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ABSTRACT 

 

The 3 studies described below demonstrate the effects of mannan oligosaccharide 

(MOS) on immune function and disease resistance in pigs. Study 1 evaluated whether MOS 

in both in vivo and in vitro systems regulates cytokine production by alveolar macrophages 

(AM) in response to in vitro microbial challenge models. The lipopolysaccharide (LPS)-

stimulated AM from MOS-fed pigs produced less tumor necrosis factor- (TNF-α) (P < 

0.01) and more IL-10 (P = 0.051) than AM from the control-fed pigs. Dietary MOS did not 

affect AM-produced cytokines induced by polyinosinic:polycytidylic acid (Poly I:C). 

When applied in vitro, MOS suppressed LPS-induced TNF- (P < 0.001), but enhanced 

LPS-induced IL-10 (P < 0.05). Further, TNF- production by AM stimulated with LPS (P 

< 0.05) or Poly I:C (P < 0.001) was suppressed by a mannan-rich fraction (MRF). In order to 

learn if MOS interacts with LPS receptors, AM were cultured with Polymyxin B, an 

inhibitor of LPS-activated toll-like receptor (TLR) 4. Although Polymyxin B completely 

inhibited AM-produced TNF- induced by LPS, it did not affect the ability of MOS to 

regulate cytokine production in the absence of LPS. When added in vitro, both MOS and 

MRF were also able to regulate constitutive production of TNF- in the absence of LPS. 

Study 2 determined if various levels of dietary MOS affect growth and serum cytokine levels 

in nursery pigs. No effect of MOS on growth was found. There were no differences in serum 

levels of TNF- and IL-10, although these levels changed over time. Study 3 showed that 

MOS altered nursery pigs‟ immune response to a porcine reproductive and respiratory 

syndrome virus (PRRSV). Infection of PRRSV reduced pig performance and leukocytes (P 

< 0.01), but increased serum inflammatory mediators and fever (P < 0.01). Dietary MOS 
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prevented leukopenia at d 3 and 7 postinfection (PI) and tended to improve feed efficiency. 

In infected pigs, MOS reduced fever at d 7 PI (P < 0.01) and serum TNF- at d 14 PI (P = 

0.06). The gene expression profile in peripheral blood mononuclear cells and 

bronchoalveolar lavage fluid cells at d 7 PI was characterized by using microarray and real 

time RT-PCR. The MOS x PRRSV interaction altered the gene expression in the above 

leukocytes (P < 0.05). In peripheral blood mononuclear cells, MOS increased the gene 

expression of pattern recognition receptors, cytokines, and intracellular signaling molecules 

in uninfected pigs, but reduced the gene expression of TLR4 and various types of key 

cytokines and chemokines in infected pigs (P < 0.05). In bronchoalveolar lavage fluid cells, 

MOS may promote a cytotoxic T cell immune response by enhancing MHCI mRNA 

expression, but reduce the expression of complement system-associated molecules and 2‟,5‟-

oligoadenylate synthetase-1. The downregulation of inflammatory responses regulated by 

MOS  at d 7 PI was associated with several important canonical pathways such as triggering 

receptor expressed on myeloid cells-1 signaling, hypoxia signaling, IL-4 signaling, 

macropinocytosis signaling, and perhaps the alternative activation of macrophages. In 

summary, MOS is a potent immunomodulator in both in vitro and in vivo systems. Dietary 

inclusion of MOS in diets for pigs may bring benefits by boosting and maintaining the host‟s 

disease resistance while preventing over-stimulation of the immune system. 

Key words: Alveolar macrophages and cytokine secretion; disease resistance; 

immunomodulation; mannan oligosaccharide; pigs; PRRSV 
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CHAPTER 1 

LITERATURE REVIEW 

 

MANNAN OLIGOSACCHARIDE 

Introduction 

Glycobiology is a relatively new field of study in the world of science. In the past 

decades, discoveries in the field of glycobiology have revealed the critical role of 

carbohydrates in the mechanisms of immunity (Dwek, 1996; Munro, 2000; Axford, 2001). 

These discoveries will lead to the ability to use these functional carbohydrates, with a 

reduced use of antibiotics, in diets to improve performance and health of animals. There has 

of late been increasing pressure on the livestock industry to decrease the use of antibiotics 

due to the potential development of antibiotic resistance (Pettigrew, 2006; Stein and Kil, 

2006). Among carbohydrates, mannan oligosaccharide (MOS), derived from the yeast cell 

wall of Saccharomyces cerevisiae, has been shown to improve animal performance and 

health through several mechanisms such as prevention of pathogens from binding to the 

gastrointestinal tract (GIT), alteration of GIT microbial populations, and enhancement of 

immune functions.  

 

Growth Performance 

Swine. Addition of MOS to a diet has resulted in a large variation in growth 

performance response of pigs. Some researchers have reported little response in ADG, ADFI, 

and G:F when MOS was fed to weaned pigs. LeMieux et al. (2003) reported that nursery pigs 

fed diets with 0, 0.2, or 0.3% MOS supplementation showed no improvement in growth 
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performance. With similar dietary inclusion levels of MOS, Davis et al. (2004a) found no 

effect of MOS on growth response of nursery pigs. In other studies, however, increases in 

growth performance of pigs have been demonstrated (Dvorak and Jacques, 1998; Kim et al., 

2000; Davis et al., 2004b). Under commercial conditions, differences in growth response to 

dietary MOS have also been reported. Rozeboom et al. (2005) investigated effects of MOS 

on the performance of pigs on 2 large-scale commercial farms (A and B) and one university 

research farm (C). They demonstrated that growth improvements with MOS on Farms A and 

B were not significant, but pigs on Farm C had better ADG, ADFI, and G:F. Recently, in a 

study assessing performance of nursery pigs in 7 trials, the pooled data suggested that 

addition of MOS to a weaned pig‟s diet increased ADFI and ADG of piglets (Corrigan et al., 

2008). Growth performance responses to MOS supplementation are variable, being 

especially related to growth rate of pigs (Miguel et al., 2004). The meta-analysis of Miguel et 

al. (2004) suggested that MOS had little or no response in pigs with high growth rate (> 180 

g/d) during the first 1 to 2 wk postweaning (PW). 

Mannan oligosaccharide has the potential to partly replace pharmacological levels of 

trace minerals or may be alternative to antibiotics in nursery diets. In a series of experiments, 

LeMieux et al. (2003) found that diets with 0.2% MOS supplementation during phase 2 

increased the growth performance of pigs when excess zinc was not included in the diet. 

When Zn included in the diet at a level of 3000 ppm, there was no difference in growth 

performance between pigs fed MOS and those fed the control. Davis et al. (2004a) showed 

that adding MOS resulted in an improved growth response if dietary zinc levels were 

restricted to levels of 200 or 500 ppm. These results indicate that the amount of zinc which is 

commonly added to the nursery pig diet can be lowered in MOS-supplemented diets. This 
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may help reduce the negative impact of excess zinc on the environment because of reduced 

zinc excretion. Similarly, the benefit of growth in pigs fed MOS was also substantiated when 

the level of copper in the diet was restricted (Davis et al., 2002a). In addition, MOS may be 

considered alternative to antibiotics in certain cases. For instance, Rozeboom et al. (2005) 

evaluated the effect of MOS on the number of medical treatments, removal rate, and 

mortality of nursery pigs reared under commercial farm or university research farm levels. 

They reported that MOS was likely an alternative to tylosin and sulfamethazine as a growth 

promotant in nursery diets.  

Most of the data obtained from the above studies, whether conducted at a university 

research farm or under commercial conditions, illustrate the beneficial effects of MOS on 

growth performance of young pigs. The favorable effect of MOS on growth performance in 

diets with low levels of copper and zinc seems to be promising if the proportions of these 

trace minerals in nursery pig diets are strictly regulated as a concern of environmental 

pollution. The potential of MOS as a growth-promoting alternative to antibiotics needs 

further investigation.    

Poultry. Several studies have been conducted to investigate the effect of dietary MOS 

on growth performance in poultry. The inclusion of MOS in poultry diets has resulted in 

varying responses of growth performance. Some studies have reported no effect of MOS on 

the performance of poultry. In an experiment with broiler chickens, a diet with 0.5% MOS 

supplementation did not significantly produce better performance than the control (Geier et 

al., 2009). Fritts and Waldroup (2003) reported that turkey poults fed 0.05 or 0.1% MOS 

performed the same as those consuming the negative control. In contrast, other researchers 

found beneficial effects on the growth of turkeys. Zdunczyk et al. (2005) indicated that 
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turkeys fed diets with medium and high levels of MOS had greater BW at the age of 16 wk 

than those fed the control. Also, Sims et al. (2004) showed that the BW of turkeys fed 0.05 or 

0.1% was heavier than that of turkeys fed the control. Furthermore, in a meta-analysis, 

Hooge (2004a,b) evaluated the effects of dietary MOS on the performance of broiler 

chickens and turkeys. The results showed that diets containing MOS significantly improved 

final BW compared to control diets but gave statistically equivalent BW compared to diets 

containing sub-therapeutic levels of antibiotics. In brief, on the basis of these available data, 

it is suggested that MOS has potential as a growth promoter for poultry.    

Other Species. The growth-enhancing effect of MOS has also been studied in other 

types of animals such as cattle, rabbits, and fish. Heinrichs et al. (2003) reported that ADFI 

was increased in MOS-fed calves compared to antibiotic-fed calves, but no difference in 

growth was found during the experimental period of 5 wk. A similar response was also 

obtained by Terre et al. (2007) when calves were fed 4 g of MOS per day. In rabbits 

consuming different levels of MOS ranging from 0.05 to 0.2%, feed efficiency was improved 

compared to the control rabbits. In a study with rainbow trout, the results also showed that 

MOS improved feed efficiency as well as growth performance (Staykov et al., 2007).  

 

Changes in Microbial Population through Agglutination of Pathogens 

Mannan oligosaccharide, derived from the cell wall of Sacchromyces cerevisiae, is 

believed to promote gut health by preventing pathogens from attaching to the epithelial 

surface of the intestines (Kocher and Tucker, 2005). Mannan, present in MOS, offers a 

competitive binding site for a certain class of bacteria (Oyofo et al., 1989a, b). One of the 

basic modes of action of MOS is to block the attachment of pathogenic bacteria containing 
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Type I fimbriae to the intestinal wall of animals. Hence, the attached harmful bacteria are 

taken with digesta to the large intestine and then excreted in feces. In a survey, it was 

demonstrated that approximately 70% of 77 Escherichia coli strains and 53% of 30 

Salmonella species possessing Type 1 fimbriae were sensitive to mannan (Finuance et al., 

1999). In order to confirm that MOS inhibits pathogen colonization, Spring et al. (2000) 

screened different bacterial strains for their ability to agglutinate MOS in yeast cell 

preparations. Five of 7 strains of Escherichia coli and 7 of 10 strains of Salmonella 

typhimurium and Salmonella enteriditis were agglutinated by MOS and yeast cells. It has 

been shown that MOS changed microbial populations in the GIT of young pigs (Miguel et 

al., 2006). The reduction in the number of pathogenic bacteria perhaps results in a better gut 

microflora through which diarrhea is possibly prevented.  

 

Fecal Score Consistency and Diarrhea 

Addition of MOS to diets has been shown to result in improved fecal consistency and 

reduce diarrhea in several types of animals. Castillo et al. (2008) showed that pigs fed 0.2% 

MOS had more normally shaped feces than those fed the control. In another study with 

weaned pigs, the incidence of diarrhea and number of diarrhea days were lower in the MOS-

fed group than in the control group (Grela et al., 2006). In calves, fecal scores were also 

improved when calves were fed 4 g of MOS daily for 5 wk (Heinrichs et al., 2003). The 

beneficial effect of MOS on fecal consistency and diarrhea may be associated with the ability 

of MOS to block the colonization of enteric pathogens to the GIT wall.  
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Immune Responses to Dietary MOS 

Small oligosaccharides have been shown to exert a variety of effects on the immune 

system and to potentially modulate the immune responses (Bland et al., 2004). More 

available data about the role of oligosaccharides as immunomodulators has been increasingly 

generated. Among oligosaccharides, MOS has been reported to influence the innate and 

adaptive immunity. 

Several studies have demonstrated effects of MOS on the nonspecific cellular 

immunity. In an in vitro experiment, the stimulation of phagocytic activity of rat 

macrophages by MOS was shown to be dose-dependent (Newman, 1995). Davis et al. 

(2004b) also reported that phagocytic macrophages isolated from the jejuna lamina propria of 

pigs fed MOS consumed a greater number of sheep red blood cells per phagocytic 

macrophage than did phagocytic macrophages isolated from pigs fed the control diet. These 

data indicate that MOS is a potent immunostimulator. On the other hand, MOS reduced the 

inflammatory tissue response in poultry. Cotter and Weinner (1997) showed that inclusion of 

MOS in the diets of replacement pullets at a level of 1 g/kg reduced the intensity of the wattle 

hypersensitivity reaction in both 8- and 10-wk-old pullets subjected to 3 successive 

exposures to antigen at 2-wk intervals commencing at 6 wk of age. The mechanism of MOS 

in reducing inflammation is unknown, but may be associated with the expression level of 

pattern recognition receptors (PRR) involved in antigen binding and secretion of cytokines. 

Singboottra et al. (2006) found that reduced expression of IL-6 by a mannan-rich fraction 

was mediated through a transitory decrease in the expression of toll-like receptor (TLR) 4. 

This receptor, when activated, triggers a cascade of inflammatory cytokine production. 
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The effects of MOS on lymphocyte proliferation and leukocyte populations have been 

evaluated. Mannan oligosaccharide appeared not to affect in vitro lymphocyte proliferation. 

In a series of experiments conducted by Davis et al. (2002a) and Davis et al. (2004a,b), 

lymphocytes from pigs fed different levels of MOS and copper or zinc were collected and 

lymphocyte proliferation was measured in vitro by unstimulating or stimulating lymphocytes 

with phytohemagglutinin or pokeweek mitogen. The results showed no effect of dietary 

MOS on lymphocyte proliferation. However, in the presence of Zn, MOS modulated 

lymphocyte proliferation by increasing the number of pokeweek-stimulated lymphocytes. 

Although not affecting in vitro lymphocyte proliferation, feeding MOS to animals increased 

the proportion of peripheral lymphocytes. Davis et al. (2004b) found that pigs fed 0.3% MOS 

had a greater lymphocyte percentage than those fed the control, but there was no difference 

in the number of lymphocytes between MOS-fed pigs and control-fed pigs. A similar 

response was also shown in a study of Swanson et al. (2002) in which dogs were fed 0 or 

0.1% MOS. Moreover, dietary MOS intermittently modified the proportions of cluster of 

differentiation (CD) 14 and CD14 major histocompatibility complex (MHC) II leukocytes in 

the blood and jejuna lamina propria of weanling pigs (Davis et al., 2004b). The increase in 

CD8 T cells was also documented in MOS-fed pigs. This is very important in diseases 

associated with viral infections.        

