∞, respectively. Detach nm from each

part of ν. The remaining partition is generated by bkqnk(k+1)/2

(qn;qn)k
. Attach mk to each part of π. Then the

resulting partition is a partition into distinct parts that are greater than or equal to nk + 1. Since this

process is reversible, we are finished with the proof.

Theorem 5.4.4. [102, p. 30], [18, Entry 1.4.17] For each n > 0,

(−aq)∞
∞∑
m=0

bmqm(m+1)/2

(q)m(−aq)nm
= (−bq)∞

∞∑
m=0

amqm(m+1)/2

(q)m(−bq)nm
. (5.4.7)
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Proof. Rewrite the left-hand side of (5.4.7) in the form

(−aq)∞
∞∑
m=0

bmqm(m+1)/2

(q)m(−aq)nm
=
∞∑
m=0

bmqm(m+1)/2

(q)m
(−aqmn+1)∞. (5.4.8)

First, bmqm(m+1)/2

(q)m
generates partitions into m distinct parts with the exponent of b keeping track of the

number of parts. Second, (−aqmn+1)∞ generates partitions into distinct parts, each strictly larger than

mn. Let (σ, ν) denote a pair of partitions generated by bmqm(m+1)/2

(q)m
and (−aqmn+1)∞, respectively. Let k

denote the number of parts in ν. Detach mn from each part of ν and denote the resulting partition by ν′.

Attach kn to each part of σ and denote the resulting partition by σ′. Then ν′ is a partition into k distinct

parts, and σ′ is a partition into distinct parts, each strictly larger than kn. Such partitions are generated

by the right side of (5.4.8). Since the process is reversible, the proof is complete.

Theorem 5.4.4 provides a generalization of a certain Duality that was utilized by D. M. Bressoud [34] in

connecting the well-known identities

∞∑
n=0

qn
2

(q4; q4)n
=

1
(−q2; q2)∞(q; q5)∞(q4; q5)∞

and
∞∑
n=0

qn
2+2n

(q4; q4)n
=

1
(−q2; q2)∞(q2; q5)∞(q3; q5)∞

of L. J. Rogers [107] with the Rogers–Ramanujan identities. In particular, if we consider the case n = 1 in

Theorem 5.4.4,
∞∑
m=0

bmqm(m+1)/2(−aqm+1)∞
(q)m

=
∞∑
m=0

amqm(m+1)/2(−bqm+1)∞
(q)m

, (5.4.9)

and replace q by q2 and a by a/q in (5.4.9) we obtain the identity

F (a, b) :=
∞∑
m=0

amqm
2
(−bq2m+2; q2)∞
(q2; q2)m

=
∞∑
m=0

bmqm
2+m(−aq2m+1; q2)∞

(q2; q2)m
= F (bq, a/q). (5.4.10)

Note that the transformation T defined by

T (F (a, b)) = F (bq, aq−1)

is an involution. Thus (5.4.10) is a fixed point under this involution.

Bressoud [34] does not state this Duality explicitly but uses the underlying combinatorics in his paper

[34]. K. Alladi [8] observed the involution (5.4.10) as Bressoud’s Duality and used it to connect six
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identities of Rogers [107] with the Rogers–Ramanujan identities via the modified convergence of a certain

continued fraction of Ramanujan, A. Selberg, and B. Gordon.

Similarly Theorem 5.4.3 is also a generalization of Bressoud’s Duality.

Theorem 5.4.5. [102, p. 42], [18, Entry 1.5.1] We have

∞∑
n=0

anqn
2

(q)n
= (−aq2; q2)∞

∞∑
n=0

anqn
2

(q2; q2)n(−aq2; q2)n
(5.4.11)

= (−aq; q2)∞
∞∑
n=0

anqn
2+n

(q2; q2)n(−aq; q2)n
. (5.4.12)

Proof. We prove (5.4.11). Moving (−aq2; q2)∞ inside the summation sign and using a corollary of the

q-binomial theorem [15, p. 19, Eq. (2.2.6)], namely,

(−aq2n+2; q2)∞ =
∞∑
m=0

amqm
2+m+2mn

(q2; q2)m
,

we find that it suffices to show that

∞∑
k=0

akqk
2

(q)k
=

∞∑
m,n=0

am+nqn
2+m2+m+2mn

(q2; q2)m(q2; q2)n
. (5.4.13)

Let us interpret the right side of (5.4.13). Consider a Durfee square of side m+ n. Attach 1 to each of

the first m rows. Append the 2-modular diagram of a partition generated by 1
(q2;q2)m

to the first m rows.

Finally append the 2-modular diagram of a partition generated by 1
(q2;q2)n

to the next n rows. Then, it is

clear that the resulting partition is generated by the sum on the left side of (5.4.13). For the reverse

process, let π be a partition generated by the left side of (5.4.13). Then π has a Durfee square of side k,

and below the Durfee square there are no parts. Let πr be a partition to the right of the Durfee square in

π. Let m be the number of odd parts in πr. Rearrange the order of πr so that the first m parts are odd.

Detach 1 from each part of the first m parts of πr. Then the first m parts are generated by 1
(q2;q2)m

, and

the remaining parts are generated by 1
(q2;q2)k−m

. Setting n = k −m, we are done.

Since the proof of (5.4.12) is similar, we omit it.

5.5 Partitions with a parity sequence

Let Dn be the set of partitions into n distinct parts less than 2n such that the smallest part of each

partition is 1, and if 2k − 1 is the largest odd part, then all odd positive integers less than 2k − 1 occur as
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parts. For a partition λ ∈ Dn, we define the parity sequence as the longest sequence of decreasing

consecutive numbers containing the largest odd part and denote its length by c(λ). Thus, the largest part

of the parity sequence might be even. For instance, when n = 5,

c((5, 4, 3, 2, 1)) = 5,

c((8, 6, 5, 4, 3, 1)) = 4,

c((9, 7, 6, 5, 3, 1)) = 1.

Let

λ = (λ1, . . . , λs, λs+1, . . . , λs+c, λs+c+1, . . . , λn) ∈ Dn,

where its parity sequence is underlined. By the definition of a parity sequence, we see that

(P1) λ1, . . . , λs are even;

(P2) all the positive odd integers less than or equal to λs+1 occur in λ;

(P3) λs+c is odd and λs+c = λs+c+1 + 2.

We now compute the generating function of Dn. For a partition λ ∈ Dn, let k be the number of odd

parts of λ. Then it follows from the definition of Dn that the odd integers 1, 3, . . . , 2k − 1 occur in λ and

the other n− k parts are distinct even numbers. Note that the generating function of partitions into m

distinct even parts less than 2n is [15, pp. 33–35]

qm(m+1)

n− 1

m


q2

,

as the q-binomial coefficient

a
b


q

generates partitions into at most b parts ≤ (a− b) for 0 ≤ b ≤ a, where

a
b


q

=


(q; q)a

(q; q)b(q; q)a−b
, if 0 ≤ b ≤ a,

0, otherwise.
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Therefore,

∑
λ∈Dn

qλ1+···+λn =
n−1∑
k=0

q(n−k)2+k2+k

n− 1

k


q2

. (5.5.1)

Lemma 5.5.1. For any positive integer n,

n−1∑
k=0

q(n−k)2+k2+k

n− 1

k


q2

= (−q; q)n−1q
n(n+1)/2. (5.5.2)

Proof. Let fn(q) = (−q; q)n−1q
n(n+1)/2. Then, for n ≥ 1,

fn+1(q) = (qn+1 + q2n+1)fn(q).

We prove the lemma by showing that the left-hand side of (5.5.2) satisfies the same recurrence as fn(q).

First of all, when n = 1, (5.5.2) holds true. For n ≥ 1, using a familiar recurrence for

n
k


q2

[15,

Eq. (3.3.4)], we find that

n∑
k=0

q(n+1−k)2+k2+k

n
k


q2

= q(n+1)2 +
n−1∑
k=1

q(n+1−k)2+k2+k

n
k


q2

+ qn
2+n+1

= q(n+1)2 +
n−1∑
k=1

q(n+1−k)2+k2+k

q2k

n− 1

k


q2

+

n− 1

k − 1


q2

+ qn
2+n+1

= q(n+1)2 +
n−1∑
k=1

q(n−k)2+k2+k+2n+1

n− 1

k


q2

+
n−2∑
k=0

q(n−k)2+(k+1)2+k+1

n− 1

k


q2

+ qn
2+n+1

=
n−1∑
k=0

q(n−k)2+k2+k+2n+1

n− 1

k


q2

+
n−1∑
k=0

q(n−k)2+k2+3k+2

n− 1

k


q2

=
n−1∑
k=0

q(n−k)2+k2+k+2n+1

n− 1

k


q2

+
n−1∑
k=0

q(k+1)2+(n−k−1)2+3(n−k−1)+2

n− 1

k


q2
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=
n−1∑
k=0

q(n−k)2+k2+k+2n+1

n− 1

k


q2

+
n−1∑
k=0

q(n−k)2+k2+k+n+1

n− 1

k


q2

= (q2n+1 + qn+1)
n−1∑
k=0

q(n−k)2+k2+k

n− 1

k


q2

,

which completes the proof.

The following proof is due to S.O. Warnaar [117].

Proof. Write

fa(n) =
n−1∑
k=0

(−1)k(q−n; q)k(−q−n; q)kqk
2+ak

(q)k(−q)k
.

Then Lemma 6.1 is f0(n) = (−q; q)nq−n(n+1)/2. Change k to n− k. Then fa(n) = q(a−1)nf2−a(n).

Therefore

f0 =
f0(n) + q−nf2(n)

2
=

1
2

n−1∑
k=0

(1 + q2k−n)(−1)k(q−n; q)k(−q−n; q)kqk
2

(q)k(−q)k

=
1 + q−n

2
lim

b,c→∞
6W5(−q−n; b, c, q−n;−q/bc) = (−q; q)nq−n(n+1)/2,

where for the last identity we have used Rogers’ identity,

6φ5

a, qa 1
2 ,−qa 1

2 , b, c, q−n; q, aq
n+1

bc

a
1
2 ,−a 1

2 , aq/b, aq/c, aqn+1

 =
(aq, aq/bc; q)n
(aq/b, aq/c; q)n

.

We can prove the following theorem using (5.5.1) and (5.5.2). However, we provide a combinatorial

proof.

Theorem 5.5.2. For any positive integer n, the generating function of Dn is

(−q; q)n−1q
n(n+1)/2.

Proof. For a positive integer n, let τ = (n, n− 1, . . . , 2, 1) and µ = (µ1, µ2, . . . , µ`) be a partition into

distinct parts less than n. We insert the parts µi in decreasing order into τ as follows.