Mannan oligosaccharide has also been shown to influence the adaptive immunity. In 

poultry, Savage et al. (1996) reported an increase in plasma IgG and bile IgA in poults fed 

diets supplemented with 0.11% MOS. The increase in antibody response to MOS indicates 

that MOS may contain components which probably have the ability to elicit powerful 

antigenic properties. Shashidhara and Devegowda (2003), investigating influence of MOS on 
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infectious bursal disease virus antibody titers in broiler breeder and progeny, showed that 

antibody responses against infectious bursal disease virus in breeder and progeny were higher 

in the MOS group. In pigs, a study with sows receiving MOS 14 d prefarrowing and 

throughout lactation observed higher concentrations of colostral IgM compared to the 

untreated sows (Newman and Newman, 2001). Another study also indicated that feeding 

MOS to sows increased IgG and IgA levels in colostrum (O‟Quinn et al., 2001). 

Furthermore, Franklin et al. (2005) reported that supplementation of MOS to cows during the 

dry period enhanced their immune response to rotavirus and tended to enhance the 

subsequent transfer of rotavirus antibodies to calves. In addition, Davis et al. (2004b) showed 

that pigs fed diets containing MOS intermittently affected selected components of the young 

pigs‟ immune function both systemically and enterically. 

Several benefits from the use of MOS in animals have been discussed, but the 

improved immunity of animals by MOS has remained unclear. The data reviewed suggest 

that MOS may directly interact with immune cells and induce changes in expression of 

molecules involving immune regulation such as cytokines, chemokines, PRR, etc. Thus, the 

specific effects of MOS on immune responses need to be evaluated under various conditions. 

Understanding of the mechanisms of MOS in modulation of the immune responses of pigs is 

necessary to gain maximum benefit from MOS under practical application.    

  

THE IMMUNE SYSTEM 

Innate and Adaptive Immunity 

The immune system has evolved to protect the multicelllular organism from 

pathogens. It can be divided into 2 systems of immunity: innate immunity and adaptive 
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immunity. The innate immune system is universal and the first line of host defense against 

infection. It non-specifically responds to an antigen at the first contact. This immune 

response is primarily mediated by phagocytic cells, natural killer cells, mast cells, 

eosinophils, and soluble molecules such as complement factors, acute phase reactants and 

cytokines (Janeway and Medzhitov, 2002). The phagocytic cells, especially neutrophils and 

monocytes/macrophages, eliminate the microorganisms by phagocytosis and subsequent 

degradation by intracellular enzymes (Underhill and Ozinsky, 2002). The innate immune 

system is characterized by immediate activation of effectors, quick response, perfect self-

nonself discrimination, non-clonal distribution, and recognition of conserved molecular 

patterns of microbes. The antigen presenting cells, i.e. macrophages and dendritic cells, not 

only are capable of phagocytosis but also can process and present antigens to antigen-specific 

T lymphocytes (Jenkins et al., 2001; Trombetta and Mellman, 2005). In this way they form a 

bridge between innate and adaptive immunity.  

Adaptive immunity refers to antigen-specific immune response and is more complex 

than the innate immunity. It provides a second, comprehensive line of defense, capable of 

specifically recognizing foreign antigens, developing an immunological memory of infection, 

and rearranging receptor gene segments. However, it takes a few days for the adaptive 

immunity to begin after the initial infection (Williams and Bevan, 2007). Cells involved in an 

adaptive immune response include T lymphocytes, B lymphocytes, and antigen presenting 

cells. 

There are 2 main subsets of T lymphocytes, distinguished by the presence of cell 

surface molecules known as CD4 and CD8. T lymphocytes expressing CD4 are also known 

as helper T (Th) cells, and are regarded as being the most prolific cytokine producers 
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(Jenkins et al., 2001). This subset can be further sub­divided into Th1 and Th2, and the 

cytokines they produce are known as Th1­type cytokines and Th2­type cytokines (Szabo et 

al., 2003; Lippolis, 2008). The Th1­type cytokines tend to produce the pro-inflammatory 

responses responsible for killing intracellular pathogens and interferon (IFN)-γ is the main 

Th1 cytokine. Excessive pro-inflammatory responses can lead to uncontrolled tissue damage, 

so there needs to be a mechanism to counteract this. The Th2­type cytokines include 

interleukins 4, 5, and 13, which are associated with the promotion of IgE and eosinophilic 

responses in atopic allergies, and also IL­10, which has more of an anti­inflammatory effect. 

In excess, Th2 responses will antagonize the Th1-mediated microbicidal action. The optimal 

scenario would therefore seem to be that animals should produce a well-balanced Th1 and 

Th2 response, suited to the immune challenge. 

There are 3 main types of professional antigen-presenting cells, consisting of 

dendritic cells, macrophages, and B lymphocytes. These cells take up antigens in peripheral 

tissues, process them into proteolytic peptides, and load these peptides onto MHC class I and 

II molecules (Guermonprez et al., 2002; McHeyzer-Williams and McHeyzer-Williams, 

2005). In addition to the professional antigen-presenting cells, any nucleated cell in the body 

can present a complex of antigen and MHCI bound on its surface to CD8 T cells or cytotoxic 

T cells. Naive CD8 precursors have no cytotoxic activity and must undergo an activation 

process requiring 1 to 3 d for maximal activity (Wong and Pamer, 2003; Williams and 

Bevan, 2007). This activation process requires T cell receptor-stimulated induction of 

cytokine receptors (e.g., IL-2 and IL-6), which then induce the expression of granule 

components, including perforin and granzymes. In contrast, macrophages and dendritic cells 

present antigens to Th1 cells through MHCII, whereas B cells present antigens to Th2 cells. 
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An antigen-presenting process occurs in secondary lymphoid organs and thereafter initiating 

antigen-specific immune responses, or immunological tolerance (Guermonprez et al., 2002; 

Trombetta and Mellman, 2005). The recognition of an antigen-MHC complex by a specific 

mature T lymphocyte induces clonal proliferation and differentiation into various memory T 

and B cells, effector T cells, and antibody-secreting plasma cells.  

 

Pattern Recognition Receptors and MOS 

The innate immune system uses several different receptors to recognize and respond 

to antigenic stimulators which are characteristic of microbial surfaces but are not found on 

the host cells (Janeway and Medzhitov, 2002). These receptors, termed PRR, are diverse, 

including TLR, scavenger receptors, and lectin receptors such as the mannose receptor (MR). 

In mammals TLR family is known to consist of 11 members (TLR1 to TLR11) and can 

recognize distinct microbial components (Takeda et al., 2003; Akira and Takeda, 2004). For 

instance, TLR4 is a receptor specifically involved in the recognition of lipopolysaccharide, a 

major cell wall component of gram-negative bacteria, whereas MR is able to recognize a 

wide range of gram-negative and gram-positive bacteria, yeasts, parasites, and mycobacteria 

(Stahl and Ezekowitz, 1998; Raetz and Whitfield, 2002). Activation of PRR triggers 

intracellular signaling cascades leading to the biosynthesis of cytokines, such as IL-1, IL-6, 

IL-10, tumor necrosis factor (TNF)-, and IFN, and induction of co-stimulatory molecules 

required for the adaptive immune response.  

Mannan oligosaccharide has been assumed to have a direct effect on the immune cells 

through its mannan molecule. Recent discovery has revealed that TLR4 and MR may be 

involved in the recognition of mannan. It has been found that MR on macrophages and other 
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cells recognizes mannan (Tizard et al., 1989; Davis et al., 2002b). In other words, 

Singboottra et al. (2006) reported that altered cytokine expression of chicken macrophages 

stimulated with a mannan-rich fraction was mediated via a transitory decrease in the mRNA 

expression of TLR4. Additionally, it was shown that TLR4 recognized mannan and mannan-

associated molecules (Sheng et al., 2006). It may be speculated that activation of 

macrophages by MOS is likely involved in both MR and TLR4 whose expression levels 

would determine the immune responses of macrophages to bacterial or viral stimulations. 

Variations in immunomodulatory characteristics among mannan-containing products can be 

ascribed to a polymerization degree of mannan (Bland et al., 2004), types of terminal 

linkages of mannan sequences (Young et al., 1998), or types of mannan (Djeraba and Quere, 

2000; Sheng et al., 2006). Thus, evaluation of MOS effects on immune function in pigs is 

necessary because benefits, such as better performance and enhanced disease resistance may 

result from its efficient immunomodulation.  

 

Gastrointestinal Immunity in Association with MOS 

Integrity and well-being of the GIT of animals is protected by several defense 

mechanisms including peristaltic movements of the intestine, shedding of epithelial cells, 

gastric acidity, bile acids, antimicrobial peptides, mucus as well as water secretion, and 

balanced microflora. Mannan oligosaccharide included in a nursery pig diet may promote a 

healthy GIT by inhibiting intestinal colonization of enteric pathogens and enhancing the 

host‟s immunity. First, MOS contains yeast cell wall fragments. These fragments contain 

mannans, which competitively bind gram-negative bacteria, preventing their attachment to 

the intestinal mucosa (Oyofo et al., 1989a,b; Finuance et al., 1999). Because mannans are not 
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digestible in the intestines (Longe et al., 1982), the bound pathogens likely pass through the 

digestive tract. Recently, it has been demonstrated that certain bacterial strains, such as 

lactobacilli, bifidobacteria, and L.johnsonii La1 possess immunostimulatory properties and 

can enhance innate immune mechanisms (Blum et al., 2002; Herich and Levkut, 2002; 

Desbonnet et al., 2008). Microbial populations altered by MOS therefore possibly affect 

mucosal and systemic immune responses of pigs. Second, increases in immunoglobulin 

concentrations in plasma, colostrum, and bile suggest that MOS may have a direct effect on 

mucosal as well as systemic immunity if it is taken up by microfold (M) cells located on the 

GIT and acts as an immunostimulatory agent. The M cells are distinctive epithelial cells and 

serve as a critical component in the cascade from antigen deposition at mucosal surfaces to 

transepithelial transport and development of mucosal immunity (Kraehenbuhl, 2000). 

Antigens are transported into mucosal lymphoid tissues by M cells, which are only present in 

the follicle-associated epithelium overlaying organized lymphoid tissue in the nasal and oral 

cavities as well as the intestine and bronchi (Makala et al., 2002). Generally, there has been 

little information about the uptake of MOS mediated by receptors of M cells, but the 

systemic immunity regulated by MOS may be associated with modulated mucosal immunity 

and function of M cells. 

 

Lung Inflammatory Responses 

Respiratory diseases caused by viruses, such as PRRSV, swine influenza, porcine 

respiratory coronavirus, and porcine circo virus are common in pigs (Thacker, 2001; Paton 

and Done, 2002). The lung is in direct and continuous exposure to the surrounding 

environment. In spite of continual contact with immunologically potent challenges, 
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inflammation in the lung is tightly controlled to keep the host animal in a healthy and non-

inflamed state. Inflammatory responses can be beneficial or detrimental to the host and 

categorized into as acute and chronic in nature.    

Inflammatory responses are typically immediate in nature and characterized by 

changes in vascular tissues in order to eliminate harmful stimuli, e.g. pathogens. Leukocytes, 

such as neutrophils, natural killer cells, macrophages and lymphocytes, various cytokines and 

chemokines, and other serum components play a role in both triggering and controlling 

inflammation (Lazarus, 1986). Intercellular communication occurs using various mediators 

and messengers that include cytokines, leukotrienes, prostaglandins, thromboxane, platelet- 

activating factor, acute phase proteins, and the various cell adhesion molecules. In the first 

stages of inflammation, neutrophils and natural killer cells are the first WBC population to 

arrive and affect the host inflammatory response (Guo and Wand, 2002; Kohlmeier and 

Woodland, 2009). Neutrophils and natural killer cells infiltrate the lungs in response to the 

various mediators of acute inflammation. During the attraction and activation of neutrophils, 

activated phagocytic cells, especially macrophages, are also recruited to the site of 

inflammation. Due to inflammation, cytokines and chemokines are secreted rapidly and early 

following injury or infection. Interferon-, TNF-, IL-1, and IL-6 are early cytokines 

produced during the initial stage of an infection (Murtaugh et al., 1996; Murtaugh and Foss, 

2002; Van Reeth et al., 2002). Chemokines are important mediators of inflammation in the 

respiratory tract. Chemokines are small polypeptides that control adhesion, chemotaxis, and 

activation of leukocyte populations (Rot and Andrian, 2004; Allen et al., 2007). Some 

chemokines are constitutively expressed, whereas others are either up or downregulated in 

association with inflammation. A variety of serum proteins are actively involved in acute 
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inflammation reactions. These systems include the complement, coagulation, and kinin 

systems as well as the acute-phase proteins such as haptoglobin (Hp), C-reactive protein, and 

serum amyloid A (Kirschfink, 1997; Petersen et al., 2004; Parra et al., 2006). Synthesis and 

secretion of acute phase proteins is a dynamic process involving both systemic and metabolic 

changes and provides nonspecific protection early following infection.  

Chronic inflammation initially follows the same pathway as an acute inflammatory 

response (Thacker, 2006). Chronic inflammation takes place if the acute inflammatory 

response is insufficient to clear the tissue of invading pathogens or substances and promote 

further protection and tissue repair. Pathogens that induce chronic inflammation in the 

respiratory tract include Mycoplasma hyopneumoniae and PRRSV in pigs (Wills et al., 1997; 

Van Reeth et al., 2002; Mateu and Diaz, 2008). Scarring which results from damaged lung 

parenchyma can cause respiratory problems due to reduced area for oxygen exchange. 

Chronic respiratory tract inflammation reduces pig performance, leading to economic loss to 

the producers (Neumann et al., 2005). This is especially problematic to the swine industry 

where chronic pneumonia due to combined respiratory pathogens is commonly seen. 

Therefore, prevention of excessive inflammation or successful elimination of chronic 

pneumonia will bring benefits to swine producers. 

In short, animals are protected by the 2 major arms of defense system, the innate or 

nonspecific immune system and the adaptive or specific immune system. Each system has 

both cellular and humoral components by which it can recognize and eliminate invading 

organisms. The inflammatory response is beneficial in protecting animals against an 

infection, but can be detrimental if it is severe and inappropriately controlled. Thus, 

activation of the immune system is regulated through several mechanisms to maintain the 
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host‟s disease resistance as well as to prevent immune-mediated disorders. Although both of 

the defense systems have distinct functions, most diseases involve both arms of immune 

response. In addition, effects of MOS on the host‟s immune response may result from its 

interaction with the PRR of immune cells, such as MR and TLR4.     

      

PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME 

Porcine Reproductive and Respiratory Syndrome Virus 

Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-sense, 

single-stranded enveloped RNA molecule, containing 9 open reading frames encoding as 

many as 9 viral proteins including a membrane-spanning protein, nucleocapsid protein, 

glycoprotein-5 and non-structural protein-2 (Kimman et al., 2009). It belongs to the family 

Arteriviridae, which includes other members such as equine arteritis virus, simian 

hemorrhagic fever virus, and lactate dehydrogenase-elevating virus (Duan et al., 1997; 

Kawashima et al., 1999; Choi et al., 2001). The virus was first isolated in swine herds in the 

United States in 1987 and later in Europe in 1990 (Mengeling et al., 1996; Albina, 1997). 

Since then it has quickly spread throughout major swine producing countries in Asia and 

other parts of the world. The disease is presently a serious concern for the swine industry 

worldwide and causes a significant loss to swine producers (Neumann et al., 2005). The 

PRRSV frequently causes persistent or repeated infection in susceptible pigs and herds. Pigs 

vaccinated with one serotype are generally not protected against infection by heterogonous 

strains, indicating high genomic diversity among PRRSV isolates (Labarque et al., 2004). 

The PRRSV is the most devastating pathogen impacting the swine industry and can 

cause porcine reproductive and respiratory syndrome, which is characterized by reproductive 
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failure in sows and respiratory disease in pigs of various stages of growth and development. 

A PRRS virus primarily infects alveolar macrophages which later spread the disease from 

lungs to the rest of the body via peripheral circulation (viremia). Another route of PRRSV 

infection is from the reproductive tract by artificially inseminating sows with infected sperm. 

Interaction of the virus with porcine cells, such as pulmonary alveolar macrophages and 

intravascular macrophages of the placenta and umbilical cord results in initial immune 

responses to PRRSV (Oleksiewicz and Nielsen, 1999; Thanawongnuwech et al., 2000; Riber 

et al., 2004). The failure in reproduction may consist of late-term abortions, increased 

numbers of stillborn, mummified and weak piglets, and high neonatal death loss (Btner, 

1997; Pejsak et al., 1997; Rossow, 1998). The respiratory disease results in a high morbidity 

in pigs of all ages and is very severe in young pigs. The PRRS disease becomes more 

devastating if pigs are infected with secondary pathogens such as Pasteurella multocida, 

Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Streptococcus suis, 

Haemophilus parasuis, Aujeszky‟s virus, swine influenza virus, and circo virus. Pigs infected 

with PRRSV and a secondary pathogen develop more severe clinical diseases and 

pathological lesions than do pigs infected with PRRSV alone (Pol et al., 1997; 

Thanawongnuwech and Thacker, 2003; Thanawongnuwech et al., 2004). Typically, PRRSV-

infected pigs showed labor-breathing and thickened alveolar septae of the interstitial 

pneumonia (Van Reeth et al., 1999; Choi et al., 2001; Shibata et al., 2003). Severity and 

duration of fever depend on PRRSV doses and strains (Halbur et al., 1996, Diaz et al. 2005; 

Loving et al., 2008).  
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Clinical Signs 

Pigs infected with PRRSV may show different clinical signs depending on PRRSV 

strains. Pigs infected with the North American and Japanese strain of PRRSV had more 

intense clinical signs and pathological changes than the European strain of PRRSV. 

Thanawongnuwech and Thacker (2003) found that pigs infected with the American strain 

showed labored and accentuated abdominal breathing and increased rate of breathing 

beginning at d 3 PI, but no coughing was observed. Respiratory disease signs were 

characterized by transient dyspnoea and tachypnoea when handling pigs for rectal 

temperature measurement. Additionally, moderate lethargy, anorexia, and rough hair were 

also observed with the North American strain (Halbur et al., 1996; Suradhat and 

Thanawongnuwech, 2003; Escobar et al., 2004). The body temperature of pigs infected with 

a highly virulent Japanese PRRSV strain or North American strain was found to increase (> 

40
o
C) for up to 14 d postinfection (PI) or 28 d PI (Thanawongnuwech et al., 2000; Shibata et 

al., 2003). On the contrary, Van Reeth et al. (1999) found that pigs infected with European 

strain showed no respiratory signs but anorexia and lethargy for 3 to 5 d PI. The rectal 

temperature of the infected pigs was also moderately elevated with a peak of just above 

39.5
o
C and lasted for about 7 d PI (Lohse et al., 2004; Diaz et al., 2005).  

 

Changes in Blood Leukocytes 

PRRSV infection causes an immunosuppression in pigs by reducing the number of 

white blood cells (WBC) and lymphocytes for about 2 wk PI. Apoptosis of immune cells has 

been commonly observed in PRRSV-infected pigs during the early stage of infection, as 

monocytes/macrophages are the common targets for PRRSV infection and replication (Sur et 



19 

 

al., 1998; Choi and Chae, 2002; Labarque et al., 2003). According to Nielsen and Btner 

(1997), total WBC counts and lymphocyte counts were significantly decreased for a few days 

shortly after infection, but had returned to pre-infection levels on d 8 to 10 PI. Shibata et al. 

(2000) found that the number of WBC was reduced on d 3 and was recovered on d 7 PI. Shi 

et al. (2008) reported that the total WBC count in the PRRSV group was significantly lower 

than the control group on d 7 PI, but became significantly higher than the controls on d 10, 

14 and 28 PI. They also showed that compared with the control group, the total number of 

lymphocytes in the PRRSV group was significantly lower on d 3 and 7 PI, but significantly 

higher on d 14 and 28 PI. Additionally, the number of B cells was reduced from d 3 to 14 PI 

(Shi et al., 2008). In short, PRRSV infection causes a transient leukopenia and lymphopenia 

in peripheral blood that resolves in about 14 d. 

 

Innate and Humoral Responses to PRRSV Infection 

The immune responses to PRRSV infection have been shown to be weak because of 

modulated production of antiviral molecules and inflammatory mediators. Downregulation of 

IFN- and other pro-inflammatory cytokines and upregulation of IL-10 have been thought to 

possibly facilitate PRRSV replication and delay the host‟s immune response. In viral 

infections, the presence of double-stranded RNA induces synthesis of antiviral molecules 

including IFN- which reduces viral growth (Albina et al, 1998; Le Bon et al., 2001). Levels 

of IFN- in the bronchoalveolar lavage fluid (BALF) of PRRSV-infected pigs were much 

lower than in BALF of pigs infected with porcine coronavirus or swine influenza virus (Van 

Reeth et al., 1999). Apart from IFN-, other inflammatory cytokine secretion is also 

important in the initial response to PRRSV. However, different isolates of PRRSV have 
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different abilities to trigger induction of cytokines including INF-, TNF-, IL-10, and IL-12 

(Lee et al., 2004; Mateu and Diaz, 2008). For instance, involvement of TNF- during the 

early response to PRRSV has been inconsistent. Tumor necrosis factor- mRNA was 

increased in lung, alveolar macrophages, and peripheral blood mononuclear cells (Choi et al., 

2001; Choi and Chae, 2002; Sipos et al., 2003). In contrast, other researchers found no 

detectable or low level of TNF- in the BALF during European PRRSV strain infection (Van 

Reeth et al., 1999; Labarque et al. 2003). Although suppressing production of pro-

inflammatory cytokines, PRRSV increases IL-10 and Hp. Levels of IL-10 mRNA increased 

in peripheral blood mononuclear cells, BALF cells, and alveolar macrophages (Suradhat and 

Thanawongnuwech, 2003; Thanawongnuwech and Thacker, 2003; Thanawongnuwech et al., 

2004). Earlier studies showed increased levels of serum Hp in PRRSV-infected pigs from d 5 

to 21 PI, indicating its important role in mediating the immune response during PRRSV 

infection (Asai et al., 1999; Diaz et al., 2005; Gnanandarajah et al., 2008). 

Pertaining to the development of adaptive immunity, circulating antibodies can be 

detected as early as 5 to 14 d PI, but the antibodies are not efficient at neutralizing the virus. 

Anti-PRRSV IgM antibodies appeared in serum 5 to 7 d PI and all infected pigs were 

seroconverted by d 14 PI (Yoon et al., 1995; Joo et al., 1997). Concentrations of IgG 

antibodies were found by d 7 to 10 PI and peaked at d 21 to 49 PI (Vezina et al., 1996; 

Loemba et al., 1996). Serum IgA was detected at d 14 PI, reached a maximum at d 25 PI, and 

remained detectable until d 35 PI (Labarque et al., 2000). However, these Ig responses did 

not correspond to neutralizing antibodies (NA). Vezina et al. (1996) reported the isolation of 

PRRSV from the blood of pigs with NA. Following experimental infection, viremia may be 

resolved without detectable levels of NA (Diaz et al., 2006).   
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Collectively, the lack of an acute inflammatory response, weak antiviral activity, and 

inefficient antigen-specific antibodies may contribute to the establishment of persistent 

infection of PRRSV.  

 

Cell-Mediated Immunity to PRRSV Infection 

The changes in lymphocyte subpopulations were evaluated by several researchers. T 

lymphocytes were reduced during the early stage of infection. Nielsen and Btner (1997) 

found that the percentages of CD2, CD4, and CD8 T cells were significantly decreased, but 

quickly returned to approximately pre-infection values. The depletion of CD8 T cells was 

also obtained on d 2 to 5 PI (Lohse et al., 2004). The reduction in lymphocyte populations 

indicates a weak response to PRRSV, resulting in prolonged PRRSV infection. Lohse et al 

(2004) argued that CD8 T cell depletion at the early phase of PRRSV infection neither 

caused increased disease nor influenced the ability to clear the virus in the anti-CD8 

monoclonal antibody-treated pigs. According to Xiao et al. (2004), a weak cell-mediated 

immune response contributes to persistent PRRSV infection and suggests that PRRSV 

suppresses T-cell recognition of infected macrophages. Thus, the slow but eventual 

resolution of PRRSV infection may be dependent on limiting permissive macrophages and 

on innate immune factors. Furthermore, PRRSV-specific T cell responses first appeared in 

peripheral blood at 4 wk PI (Bautista and Molitor, 1997). In addition, a lower number of 

circulating natural killer cells was found in the infected pigs for 28 d PI (Shi et al., 2008).  

In summary, PRRS is an infectious disease caused by PRRSV and characterized by 

reproductive disorders in pregnant sows and respiratory problems in growing pigs. The 

PRRSV predominantly infects macrophages and monocytes in the lung and later spreads out 
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to other parts of the body. It causes leukopenia and lymphopenia for about 14 d PI and a 

weak initial innate immune response. Pro-inflammatory cytokine response is reduced and 

activation of natural killer cells is delayed, but the anti-inflammatory cytokine, IL-10, is 

increased. Furthermore, induction of acquired immunity is suppressed due to downregulated 

antigen presentation. There is also a delay in NA response and the NA is not efficient at 

eliminating the virus. In addition, PRRSV infection reduces the cell-mediated immunity. 

Apparently, these modulated immune responses may greatly contribute to persistent PRRSV 

infection.    
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CHAPTER 2 

MANNAN OLIGOSACCHARIDE REGULATES CYTOKINE PRODUCTION BY 

ALVEOLAR MACROPHAGES IN NURSERY PIGS 

 

ABSTRACT: Mannan oligosaccharide (MOS) and related yeast cell wall derivatives 

promote growth of nursery pigs, but the underlying mechanisms are not understood. We 

explored the hypothesis that MOS acts to reduce systemic inflammation in pigs by evaluating 

cytokine production of alveolar macrophages (AM) and serum cytokine concentrations. 

Pigs were fed diets containing 0.2 or 0.4% MOS for either 2 or 4 wk after weaning compared 

to control diets without MOS. Alveolar macrophages were collected and stimulated in vitro 

with lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (Poly I:C). 

Lipopolysaccharide-stimulated AM from MOS-fed pigs (n = 12) produced less tumor 

necrosis factor- (TNF-α) (P < 0.01) and more IL-10 (P = 0.051) than AM from control-

fed pigs (n = 6). Mannan oligosaccharide did not affect cytokine production when AM were 

stimulated with Poly I:C. There were also no significant differences in serum levels of TNF-

 and IL-10, although these levels changed over time. These results establish that feeding 

MOS to pigs for 2 wk reduces TNF- and increases IL-10 following in vitro treatment of 

AM with LPS. A similar pattern of cytokine production by AM in response to LPS was 

found when MOS was directly applied in vitro. Mannan oligosaccharide suppressed LPS-

induced TNF- secretion (P < 0.001) and enhanced LPS-induced IL-10 secretion (P < 0.05). 

In a similar experiment in which a mannan-rich faction (MRF) replaced MOS, TNF- 

production by AM stimulated with LPS (P < 0.05) or Poly I:C (P < 0.001) was suppressed 

by MRF. These data establish that both MOS and MRF suppress LPS-induced TNF- 
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production by AM. To learn if MOS interacts with LPS receptors, AM were cultured with 

Polymyxin B, an inhibitor of LPS-activated toll-like receptor 4. Although Polymyxin B 

completely inhibited AM-produced TNF- induced by LPS, it did not affect the ability of 

MOS to regulate cytokine production in the absence of LPS. When added in vitro, both MOS 

and MRF were also able to regulate constitutive production of TNF- in the absence of LPS. 

Collectively, these data establish that MOS is a potent immunomodulator in both in vitro and 

in vivo systems as determined by reducing TNF- and enhancing IL-10 synthesis after ex 

vivo challenge of porcine AM with bacterial endotoxin.  

 

INTRODUCTION 

 Mannan oligosaccharide (MOS), derived from the cell wall of yeast Saccharomyces 

cerevisiae, is a growth promoter in young pigs and poultry (Hooge, 2004a,b; Miguel et al., 

2004). The improvement in animal performance may be due in part to the ability of MOS to 

inhibit attachment of pathogens with Type I fimbriae to the intestinal wall of animals (Oyofo 

et al., 1989a,b; Spring et al., 2000). The unattached harmful bacteria are taken with digesta to 

the large intestine and then excreted in feces, resulting in a healthy gut. Effect of MOS on 

innate and humoral immunity has been reported. The MOS enhanced the activity of 

phagocytes in vitro in a dose-dependent manner (Newman, 1995) and reduced the intensity 

of the wattle hypersensitivity reaction in pullets (Cotter and Weinner, 1997). In addition, 

feeding MOS to animals increased the immunoglobulin levels in their plasma, bile, and 

colostrum (Savage et al., 1996; Newman and Newman, 2001). These results show that MOS 

affects immune function, but the specific effects require clarification. In particular, it is 

important to know the impact of MOS on secretion of cytokines under various conditions. 
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Cytokines that are synthesized by cells of the innate immune system, such as macrophages, 

not only regulate immune function but also alter many metabolic processes (Johnson, 1997; 

Spurlock, 1997; Elsasser et al., 2008). Therefore, a balance between pro-inflammatory (e.g. 