Insertion: Let π be τ and begin with i = 1.
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◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦
◦

→

◦ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ •
◦ ◦ ◦ •
◦ ◦ •
◦

→

◦ ◦ ◦ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦
◦

→

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦
◦ ◦ ◦
◦

Figure 5.1: Insertion of µ = (4, 2, 1) into τ = (5, 4, 3, 2, 1).

(1) If πi + µ1 is even, then add µ1 to πi, i.e., add µ1 horizontally to π, and add 1 to i; if πi + µ1 is odd,

then add 1 to each of the πi, . . . , πi+µ1−1, i.e., add µ1 vertically down starting from πi, and the i

remains the same.

(2) By an abuse of notation, let us denote the resulting partition by π.

(3) Repeat the process with µ2, . . . , µ`, i.e., until the parts of µ are depleted.

Figure 5.1 illustrates our insertion with an example.

Throughout the proof, we assume that π0 =∞. We first show that the final π is a partition in Dn with

parity sequence (πs+1, . . . , πs+c) such that if µ` was inserted horizontally, then

c ≥ µ` and πs − πs+1 − 1 = µ`; (5.5.3)

and if µ` was inserted vertically, then

c = µ` and πs − πs+1 − 1 > µ`. (5.5.4)

We use induction on `. If ` = 1, then

π =


(n+ µ1, n− 1, n− 2, . . . , 2, 1), if n+ µ1 is even,

(n+ 1, n, . . . , n− µ1 + 2, n− µ1, . . . , 2, 1), if n+ µ1 is odd,

where in each case the parity sequence is underlined. Since µ1 < n, we see that π ∈ Dn and the conditions

in (5.5.3) and (5.5.4) are satisfied. Given τ = (n, n− 1, . . . , 1) and µ = (µ1, . . . , µ`), suppose that the

partition π resulting from the insertion of µ1, . . . , µ`−1 satisfies either (5.5.3) or (5.5.4). We denote

π = (π1, . . . , πs, πs+1, . . . , πs+c, πs+c+1, . . . , πn) ∈ Dn,

where its parity sequence is underlined. By (P1), we see that πs is even. Since µj > 1 for any j < `, it
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follows from the definition of insertion that the last horizontal insertion happened at the s-th part. Thus,

in order to insert µ`, we need to examine the parity of πs+1 + µ` by (P1). If πs+1 + µ` is even, then we

make a horizontal insertion; namely, the resulting partition is

π′ = (π1, . . . , πs, πs+1 + µ`, πs+2, . . . , πs+c, πs+c+1, . . . , πn).

Since π ∈ Dn, all odd positive integers ≤ πs+1 occur in π, from which it follows that all odd positive

integers ≤ πs+2 occur in π′. Also, since πs − πs+1 > µ`−1 by (5.5.3) and (5.5.4), we see that

π′s − π′s+1 = πs − (πs+1 + µ`) > µ`−1 − µ` ≥ 1.

Thus π′ ∈ Dn. We now show that π′ satisfies (5.5.3). Since c ≥ µ`−1 by (5.5.3) and (5.5.4), and µ`−1 > µ`,

we see that the parity sequence of π′ is (πs+2, . . . , πs+c), which has length c− 1 ≥ µ`. Also, since

πs+1 = πs+2 + 1,

π′s+1 − π′s+2 = πs+1 + µ` − πs+2 = µ` + 1.

Therefore, π′ is a partition in Dn satisfying (5.5.3). If πs+1 + µ` is odd, then we make a vertical insertion;

namely, the resulting partition is

π′ = (π1, . . . , πs, πs+1 + 1, . . . , πs+µ` + 1, πs+µ`+1, . . . , πn).

Since c ≥ µ`−1 by (5.5.3) and (5.5.4), and µ`−1 > µ`, we see that the parity sequence of π′ is

(πs+1 + 1, . . . , πs+µ`+1 + 1),

whose length is µ`. Also, since πs − πs+1 > µ`−1 > µ`,

π′s − π′s+1 = πs − (πs+1 + 1) > µ`−1 − 1 ≥ µ`.

Thus π′ satisfies (5.5.4). We now show that π′ ∈ Dn. Since πs+1 + µ` is odd, we see that πs+µ` is even, so

πs+µ` + 1 and πs+µ`+1 are consecutive odd integers. Since π ∈ Dn, all odd positive integers ≤ πs+1 occur

in π, from which it follows that all odd positive integers ≤ πs+1 + 1 occur in π′. Therefore, π′ is a partition

in Dn satisfying (5.5.4).
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We now show that the map is bijective by defining its inverse. Let

λ = (λ1, . . . , λs, λs+1, . . . , λs+c, λs+c+1, . . . , λn) ∈ Dn,

where its parity sequence is underlined.

Deletion: We now compare c and (λs − λs+1 − 1).

(1) If there is no λs or c < (λs − λs+1 − 1), then we let σ1 = c and subtract 1 from each of

λs+1, . . . , λs+c, i.e., subtract σ1 vertically from λ; if c ≥ (λs − λs+1 − 1), then we let

σ1 = λs − λs+1 − 1 and subtract (λs − λs+1 − 1) from λs−1, i.e., subtract σ1 horizontally from λ.

(2) By an abuse of notation, let us denote the resulting partition by λ.

(3) Repeat the process until we arrive at λ = (n, n− 1, . . . , 1); we record the amount we subtract in the

i-th step as σi.

We now show that this process is well-defined, i.e., the resulting partition in each step is still in Dn and the

sequence σ1, σ2, . . . is strictly increasing with each part less than n. If σ1 was subtracted vertically, then

the resulting partition is

(λ1, . . . , λs, λs+1 − 1, . . . , λs+c − 1, λs+c+1, . . . , λn). (5.5.5)

It follows from (P1), (P2), and (P3) that all the positive odd integers less than the largest odd part occur.

If σ1 was subtracted horizontally, then the resulting partition is

(λ1, . . . , λs−1, λs+1 + 1, λs+1, . . . , λs+c, λs+c+1 . . . , λn). (5.5.6)

The largest odd part of the resulting partition is either λs+1 + 1 or λs+1. Again, by (P1), (P2), and (P3),

the resulting partition is in Dn.

We now show that the sequence σ1, σ2, . . . is strictly increasing with each part less than n. First of all,

note that if λ 6= (n, n− 1, . . . , 1), then c < n. Thus we can easily see that σ1 < n since σ1 ≤ c. It now

suffices to show that σi > σi+1 for i = 1, 2, . . .. Suppose that σ1 was subtracted vertically from λ. Then, in

(5.5.5), the length c∗ of the parity sequence of the resulting partition is larger than c. Also,

λs − (λs+1 − 1)− 1 = λs − λs+1 > c.
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Since σ2 is the minimum of c∗ and λs − (λs+1 − 1)− 1, we see that σ2 > σ1. Suppose that σ1 was

subtracted horizontally from λ. Then, in (5.5.6), the length c∗ of the parity sequence of the resulting

partition is larger than c, which is larger than or equal to (λs − λs+1 − 1). Also,

λs−1 − (λs+1 + 1)− 1 = λs−1 − λs+1 − 2 ≥ λs + 2− λs+1 − 2 > λs − λs+1 − 1 = σ1,

where the first inequality follows from (P1). Since σ2 is the minimum of c∗ and λs−1 − (λs+1 + 1)− 1, we

see that σ2 > σ1.

We now show that the deletion map defined above is the inverse process of our insertion map. Let π be

the partition resulting from the insertion of µ = (µ1, µ2, . . . , µ`) into τ , namely

π = (π1, . . . , πs, πs+1, . . . , πs+c, πs+c+1, . . . , πn) ∈ Dn.

If µ` was inserted horizontally, then we see that

c ≥ µ` = πs − πs+1 − 1,

by (5.5.3). Thus, by the map, we have to subtract µ` horizontally. If µ` was inserted vertically, then we see

that

c = µ` ≤ πs − πs+1 − 1,

by (5.5.4). Thus, by the map, we have to subtract µ` vertically.

Theorem 5.5.3. [102, p. 28], [18, Entry 1.6.2] For any complex number a,

∞∑
n=0

anqn
2

=
∞∑
n=0

(−q; q)n−1a
nqn(n+1)/2

(−aq2; q2)n
. (5.5.7)

Proof. Let En be the set of partitions into even parts less than or equal to 2n. By Theorem 5.5.2, the

right-hand side of (5.5.7) generates pairs of partitions (π, σ) with π ∈ Dn and σ ∈ En, where the exponent

of a denotes the number of parts of π plus the number of parts of σ, with the sign (−1)`(σ). Let πe

(resp. σe) be the largest even part in π (resp. σ). For convenience, we define πe = 0 (resp. σe = 0) if there

is no even part in π (resp. σ). Note that by the definition of Dn, the following are equivalent:

(i) π = (2n− 1, 2n− 3, . . . , 3, 1);
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(ii) πe = 0;

(iii) π1 = 2n− 1.

We now compare πe and σe.

Case 1: If πe > 0 and πe ≥ σe, then move πe to σ. We denote by (π′, σ′) the resulting partition pair.

Since π ∈ Dn and πe > 0, π has n parts ≤ 2n− 2. Thus, π′ has n− 1 parts < 2n− 2 and σ′e is still less

than or equal to 2n− 2, from which it follows that π′ ∈ Dn−1 and σ′ ∈ En−1. The pair (π′, σ′) is generated

by the right-hand side of (5.5.7), and it has the opposite sign.

Case 2: If σe > 0 and σe > πe, then move σe to π. We denote by (π′, σ′) the resulting partition pair.

Since π ∈ Dn, π has n parts < 2n. Also, since σ ∈ En, σe ≤ 2n. Thus, π′ has n+ 1 parts ≤ 2n, from which

it follows that π′ ∈ Dn+1 and σ′ ∈ En+1. The pair (π′, σ′) is generated by the right-hand side of (5.5.7),

and it has the opposite sign.

Therefore, the partition pairs (π, σ) with πe > 0 or σe > 0 are canceled, and there remain only

π = (2n− 1, 2n− 3, . . . , 1) and σ = ∅, which are generated by the left-hand side of (5.5.7).

Alladi [9] has devised a completely different proof of Theorem 5.5.3 and has also provided a

number-theoretic interpretation of Theorem 5.5.3 as a weighted partition theorem. Although we have given

a bijective proof of Theorem 5.5.3, we do not interpret Theorem 5.5.3 number-theoretically. On the other

hand, even though Alladi interpreted Theorem 5.5.3 number-theoretically, his proof of Theorem 5.5.3 is

q-theoretic. It would be worthwhile to see how our bijective proof of Theorem 5.5.3 translates into a

combinatorial proof of Alladi’s weighted partition theorem. This is explored by W. Y. C. Chen and E. H.

Liu [43].