IL-1, IL-6, tumor necrosis factor-), and anti-inflammatory (e.g. IL-10) cytokines plays an 

important role in growth responses and in maintaining the appropriate and efficient activity 

of the immune system in response to surrounding immunological challenges.   

The objectives of the study were (1) to determine whether MOS, when applied in 

vitro or fed to pigs, can modulate cytokine production by alveolar macrophages (AM) 

stimulated with models of bacterial or viral infection and (2) to evaluate effects of dietary 

levels of MOS on serum cytokines and growth performance of nursery pigs.   

   

MATERIALS AND METHODS 

Pig Feeding Experiment 

The experimental protocol used in this study was approved by the University of 

Illinois Institutional Animal Care and Use Committee. One hundred and sixty barrows and 

gilts from C-22 females mated to PIC line 337 boars, about 20 d old and 6.5  1.1 kg BW 

were blocked by BW and randomly allotted to 5 treatments in a randomized complete block 

design. Each pen within a block had an equal distribution of males and females. Ancestry 

was equalized within treatment as much as possible. Immediately upon entering the nursery 

facility after weaning (d 0), pigs were fed the 5 experimental diets: 0% MOS 

supplementation as the control diet (1), 0.2% MOS through d 14 (2) or d 28 (3) postweaning 

(PW), 0.4% MOS through d 14 (4) or d 28 (5) PW. Mannan oligosaccharide was provided by 

Alltech, Inc. (Nicholasville, KY). There were 8 replicate pens per treatment and 4 pigs per 
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pen. Pigs were housed in an environmentally controlled nursery and had ad libitum access to 

feed and water at all time. Each pen measured 1.32 x 1.32 m in size with metal slatted floor 

and had one nipple waterer. Pigs were fed the basal diets (Table 2.1) formulated to contain 

the levels of all essential nutrients which met or exceeded the nutritional requirements of pigs 

during the nursery period (NRC, 1998).  

A pig‟s BW was recorded at weaning (d 0) and on d 7, 14, 21, and 28 PW, and feed 

disappearance was measured each wk, for calculation of ADG, ADFI, and G:F for each pen. 

At 14 d PW, one pig from each of 6 pens per treatment was slaughtered for collection 

of AM, which were stimulated in vitro with LPS and Poly I:C as described below and 

concentrations of TNF- and IL-10 in the supernatants were measured. 

 

Blood Collection and Processing 

Blood samples were collected at d 7, 14, 21, and 28 after the commencement of the 

experiment. One pig per replicate pen (8 pigs per treatment) was sampled, and blood samples 

were taken from the same pig throughout the experiment. Ten milliliters of blood from each 

pig were collected into glass tubes containing no anticoagulant. Blood was allowed to clot at 

room temperature and stored overnight at 4
o
C before harvest of serum by centrifugation. The 

collected serum was frozen at -80
o
C, and later analyzed for TNF- and IL-10 by ELISA kits 

as described below.   

 

Collection and Isolation of AM  

Alveolar macrophages were collected from 5 to 6-wk-old donor pigs not fed 

experimental diets or from pigs fed diets with different levels of MOS for 2 wk PW. Pigs 
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were anesthetized by intramuscular injection of a 1-mL combination of telazol, ketamine, and 

xylazine (2:1:1) per 23.3 kg BW. The final mixture contained 100 mg telazol, 50 mg 

ketamine, and 50 mg xylazine in one mL (Fort Dodge Animal Health, Fort Dodge, IA). After 

anesthesia, pigs were euthanized by intracardiac injection with 78 mg sodium pentobarbital 

(Sleepaway) per 1 kg of BW (Henry Schein, Inc., Indianapolis, IN).  

Alveolar macrophages were collected by pulmonary lavage with 150 mL of PBS 

without Ca and Mg. Lavage fluid was filtered through a double layer of sterile gauze and 

then centrifuged at 400 x g for 15 min at room temperature. After centrifugation, lung lavage 

cells were washed twice with Hank‟s balanced salt solution and re-suspended in 5 mL of 

Roswell Park Memorial Institute 1640 culture medium containing 10% heat-inactivated fetal 

bovine serum, penicillin (100 IU/mL), and streptomycin (100 g/mL). The percentage of live 

cells was determined by Trypan Blue dye exclusion (Sigma-Aldrich Co., St Louis, MO), and 

the cells were adjusted to 1 x 10
6
 cells/mL. The viability was > 97%. We used the term 

“alveolar macrophages” throughout this paper because the majority (93 to 97.5%) of 

bronchoalveolar lavage fluid cells is macrophages (Shibata et al., 1997; Dickie et al., 2009).   

 

Culture and Stimulation of AM 

Alveolar macrophages were cultured in 96-well plastic tissue culture plates at a 

density of 1 x 10
5
 cells per well and incubated overnight at 37

o
C in a humidified 5% CO2 

incubator to allow AM to adhere to the plates. The plates were washed 3 times with warm 

Hank‟s balanced salt solution to remove non-adherent cells. The adhered AM were 

stimulated with 200 µL of yeast cell wall components or microbial stimulators as described 

below. The stimulated AM were then incubated for 24 h more before the collection of 
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supernatants, which were frozen at -80
0
C until measurement of tumor necrosis factor (TNF)-

 and IL-10 concentrations. 

The adhered AM were treated in triplicates with substances to be tested, including 

MOS, glucan fraction (GluF), mannan-rich fraction (MRF), lipopolysaccharide (LPS), and 

polyinosinic:polycytidylic acid (Poly I:C). Irradiated MOS, GluF, and MRF were obtained 

from Alltech, Inc. (Nicholasville, KY). The GluF and MRF were also extracted from the 

yeast cell wall, but contained more -glucan and mannose, respectively, than MOS. The 

sugar profile of the yeast components is presented in Table 2.2. The LPS and Poly I:C, 

purchased from Sigma-Aldrich Co. (St. Louis, MO), have been widely used as models to 

imitate the acute phase responses to bacterial and viral challenges, respectively.   

 

Tests of Activity of Yeast Components In Vitro  

There were 4 assays, in which replicates were untreated donor pigs. In assay 1, AM 

were activated with increasing concentrations of MOS, GluF, or MRF, ranging from 0 to 3 

mg/mL. The concentration at which the greatest TNF- level was determined was used in 

subsequent assays. A pre-assay using AM stimulated with varying levels of LPS or Poly I:C 

was also conducted. The TNF- response of AM to those stimulators peaked at 1 µg/mL of 

LPS, and 50 µg/mL of Poly I:C, which were used in the following assays. In assay 2, AM 

from 6 donor pigs were stimulated with control (medium), MOS, LPS, Poly I:C, MOS plus 

LPS, and MOS plus Poly I:C. The AM were pre-incubated with control or MOS for 30 min 

before the medium, LPS, or Poly I:C were added into the cultures to stimulate AM. Assay 3 

was identical to assay 2 but used MRF instead of MOS. In assay 4, to learn whether MOS 

interacts with LPS receptors, AM were cultured in vitro in the presence (30 µg/mL) or 
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absence (0 µg/mL) of Polymyxin B (PMB, an anti-inflammatory agent) for 30 min, and then 

stimulated with MOS, GluF, or LPS. The concentration of PMB used was pre-determined to 

significantly inhibit LPS-induced TNF-. 

 

Measurement of Cytokines  

Tumor necrosis factor- and IL-10 levels in serum and in supernatants from AM 

incubations were measured in duplicate by ELISA kits specific for porcine TNF-α and IL-10 

(R & D Systems, Minneapolis, MN). Standards of known recombinant porcine TNF-α and 

IL-10 concentration were used. The minimum detectable dose of porcine TNF-α by the assay 

was 3.7 pg/mL. The intra- and inter-assay coefficients of variation were < 6.9% (6.2% for 

supernatant) and < 9.2% (10% for supernatant), respectively. The minimum detectable dose 

of porcine IL-10 by the assay was 3.5 pg/mL. The intra- and inter-assay coefficients of 

variation were < 4.2% and < 7.2%, respectively. The results were expressed in picograms per 

milliliter based on a standard curve.  

 

Statistical Analyses 

Data were analyzed by ANOVA using the GLM procedure of SAS (SAS Institute 

Inc., Cary, NC). For the pig-feeding experiment, performance data were analyzed as a 

randomized complete block design. Pens were considered the experimental unit and the 

model included the effects of block and dietary treatment. The serum cytokines were 

analyzed as repeated measures over time on each individual pig as an experimental unit. The 

model included the effects of dietary treatment, day, and dietary treatment x day interaction. 

For cytokine concentrations in supernatants, pigs were the experimental units and the model 
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included the effects of dietary treatment. Data from pigs fed 0.2% MOS at d 14 PW were 

pooled for that treatment. Similarly, data from pigs fed 0.4% MOS at d 14 PW were pooled 

for that treatment. For in vitro assays 1, 2, 3, & 4, donor pigs were considered blocks and a 

pool of 3 wells was considered an experimental unit. For assay 1, the model included the 

effects of block and concentration of yeast components. For assay 2, the model included the 

effects of block, MOS, stimulant, and MOS x stimulant interaction. For assay 3, the model 

included the effects of block, MRF, stimulant, and MRF x stimulant interaction. For assay 4, 

the model included the effects of block, PMB, stimulant, and PMB x stimulant interaction. 

Treatment differences were compared using the least squares means procedure of SAS.  

 

RESULTS 

Supernatant and Serum Cytokines in Response to MOS Feeding 

 Supernatant concentrations of TNF- associated with LPS-stimulated AM from pigs 

fed the MOS diets were lower than (P < 0.01) those of AM from pigs fed the control diet 

(Figure 2.1). No differences were observed between 0.2% and 0.4% MOS diets. The LPS-

stimulated AM from MOS-fed pigs produced more IL-10 than those from control-fed pigs 

(P = 0.051).  

There was no effect of MOS supplementation on serum TNF- or IL-10 throughout 

the experiment (Figure 2.2). The MOS x day interaction was found not to be significant. 

However, there was a significant effect of day on serum TNF- and IL-10. The TNF- levels 

at d 7 and 28 PW were much greater than those at d 14 and 21 PW (P < 0.001). The IL-10 

levels at d 14 and 28 PW were greater than those at d 7 and 21 PW (P < 0.001).  

     



46 

 

Growth Performance   

MOS supplementation had no effect on ADG, ADFI, and G:F during phases 1, 2, or 3 

or over the entire experiment (Table 2.3). Feeding MOS to pigs for either 2 or 4 wk PW, 

regardless of dietary level, did not clearly affect ADG, ADFI, and G:F. 

 

Modulation of LPS- or Poly I:C-Induced Cytokine Production by MOS and MRF 

The TNF- production was increased by MOS, LPS, or Poly I:C (P < 0.01; Figure 

2.3). However, the response to MOS was much lower than the response to LPS or Poly I:C 

(P < 0.01). Additionally, in cultures stimulated with LPS, TNF- was significantly reduced 

in the presence of MOS (P < 0.001). In contrast to the decrease in TNF-, LPS-induced IL-

10 was increased in the presence of MOS (P < 0.05). The MOS did not affect TNF- or IL-

10 production of Poly I:C- induced AM. 

The TNF- production induced by LPS or Poly I:C was far greater than that induced 

by the control or MRF (P < 0.001; Figure 2.4), which were not different from each other. 

There was a significant reduction of TNF- in cultures stimulated with either LPS (P < 0.05) 

or Poly I:C (P < 0.001) in the presence of MRF. Similar to MOS, MRF did not affect IL-10 

production of AM induced by Poly I:C.  

 

Direct Cytokine Production with Different Stimulators 

The TNF- concentrations in supernatants of AM activated by MOS (458 pg/mL) or 

GluF (376 pg/mL) were greatest (P < 0.01) at the concentration of 0.5 mg/mL and decreased 

as the concentrations of those stimulators were increased (Figure 2.5). When activated with 

MRF, AM produced much less TNF- (164 pg/mL) and a higher (P < 0.01) concentration 
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(2.5 mg/mL) of MRF was required. The level of each yeast component used range from 0 to 

3 mg/mL because MRF at 2.5 mg/mL was the optimal level, not being toxic to macrophages, 

but stimulating cell proliferation (Singboottra, 2005).   

 

Polymyxin B Inhibited TNF- Induced by LPS, But Not by MOS 

 To learn if MOS interacts with LPS receptors, PMB (30 µg/mL) was added to 

cultures. Polymyxin B is a potent antibiotic that binds to LPS and neutralizes its pro-

inflammatory effect. The TNF- production of AM induced by GluF (0.5 mg/mL) or LPS 

(1 µg/mL) was substantially inhibited (> 95.0%) by PMB treatment (P < 0.001; Figure 2.6). 

In contrast, TNF- production induced by MOS (0.5 mg/mL) in the presence of PMB was 

reduced by only 4.2%. This result indicated that MOS did not interact with LPS receptors 

and MOS-stimulated TNF- was not due to contamination with endotoxin because PBM 

reduced TNF- induced by LPS, but not by MOS. 

 

DISCUSSION 

Previous studies have shown that MOS increase phagocytic activity and humoral 

immunity in animals (Newman, 1995; Savage et al., 1996; Newman and Newman, 2001). 

These data suggest that MOS may have direct effects on cytokine responses of 

phagocytes/monocytes. In our present study, it was found that MOS, whether fed to nursery 

pigs for 2 wk PW or applied directly in vitro, reduced pro-inflammatory cytokine production 

by AM in response to in vitro LPS stimulation, but not clearly to Poly I:C (Figures 2.1 and 

2.3). In particular, the LPS-stimulated AM produced less TNF- and more IL-10 when 

MOS was applied. The mechanism for this immune response was unknown, but may be 
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associated with the ability of MOS to modulate cell receptors-induced responses by binding 

to mannose receptor (MR). The MOS contains a high amount of mannan (as mannose, Table 

2.2), which can be recognized by MR (Giaimis et al., 1993; Underhill and Ozinsky, 2002). 

Mannose receptor activated by MOS can interfere regular functions of other cell receptors, 

e.g. toll-like receptor (TLR) 2 or TLR4, leading to reduced production of pro-inflammatory 

cytokines and enhanced IL-10 (Gazi and Martinez-Pomares, 2009). In short, MOS in vivo 

and in vitro suppresses TNF- and increases IL-10 production following in vitro treatment of 

AM with LPS, but the mechanism for the reduced inflammatory response of AM needs 

further investigation. 

Unlike MOS, MRF appeared not to greatly induce TNF- production by AM, but 

suppressed the TNF- secretion by AM stimulated with either LPS or Poly I:C (Figure 2.4). 

Downregulation of TLR4 and MR would possibly contribute to this inhibitory effect. These 

receptors, if activated, trigger an intracellular signal transduction cascade, resulting in 

changes in cytokine synthesis. Singboottra et al. (2006) found that reduced IL-6 expression 

was mediated through a decreased expression of TLR4. As LPS is a ligand specific for TLR4 

(Raetz and Whitfield, 2002), this could explain why there was a lowered TNF- level in 

LPS-stimulated AM in the presence of MRF. With respect to the suppression of AM 

response to Poly I:C, the effect of MRF on Poly I:C-induced TNF-α is not clearly 

understood, but appears to be associated with the high level of mannan in MRF. The binding 

of Poly I:C to its specific receptor, TLR3, leads to AM activation (Huang et al., 2006; 

Loving et al., 2006); however, TLR3 is an intracellular receptor, and thereby Poly I:C needs 

to be taken up by AM before inducing an inflammatory response through binding to TLR3. 

The MR, which can recognize mannan, was suggested to be a major endocytic receptor in the 
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infectious entry of viruses into murine macrophages (Tizard et al, 1989; Reading et al., 2000; 

Davis et al., 2002). Therefore, it may be speculated that MR ligation by MRF was not 

significantly responsible for TNF- release and it reduced Poly I:C-induced TNF- by 

preventing MR-mediated internalization of Poly I:C because of downregulated MR 

expression or reduced endocytic activity of MR. Thus, the amount and structure of mannan in 

MRF would determine the intensity of inflammation induced by Poly I:C. 

Although the immunomodulatory property of MOS has been shown as discussed 

above, little is known about its effect on serum cytokine concentrations in MOS-fed pigs. 

Cytokines not only regulate the body‟s immune response but also affect nutrient metabolism 

(Johnson, 1997; Spurlock, 1997). Therefore, this study assessed serum concentrations of 

TNF- and IL-10 in association with dietary levels and feeding time of MOS. There were 

significant variations in serum concentrations of TNF- and IL-10 during the course of study 

(Figure 2.2). This revealed that pigs exposed to the PW environment had physiologically 

altered levels of inflammatory mediating cytokines, so secretion of those mediators at a 

specific time is very critical. Activation of the immune system is tightly regulated through 

several mechanisms in order to maintain disease resistance and prevent immune-mediated 

disorders within the host. The high concentrations of IL-10 following or along with the raised 

levels of TNF- may bring out the important role of this cytokine in regulation of immune 

and inflammatory responses. The IL-10 has been shown to suppress TNF- production and 

other cytokines and chemokines to maintain the homeostasis of the immune system (Turnbull 

and Rivier, 1999; Moore et al., 2001). In summary, serum levels of TNF- and IL-10 

intermittently increase during the experimental period, but no clear impact of MOS on those 

cytokines could be substantiated.  
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Addition of MOS to diets in this study showed no influence on growth performance 

of nursery pigs (Table 2.3). Growth performance responses to MOS supplementation are 

variable, being especially related to growth rate of pigs (Miguel et al., 2004). The meta-

analysis of Miguel et al. (2004) suggests that MOS has little or no response in pigs with high 

growth rate (> 180 g/d) during the first 1 to 2 wk PW. The high growth rate of weaned pigs 

in the present study would possibly explain why no effect of MOS on growth was 

statistically detected.  

Further, we found that TNF- production by AM was altered differently by various 

yeast cell wall components. The GluF and MOS can directly induce AM to secrete TNF-α. 

The stimulating effect of GluF is perhaps because GluF contains a high amount of -glucan 

(Table 2.2). It was reported that macrophages stimulated with -glucan produced nitric 

oxide, interferon-, TNF-α, IL-1, and IL-6 (Adachi et al., 1994; Ohno et al., 1996; Tokunaka 

et al., 2000). With regard to MOS, activation of AM by MOS in vitro (Figures 2.3 and 2.5) 

may be associated with both -glucan and mannan; the contribution of mannan to the 

immunostimulatory effect of MOS will be discussed in the next paragraph. This finding 

partially supports the fact that MOS enhances the phagocytic activity (Newman, 1995). 

Activated phagocytes secrete cytokines which in turn upregulate the expression of molecules 

involved in phagocytosis and digestion of ingested particles or microbes (Moore et al., 2001; 

Underhill and Ozinsky, 2002). In contrast to MOS and GluF, MRF seemed not to induce 

TNF- production because our data were inconsistent (Figures 2.4 and 2.5). The discrepancy 

in immunostimulatory characteristics among mannan-containing products can be ascribed to 

a polymerization degree of mannan (Bland et al., 2004), types of terminal linkages of 

mannan sequences (Young et al., 1998), or types of mannan (Djeraba and Quere, 2000; 
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Sheng et al. 2006). Collectively, the results of this study suggest that MOS can directly 

stimulate AM, but it was not sure that this would occur in vivo. Also, GluF, but perhaps not 

MRF, is a potent immunostimulant of AM. 

The immunostimulatory effect of MOS was not due to its interaction with LPS 

receptors as well as endotoxin contamination and appeared to be different from that of GluF. 

This was demonstrated by using PBM which indirectly inhibit the activation of LPS-

mediated TLR4 by binding to LPS (Zavascki et al., 2007). First, PMB significantly inhibited 

TNF-α production induced by LPS, but not by MOS (Figure 2.6). Polymyxin B not only is an 

effective antibiotic against gram-negative bacteria (Arnold et al., 2007; Zavascki et al., 

2007), but it also has the ability to suppress TNF- secretion stimulated by an endotoxin, 

particularly LPS (Stokes et al., 1989; Cardoso et al., 2007). Second, if it was assumed that β-

glucan in both MOS and GluF was the only immunostimulatory agent involved in the 

activation of AM, TNF-α production induced by MOS or GluF could have been suppressed 

by PMB. However, lack of inhibitory effects of PMB on MOS-induced TNF-α unveiled that 

mannan molecules, apart from β-glucan, in MOS may play a significant role in stimulating 

AM to secrete TNF-. This further implied that the property of mannan in MOS was 

different from that in MRF because MRF did not considerably influence TNF- production. 

In addition, GluF seemed to act like LPS which activates AM by attaching to TLR4. It was 

reported that GluF upregulated the expression of TLR4 and dectin-1 in porcine AM 

(Chaung et al., 2009).   

In conclusion, the interaction between mannan and -glucan of tested products and 

receptors of AM may be the key factors affecting the immune responses of AM.  The 

content, type, and structure of constituent carbohydrates of yeast cell wall extracts are 



52 

 

important in activating AM through binding to their pattern recognition receptors such as 

TLR4 and MR. The expression of those receptors, along with the immune activation status of 

AM, would influence the transmission of a specific signal that results in activation of 

downstream signaling cascades, and thereby the production of inflammatory mediators.  

Mannan oligosaccharide is a potent immunomodulator. The ability of MOS to 

activate AM directly has important implications in the physiological mechanisms of host 

defense against invading bacteria or viruses. Mannan oligosaccharide in vivo and in vitro 

alleviated the inflammatory responses of AM induced in vitro by bacterial endotoxin. Thus, 

MOS may prevent overshooting of the host animal‟s immune system and help pigs quickly 

recover after an immunological challenge. Further research, however, should be conducted to 

determine effects of MOS on immune function and growth performance in pigs challenged 

with actual bacterial or viral infections.   
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FIGURES AND TABLES 

 

Table 2.1 Composition of basal diets fed to nursery pigs during the experiment (as-fed basis) 

Item 

Phase
1
 

I II III 

Ingredients, %    

  Corn 38.11 42.82 52.45 

  Dried whey 22.00 16.00 10.00 

  Soybean meal, 48% 10.00 18.00 24.00 

  Spray-dried animal plasma 8.00 4.00 0.00 

  Soy protein concentrate
2
 5.00 3.00 0.00 

  Select menhaden fish meal  4.01 5.49 6.25 

  Soybean oil 3.61 4.09 4.07 

  Lactose 5.60 2.80 0.00 

  Limestone 0.85 0.56 0.55 

  Dicalcium phosphate 0.67 0.92 0.48 

  Carbadox premix
3
 1.00 1.00 1.00 

  Zinc oxide 0.42 0.42 0.42 

  Mineral premix
4
 0.35 0.35 0.35 

  Vitamin premix
5
 0.20 0.20 0.20 

  Lysine-HCl 0.07 0.16 0.22 

  DL-met 0.11 0.10 0.08 

  L-thr 0.01 0.09 0.14 



59 

 

Table 2.1 (cont.)    

Item Phase
1
 

 I II III 

Calculated composition    

  ME, Mcal/kg 3.45 3.45 3.45 

  Standardized ileal digestible AA, %    

     Lys 1.45 1.45 1.30 

     Met 0.41 0.43 0.42 

     Thr 0.94 0.94 0.84 

     Tryp 0.29 0.27 0.23 

     Val 1.10 1.03 0.89 

     Ile 0.87 0.87 0.79 

  Ca, % 0.90 0.90 0.80 

  Available P, % 0.55 0.55 0.40 

  Lactose, % 21.00 14.00 7.00 

1
Phase I, II, and III diets were fed to nursery pigs for 7, 7, and 14 d postweaning, 

respectively. 
2
Soycomil, Archer Daniels Midland Company, Decatur, IL. 

3
Mecadox 2.5, provided 0.055 g of carbadox per kilogram of diet, Phibro Animal Health, 

Fairfield, NJ. 
4
Provided as milligrams per kilogram of diet: sodium chloride, 3,000; zinc, 100 from zinc 

oxide; iron, 90 from iron sulfate; manganese, 20 from manganese oxide; copper, 8 from 

copper sulfate; iodine, 0.35 from calcium iodide; selenium, 0.30 from sodium selenite. 
5
Provided per kilogram of diet: retinyl acetate, 2,273 µg; cholecalciferol, 17 µg; DL--

tocopheryl acetate, 88 mg; menadione sodium bisulfate complex, 4 mg; niacin, 33 mg; D-

Ca-pantothenate, 24 mg; riboflavin, 9 mg; vitamin B12, 35 µg; choline chloride, 324 mg. 
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Table 2.2 Sugar profiles of yeast components used in the study (as-is basis) 

Item, % MOS
1
 MOS

2
 GluF

3
 MRF

4
 

Starch 5.75 6.35 17.06 0.98 

-glucans 34.44 29.85 66.75 15.99 

Ribose 0.97 1.15 0.00 0.75 

Fucose 0.00 0.00 0.00 0.00 

Arabinose 2.80 0.00 0.00 0.00 

Xylose 4.46 0.52 0.00 0.00 

Mannose 25.59 26.58 5.68 37.90 

Glucose 44.66 40.22 3.12 18.86 

Galactose 3.80 3.38 4.55 2.25 

1
Bio-Mos, a commercial product that is included in pig diets; MOS: mannan 

oligosaccharide. 
2
A Bio-Mos preparation used in the in vitro assays; MOS: mannan oligosaccharide. 

3
GluF: glucan fraction. 

4
MRF: mannan-rich fraction. 

  



61 

 

Table 2.3 Growth performance of pigs fed diets with different levels of mannan 

oligosaccharide (MOS) for 2 or 4 weeks after weaning
1
 

Item 

Dietary supplementation of MOS, % 

SEM 

0.0 0.2/0.0
2
 0.2/0.2

3
 0.4/0.0

2
 0.4/0.4

3
 

d 0 to 14       

  ADG, g 274 250 243 252 268 16.3 

  ADFI, g 327 285 283 286 297 16.7 

  G/F, g/kg 852 883 855 873 901 19.0 

d 14 to 28       

  ADG, g 527 533 523 490 500 21.5 

  ADFI, g 746 720 710 700 685 27.8 

  G:F, g/kg 714 741 740 699 729 17.6 

d 0 to 28       

  ADG, g 400 392 383 371 384 16.2 

  ADFI, g 536 502 497 493 491 17.8 

  G:F, g/kg 783 812 798 786 815 14.5 

1
Data were means of 8 replicate pens with 4 pigs each. Pigs averaged 20 d of age and 6.5  

1.1 kg of initial BW. 
2
MOS was supplemented at 0.2% or 0.4% of the diet from d 0 to 14 after weaning, and pigs 

were fed the control diet from d 14 to 28 after weaning. 
3
MOS was supplemented at 0.2% or 0.4% of the diet from d 0 to 28 after weaning. 
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Figure 2.1 Supernatant cytokine production by alveolar macrophages (AM) from pigs fed 

diets with 0%, 0.2%, and 0.4% mannan oligosaccharide (MOS) supplementation. (A) & (B) 

lipopolysaccharide-stimulated AM from pigs (n = 12) fed MOS diets, regardless of 

inclusion levels, produced significantly less (P < 0.01) tumor necrosis factor (TNF-) and 

more IL-10 (P = 0.051) than those from pigs (n = 6) fed the control diet. (C) 

Polyinosinic:polycytidylic acid-stimulated AM from pigs fed MOS diets, regardless of 

inclusion levels, tended to produce less TNF- (P < 0.1) than those from pigs fed the control 

diet. (D) There was no effect of dietary MOS on IL-10 production by 

polyinosinic:polycytidylic acid-stimulated AM. The concentrations of lipopolysaccharide 

and polyinosinic:polycytidylic acid used were 1 µg/mL and 50 µg/mL, respectively. Data 

were means ± pooled SEM. ** P < 0.01. 
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Figure 2.2 Serum tumor necrosis factor- (TNF-, A) and IL-10 (B) levels of pigs fed diets 

with 0%, 0.2%, and 0.4% mannan oligosaccharide (MOS) supplementation for 2 or 4 weeks 

after weaning. The TNF- levels at d 7 and 28 postweaning were greater than those at d 14 

and 21  (P < 0.001). The IL-10 levels at d 14 and 28 postweaning were greater than those at d 

7 and 21 (P < 0.001). Data were means ± pooled SEM (n = 8).  
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Figure 2.3 Tumor necrosis factor- (TNF-) or IL-10 production by alveolar macrophages 

stimulated in vitro with lipopolysaccharide (LPS, 1 µg/mL) or polyinosinic:polycytidylic 

acid (Poly I:C, 50 µg/mL) in the presence (0.5 mg/mL) or absence (0 mg/mL) of mannan 

oligosaccharide (MOS). (A) MOS activated alveolar macrophages to produce TNF- (P < 

0.01), but significantly suppressed LPS-induced TNF- production (P < 0.001). (B) MOS 

significantly enhanced LPS-induced IL-10 production (P < 0.05). Data were means ± pooled 

SEM (n = 6). * P < 0.05, *** P < 0.001.  
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Figure 2.4 Tumor necrosis factor- (TNF-) or IL-10 production by alveolar macrophages 

stimulated in vitro with lipopolysaccharide (LPS, µg/mL) or polyinosinic:polycytidylic acid 

(Poly I:C, µg/mL) in the presence or absence of mannan-rich fraction (MRF, 2.5 mg/mL). 