Recently, Yee [122] found another combinatorial proof of Theorem 5.5.3.
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Chapter 6

Subpartitions

6.1 Introduction

Let a1 ≥ a2 ≥ · · · ≥ a` be an ordinary partition. In a recent paper [81], L. Kolitsch introduced the

Rogers-Ramanujan subpartitions and established their connection to other partitions. The

Rogers-Ramanujan subpartition is the longest sequence satisfying a1 > a2 > · · · > as and as > as+1, where

ai − aj ≥ 2 for all i < j ≤ s. In this chapter, we will generalize his result with an arbitrary gap condition

and will study connections between subpartitions and other partitions. Let us fix a positive integer d.

Then, for a given partition, a subpartition with gap d is defined as the longest sequence satisfying

a1 > a2 > · · · > as and as > as+1, where ai − aj ≥ d for all i < j ≤ s. Note that Kolitsch’s

Rogers-Ramanujan subpartition is the case d = 2. For convenience, we will define the subpartition of the

empty partition as the empty partition. We define the length of the subpartition with gap d as the number

of parts in the subpartition. When the gap d is clear from context, we will say the subpartition instead of

the subpartition with gap d. In the next section, we will give a generating function of the ordinary

partition that keeps track of the length of the subpartition with gap d. We also study their connection to

the partial theta function, which is of the form

∞∑
n=0

(−1)nqn(n−1)/2xn,

by attaching a proper weight to the generating function. In Section 4, we will focus on the subpartition

with gap 1. By using the properties of subpartitions, we will give combinatorial proofs of the identities:

1
(q)2
∞

∞∑
n=0

(−1)nq(n2+n)/2 =
∞∑
n=0

qn

(q)2
n

, (6.1.1)

1
(q)2
∞

(
1 + 2

∞∑
n=1

(−1)nq(n2+n)/2

)
=
∞∑
n=0

q2n

(q)2
n

, (6.1.2)

4This chapter is largely taken from my paper [76].
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which are entries in Ramanujan’s lost notebook [102] [18, p. 19, Entry 1.4.10 and Entry 1.4.11].

6.2 Generating function for subpartitions

For a given partition λ, we always write it in the form a1 ≥ a2 ≥ · · · ≥ a`. Before finding a generating

function, we need to define some notation. Let us fix a positive integer d and define, for each nonnegative

integer k,

Sd,k =


1 + (1 + d) + (1 + 2d) + · · · (k − 1)d+ 1 = dk2−(d−2)k

2 , if k 6= 0,

0, if k = 0.

Then for a given partition λ, there are three cases:

(I) There is no subpartition in λ.

(II) The subpartition of λ is λ. In this case, we will say the partition λ is a complete partition after

Kolitsch.

(III) λ is not complete and it has a subpartition with length `.

For the case (I), i.e. to have no subpartition in λ, we should have a1 = a2. By using a standard

argument [15, chap. 1], we can easily see that

∞∑
i=1

q2i

(q)i
. (6.2.1)

generates such partitions.

For the case (II), i.e. λ is a complete partition, the gaps between successive parts of λ should be at

least d. Such partitions are generated by
∞∑
`=0

qSd,`

(q)`
. (6.2.2)

Note that the length of the subpartition in the above is `.

For the case (III), suppose that a given partition λ has the subpartition with length ` and a` = j. Note

that since λ is not a complete partition, there are at least `+ 1 parts in λ and, by definition, a` > a`+1.

Then, there are two possibilities:

(i) a` − a`+1 is less than d.

(ii) a` − a`+1 ≥ d, but a`+1 = a`+2.

82



For the case (i), we have the generating function

∞∑
`=1

qSd,`

(q)`−1

 ∞∑
j=2

q(`+1)(j−1)

(q)j−1
+ · · ·+

∞∑
j=d

q`(j−1)+(j−d+1)

(q)j−d+1


=
∞∑
`=1

qSd,`

(q)`−1

( ∞∑
n=1

q(`+1)n

(q)n
+ · · ·+ q`(d−2)

∞∑
n=1

q(`+1)n

(q)n

)

=
∞∑
`=1

qSd,`(1− q`(d−1))
(q)`

∞∑
n=1

q(`+1)n

(q)n

=
∞∑
`=1

qSd,`(1− q`(d−1))
(q)`

(
1

(q`+1)∞
− 1
)

=
∞∑
`=1

qSd,`(1− q`(d−1))
(q)∞

−
∞∑
`=1

qSd,`(1− q`(d−1))
(q)`

, (6.2.3)

where in the penultimate line we used the q-binomial theorem [28, p. 8]. For the case (ii), we have the

generating function

∞∑
`=1

qSd,`

(q)`−1

∞∑
j=d+1

q`(j−1)

j−d∑
i=1

q2i

(q)i

=
∞∑
`=1

qSd,`

(q)`−1

∞∑
i=1

∞∑
j=d+i

q`(j−1) q
2i

(q)i

=
∞∑
`=1

qSd,`+`(d−1)

(q)`

∞∑
i=1

q(`+2)i

(q)i

=
∞∑
`=1

qSd,`+`(d−1)

(q)`

(
1

(q`+2)∞
− 1
)
, (6.2.4)

by the q-binomial theorem.

Since all partitions fall into one of the above three cases, the sum of the above generating functions

((6.2.1), (6.2.2), (6.2.3), and (6.2.4)) should be 1
(q)∞

. Thus, we have

1
(q)∞

=
∞∑
i=1

q2i

(q)i
+
∞∑
`=0

qSd,`

(q)`

+
∞∑
`=1

qSd,`(1− q`(d−1))
(q)∞

−
∞∑
`=1

qSd,`(1− q`(d−1))
(q)`

+
∞∑
`=1

qSd,`+`(d−1)

(q)`

(
1

(q`+2)∞
− 1
)

=
∞∑
`=0

qSd,`+`(d−1)

(q)`(q`+2)∞
+
∞∑
`=1

qSd,`(1− q`(d−1))
(q)∞

,

since
∞∑
i=1

q2i

(q)i
=

1
(q2)∞

− 1,
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by the q-binomial theorem. Thus, we have proved our first theorem.

Theorem 6.2.1. Let ` be the length of the subpartition with gap d. Then we have

1
(q)∞

=
1

(q2)∞
+

1
(q)∞

∞∑
`=1

(
qSd,` − qSd,`+1

)
. (6.2.5)

Remark. An analytic proof of Theorem 6.2.1 is very simple; thus we will omit it. Note that, by setting

d = 2, we can recover Kolitsch’s Theorem 1.

Define p(n, `, d) to be the number of partitions of n having a subpartition of length ` with gap d. Then,

by observing coefficients of qn in (6.2.5), we can easily deduce that

Corollary 6.2.2. For all nonnegative integers n and ` and a positive integer d, we have

p(n, `, d) = p(n− Sd,`)− p(n− Sd,`+1).

6.3 Subpartitions with parity condition

Let us define pe(n, d) to be the sum
∑
` even p(n, `, d), i.e. the number of partitions of n that have

subpartitions with even lengths, and similarly for po(n, d). Then, we have

∞∑
n=0

(pe(n, d)− po(n, d))qn =
1

(q2)∞
+

1
(q)∞

∞∑
`=1

(−1)`
(
qSd,` − qSd,`+1

)
=

1
(q)∞

(
1 + 2

∞∑
`=1

(−1)`qSd,`
)

(6.3.1)

=
1

(q)∞

(
2
∞∑
`=0

(−1)`qSd,` − 1

)
.

Note that when d = 2, 1 + 2
∑∞
k=1(−1)kqSd,k becomes a theta function that recovers Kolitsch’s

Theorem 4. For other d’s,
∑∞
k=0(−1)kqSd,k is a partial theta function of the form,

∞∑
k=0

(−1)kq
dk2−(d−2)k

2 .

Since, pe(n, d) + po(n, d) = p(n), we have

∞∑
n=0

pe(n, d)qn =
1

(q)∞

∞∑
k=0

(−1)kqSd,k . (6.3.2)
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By replacing a and q by q and qd, respectively, in the identity [23, eqn (2.1b)],

∞∑
k=0

(−1)kakq(k2−k)/2 = (a)∞
∞∑
n=0

anqn
2

(q)n(a)n
,

we obtain
∞∑
n=0

pe(n, d)qn =
(q; qd)∞

(q)∞

∞∑
m=0

qdm
2+m

(qd; qd)m(q; qd)m
. (6.3.3)

We have the following partition theoretic interpretation of (6.3.3).

Theorem 6.3.1. In the case of d ≥ 2, the number of partitions of n with an even length subpartition with

gap d is the same as the number of partitions of n such that the parts which are congruent to 1 modulo d

have the following property: Consider the d-modular diagram of the partition, which consists of such parts.

If it has the Durfee square of a side k, then the largest part of the partition below the Durfee square should

be less than or equal to d(k − 1) + 1. In the case of d = 1, the number of partitions of n with subpartitions

of even length is the same as the number of partitions of n that have the following property: If it has the

Durfee square of a side k, then the number of parts in the partition on the right side of the Durfee square is

k.

6.4 Subpartitions with gap 1

In this section, we will investigate the subpartitions with gap 1. By (6.3.1) and (6.3.2) in the previous

section, we have

∞∑
n=0

(pe(n, 1)− po(n, 1))qn =
1

(q)∞

(
1 + 2

∞∑
k=1

(−1)kq(k2+k)/2

)
,

∞∑
n=0

pe(n, 1)qn =
1

(q)∞

∞∑
k=0

(−1)kq(k2+k)/2.

Thus, Entry 1.4.10 and 1.4.11 of [18, p. 19] are equivalent to the following identities:

∑
n≥0

pe(n, 1)qn =
∞∑
n=0

qn

(q)n
(qn+1)∞, (6.4.1)

∑
n≥0

(pe(n, 1)− po(n, 1))qn =
∞∑
n=0

q2n

(q)n
(qn+1)∞. (6.4.2)

Now we will give a combinatorial proof for the above identities. Throughout the proofs, t(λ) denotes

the number of parts in λ.
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Proof of (6.4.1). Note that
qn

(q)n
(qn+1)∞

generates partition pairs (π(n), σ(n)), where π(n) is a partition with the largest part n, and σ(n) is a

partition into distinct parts such that the smallest part is larger than n, and the exponent of (−1) is

t(σ(n)). For a given partition λ, suppose that λ has the subpartition of length `. Then, λ is of the form

λ1 > λ2 > · · · > λ` > λ`+1 ≥ λ`+2 ≥ · · · . Thus, in the right hand side of (6.4.1), λ is generated `+ 1 times

as (π(λ1), ∅), (π(λ2), σ(λ2)), . . ., and (π(λ`+1),σ(λ`+1)). Note that, in fact, λ`+1 = λ`+2. If not, the length

of the subpartition should be bigger than `. Thus, λ is not of the form ( π(λ`+2), σ(λ`+2) ). Note also that

the exponent of (−1) in the previous partition pairs is (−1)0, (−1)1, . . ., (−1)`, respectively. Thus, their

sum is 1 if ` is even and is 0 if ` is odd. Thus, in the right side of (6.4.1), after cancellation, we are left

with the partitions that have subpartitions with even length.