(A) MRF significantly suppressed TNF- production by alveolar macrophages stimulated 

with LPS (P < 0.05) or Poly I:C (P < 0.001). There were no differences in TNF- production 

between MRF and the control (P > 0.05). (B) MRF did not affect LPS- or Poly I:C-induced 

IL-10 production (P > 0.05). Data were means ± pooled SEM (n = 6). * P < 0.05, *** P < 

0.001. 
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Figure 2.5 Tumor necrosis factor- (TNF-) production by alveolar macrophages activated 

with increasing concentrations of mannan oligosaccharide (MOS), glucan fraction (GluF), or 

mannan-rich fraction (MRF). The TNF- response of alveolar macrophages peaked at 0.5 

mg/mL MOS (P < 0.01), 0.5 mg/mL GluF (P < 0.01), and 2.5 mg/mL MRF (P < 0.01). Data 

were means of 4 replicates. * P < 0.05 and ** P < 0.01: different from the control (within a 

line). 
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Figure 2.6 Tumor necrosis factor- (TNF-) production by alveolar macrophages activated 

with mannan oligosaccharide (MOS), glucan fraction (GluF), or lipopolysaccharide (LPS) in 

the presence or absence of Polymyxin B (PMB). Polymyxin B significantly inhibited TNF- 

production induced by GluF or LPS (P < 0.001), but not by MOS (P > 0.05). The 

concentrations of MOS, GluF, LPS, and PMB used were 0.5 mg/mL, 0.5 mg/mL, 1 µg/mL, 

and 30 µg/mL, respectively. Data were means ± pooled SEM (n = 6). *** P < 0.001.  
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CHAPTER 3 

EFFECTS OF MANNAN OLIGOSACCHARIDE ON IMMUNE RESPONSE AND 

GROWTH PERFORMANCE IN NURSERY PIGS EXPERIMENTALLY INFECTED 

WITH PORCINE REPRODUCTIVE AND RESPIRATORY SYNDROME VIRUS 

 

ABSTRACT: This study was conducted to determine whether the ingestion of mannan 

oligosaccharide (MOS) alters the immune response of nursery pigs challenged with porcine 

reproductive and respiratory syndrome virus (PRRSV). A total of 64 pigs (3 wk old), free of 

PRRSV, were used in 2 separate but similar trials conducted sequentially. Pigs were divided 

into blocks of 4 based on BW, gender, and litter origin. They were randomly assigned from 

within blocks to one of 4 treatments in a 2 x 2 factorial arrangement [2 types of diet: control 

(0%) and MOS addition (0.2%); 2 levels of PRRSV: with and without]. There were 8 

replicate chambers of 2 pigs each. Pigs fed control or MOS diets for 2 wk were intranasally 

inoculated with PRRSV or a sterile medium at 5 wk of age. The PRRSV challenge decreased 

ADG, ADFI, and G:F throughout the experiment (P < 0.01). Feeding MOS tended to 

improve G:F of the pigs during d 0 to 7 (P < 0.1) and d 7 to 14 (P < 0.07) postinfection (PI). 

Serum levels of tumor necrosis factor (TNF)-, C-reactive protein (CRP), and haptoglobin 

(Hp) were increased by PRRSV (P < 0.01). The MOS x PRRSV interaction tended to be 

significant for serum TNF- at d 14 PI (P = 0.06), suggesting that the infected pigs fed MOS 

had lower TNF-α than those fed the control. Dietary MOS increased serum IL-10 at d 14 PI 

(P < 0.05). Further, MOS-fed pigs had greater numbers of white blood cells (WBC, d 3 and 7 

PI) and lymphocytes (d 7 PI) than control-fed pigs (P < 0.05). In contrast, PRRSV decreased 

(P < 0.01) the numbers of WBC and lymphocytes until d 14 PI. Dietary MOS appeared to 
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increase the neutrophils in PRRSV-infected pigs, but no MOS x PRRSV interaction was 

found. Infection with PRRSV increased rectal temperature (RT) of pigs at d 3 PI (P < 0.01) 

and continued to affect the infected pigs fed the control diet until d 14 PI. The MOS x 

PRRSV interaction for RT was found at d 7 (P < 0.01) and 10 (P < 0.06) PI, indicating that 

the infected pigs fed MOS had a lower RT than those fed the control. This could explain why 

feed efficiency was improved by MOS. No effect of treatments on viremia or PRRSV-

specific antibody was observed. These results suggest that MOS is associated with rapidly 

increased numbers of WBC at the early stage of infection and alleviates PRRSV-induced 

effects on G:F and fever. They also indicate that the reduced intensity of inflammation by 

MOS may be related to the decrease in serum TNF- and Hp, and increase in serum IL-10 at 

the end of acute phase. 

 

INTRODUCTION 

 Mannan oligosaccharide (MOS), extracted from the cell wall of yeast Saccharomyces 

cerevisiae, improves nursery pig performance (Kim et al., 2000; Davis et al., 2002). The 

improvement in animal performance is thought to be associated with reduced pathogens in 

the gastrointestinal tract and/or enhanced innate and humoral immunity (Newman, 1995; 

Savage et al., 1996; Spring et al., 2000). Although pigs‟ performance response to dietary 

MOS supplementation is varied, a 4% growth improvement on average has been documented 

(Miguel et al., 2004). 

Pathogenic challenges trigger an inflammatory response characterized by the release 

of cytokines and other inflammatory mediators (Spurlock, 1997; Elsasser et al., 2008). Pro-

inflammatory cytokines such as IL-1, IL-6, and tumor necrosis factor (TNF)- are known 
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to reduce appetite and growth; increase nutrient mobilization from the body; and alter many 

metabolic processes (Johnson, 1997; Spurlock, 1997). In contrast, anti-inflammatory 

cytokines like IL-10 are immunosuppressive (Turnbull and Rivier, 1999; Moore et al., 2001). 

Porcine reproductive and respiratory syndrome virus (PRRSV) strongly modulates pigs‟ 

immune response. Reduced leukocyte counts, delayed cell-mediated immunity, and inhibited 

secretion of key cytokines have been demonstrated (Lohse et al., 2004; Wang et al., 2007). 

Recent studies revealed that MOS is a potent immunostimulant and has the ability to alter 

cytokine responses of alveolar macrophages under various conditions (Che et al., 2008). 

Therefore, it is important to know whether dietary MOS also exerts its immunomodulatory 

effects on pigs‟ immune response to PRRSV. The objective of this study was to determine 

whether ingestion of MOS altered nursery pigs‟ immune response to a PRRSV challenge.   

   

MATERIALS AND METHODS 

Experimental Design, Animals, and Housing 

Sixty four pigs (3 wk old), free of PRRSV (virology and PCR), were used in 2 

separate but similar trials conducted sequentially (32 pigs per trial). Pigs were brought to the 

experimental site at weaning at 3 wk of age and upon arrival were placed in disease-

containment chambers which have been described previously (Escobar et al., 2004). 

Lincomycin was administered daily via intramuscular injection for 3 d after arrival to prevent 

infections (11 mg/kg of BW; Pharmacia and Upjohn Co., Kalamazoo, MI). 

The pigs were divided into blocks of 4 based on BW, gender, and litter origin. They 

were randomly assigned from within blocks to one of 4 treatments in a 2 x 2 factorial 

arrangement (2 types of diet: 0% MOS as the control and 0.2% MOS addition; 2 levels of 
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PRRSV: with and without). There were 8 replicate pens (or chambers) of 2 pigs each. One 

castrated male and one female were placed in each chamber. All pigs were housed in a 

temperature-controlled room with constant lighting and had ad libitum access to water and 

feed. Pigs were fed the experimental diets for 2 wk before being challenged with PRRSV. 

The basal diets (Table 3.1) were formulated to contain the levels of all essential nutrients 

which met or exceeded nutritional requirements of pigs during the nursery period (NRC, 

1998). Treatment diets were formulated by supplementing the basal diets with 0.2% MOS 

throughout the experimental period.  

 

Experimental Procedures 

The experimental protocol was approved by the University of Illinois Institutional 

Animal Care and Use Committee and the Institutional Biosafety Committee. The procedures 

for this study were adapted from the method of Escobar et al. (2004) with modifications. 

Having been fed the experimental diets for 2 wk, pigs in one-half of the chambers were 

inoculated intranasally with 2 mL of high-virulence strain of PRRSV (Purdue isolate P-129 

containing 10
5
 50% tissue culture infective dose). Pigs in the remaining chambers received 2 

mL of sterile Dubelco‟s modified Eagle medium. One-half of the pigs (32 pigs) across the 

treatments were euthanized at d 7 postinfection (PI) of PRRSV and the remainder at the end 

of the experiment (d 14 PI).    

Before being euthanized, pigs were weighed and then blood was sampled for 

determination of differential leukocyte counts, acute phase proteins (APP), cytokines, viral 

load, and antibody level, followed by measurement of rectal temperature (RT). Pigs were 

then euthanized to collect samples of lung tissue for histopathological assessment.  
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Body weight was measured weekly until the end of the experiment. Feeders were 

weighed daily after PRRSV inoculation between 07:00 and 08:30 h so that group ADFI could 

be determined. Rectal temperature was measured at d 0, 3, 7, 10, and 14 PI.  

 

Collection of Lung Tissue 

Pigs were anesthetized by intramuscular injection of a 1-mL combination of telazol, 

ketamine, and xylazine (2:1:1) per 23.3 kg BW. The final mixture contained 100 mg telazol, 

50 mg ketamin, and 50 mg xylazine in one mL (Fort Dodge Animal Health, Fort Dodge, IA). 

After anesthesia, pigs were euthanized by intracardiac injection with 78 mg sodium 

pentobarbital (Sleepaway) per 1 kg of BW (Henry Schein, Inc., Indianapolis, IN). The 

collected lung tissue was submerged in 10% neutral buffered formalin in a 50-mL conical 

tube for further analysis. 

   

Blood Collection and Processing 

Blood samples were collected from the jugular vein at d 0, 3, 7, and 14 PI. Ten 

milliliters of blood from each pig was collected into a glass tube containing no anticoagulant. 

Blood was allowed to clot at room temperature and stored overnight at 4
o
C before harvest of 

serum by centrifugation. Serum was analyzed for C-reactive protein (CRP), haptoglobin 

(Hp), TNF-, IL-10 (R & D Systems, Minneapolis, MN), viral load, and antibody titer. A 

second whole blood sample collected in EDTA tubes (2 mL/pig) was used for determination 

of differential leukocyte counts. 
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Determination of Cytokines, CRP, and Hp 

Serum levels of TNF- and IL-10 were measured in duplicate by ELISA specific for 

porcine TNF-α and IL-10 (R & D Systems, Minneapolis, MN). Standards of known 

recombinant porcine TNF-α and IL-10 concentration were used. The minimum detectable 

dose of porcine TNF-α by the assay was 3.7 pg/mL. The intra- and inter-assay coefficients of 

variation were < 6.9% and < 9.2%, respectively. The minimum detectable dose of porcine 

IL-10 by the assay was 3.5 pg/mL. The intra- and inter-assay coefficients of variation were < 

4.2% and < 7.2%, respectively. Commercially available ELISA kits specific for porcine CRP 

and Hp were also used (Alpco Diagnostics, Windham, NH). The serum levels were analyzed 

at 1:2000 and 1:10000 dilutions in duplicate for CRP and Hp, respectively. The intra-assay 

CV was < 10.0%. The results were expressed in picograms per milliliter based on a standard 

curve.   

 

Measurement of Differential Blood Leukocytes, PRRSV Antibody, Viremia, and Lung 

Lesions 

Differential leukocyte proportions and concentrations were analyzed on a 

multiparameter, automated hematology analyzer calibrated for porcine blood (Abbott, Abbot 

Park, IL). Antibodies against PRRSV were detected by an ELISA method according to the 

procedures described by the manufacturer (IDEXX, Westbrook, ME). The ELISA sample to 

positive (S/P) ratio was calculated from each serum sample of the infected pigs. An S/P ratio 

of 0.4 or greater was considered positive. The PRRSV was detected in the serum and the 

viral load was determined by PCR analysis. From each pig, 4 samples of lung lobes were 

collected at necropsy for histopathological examination through a microscope. Briefly, the 
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tissues were fixed in 10% neutral buffered formalin and processed using routine techniques, 

embedded in paraffin, sectioned at 5 µ and stained with hematoxylin and eosin.  

 

Statistical Analysis 

Data were analyzed as a randomized complete block design with a 2 x 2 factorial 

treatment arrangement by ANOVA using the GLM procedure of SAS (SAS Institute Inc., 

Cary, NC). An individual pig was considered the experimental unit for ADG, differential 

leukocyte counts, serum cytokines, APP, and rectal temperature. For ADFI and G:F, a 

chamber was considered the experimental unit. Treatment differences were compared using 

the least squares means procedure of SAS. Within the infected pigs, Student‟s t-test was 

performed for assessment of viral load and antibody titer.   

 

RESULTS 

Clinical Signs 

  After inoculation, infected pigs showed first signs of lethargy and anorexia by d 2 PI. 

A reduction in ADFI was evident from d 2 to d 14 PI (Figure 3.1). Respiratory symptoms 

such as coughing were not detected. When handling the pigs for collection of blood samples 

and RT data, the infected pigs often developed patchy dermal cyanosis which lasted for a few 

minutes. The infection of PRRSV increased the RT of pigs at d 3 PI (P < 0.01) and continued 

to affect the infected pigs fed the control diet until d 14 PI (Figure 3.2). At d 7 PI, there was a 

PRRSV x diet interaction (P < 0.01) for RT, indicating that the infected pigs fed MOS diet 

(39.9
o
C) had a lower RT (P < 0.05) than those that received the control (40.5

o
C). The 

interaction between diet and PRRSV was also found at d 10 PI (P < 0.06). The diet 
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supplemented with MOS lowered the RT of the infected pigs. Additionally, pigs fed the 

control diet (40.1
o
C) had a greater RT (P < 0.01) at d 14 PI as compared to those fed the 

MOS diet (39.7
o
C). All pigs uninoculated with PRRSV were clinically healthy throughout 

the experimental period. 

 

PRRSV Infection, Antibody Titer, and Lung Lesions  

The effectiveness of the PRRSV challenge model was verified by serological and 

PCR tests. The serological results indicated that the pigs used in the study were free of 

PRRSV before inoculation. By d 3 PI, the PCR test confirmed that pigs inoculated with 

PRRSV were PRRSV-positive and those not inoculated with PRRSV were PRRSV-negative. 

All PRRSV-inoculated pigs remained viremic from d 3 to d 14 PI (Figure 3.3). Mannan 

oligosaccharide was not found to affect the viral load in the infected pigs at d 3, 7, or 14 PI. 

All pigs that were not inoculated with PRRSV remained PRRSV-free throughout the study. 

The PRRSV-specific antibody was detected in the infected pigs at d 7 PI (Figure 3.3), but 

only 7 out of 16 pigs fed the control diet and 8 of those fed the MOS diet were considered 

positive (an S/P ratio  0.4). The antibody titers of all infected pigs at d 14 PI were positive 

and greater than those at d 7 PI. The antibody titers were not different between the infected 

pigs fed the MOS diet and those fed the control diet at d 7 and 14 PI. Within the infected pigs 

with positive S/P ratios, the MOS-fed pigs had an S/P ratio of 0.65, whereas the control-fed 

pigs had an S/P ratio of 0.54 at d 7 PI (P < 0.14). 