Proof of (6.4.2). Note that
q2n

(q)n
(qn+1)∞

generates partition pairs (π(n), σ(n)), where π(n) is a partition with π1(n) = π2(n) = n, σ(n) is a partition

into distinct parts such that the smallest part is larger than n, and the exponent of (−1) is t(σ(n)). For a

given partition λ, suppose that λ has the subpartition with length `. Then, as before, λ is of the form

λ1 > λ2 > · · · > λ` > λ`+1 ≥ λ`+2 ≥ · · · . Recall that λ`+1 = λ`+2. Thus, in the right side, λ is generated

as (π(λ`+1), σ(λ`+1)). Since the exponent of (−1) is ` in this partition pair, we are done.

Note that the right side of (6.1.1) is a generating function of the number of stacks with summit. For the

definition of the stack of summit and its proof, consult the paper of Andrews [13]. For other combinatorial

proofs of Entry 1.4.10 and Entry 1.4.11, examine the work of A.J. Yee [121] or the previous chapter.

Next, we will obtain another generating function for pe(n, 1)− po(n, 1) by using a simple Durfee square

argument. For a given partition λ, let λr be the conjugate of the partition in the right side of the Durfee

square and λb be the partition below the Durfee square. Let s(λ) be the side of the Durfee square of λ.

Then, the coefficient of qn of

2
∞∑
k=0

qk
2+k

(q)2
k

− 1
(q)∞

= 2
∞∑
k=0

qk
2+k

(q)2
k

−
∞∑
k=0

qk
2

(q)2
k

(6.4.3)

is (the number of partitions of n such that λb1 = s(λ) ) plus (the number of partitions of n such that

λr1 = s(λ) ) minus p(n), by symmetry. Since λ with λb1 < s(λ) is not generated by
∑∞
k=0

qk
2+k

(q)2k
and we
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count λ twice if λr1 = λb1 = s(λ), we have

2
∞∑
k=0

qk
2+k

(q)2
k

−
∞∑
k=0

qk
2

(q)2
k

= 1 +
∞∑
k=1

qk
2+2k

(q)2
k

−
∞∑
k=1

qk
2

(q)2
k−1

.

In summary, we have

∑
n≥0

(pe(n, 1)− po(n, 1))qn =
1

(q)∞

(
1 + 2

∞∑
k=1

(−1)kq(k2+k)/2

)
,

= 1 +
∞∑
k=1

qk
2+2k

(q)2
k

−
∞∑
k=1

qk
2

(q)2
k−1

,

= (1− q)
∞∑
k=0

qk
2+2k

(q)2
k

.

Therefore, we have proved the following theorem.

Theorem 6.4.1. The difference between the number of partitions of n with subpartition (with gap 1) of

even length and those of odd length is the number of partitions λ of n satisfying λr1 = λb1 = s(λ) and 1 is

not a part of λb.

As an immediate corollary, we have

pe(n, 1) ≥ po(n, 1), for all n ≥ 2. (6.4.4)

Note that equality holds if and only if n = 2.

Next, we will investigate the parity of pe(n, 1). We see that

∑
n≥0

pe(n, 1)qn ≡ 1
(q)∞

∑
n≥0

q(n2+n)/2 (mod 2)

≡ (q)3
∞

(q)∞
(mod 2)

≡ (q2; q2)∞ (mod 2)

≡
∞∑

m=−∞
qm(3m−1) (mod 2),

where for the second congruence, we used Jacobi’s identity [28, p. 14], and for the last congruence, we used

the pentagonal number theorem [28, p. 12]. Thus, we can conclude that pe(n, 1) is almost always even.

Hence, we have proved the following theorem.
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Theorem 6.4.2. For all nonnegative integers n, we have

pe(n, 1) ≡


1 (mod 2), if n is of the form m(3m± 1) for some nonnegative integer m,

0 (mod 2), otherwise.

6.5 Remark

We define the subpartition of a partition into distinct parts as the longest sequence where the gap between

successive parts is 1. Then, by a similar argument that we used to prove Theorem 1, we can easily prove

that

(−q)∞ =
∞∑
`=0

q(`2+`)/2 +
∞∑
`=1

q(`2+`)/2
∞∑
i=1

qi`(−q)i−1 (6.5.1)

and

(−q)∞ = 1 +
∞∑
`=1

q(`2+`)/2

1− q`
+
∞∑
`=1

q(`2+`)/2
∞∑
i=1

qi` ((−q)i−1 − 1) , (6.5.2)

where ` is the length of the subpartition. It appears that (6.5.1) and (6.5.2) do not appear in the literature

of q-series. Therefore, it is natural to ask whether we can prove (6.5.1) or (6.5.2) analytically.
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Chapter 7

Mock theta functions via n-color
partitions

7.1 Introduction

In his famous last letter to G. H. Hardy [31], S. Ramanujan introduced mock theta functions without

giving an explicit definition. Ramanujan introduced 17 examples of mock theta functions in his letter.

Among them, the third order mock theta functions are

f(q) =
∞∑
n=0

qn
2

(−q; q)2
n

, φ(q) =
∞∑
n=0

qn
2

(−q2; q2)n
,

ψ(q) =
∞∑
n=1

qn
2

(q; q2)n
, χ(q) =

∞∑
n=0

qn
2∏n

m=1(1− qm + q2m)
.

(7.1.1)

Later, G. N. Watson [118] added three functions to the list of Ramanujan’s third order mock theta

functions. These are

ω(q) =
∞∑
n=0

q2n(n+1)

(q; q2)2
n+1

, υ(q) =
∞∑
n=0

qn(n+1)

(−q; q2)n+1
, ρ(q) =

∞∑
n=0

q2n(n+1)∏n+1
m=1(1 + q2m−1 + q4m−2)

. (7.1.2)

These three third order mock theta functions are actually in Ramanujan’s Lost Notebook [102]. In

Ramanujan’s Lost Notebook [102], we are also able to find Ramanujan’s sixth and tenth order mock theta

functions. Among them, Ramanujan’s sixth order mock theta functions are

Φ(q) =
∞∑
n=0

(−1)nqn
2
(q; q2)n

(−q; q)2n
, Ψ(q) =

∞∑
n=0

(−1)nq(n+1)2(q; q2)n
(−q; q)2n+1

,

ρ(q) =
∞∑
n=0

qn(n+1)/2(−q; q)n
(q; q2)n+1

, σ(q) =
∞∑
n=0

q(n+1)(n+2)/2(−q; q)n
(q; q2)n+1

,

λ(q) =
∞∑
n=0

(−1)nqn(q; q2)n
(−q; q)n

, µ(q) =
∞∑
n=0

(−1)n(q; q2)n
(−q; q)n

, ν(q) =
∞∑
n=0

qn
2
(q; q)n

(q3; q3)n
.

(7.1.3)

G. E. Andrews and D. Hickerson [22] established the results for sixth order mock theta functions that

5This chapter is based upon a joint paper with Youn-Seo Choi [46]. I thank Y.S. Choi for his permission to include our joint
work here.
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are similar to the mock theta conjectures. Recently, B. C. Berndt and S. H. Chan [29], and R. J. McIntosh

[92] independently discovered two new sixth order mock theta functions φ−(q) and ψ−(q) which are

Φ−(q) =
∞∑
n=1

qn(−q; q)2n−1

(q; q2)n
and Ψ−(q) =

∞∑
n=1

qn(−q; q)2n−2

(q; q2)n
. (7.1.4)

To see the history of mock theta functions and their modern and classical developments, we recommend the

survey papers [58] and [99]. Mock theta functions have numerous nontrivial connections to combinatorics,

especially the theory of partitions [1], [21] and [51]. For example, a third order mock theta function f(q) is

a generating function for the number of partitions of n with even rank minus the number of partitions of n

with odd rank, where the rank of a partition is defined to be its largest part minus the number of its parts.

The n-color partition and its overpartition analogue have been employed to understand q-series

identities combinatorially. The n-color partition was introduced by A. K. Agarwal and G. E. Andrews [4],

and its overpartition analogue was introduced by J. Lovejoy and O. Mallet [88]. The n-color partition and

its overpartition analogue arise naturally, and have a connection to many other combinatorial objects [3],

[2], [4] and [5]. An n-color partition of a positive integer v is a partition in which each part of size n may

appear up to n different colors denoted by subscripts from 1 to n, and parts are ordered first by the size of

part and then according to the color. Since we have n different copies of part n, we also call it a partition

with “n copies of n”. For example, there are 6 n-color partitions of 3;

33, 32, , 31, 2211, 2111, 111111.

We define the weighted difference of two parts mi, nj denoted by ((mi − nj)), as m− n− i− j provided

that m ≥ n. An n-color overpartition of a positive integer v is an n-color partition of v in which we may

overline the final occurrence of each part nj . For example, the n-color overpartitions of 2 are

22, 22, 21, 21, 1111, 1111.

We also define the weighted difference of two parts mi, kj in an n-color overpartition denoted also by

((mi − kj)) as m− k − i− j − χ(mi)− χ(kj) provided that m ≥ k, where χ(kj) = 1 if kj is an overlined

part, and 0 otherwise. We note that this definition coincides with the definition of a weighted difference of

n-color partition if there is no overlined part.

In [1], Agarwal interpreted a third order mock theta function ψ(q) and three fifth order mock theta

functions F0(q), Φ0(q), Φ1(q) as generating functions of certain kinds of n-color partitions by using
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q-difference equations. His interpretation for ψ(q) is as follows.

Theorem 7.1.1. ψ(q) generates n-color partitions satisfying

(1) the weighted difference between two consecutive parts is always 0,

(2) the smallest part is of the form kk,

(3) even parts have even colors and odd parts have odd colors.

In [45], Y. S. Choi showed a connection between bilateral basic hypergeometric series and mock theta

functions, which leads to many new identities involving mock theta functions. This work is a sequel to [45],

and the purpose of this chapter is to provide partition theoretic properties of third order mock theta

functions φ(q), ψ(q), υ(q) and sixth order mock theta functions Ψ(q), Ψ−(q), ρ(q), λ(q). Our first goal of

this chapter is to derive partition-theoretic interpretations for the mock theta functions above as

generating functions of n-color partitions or n-color overpartitions. In particular, we will give a bijective

proof of Theorem 7.1.1 in a constructive way, and describe similar partition-theoretic interpretation for the

others. For example, the sixth order mock theta function Ψ(q) can be interpreted as follows.