Further measurements of lung histopathology were done at d 7 and 14 PI to assure 

that PRRSV inoculation resulted in the expected lesions. Lung lesions typical of PRRSV 

infection were induced in 6 of 8 inoculated pigs by d 7 PI and 8 of 8 pigs by d 14 PI. The 
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PRRSV-positive pigs had lesions, whereas the PRRSV-negative pigs remained lesion-free 

(Figures 3.4 & 3.5). Within the infected pigs, no differences in histological appearance of the 

lungs were observed between pigs which received the MOS diet and those fed the control. 

All PRRSV-infected pigs had thickened alveolar septae typical of the interstitial pneumonia 

of PRRSV. Other changes that were present in all infected pigs were typical of PRRSV, such 

as alveolar exudation and some macrophage necrosis. 

 

Serum Cytokines and Acute Phase Proteins 

 There was no effect of dietary MOS supplementation on serum TNF- or IL-10 

before PRRSV inoculation (Figure 3.6). However, serum TNF- levels of the PRRSV-

infected pigs were greater at d 7 and 14 PI than those of the uninfected pigs (P < 0.01). There 

was a MOS x PRRSV interaction (P = 0.06) for TNF- at d 14 PI, indicating that the 

infected pigs fed the MOS diet had a lower TNF- level than those fed the control. Serum 

IL-10 levels of the PRRSV-infected pigs at d 7 PI were greater than those of the uninfected 

pigs (P < 0.05). Pigs fed the MOS diet had greater IL-10 levels at d 14 PI than those fed the 

control diet (P < 0.05).  

Two APP, CRP and Hp, were evaluated in this study (Figure 3.7). There were no 

differences in CRP and Hp before PRRSV inoculation. The CRP and Hp levels of the 

PRRSV-infected pigs at d 7 and 14 PI were greater than those of the uninfected pigs (P < 

0.01).      
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Differential Leukocyte Counts 

At d 3 PI, white blood cells (WBC), lymphocytes, monocytes, and eosinophils were 

decreased (P < 0.05) in the PRRSV-infected pigs (Table 3.2). Nonetheless, there was no 

effect of PRRSV infection on the number of neutrophils. Additionally, MOS induced an 

increase in WBC (P < 0.05). The neutrophil to lymphocyte ratio was greatly increased in the 

PRRSV-infected pigs (P < 0.01). 

At d 7 PI, the PRRSV-infected pigs still had lower numbers of WBC and 

lymphocytes as compared to the uninfected pigs (P < 0.01), whereas neutrophils were 

increased (P < 0.05) in the PRRSV-infected pigs (Table 3.3). The numbers of WBC and 

lymphocytes remained greater in pigs fed the MOS diet than those fed the control diet (P < 

0.05). At the end of the experiment (d 14 PI), WBC, neutrophils, and eosinophils were 

increased in the PRRSV-infected pigs (P < 0.01), but no effect of PRRSV infection on 

lymphocytes was observed (Table 3.4). The neutrophil to lymphocyte ratio remained high in 

the PRRSV-infected pigs at d 7 and 14 PI (P < 0.01). 

 

Growth Performance 

    Before PRRSV inoculation, ADG, ADFI, and G:F were found to be insignificant 

between pigs which were fed the control diet and those fed the MOS diet (data not shown). 

During d 0 to 14 PI, ADG, ADFI, and G:F were greatly reduced in the PRRSV-infected pigs 

(P < 0.01) (Table 3.5). As noted earlier, PRRSV infection rapidly caused a significant 

reduction in ADFI (P < 0.01) of the infected pigs from d 2 to 14 PI (Figure 3.1). There was 

no effect of dietary MOS on pig performance, but G:F tended to improve in the MOS-fed 

pigs from d 0 to 7 PI (P < 0.1) and d 7 to 14 PI (P < 0.07).  
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DISCUSSION 

Porcine reproductive and respiratory syndrome virus is considered in swine-

producing countries worldwide to be a significant cause of multifactorial respiratory disease 

in young pigs (Albina, 1997; Van Reeth et al., 2002; Thacker, 2006). It is also known to 

strongly modulate the host‟s immune responses (Mateu and Diaz, 2008). Alveolar 

macrophages and monocytes are believed to be the target cells for PRRSV replication in vivo 

(Sur et al., 1998; Choi and Chae, 2002; Labarque et al., 2003). Our previous study showed 

that MOS, when fed to nursery pigs or applied in vitro, ameliorated the cytokine production 

of alveolar macrophages induced by in vitro bacterial or viral challenge models (Che et al., 

2008). In this study, we demonstrated that feeding MOS to nursery pigs also altered the pigs‟ 

immune response to a PRRSV challenge and may help alleviate negative impacts of 

infection.    

Apparent clinical signs observed in the PRRSV-infected pigs included anorexia and 

elevated RT. The infected pigs‟ loss of appetite was shown in a drop in ADFI from d 2 to 14 

PI. Other studies with PRRSV have also observed a significant reduction in ADFI from d 5 

to 14 PI and d 2.6 to 13 PI (Halbur et al., 1996; Escobar et al., 2004; Toepfer-Berg et al., 

2004). Apart from the anorexia, fever was the most commonly witnessed clinical sign in the 

PRRSV-infected pigs. Severity and duration of fever depend on PRRSV doses and strains 

(Halbur et al., 1996, Diaz et al. 2005; Loving et al., 2008). For example, the body 

temperature of pigs infected with a highly virulent Japanese PRRSV strain or the North 

America strain continued to increase for up to 14 d PI (Shibata et al., 2003) or 28 d PI 

(Thanawongnuwech et al., 2000), respectively. Our study used one of the highly virulent 

PRRSV strains (Purdue P-129) in the North America, which often causes a high and 
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prolonged fever. After exposure to PRRSV, the infected pigs showed pyrexia with a peak at 

d 3 PI. Notably, the infected pigs fed the control diet had a high average RT of  40.0
o
C from 

d 3 to 14 PI, whereas the RT of the MOS-fed pigs declined markedly by d 7 PI. This suggests 

that MOS modulates the pigs‟ immune response to a viral infection and reduces the intensity 

of continuing inflammation. Hung et al. (2008) also found a reduced fever at 2 h after 

injection of lipopolysaccharide in pigs consuming MOS.  

Furthermore, PRRSV infection brought about a significant decrease in leukocyte 

populations until d 14 PI. The numbers of total WBC, lymphocytes, monocytes, and 

eosinophils, but not neutrophils, were reduced for several days shortly after infection. The 

total WBC and lymphocyte counts continued to be low through d 7 PI. These results were 

consistent with those reported earlier (Shimizu et al., 1996; Lohse et al., 2004; Shi et al., 

2008). The general decline in peripheral blood leukocyte populations indicates that apoptosis 

of immune cells was probably induced by PRRSV during the early stage of infection, as 

monocytes/macrophages are the common targets for PRRSV infection and replication (Sur et 

al., 1998; Choi and Chae, 2002; Labarque et al., 2003). This implies that infection with 

PRRSV causes the infected pigs to undergo a state of immunosuppression for at least a wk 

after infection. Dietary MOS prevented the leukopenia by increasing WBC and neutrophils 

by d 3 PI, and lymphocytes by d 7 PI. The greater numbers of WBC, neutrophils, and 

lymphocytes at d 3 and 7 PI in challenged pigs fed MOS suggest the immune system may 

have been primed by the ingestion of MOS, prompting a quick response to the viral infection. 

Modulation of the immune response by MOS, therefore, plays a critical role in maintaining 

and boosting the pigs‟ nonspecific immunity impaired by PRRSV before the disease-specific 

immunity comes into play.  
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The differences in clinical signs and leukocyte populations might be associated with 

the severity of inflammation and level of inflammatory cytokines. The early cytokines 

produced during the initial stage of respiratory infections are interferon-, TNF-, IL-1β, IL-

6, and IL-8 (Van Reeth et al., 2002; Thacker, 2006). The TNF- response to PRRSV in the 

present study was pronounced at d 7 and 14 PI, suggesting that this cytokine was probably 

involved in the early immune response. Tumor necrosis factor-, together with IL-1, 

increases the expression of adhesion molecules on the vascular endothelium and leukocytes 

to recruit more immune cells to the site of infection. Macrophages and other monocytes may 

be responsible for TNF- production. A demonstrable increase in TNF- mRNA was 

evident in porcine peripheral blood mononuclear cells (PBMC) and in lung tissue for 10 d PI 

and in alveolar macrophages for 7 d PI (Choi et al., 2001; Choi and Chae, 2002; Sipos et al., 

2003). So far, there has not been much information about the serum levels of TNF- in 

PRRSV-infected pigs, but the increased mRNA expression of TNF- found in PBMC 

appeared to support the involvement of this cytokine during the early immune response.  

The serum IL-10 in the infected pigs was increased at d 7 PI. The result of our study 

was consistent with that reported by other researchers, who did not measure serum IL-10, but 

found an increase in its transcriptional level. Suradhat and Thanawongnuwech (2003) 

showed that levels of IL-10 mRNA were increased more rapidly in PBMC (d 5 PI) than in 

BALF cells (d 9 PI). The IL-10 mRNA levels were also found to be increased in AM  from 

d 10 PI (Thanawongnuwech and Thacker, 2003; Thanawongnuwech et al., 2004). The 

increase in IL-10 in the infected pigs may be in response to the PRRSV-induced 

inflammation. Interleukin-10 is secreted to inhibit activation of different types of immune 

cells and production of pro-inflammatory cytokines, resulting in reduced inflammatory 
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response (Moore et al., 2001). The production level of IL-10 is crucial in regulating a balance 

between pathology and protection. Furthermore, the increase in serum IL-10 of the MOS-fed 

pigs at the end of the acute phase indicates that there may be a shift from T helper1 to T 

helper2 lymphocyte response in association with dietary MOS. However, other cells such as 

T regulatory cells and type II macrophages are also capable of producing IL-10. Together 

with TNF- data, MOS can apparently regulate the cytokine responses of pigs to a PRRSV 

infection and its immunomodulatory effects seem to be protective by repressing ongoing 

inflammation.  

Pro-inflammatory cytokines such as TNF-, IL-1, and IL-6 produced during acute 

phase response can induce production of several APP by hepatocytes (Eckersall et al., 1996; 

Petersen et al., 2004). We found that PRRSV augmented the serum levels of Hp and CRP at 

d 7 and 14 PI and induced a much stronger response of Hp than CRP. Earlier studies showed 

increased levels of serum Hp in PRRSV-infected pigs from d 5 to 21 PI indicating its 

important role in mediating the immune response during PRRSV infection (Asai et al., 1999; 

Diaz et al., 2005; Gnanandarajah et al., 2008). Acute phase proteins are primarily synthesized 

in IL-6-mediated hepatocytes and secreted into the blood stream; however, TNF-α has been 

shown to increase Hp production directly or indirectly through the induction of or in synergy 

with IL-6 (Nakawaga-Tosa et al., 1995; Tilg et al., 1997; Petersen et al., 2004). Thus, the 

reduction in the serum TNF-α level of the MOS-fed pigs at d 14 PI would in part explain the 

numerical decline of Hp observed. Moreover, Hp and CRP may provide a feedback 

mechanism by downregulating pro-inflammatory cytokine production and activity in 

mononuclear cells (Tilg et al., 1997; Moore et al., 2001; Petersen et al., 2002). In brief, the 

trends in decreased TNF- and APP in the MOS-fed pigs at d 14 PI may indicate a sign of 
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inflammation slowdown and Hp may be a better indicator for assessing the health status of 

PRRSV-infected pigs than CRP.  

In conclusion, the data suggest that MOS regulates the nursery pigs‟ immune 

responses to PRRSV infection in vivo. The increase in leukocytes a few days after infection, 

together with the decreases in RT and inflammatory mediators at the end of the acute phase, 

indicates that MOS has the ability to enhance the host‟s immune system at the early stage of 

infection, but thereafter suppresses ongoing immune responses and inflammation. 

Immunomodulation by MOS may help alleviate negative impacts of PRRSV, including 

inflammation and poor nutrient utilization. Further studies, however, are needed to 

investigate the effect of MOS on a pig‟s immune response to combined diseases caused by 

bacteria and viruses, as pigs often encounter a complex of pathogens.  
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FIGURES AND TABLES 

 

Table 3.1 Composition of basal diets fed to nursery pigs during the experiment (as-fed basis) 

Item 

Phase
1
 

I II III 

Ingredients, %    

  Corn 38.11 42.82 52.45 

  Dried whey 22.00 16.00 10.00 

  Soybean meal, 48% 10.00 18.00 24.00 

  Spray-dried animal plasma 8.00 4.00 0.00 

  Soy protein concentrate
2
 5.00 3.00 0.00 

  Select menhaden fish meal  4.01 5.49 6.25 

  Soybean oil 3.61 4.09 4.07 

  Lactose 5.60 2.80 0.00 

  Limestone 0.85 0.56 0.55 

  Dicalcium phosphate 0.67 0.92 0.48 

  Carbadox premix
3
 1.00 1.00 1.00 

  Zinc oxide 0.42 0.42 0.42 

  Mineral premix
4
 0.35 0.35 0.35 

  Vitamin premix
5
 0.20 0.20 0.20 

  Lysine-HCl 0.07 0.16 0.22 

  DL-met 0.11 0.10 0.08 

  L-thr 0.01 0.09 0.14 
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Table 3.1 (cont.)    

Item Phase
1
 

 I II III 

Calculated composition    

  ME, Mcal/kg 3.45 3.45 3.45 

  Standardized ileal digestible AA, %    

     Lys 1.45 1.45 1.30 

     Met 0.41 0.43 0.42 

     Thr 0.94 0.94 0.84 

     Tryp 0.29 0.27 0.23 

     Val 1.10 1.03 0.89 

     Ile 0.87 0.87 0.79 

  Ca, % 0.90 0.90 0.80 

  Available P, % 0.55 0.55 0.40 

  Lactose, % 21.00 14.00 7.00 

1
Phase I, II, and III diets were fed to nursery pigs for 7, 7, and 14 d postweaning, 

respectively. 
2
Soycomil, Archer Daniels Midland Company, Decatur, IL. 