Theorem 7.1.2. Let us define λ1 to be the largest part in the partition λ, and let c(λi) denote the color of

λi. Then, Ψ(q) generates n-color overpartitions satisfying

(1) the smallest part is of the form kk and not overlined,

(2) the weighted differences between two consecutive parts are even and ≥ 0, where the exponent of (−1)

is given by λ1+c(λ1)+χ(λ1)−2
2 .

From Theorem 7.1.1, we easily conclude the following corollary.

Corollary 7.1.3. There is a bijection between n-color partitions described in Theorem 7.1.1 and partitions

into odd parts without gaps. Moreover, if λ is an n-color partition corresponding to σ, a partition into odd

parts without gaps, then
∑`(λ)
i=1 c(λ

i) = `(σ), where `(λ) is the number of parts in the partition λ. In other

words, the sum of the subscripts (the colors) of each part of λ is the same as the number of parts in σ.

Even though the first part of Corollary 7.1.3 was first observed by Agarwal [1], a bijective proof had

been unknown.

The second goal of this chapter is to derive arithmetic properties from mock theta function identities.

Every identity we examine is of the following form: a linear combination of two mock theta functions is

equal to a theta function. These identities yield interesting combinatorial facts about the coefficients of
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mock theta functions. In [51, Chapters 2 and 3], N.J. Fine gave a partition theoretic interpretation for

mock theta functions, and derived many interesting properties from various identities involving mock theta

functions. In particular, Fine showed that

f(q) =
∞∑
n=0

(p(n, 0, 2)− p(n, 1, 2)) qn,

φ(q) =
∞∑
n=0

(p(n, 0, 4)− p(n, 2, 4)) qn,

and

χ(q) =
∞∑
n=0

(p(n, 0, 6) + p(n, 1, 6)− p(n, 2, 6)− p(n, 3, 6)) qn,

where f(q), φ(q), and χ(q) are third order mock theta functions defined by (7.1.1), and p(n, d,N) denotes

the number of partitions of n with rank ≡ d (mod N). By using a linear relation between third order mock

theta functions, he proved that

σ(2n) = p(2n, 1, 4)− p(2n, 2, 4) (7.1.5)

where σ(n) denotes the number of partitions of n into distinct odd parts without gaps. Our theorems in

this paper are inspired by Fine’s work in [51, Chapters 2 and 3] even though we have to rely on the theory

of modular forms to prove Theorems 7.3.5 and 7.6.1.

Theorem 7.1.4. We define β(n) :=
∑
λ`n(−1)`(λ), where the sum runs over partitions into distinct odd

parts ≤ 2`(λ)− 1 except that 1 can be repeated, and `(λ) denotes the number of parts in a partition λ.

Then, for all positive integers n, we have

2β(2n) = p(2n, 1, 2)− 2p(2n, 2, 4),

2β(2n− 1) = p(2n− 1, 1, 2)− 2p(2n− 1, 0, 4).

We also discuss Ramanujan type congruences and cranks by analyzing theta functions which are linear

sums of mock theta functions. If we say that Af (n) is the number of partitions of n with the generating

function f , then we have the following congruences.

Theorem 7.1.5. For all n ≥ 0, we have

AΨ(3n+ 3) + 2AΨ−(3n+ 3) ≡ 0 (mod 9)
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and

2Aρ(3n+ 2) +Aλ(3n+ 2) ≡ 0 (mod 9).

This chapter is organized as follows. In Section 7.2, we introduce necessary definitions and theorems. In

Section 7.3, we provide combinatorial interpretations for the third order mock theta functions φ(q), ψ(q),

ν(q), and study their arithmetic properties. In Section 7.4, we study the combinatorial properties of two

sixth order mock theta function identities which are proved in Section 7.6, and give combinatorial

interpretations for the sixth order mock theta functions Ψ(q), Ψ−(q), ρ(q) and λ(q) by using n-color

overpartitions. In Section 7.5, we introduce Garvan-Kim-Stanton type crank functions for the congruences

given in Section 7.4. In Section 7.6, we prove two identities involving sixth order mock theta functions.

7.2 Preliminaries

In this section, we summarize the basic definitions and theorems for partitions, q-series and modular forms.

Partitions. A partition of a positive integer n is a weakly decreasing sequence of positive integers

(λ1, . . . , λr) such that λ1 + · · ·+ λr = n. We denote the number being partitioned by |λ|. If λ is a partition

of n, then we write λ ` n. Throughout this paper, we denote Af (n) be the coefficient of qn in the

q-expansion of f . If f is a generating function for certain partitions, then we regard Af (n) as the number

of such partitions of n counted by f .

p-modular Ferrers diagram. We introduce a p-modular Ferrers diagram. For a partition λ into parts λi

congruent to r modulo p where 0 < r ≤ p, its p-modular Ferrers diagram is the diagram in which the i-th

row has dλi/pe boxes, we denote r in the boxes in the last column, and denote p for the other boxes. It can

easily be seen that the sum of the numbers in the boxes equals |λ|. We define the Mp-rank of the partition

λ as dλ
1

p e - `(λ). In other words, the Mp-rank of the partition λ is the number of boxes in the largest part

in the p-modular diagram minus the number of parts of λ. For example, examine Figure 7.1.

2 2 2 2 1

2 2 2 1

2 2

1

Figure 7.1: 2-modular diagram of a partition λ = (9, 7, 4, 1) with M2-rank = 1.
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t-residue diagram. In the Ferrers diagram of a partition λ, we color the box at row r and column c by

c− r (mod t). Thus, we have t different colors, denoted by 0, 1, . . . , t− 1. We denote rj(λ) as the number

of boxes with color j in the Ferrers diagram of a partition λ. For example, examine Figure 7.2.

0 1 2 0 1

2 0 1 2

1 2

0

Figure 7.2: 3-residue diagram of a partition λ = (9, 7, 4, 1) with [r0(λ), r1(λ), r2(λ)] = [4, 4, 4].

t-core partition. A partition λ is said to be a t-core if there are no hook numbers that are multiples of t.

For example, in Figure 7.3, λ is a 5-core partition. Let at(n) be the number of t-core partitions of n. Then,

8 6 4 3 1

6 4 2 1

3 1

1

Figure 7.3: a 5-core partition λ = (5, 4, 2, 1) with hook numbers.

it is well-known [53] that
∞∑
n=0

at(n)qn =
(qt; qt)t∞
(q; q)∞

. (7.2.1)

q-series. We define Ramanujan’s general theta function f(a, b) as

f(a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1.

Then, Jacobi’s triple product identity [28, p. 10] asserts that

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (7.2.2)

We also need Jacobi’s identity [28, p. 14]

(q; q)3
∞ =

∞∑
n=0

(−1)n(2n+ 1)qn(n+1)/2. (7.2.3)
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We also introduce the following space saving notations:

(a1, a2, . . . , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n,

(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ · · · (am; q)∞.

Modular forms. Now we give the basic properties of modular forms. For more details on this subject,

consult [98], [104] and [106].

Definition 7.2.1. For z ∈ H and any positive integers n, m, define

η(nz) := ηn = q
n
24 (qn; qn)∞ (7.2.4)

and

ηn,m(z) :=ηn,m = qP2(mn )n2
f(−qm,−qn−m)

(qn; qn)∞
, (7.2.5)

where P2(t) = {t}2 − {t}+ 1
6 is the second Bernoulli function, and {t} := t− [t] is the fractional part of t.

Here we only consider the cases when m 6≡ 0 (mod n) for ηn,m.

Recall that the modular group Γ = SL2(Z) and its congruence subgroups

Γ0(N) :=


a b

c d

 ∈ Γ : c ≡ 0 (mod N)

 and Γ1(N) :=


a b

c d

 ∈ Γ0(N) : a ≡ b ≡ 1 (mod N)

 .

For a fixed real number r, a function F (z), defined and meromorphic in H, is said to be a modular form of

weight r with respect to Γ, with multiplier system v, if (a) F (z) satisfies F (Mz) = v(M)(cz + d)rF (z) for

any z ∈ H and M ∈ Γ, (b) there exists a standard fundamental region R such that F (z) has at most

finitely many poles in R̄ ∩H, and (c) F (z) is meromorphic at qj , for each cusp qj in R̄.

Let {Γ, r, v} denote the space of modular forms of weight r and multiplier system v on Γ, where Γ is a

subgroup of Γ(1) of finite index. When a multiplier system v is trivial, we denote {Γ, r, v} by Mr(Γ). Let

ord(f ; z) denote the invariant order of a modular form f at z. If z ∈ H, then OrdΓ(f ; z) :=
1
`
ord(f ; z),

where ` (` = 1, 2, or 3) is the order of z as a fixed point of Γ. If z is a cusp with respect to Γ,

OrdΓ(f ; z) := N(Γ; z) ord(f ; z), where N(Γ; z) is the width of Γ at z.

Theorem 7.2.2. The Dedekind eta-function η(z) is a modular form of weight 1
2 with multiplier system υη

on Γ(1), where the multiplier system υη is given by the following formula: for each
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M =

 a b

c d

 ∈ Γ(1),

υη(M) =



(
d

| c |

)
ζ
bd(1−c2)+c(a+d)−3c
24 , if c is odd,(

c

| d |

)
ζ
ac(1−d2)+d(b−c)+3(d−1)
24 , if d is odd and either c ≥ 0 or d ≥ 0,

−
(

c

| d |

)
ζ
ac(1−d2)+d(b−c)+3(d−1)
24 , if d is odd, c < 0, d < 0,

and ζ24 is a primitive 24th root of unity.

Proof. See Theorem 2 of [80].

Theorem 7.2.3 (the valence formula). If f ∈ {Γ, r, ν} and f 6= 0, then

∑
z∈R

OrdΓ(f ; z) = µr,

where R is any fundamental region for Γ, and µ :=
1
12

[Γ(1) : Γ].

Proof. See Theorem 4.1.4 in [104].

Lemma 7.2.4. If m1,m2, . . . ,m2n are positive integers, n is a positive integer, N is a positive even

integer, and the least common multiple of m1,m2, . . . ,m2n divides N , then, for z ∈ H,

η(m1z)η(m2z) · · · η(m2nz) ∈ {Γ1(N), n, υ},

, where the multiplier system υ is defined as follows: If A =

 a b

c d

 ∈ Γ1(N), ζ24 is a primitive 24th

root of unity, and

υ(A) =
2n∏
i=1

(
c/mi

| d |

)
ζ
ac(1−d2)/mi+d(mib−c/mi)+3(d−1)
24 .

Proof. See Lemma 2.7 in [44].

Theorem 7.2.5. For z ∈ H, let f(z) :=
∏

n|N, 0≤m<n
η
rn,m
n,m (z), where rn,m are integers. If

∑
n|N, 0≤m<n

nP2

(m
n

)
rn,m ≡ 0 (mod 2)
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and ∑
n|N, 0≤m<n

N

n
P2(0)rn,m ≡ 0 (mod 2),

then f(z) ∈ {Γ1(N), 0, I}, where for M =

 a b

c d

 ∈ Γ1(N), I(M) = 1.

Proof. See Theorem 3 in [106, p. 126].

Lemma 7.2.6. Let `, m and n be positive integers. Then, for a cusp k = λ
µε of Γ1(N), where ε | N and

(λ,N) = (λ, µ) = (µ,N) = 1,

ord(ηn,m; k) + ord(ηn; k) ≥ 0, ord(η`n,m; k) + ` ord(ηn; k) ≥ 0,

and

ord(ηn,m; k) + ` ord(η`n; k) ≥ 0.

Proof. See Lemma 2.10 in [44].

7.3 Third order mock theta function identities

The first identity we examine is

φ(q) + 2ψ(q) =
(q2; q2)7

∞
(q)3
∞(q4; q4)3

∞
= (−q; q2)∞

∞∑
n=−∞

qn
2

(7.3.1)

where φ(q) and ψ(q) are third order mock theta functions. We are able to find the equations above in [51,

p. 60].

In [1], Agarwal showed that ψ(q) is a generating function for certain n-color partitions by using

q-difference equations. Here, we obtain the same results in a constructive way. This will give a bijective

proof for Theorem 7.1.1.

Proof of Theorem 7.1.1. In this proof, we always use 2-modular Ferrers diagrams. Recall that qn
2

generates

the partition τ = (1, 3, . . . , 2n− 1). We assign to each part color 1. Note that the weight difference between

two consecutive parts is 0. Recall that 1
(q;q2)n

generates partitions λ into odd parts ≤ 2n− 1. From the

largest part of λ, we attach each part λi as follows. We first attach 2 from the first row to the λi−1
2 -th row

and attach 1 to the λi+1
2 -th part. Then, we increase the color by 1 for the λi+1

2 -th part of the resulting

partition. For example, examine Figure 7.4. Note that during this process the weight difference between
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two consecutive parts remains the same. The second condition is clear from this construction. Since the

color is increased by 1 when the parity of part is changed, the third condition holds.

2 2 2 1
1

2 2 1
1

2 1
1

1
1

2 2 2 2 1
1

2 2 2 1
1

2 2
2

1
1

2 2 2 2 2 1
1

2 2 2 2 1
1

2 2 1
3

1
1

2 2 2 2 2 2
2

2 2 2 2 1
1

2 2 1
3

1
1

Figure 7.4: τ = (7, 5, 3, 1) with λ = (5, 5, 1).

Remark. Actually, the last condition in Theorem 7.1.1 is not necessary. Since the weighted differences

between two parts are always 0 and the smallest part is kk, we can conclude that the parity of parts and

their color should be the same.

By using the bijection above, we are now ready to prove Corollary 7.1.3.

Proof of Corollary 7.1.3. For a given n-color partition σ enumerated by ψ(q), we can easily recover the

partitions τ and λ by reading the color of each part. By inserting parts in λ to τ in weakly decreasing

order, we arrive at µ, a partition into odd parts without gaps. Since
∑`(σ)
i=1 c(σ

i) = `(τ) + `(λ) = `(µ), this

completes the proof.

Example. An n-color partition (122, 91, 53, 11) corresponds to the partition (7, 5, 5, 5, 3, 1, 1).

Analogously, we also can obtain an n-color partition theoretic interpretation for φ(q).

Theorem 7.3.1. φ(q) generates n-color partitions λ satisfying

(1) the smallest part is of the form (2k − 1)k,

(2) the color of λi is given by λi−λi+1
2 except the smallest part, and the exponent of (−1) is given by

M2-rank of λ.

Remark. Since the color of each part is an integer, the conditions above imply that all parts are odd.

Proof. The constructive proof is very similar to the proof of Theorem 7.1.1, so we omit it. Alternatively,

by splitting the partition counted by Aφ(m, v) into two classes: partitions having 11 as a part and the

partitions without 11, we can see that

Aφ(m, v) = Aφ(m− 1, v − 2m+ 1)−Aφ(m, v − 2m), (7.3.2)
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where Aφ(m, v) is the number of n-color partitions of v with m parts. If we define

f(z, q) :=
∞∑

v,m=0

Aφ(m, v)zmqv,

then, by using (7.3.2), we can deduce that

f(z, q) =
∞∑
n=0

znqn
2

(−q2; q2)
.

By setting z = 1, we complete the proof.

By (7.3.1), it is clear that Aφ(ν) + 2Aψ(ν) ≥ 0 for all ν ≥ 1. Now we show that

Aφ(ν) +Aψ(ν) ≥ 0,

for all ν ≥ 1. To this end, we introduce a new function φ∗(q), which is defined by

φ∗(q) :=
∞∑
n=0

qn
2

(q2; q2)n
.

Note that φ∗(q) generates n-color partitions described in Theorem 7.3.1 except that the weight is always 1.

Let λ be a partition enumerated by φ∗(q). We subtract c(λi)− 1 from λi if c(λi) > 1, and denote the

resulting partition as µ. Let r be the sum

∑
c(λi)>1

(
c(λi)− 1

)
=

 ∑
1≤i≤`(λ)

c(λi)

− `(λ).

We attach r to the largest part of µ, and also increase the color by r. Then, we observe that the resulting

partition σ is an n-color partition counted by ψ(q). Since each λ corresponds to a different σ, we have

proven that

Aφ(ν) +Aψ(ν) ≥ 0.

Example. An n-color partition λ = (132, 91, 73, 11) corresponds to µ = (122, 91, 53, 11) with r = 3. Then,

the resulting partition σ = (155, 91, 53, 11) satisfies the conditions in Theorem 7.1.1 as desired.

The second identity we investigate is

υ(q) + υ3(q, q, ; q) = 2
(q4; q4)3

∞
(q2; q2)2

∞
(7.3.3)

99



where υ(q) is defined by (7.1.2) and

υ3(q, q; q) =
1

1 + q

∞∑
n=1

qn(−q−1; q2)n

is the function defined by Choi [45]. We easily obtain (7.3.3) by replacing α and z by q and q respectively

in Theorem 1 of [45].

Recall that the generating function of t-core partitions is (7.2.1). Note also that

(q4; q4)3
∞

(q2; q2)2
∞

=
(q4; q4)2

∞
(q2; q2)∞

(−q2; q2)∞.

Thus, the product on the right side of (7.3.3) generates partition pairs (λ, σ) where λ is a 2-core partition

of even parts and σ is a partition into distinct even parts.

Remark. By Gauss identity [51, p. 6],

(q4; q4)2
∞

(q2; q2)∞
=
∞∑
n=0

qn(n+1).

Therefore, every 2-core partition consisting of even parts is of the form (2k, 2k − 2, . . . , 2).

Let b(n) be the number of such partition pairs. Then, we can prove the following congruence.

Theorem 7.3.2. For all nonnegative integers n,

b(5n+ 3) ≡ 0 (mod 5). (7.3.4)

Proof. By using Jacobi’s identity, we arrive at

(q4; q4)3
∞

(q2; q2)2
∞

=
(q4; q4)3

∞(q2; q2)3
∞

(q2; q2)5
∞

≡
(∑∞

m=0(−1)m(2m+ 1)q2m(m+1)
) (∑∞

k=0(−1)k(2k + 1)qk(k+1)
)

(q10; q10)∞
(mod 5).

Since 2m(m+ 1) + k(k+ 1) ≡ 3 (mod 5) holds only if m ≡ 2 (mod 5) and k ≡ 2 (mod 5), the coefficient of

q5n+3 is divisible by 5 as desired.

We can also find an exact formula for the generating function of b(5n+ 3) by using modular functions.

Theorem 7.3.3.
∞∑
n=0

b(5n+ 3)qn = 5q
(q4; q4)2

∞(q10; q10)2
∞(q20; q20)∞

(q2; q2)4
∞

. (7.3.5)
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We will follow the argument in [57] to prove (7.3.5).

Proof. Define F (z) as

F (z) :=
η3(4z)η2(10z)η(100z)

η2(2z)η4(20z)
.

By Theorem 3.3.1, we have F (z) ∈M0(Γ0(100)). Note that f(z)|U5 ∈M0(Γ0(20)). Let us define G(z) as

G(z) :=
η2(10z)η2(20z)
η2(2z)η2(4z)

.

Then, by Theorem 3.3.1, we have G(z) ∈M0(Γ0(20)). From the order at each cusp by employing

Theorems 3.3.2 and 3.3.3, we see that
F |U5

G

is a holomorphic modular function, namely, a constant. From this, we can easily deduce that

F (z)|U5 = 5G(z). Recall that (f(pz)g(z))|Up = f(z)g(z)|Up. Thus, we arrive at

(q20; q20)∞(q2; q2)2
∞

(q4; q4)4
∞

( ∞∑
n=0

b(n)qn+2

)
|U5 = 5q2 (q20; q20)2

∞(q20; q20)2
∞

(q2; q2)2
∞(q4; q4)2

∞

or

∞∑
n=0

b(5n+ 3)qn = 5q
(q4; q4)2

∞(q10; q10)2
∞(q20; q20)∞

(q2; q2)4
∞

,

as desired.

Remark. Theorem 7.3.3 and (7.3.3) imply that

∞∑
n=1

(Aυ(5n+ 3) +Aυ3(5n+ 3)) qn = 10q
(q4; q4)2

∞(q10; q10)2
∞(q20; q20)∞

(q2; q2)4
∞

.

Now, we will show that the left side of (7.3.3) generates a certain type of n-color partitions.

First, we note that

υ(q) = υ+(q) + υ−(q),

where

υ+(q) :=
∞∑
n=0

qn(n+1)

(−q; q2)n
and υ−(q) :=

∞∑
n=1

(−1)qn(n−1)q2n−1

(−q; q2)n
.
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We see that υ+(q) generates n-color partitions satisfying the following properties:

(1) the smallest part is of the form (k + 1)k,

(2) the weighted difference between any two consecutive parts is 0, where the exponent of (−1) is k − 1,

namely the color of the smallest part minus 1.

Remark. From the condition above, we observe that odd parts have even colors, and even parts have odd

colors.

Similarly, we observe that υ−(q) generates n-color partitions satisfying the following properties:

(1) the smallest part is of the form kk,

(2) the weighted difference between any two consecutive parts not containing the smallest part is 0, and

1 otherwise, where the exponent of (−1) is k, namely the color of the smallest part.

Remark. We can see that odd parts have even colors and even parts have odd colors, except for the

smallest part.

In summary, υ(q) generates n-color partitions satisfying the following conditions.

(1) the smallest part is of the form (k + 1)k or kk.

(2) the weighted difference between any two consecutive parts is 0 except that the weighted difference

involving the smallest part of the form kk is 1,

where the exponent of (−1) is c(λ`(λ) − 1 if the smallest part is (k+ 1)k or c(λ`(λ) if the smallest part is kk.

Now we turn to υ3(q, q; q). Let us define υ∗(q) = (1 + q)υ3(q, q; q). If we allow 00 as a part, then υ∗(q)

generates n-color partitions satisfying the following properties;

(1) the smallest part is of the form 11 or 00,

(2) the weighted difference for two consecutive parts is −2 except that the weight difference involving the

part 00 is 0.

Let Aυ∗(ν) denote the number of such n-color partitions of ν. Then, we have

υ3(q, q; q) =
1

1 + q

∞∑
ν=0

Aυ∗(ν)qν

=
∞∑
n=0

(
n∑
k=0

(−1)n−kAυ∗(k)

)
qn.
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Since it is clear that b(2n+ 1) = 0, we have

Aυ(2ν + 1) = −
2ν+1∑
k=0

(−1)2ν+1−kAυ∗(k) =
2ν+1∑
k=0

(−1)kAυ∗(k),

where Aυ(ν) is the number of n-color partitions of ν generated by υ(q). We easily see that Aυ3(ν) > 0, for

all ν ≥ 1. Thus, by (7.3.3), Aυ(2ν + 1) < 0 for all nonnegative integers ν.

We turn to prove Theorem 7.1.4.

Proof of Theorem 7.1.4. Replacing q by −q and setting α = −q and z = q in the first identity of Theorem

1 in [45], we arrive at

2
∞∑
n=1

(−q)n(−q2; q2)n−1 +
∞∑
n=0

(−1)nqn
2

(−q2; q2)n
=
f(−q,−q)
(−q; q)∞

. (7.3.6)

Note that the first sum generates partitions into n odd parts ≤ 2n− 1 such that

(1) the only repeatable part is 1,

(2) the exponent of (−1) is the number of parts.

Let O1 be the set of partitions λ into distinct odd parts ≤ 2`(λ)− 1 except that 1 can be repeated. Recall

that

β(n) =
∑
λ`n
λ∈O1

(−1)`(λ).

Note that the second sum is φ(−q). Thus, from the equation (26.66) in [51], we have

2φ(−q)− f(q) = f(q) + 4ψ(−q) = φ(−q) + 2
∞∑
n=1

β(n)qn. (7.3.7)

Recall that φ(q) =
∑∞
n=0(p(n, 0, 4)− p(n, 2, 4))qn. Therefore, we arrive at

2β(n) = (−1)np(n, 0, 4)− (−1)np(n, 2, 4)− p(n, 0, 2) + p(n, 1, 2).

Using the fact that p(n, 0, 2) = p(n, 0, 4) + p(n, 2, 4), we deduce that

2β(2n) = p(2n, 1, 2)− 2p(2n, 2, 4)
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and

2β(2n− 1) = p(2n− 1, 1, 2)− 2p(2n− 1, 0, 4),

which completes the proof of Theorem 7.1.4.

Let O be the set of partitions into odd parts without gaps. Then, ψ(−q) =
∑∞
n=0 γ(n)qn where

γ(n) :=
∑
λ`n
λ∈O

(−1)`(λ).

Therefore, by (7.3.7), we are able to derive the following theorem.

Theorem 7.3.4. For all positive integers n, γ(n) = β(n).

We provide a bijective proof.

Proof. Let λ be a partition in O. Let σ be a partition consisting of parts λi − 1 for all 1 ≤ i ≤ `(λ). Let σ′

be the partition obtained by conjugating the 2-modular diagram of σ. We attach 1 from the first part to

`(λ)-th part of σ′. Then, the resulting partition µ is in O1. Since the number of parts of λ and that of µ

are the same, this completes the proof.

7.4 Sixth order mock theta function identities

In this section, we discuss the following two identities involving sixth order mock theta functions

Ψ(q) + 2Ψ−(q) = 3
q(q6; q6)3

∞
(q)∞(q2; q2)∞

(7.4.1)

and

2ρ(q) + λ(q) = 3
(q3; q3)3

∞
(q)∞(q2; q2)∞

. (7.4.2)

We will prove these identities in Section 6.

First, note that the right sides of (7.4.1) and (7.4.2) generate partitions analogous to the partitions

defined by
1

(q)∞(q2; q2)∞
,
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which have been studied by H.-C. Chan [38], [39], [37]. This partition function satisfies many congruences

[40], [42], but there is only one simple congruence [111]. A crank function for this partition was studied in

Chapter 3.

Here, we study two analogous partition functions defined by

∞∑
n=1

c(n)qn =
q(q6; q6)3

∞
(q; q)∞(q2; q2)∞

(7.4.3)

and

∞∑
n=0

d(n)qn =
(q3; q3)3

∞
(q; q)∞(q2; q2)∞

. (7.4.4)

Remark. From the generating function for t-core partition (7.2.1), we can regard these partitions as

3-core partition analogues of H.-C. Chan’s partitions.

We can easily prove that these two partition functions satisfy the following congruences.

Theorem 7.4.1.

c(3n) ≡ 0 (mod 3), (7.4.5)

d(3n+ 2) ≡ 0 (mod 3). (7.4.6)

Now we obtain exact generating functions for these arithmetic progressions. Since η3(3z)η3(6z)
η(z)η(2z) is a

Hecke eigenform in M2(Γ0(6)), we see that

η3(3z)η3(6z)
η(z)η(2z)

|U3 = 3
η3(3z)η3(6z)
η(z)η(2z)

. (7.4.7)

Remark. A proof of (7.4.7) without using the theory of modular forms can be found in Fine’s book [51,

(33.124)].

Proof of Theorem 7.4.1. By (7.4.3), (7.4.4) and (7.4.7), we see that

( ∞∑
n=1

c(3n)qn
)

(q)3
∞ = 3q

(q3; q3)3
∞(q6; q6)3

∞
(q)∞(q2; q2)∞
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and

( ∞∑
n=1

d(3n− 1)qn
)

(q2; q2)3
∞ = 3q

(q3; q3)3
∞(q6; q6)3

∞
(q)∞(q2; q2)∞

,

which implies that

∞∑
n=1

c(3n)qn = 3q
(q3; q3)3

∞(q6; q6)3
∞

(q)4
∞(q2; q2)∞

and

∞∑
n=0

d(3n+ 2)qn = 3
(q3; q3)3

∞(q6; q6)3
∞

(q)∞(q2; q2)4
∞

.

Now, we will give combinatorial interpretations for the sixth order mock theta functions Ψ(q), Ψ−(q),

ρ(q) and λ(q) by using n-color overpartitions.

Proof of Theorem 7.1.2. We rewrite Ψ(q) as

∞∑
n=0

(−1)nq(n+1)2(q; q2)n
(−q; q2)n+1(−q2; q2)n

.

Recall that (n+ 1)2 generates partition into odd parts from 1 to 2n+ 1. We assign the color 1 to each part.

Then, the weight difference of two consecutive parts is 0. We attach each part λi in λ generated by 1
(q2;q2)n

as follows. We attach 2 from the first row to the λi

2 -th row. Then, we can see that the weighted difference

between the λi

2 -th part and the λi

2 + 1-th part of the resulting partition increases by 2. We also attach each

part σj in σ generated by 1
(q;q2)n+1

as follows. We attach 2 from the first row to the σj−1
2 -th row and attach

1 to the σj+1
2 -th row. Then, we increase the color of the σj+1

2 -th part of the resulting partition by 1. We

can observe that this does not affect the weight difference. Finally, we attach each part of µk in µ generated

by (q; q2)n as we did for σj , and overline the µk+1
2 -th part of the resulting partition. We see that this also

does not affect the weight difference. By tracking the exponent of (−1), we complete the proof.

By employing a similar argument, we can prove the following theorem.

Theorem 7.4.2. Ψ−(q) generates n-color overpartitions satisfying

(1) the smallest part is of the form kk, which cannot be overlined,
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(2) the weighted difference between two consecutive parts is 0 or −2.

ρ(q) generates n-color overpartitions satisfying that

(1) the smallest part is of the form kk or (k + 1)k,

(2) the weighted difference of two consecutive part is −2 if the smaller part is overlined and 0 or −1 if it

involves the unoverlined smallest part and −1, otherwise.

And λ(q) generates n-color overpartitions λ satisfying

(1) the smallest part is of the form kk or (k + 1)k,

(2) the weighted difference of two consecutive parts forms a non-decreasing sequence of which sum equals

−2(`(λ)− 1), where the exponent of (−1) is the sum of colors plus the number of overlined parts.

Now we are ready to prove Theorem 7.1.5.

Proof of Theorem 7.1.5. Combining Theorems 7.1.2, 7.4.1, and 7.4.2, we can derive the following

congruences. For all n ≥ 0, we have

AΨ(3n+ 3) + 2AΨ−(3n+ 3) ≡ 0 (mod 9),

2Aρ(3n+ 2) +Aλ(3n+ 2) ≡ 0 (mod 9).

We have completed the proof of Theorem 7.1.5.

7.5 Crank analogues for c(n) and d(n)

Recall that c(n) and d(n) are partition functions defined by (7.4.3) and (7.4.4), respectively. We find a

Garvan-Kim-Stanton type crank [53] for c(n) and d(n) by modifying a crank given in Z. Reti’s thesis [105].

Since Reti’s result has not been published and is not well-known, we give details from his thesis, and show

how this crank can be extended to c(n) and d(n). Interested readers should consult [53] and [105]. The

following lemma enables us to extend a crank for t-core partitions to a crank for ordinary partitions. Here

and in the sequel, P denotes the set of ordinary partitions and P∗t is the set of t-core partitions.

Lemma 7.5.1 (Bijection 1 of [53]). There is a bijection between π ∈ P and

[π0, . . . , πt−1, π
∗] ∈ P × · · · × P × Pt, which satisfies

|π| = t

t−1∑
j=0

|πj |+ |π∗|.
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Let us define the set

S∗(n) := {[π(1), π(2)] ∈ P∗3 × P∗3 : |π(1)|+ 2|π(2)| = n}.

Recall that rj(π) is the number of dots colored j in the 3-residue diagram of π. We define a coordinate

system a by

a := [r0(π(1))− r1(π(1)), r0(π(1))− r2(π(1)), r0(π(2))− r1(π(2)), r0(π(2))− r2(π(2))],

where [π(1), π(2)] ∈ S∗(n). We understand #S∗(n,A) as the number of elements in the set S∗ satisfying

the property A. Now we are ready to give cranks for S∗(3n+ 2).

Lemma 7.5.2 (Theorem 5 of [105]). The following two vectors are cranks for S∗(3n+ 2):

f(1) := [−1, 1,−1, 1] and f(2) := [−1, 1, 1,−1],

in the sense of

#S∗(3n+ 2, f · a ≡ k (mod 3)) =
#S∗(3n+ 2)

3
,

for all 0 ≤ k ≤ 2, where #(S) is the number of element in the set S.

Even though the two cranks above are defined only on the set of S∗(n), we can extend these cranks to

S1(n) (resp. S2(n)) by using Lemma 7.5.1, where S1(n) (resp. S2(n)) is the set of partitions enumerated

by c(n) (resp. d(n)). In the next proposition, we give such an extension in the spirit of [53, Proposition 1].

Proposition 7.5.3. Let [π(1), π(2)] be a partition in S1(n) or S2(n) and rj(π) be the number of j-colored

boxes in the 3-residue diagram of π. Then, the following two linear combinations

r1(π(1))− r2(π(1)) + r1(π(2))− r2(π(2)) and r1(π(1))− r2(π(1))− r1(π(2)) + r2(π(2)),

are crank statistics for S1(n) and S2(n).

The proof of the above proposition is analogous to that of Proposition 1 in [53]. The key idea is that the

above statistics are invariant under the removal of 3-rim hooks. By using Proposition 7.5.3, we can deduce

the crank statistics, which can be calculated from the Ferrers diagram in the spirit of Theorem 3 in [53].
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Theorem 7.5.4. For all partitions [π(1), π(2)] ∈ S1(n) (or S2(n)), we can define a crank from f(1) by

2∑
j=1

`(π(j))∑
i=1

(δ(π(j)i − i)− δ(−i)) ,

where δ(x) = 1 for x ≡ 1 (mod 3) and 0, otherwise, and `(π) is the number of parts in π. We can also

define a crank from f(2) by

`(π(1))∑
i=1

(δ(π(1)i − i)− δ(−i))−
`(π(2))∑
i=1

(δ(π(2)i − i)− δ(−i)) .

The proof of Theorem 7.5.4 is easily obtained by calculating the contribution of each row to the crank

from Proposition 7.5.3, so we omit it.

7.6 Proof of two sixth order mock theta function identities

In this section, we prove the following two identities which played an important role in Section 4.

Theorem 7.6.1. For |q| < 1,

Ψ(q) + 2Ψ−(q) = 3
q(q6; q6)3

∞
(q)∞(q2; q2)∞

, (7.6.1)

2ρ(q) + λ(q) = 3
(q3; q3)3

∞
(q)∞(q2; q2)∞

, (7.6.2)

where Ψ(q), Ψ−(q), ρ(q), and λ(q) are the sixth order mock theta functions defined by (7.1.3).

Before proving these identities, we need to prove the following two eta function identities. Throughout

the proof, we let EN be a complete set of inequivalent cusps for Γ1(N) and ηn and ηi,j are functions

defined by (7.2.4) and (7.2.5).

Theorem 7.6.2. For z ∈ H,

− η4
2η

2
4η

6
6η

2
12η

2
4,2η

6
6,2η

2
12,2 + 4η2

1η
2
3η

8
4η

2
6η

2
3,1η

2
6,1 = 3η8

1η
2
4η

2
6η

2
12. (7.6.3)

Proof. For 1 ≤ i ≤ 3, let f1
i be the product of eta-functions in each of the 3 products in (7.6.3), and for

1 ≤ i ≤ 2, g1
i be the product of the generalized eta-functions in each of the 2 products in (7.6.3). Each f1

i

is the product of 14 eta-functions, and by Lemma 7.2.4 and a straightforward calculation, each f1
i is a
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modular form of weight 7 on Γ1(72) with the multiplier system υ1, where for A =

 a b

c d

 ∈ Γ1(72),

υ1(A) = ζ4bd
24 . By Theorem 7.2.5 and a straightforward calculation, each g1

i is a modular form of weight 0

on Γ1(72) with the multiplier system I. Therefore, f1
1 g

1
1 , f1

2 g
1
2 , and f1

3 are modular forms of weight 7 on

Γ1(72) with multiplier system υ1.

Recall that [Γ(1) : Γ1(72)] = 3456. Let F1 denote the difference of the left and right sides of (7.6.3). By

applying the three equations in Lemma 7.2.6 to F1 and a straightforward calculation, we find that for each

k ∈ E72, k 6=∞,

ord(F1; k) ≥ 0. (7.6.4)

Applying Theorem 7.2.3 for a fundamental region R for Γ1(72), and using (7.6.4), we deduce that, for

F1,

∑
z∈R

OrdΓ1(72)(F1; z) =
7 · 3456

12
= 2016 ≥ ord(F1;∞), (7.6.5)

since both sides of (7.6.3) are analytic on R. Using Maple, we calculated the Taylor series of F1 about

q = 0 (or about the cusp z =∞) and found that F1 = O(q2017). Unless F1 is a constant, we have a

contradiction to (7.6.5). We have thus completed the proof of Theorem 7.6.2.

Theorem 7.6.3. For z ∈ H,

− η16
1 η4

4η
4
6η

4
12 + η16

2 η8
3η

4
12η

4
3,1η

2
12,2 = 12η10

1 η2
2η

2
3η

6
4η

2
6η

6
12. (7.6.6)

Proof. For 1 ≤ i ≤ 3, let f2
i be the product of eta-functions in each of the 3 products in (7.6.6), and

g2 := η4
3,1η

2
12,2 be the product of the generalized eta-functions in the second term in (7.6.6). Each f2

i is the

product of 28 eta-functions, and by Lemma 7.2.4 and a straightforward calculation, each f2
i is a modular

form of weight 14 on Γ1(24) with the multiplier system υ2, where for A =

 a b

c d

 ∈ Γ1(24),

υ2(A) = ζ8bd
24 . By Theorem 7.2.5 and a straightforward calculation, g2 is a modular form of weight 0 on

Γ1(24) with the multiplier system I. Therefore, f2
1 , f2

2 g
2, f2

3 are modular forms of weight 14 on Γ1(24)

with multiplier system υ2.

Recall that [Γ(1) : Γ1(24)] = 384. Let F2 denote the difference of the left and right sides of (7.6.6). By

applying the three equations in Lemma 7.2.6 to F2 and a straightforward calculation, we find that for each
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k ∈ E24, k 6=∞,

ord(F2; k) ≥ 0. (7.6.7)

By using an argument similar to that in the proof of Theorem 7.6.2, we can see that F2 = 0 by checking

the first 449 terms, which was done by Maple.

We now derive two theta function identities from the previous eta function identities.

Theorem 7.6.4. For | q |< 1,

− f(q, q5)6f(q3, q3)2 + f(q2, q4)6f(1, q6)2 = 3
(q; q)2

∞(q3; q3)2
∞(q6; q6)8

∞
(q2; q2)4

∞
.

Proof. By the Jacobi triple product identity,

f(q, q5) = (−q; q6)∞(−q5; q6)∞(q6; q6)∞ =
(q2; q12)∞(q10; q12)∞

(q; q6)∞(q5; q6)∞
(q6; q6)∞, (7.6.8)

f(q3, q3) = (−q3; q6)2
∞(q6; q6)∞ =

(q6; q12)2
∞

(q3; q6)2
∞

(q6; q6)∞, (7.6.9)

f(1, q6) = 2(−q6; q6)2
∞(q6; q6)∞ = 2

(q12; q12)2
∞

(q6; q6)∞
, (7.6.10)

and by Euler’s identity,

f(q2, q4) = (−q2; q6)∞(−q4; q6)∞(q6; q6)∞ =
(q4; q12)∞(q8; q12)∞
(q2; q6)∞(q4; q6)∞

(q6; q6)∞. (7.6.11)

Dividing both sides of (7.6.3) by q2 η
4
2η

2
4η

2
12η

6
6,1η

6
6,2η

2
6,3

η2
6

, using η2`,`η
2
2` = η2

` and η3`,`η3` = η` frequently, and

employing (7.6.8)–(7.6.11), we get the identity in Theorem 7.6.4.

Theorem 7.6.5. For | q |< 1,

− (q; q2)6
∞f(q3, q3) + (−q; q2)6

∞f(−q3,−q3) = 12q
(q6; q6)∞(q12; q12)4

∞
(q2; q2)2

∞f(−q2,−q10)2
.
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Proof. By Jacobi triple product identity, we can derive that

f(q3, q3) = (−q3; q6)2
∞(q6; q6)∞ =

(q6; q12)∞
(q3; q6)∞

(q6; q6)∞ (7.6.12)

and

(−q; q2)∞ =
(q2; q4)∞
(q; q2)∞

. (7.6.13)

Now, dividing both sides of (7.6.6) by q−
1
4 η4

1η
10
2 η6

4η
3
6η

4
12η

3
2,1η6,3η

2
12,2, using η2`,`η

2
2` = η2

` and η3`,`η3` = η`

frequently, and employing (7.6.12) and (7.6.13), we derive the identity in Theorem 7.6.5.

Finally, we are ready to prove Theorem 7.6.1.

Proof of Theorem 7.6.1. First, we prove (7.6.1). Replacing z by q in Theorem 4 [45] and using Theorem

7.6.4, we deduce that

1 + q

q
(ψ(q) + 2ψ−(q; q))

= −q
2

2
(−q−1,−q−1,−q3,−q,−q; q2)∞

(q,−q2, q, q, q; q2)∞
f(1, q6) +

1
2

(−1,−1,−q2,−q2,−1; q2)∞
(q,−q3, q, q, q; q2)∞

f(q3, q3)

= − (1 + q)(−1; q)3
∞

128
(
8(−q; q2)6

∞f(1, q6)− (−1; q2)6
∞f(q3, q3)

)
= − (1 + q)(−1; q)3

∞
128

16(−q3; q3)2
∞

(q6; q6)7
∞

{
f(q, q5)6f(q3, q3)2 − f(1, q6)2f(q2, q4)6

}
= 3

(1 + q)(q6; q6)3
∞

(q; q)∞(q2; q2)∞
.

Multiplying both sides of the above equation by q
1+q , we conclude

ψ(q) + 2ψ−(q; q) = 3
q(q6; q6)3

∞
(q; q)∞(q2; q2)∞

.
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Now we turn to (7.6.2). Using Theorem 7.6.5 with q replaced by q1/2, we obtain

2ρ(q) + λ(q; q) = −
(q

1
2 ; q

1
2 )6
∞f

(
q

3
2 , q

3
2

)
− (−q 1

2 ;−q 1
2 )6
∞f

(
−q 3

2 ,−q 3
2

)
4q

1
2 (q; q)3

∞(q2; q2)3
∞

= − (q
1
2 ; q)6

∞f(q
3
2 , q

3
2 )− (−q 1

2 ; q)6
∞f(−q 3

2 ,−q 3
2 )

4q
1
2 (−q; q)3

∞

= 3
(q; q)∞(q3; q3)∞(q6; q6)4

∞
(q2; q2)3

∞f(−q,−q5)2

= 3
(q3; q3)3

∞
(q; q)∞(q2; q2)∞

.
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