3
Mecadox 2.5, provided 0.055 g of carbadox per kilogram of diet, Phibro Animal Health, 

Fairfield, NJ. 
4
Provided as milligrams per kilogram of diet: sodium chloride, 3,000; zinc, 100 from zinc 

oxide; iron, 90 from iron sulfate; manganese, 20 from manganese oxide; copper, 8 from 

copper sulfate; iodine, 0.35 from calcium iodide; selenium, 0.30 from sodium selenite. 
5
Provided per kilogram of diet: retinyl acetate, 2,273 µg; cholecalciferol, 17 µg; DL--

tocopheryl acetate, 88 mg; menadione sodium bisulfate complex, 4 mg; niacin, 33 mg; D-

Ca-pantothenate, 24 mg; riboflavin, 9 mg; vitamin B12, 35 µg; choline chloride, 324 mg. 
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Table 3.2 Effect of mannan oligosaccharide (MOS)
1
 and porcine reproductive and 

respiratory syndrome virus (PRRSV)
2
 on differential leukocyte counts of pigs at d 3 

postinfection
3
 

Item Control MOS PRRSV MOS+PRRSV SEM 

Leukocyte count, x 10
3
/µL      

  White blood cell
ab

 10.76 12.71 7.66 10.16 1.08 

  Neutrophils 3.29 3.44 3.41 5.41 0.70 

  Lymphocytes
c
 6.71 8.61 3.92 4.29 0.68 

  Monocytes
a
 0.47 0.40 0.22 0.26 0.07 

  Eosinophils
c
 0.26 0.24 0.08 0.17 0.04 

Neutrophils/Lymphocytes
c
 0.51 0.48 1.55 1.73 0.31 

1
Pigs were fed MOS diets starting at weaning at 2 wk before infection. 

2
Pigs were challenged with PRRSV at 5 wk of age. 

3
Values are means of 16 pigs representing each treatment. 

a
Main effect of PRRSV infection was significant (P < 0.05). 

b
Main effect of diet was significant (P < 0.05).  

c
Main effect of PRRSV infection was significant (P < 0.01). 
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Table 3.3 Effect of mannan oligosaccharide (MOS)
1
 and porcine reproductive and 

respiratory syndrome virus (PRRSV)
2
 on differential leukocyte counts of pigs at d 7 

postinfection
3
 

Item Control MOS PRRSV MOS+PRRSV SEM 

Leukocyte count, x 10
3
/µL      

  White blood cells
ab

 12.79 14.18 9.74 11.92 0.82 

  Neutrophils
c
 3.58 3.18 4.08 5.01 0.50 

  Lymphocytes
ab

 8.46 10.20 4.90 6.13 0.60 

  Monocytes 0.57 0.59 0.52 0.47 0.09 

  Eosinophils 0.14 0.16 0.19 0.26 0.05 

Neutrophils/Lymphocytes
a
 0.46 0.32 0.92 0.94 0.11 

1
Pigs were fed MOS diets starting at weaning at 2 wk before infection. 

2
Pigs were challenged with PRRSV at 5 wk of age. 

3
Values are means of 16 pigs representing each treatment. 

a
Main effect of PRRSV infection was significant (P < 0.01). 

b
Main effect of diet was significant (P < 0.05). 

c
Main effect of PRRSV infection was significant (P < 0.05). 
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Table 3.4 Effect of mannan oligosaccharide (MOS)
1
 and porcine reproductive and 

respiratory syndrome virus (PRRSV)
2
 on differential leukocyte counts of pigs at d 14 

postinfection
3
 

Item Control MOS PRRSV MOS+PRRSV SEM 

Leukocyte count, x 10
3
/µL      

  White blood cells
a
 16.66 16.16 20.95 22.03 1.52 

  Neutrophils
a
 3.47 3.80 6.87 7.89 0.58 

  Lymphocytes 11.88 11.30 12.23 12.64 1.14 

  Monocytes 1.00 0.68 1.08 0.87 0.27 

  Eosinophils
a
 0.14 0.36 0.60 0.56 0.08 

Neutrophils/Lymphocytes
a
 0.30 0.35 0.62 0.67 0.07 

1
Pigs were fed MOS diets starting at weaning at 2 wk before infection. 

2
Pigs were challenged with PRRSV at 5 wk of age. 

3
Values are means of 8 pigs representing each treatment. 

a
Main effect of PRRSV infection was significant (P < 0.01). 
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Table 3.5 Effect of mannan oligosaccharide (MOS)
1
 and porcine reproductive and 

respiratory syndrome virus (PRRSV)
2
 on performance of pigs after PRRSV infection 

Item n
3
 Control MOS PRRSV MOS+PRRSV SEM 

d 0 to 7 postinfection       

  ADG, g
a
 16 612 603 197 205 15 

  ADFI, g
a
 8 908 871 491 461 27 

  G:F, g/kg
ab

 8 676 700 405 447 19 

d 7 to14 postinfection       

  ADG, g
a
 8 564 654 284 295 26 

  ADFI, g
a
 8 950 996 571 539 45 

  G:F, g/kg
ac

 8 599 654 500 551 23 

1
Pigs were fed MOS diets starting at weaning at 2 wk before infection. 

2
Pigs were challenged with PRRSV at 5 wk of age. 

3
The pig was the experimental unit for ADG, whereas the pen, containing 2 pigs, was the 

experimental unit for ADFI and G:F. 
a
Main effect of PRRSV was significant (P < 0.001). 

b
Trend to main effect of diet (P < 0.1). 

c
Trend to main effect of diet (P = 0.07). 
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Figure 3.1 Effect of mannan oligosaccharide (MOS) and porcine reproductive and 

respiratory syndrome virus (PRRSV) on ADFI of nursery pigs. Pigs infected with PRRSV 

had a significantly lower ADFI from d 2 to 14 postinfection than the uninfected pigs (P < 

0.01). No effect of MOS on ADFI was found. 
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Figure 3.2 Rectal temperature (RT) in pigs fed control or mannan oligosaccharide (MOS) 

diets with or without infection of porcine reproductive and respiratory syndrome virus 

(PRRSV). The RT of the infected pigs peaked at d 3 postinfection (PI) and was significantly 

greater than that of the uninfected pigs (P < 0.01) and PRRSV continued to affect the 

infected pigs fed the control diet until d 14 PI. At d 7 PI, there was a PRRSV x diet 

interaction (P < 0.01) on RT, indicating that the infected pigs fed the MOS diet had a lower 

RT (P < 0.05) than those fed the control diet. Dietary MOS also lowered the RT of the 

infected pigs at d 10 PI (P < 0.06). The pigs fed the control diet had a greater RT at d 14 PI 

compared to those fed the MOS diet (P < 0.01). Values were means ± pooled SEM (d 0, 3, 

and 7 PI, n = 16; d 10 & 14 PI, n = 8). 
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Figure 3.3 Viral load (A) and antibody titer (B) in control- or mannan oligosaccharide 

(MOS)-fed pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV). 

Viral load is presented as cycle threshold (Ct) values and antibody titer as sample to positive 

control (S/P) ratios. Mannan oligosaccharide did not affect (P > 0.05) the S/P ratios and Ct 

values of the infected pigs postinfection (PI). Values were means ± pooled SEM (d 3 & 7 PI, 

n = 16; d 14 PI, n = 8). 
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Figure 3.4 Microscopic section of lungs from pigs infected with porcine reproductive and 

respiratory syndrome virus. Alveoli (A) and bronchioles (Br) contained many inflammatory 

cells. Alveolar septa (box) were thickened typical of the interstitial pneumonia of porcine 

reproductive and respiratory syndrome (Hemotoxylin and Eosin stain, 200x magnification). 
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Figure 3.5 Microscopic section of normal lungs from pigs not infected with porcine 

reproductive and respiratory syndrome virus. There was no exudate in alveoli (A) or 

bronchioles (Br) and alveolar septa (box) were normal thickness (Hemotoxylin and Eosin 

stain, 200x magnification). 
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Figure 3.6 Serum tumor necrosis factor- (TNF-) and IL-10 levels in pigs fed control or 

MOS diets with or without porcine reproductive and respiratory syndrome virus (PRRSV) 

infection. (A) TNF- levels of PRRSV-infected pigs were greater at d 7 (n = 16) and 14 (n = 

8) postinfection (PI) than those of the uninfected pigs (P < 0.01).  There was a PRRSV x diet 

interaction (P = 0.06) on TNF- at d 14 PI, indicating that the infected pigs fed the MOS diet 

had a lower TNF- level than those fed the control. (B) IL-10 levels of PRRSV-infected pigs 

were greater at d 7 PI (n = 16) than those of the uninfected pigs (P < 0.05). Pigs fed MOS 

diets had greater IL-10 levels at d 14 PI (n = 8) than those fed the control (P < 0.05). Values 

were means ± pooled SEM. * P < 0.05; ** P < 0.01. 
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Figure 3.7 Serum C-reactive protein (CRP, A) and Haptoglobin (Hp, B) levels in pigs fed 

control or MOS diets with or without porcine reproductive and respiratory syndrome virus 

(PRRSV) infection. The CRP and Hp levels of PRRSV-infected pigs were greater at d 7 (n = 

16) and 14 (n = 8) postinfection (PI) than those of the uninfected pigs (P < 0.01). Values 

were means ± pooled SEM. ** P < 0.01. 
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CHAPTER 4 

MANNAN OLIGOSACCHARIDE MODULATES GENE EXPRESSION PROFILE IN 

PIGS EXPERIMENTALLY INFECTED WITH PORCINE REPRODUCTIVE AND 

RESPIRATORY SYNDROME VIRUS 

 

ABSTRACT: This study characterized gene expression in peripheral blood mononuclear 

cells (PBMC) and bronchoalveolar lavage fluid (BALF) cells from control-or mannan 

oligosaccharide (MOS)-fed pigs with or without PRRSV at d 7 postinfection (PI). Weaned 

pigs (3 wk old) fed 0% or 0.2% MOS diets were intranasally inoculated with porcine 

reproductive and respiratory syndrome virus (PRRSV) or a sterile medium at 5 wk old. Total 

RNA (3 pigs/treatment) was extracted from cells. Double-stranded cDNA was amplified, 

labeled, and further hybridized to the Affymetrix GeneChip Porcine Genome Array 

consisting of 23,937 probe sets representing 20,201 genes. Microarray data were analyzed in 

R using packages from the Bioconductor project. Differential gene expression was tested by 

fitting a mixed linear model equivalent to a 2 x 2 factorial ANOVA using the limma package. 

Dietary MOS and PRRSV changed the expression of thousands of probe sets in PBMC and 

BALF cells (P < 0.05). The MOS x PRRSV interaction altered the expression of more 

nonimmune probe sets in PBMC (977 up and 1128 down) than in BALF cells (117 up and 78 

down). The MOS x PRRSV interaction (P < 0.05) for immune probe sets in PBMC affected 

genes encoding key inflammatory mediators. In uninfected pigs, gene expression of IL-1α, 

IL-6, myeloid differentiation factor 88, toll-like receptor (TLR) 4, major histocompatibility 

complex (MHC) II and dead box polypeptide 58 increased in PBMC of MOS-fed pigs (P < 

0.05). This suggests that MOS enhances disease resistance in pigs and supports the fact that 
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MOS induced a rapid increase in leukocytes at d 3 and 7 PI. Within infected pigs, however, 

MOS reduced the expression of IL-1β, IL-6, IL-8, macrophage inflammatory protein (MIP)-

1α, MIP-1β, monocyte chemotactic protein (MCP)-1, and TLR4 genes in PBMC (P < 0.05). 

This finding may explain why fever was ameliorated in infected pigs fed MOS by d 7 PI. The 

expression of IL-1β, IL-6, MIP-1β, MCP-1, and TLR4 genes analyzed by real time RT-PCR 

confirmed the microarray results. In BALF cells of infected pigs, MOS reduced the gene 

expression of TLR4, MHCII, and molecules associated with the complement system, but 

increased the gene expression of MHCI. The MOS-regulated decrease of inflammatory 

responses was involved in several biological pathways. In short, MOS regulated the 

expression of nonimmune and immune genes in leukocytes of pigs, perhaps providing 

benefits by enhancing immunity while preventing over-stimulation of the immune system. 

 

INTRODUCTION 

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a 

threat for swine-producing countries worldwide (Albina, 1997; Van Reeth et al., 2002; 

Thacker, 2006) and is capable of impairing the host‟s immune responses (Mateu and Diaz, 

2008). It has been shown that PRRSV reduces total leukocyte counts, delays cell-mediated 

immunity, inhibits key cytokines such as interferon (IFN)-α, and may interfere with correct 

antigen presentation and activation of T lymphocytes (Lee et al., 2004; Wang et al., 2007; 

Shi et al., 2008). Additionally, different PRRSV isolates have different abilities to induce 

various cytokines such as tumor necrosis factor (TNF)-α, IL-1β, IL-6, IL-10, and IL-12 

(Sipos et al., 2003; Thanawongnuwech et al., 2004). Our recent study showed that mannan 

oligosaccharide (MOS), extracted from the yeast cell wall of Saccharomyces cerevisiae, 
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induced changes in the immune responses of pigs to PRRSV infection by d 7 postinfection 

(PI). Dietary MOS was associated with rapidly increased numbers of white blood cells 

(WBC), lymphocytes, and neutrophils in infected pigs at the early stage of infection. Feeding 

MOS to infected pigs reduced fever at d 7 PI and the level of serum TNF-α at d 14 PI. In 

addition, feeding MOS to pigs increased the serum IL-10 level in pigs at d 14 PI. Together, 

these data indicate that the on-going inflammation caused by PRRSV may be alleviated by 

MOS after d 7 PI. Therefore, this altered immune response was studied further here using the 

Affymetrix GeneChip Porcine Genome Array followed by a real time RT-PCR validation. 

The objective of this study was to characterize gene expression, measured by the Affymetrix 

GeneChip Porcine Genome Array, in peripheral blood mononuclear cells (PBMC) and 

bronchoalveolar lavage fluid (BALF) cells isolated at d 7 PI from control- or MOS-fed pigs 

with or without PRRSV infection.   

   

MATERIALS AND METHODS 

Experimental Design, Animals, and Housing 

Sixty four pigs (3 wk old), free of PRRSV (virology and PCR), were used in 2 

separate but similar trials conducted sequentially (32 pigs per trial). Pigs were brought to the 

experimental site at weaning at 3 wk of age and upon arrival were placed in disease-

containment chambers which have been previously described (Escobar et al., 2004). 

Lincomycin was administered daily via intramuscular injection for 3 d after arrival to prevent 

infections (11 mg/kg of BW; Pharmacia and Upjohn Co., Kalamazoo, MI). 

The pigs were divided into blocks of 4 pigs based on BW, gender, and litter origin. 

They were randomly assigned from within blocks to one of 4 treatments in a 2 x 2 factorial 
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arrangement (2 types of diet: 0% MOS as the control and 0.2% MOS addition; 2 levels of 

PRRSV: with and without). There were 8 replicate pens (or chambers) of 2 pigs each. One 

castrated male and one female were placed in each chamber. All pigs were housed in a 

temperature-controlled room with constant lighting and had ad libitum access to water and 

feed. Pigs were fed the experimental diets for 2 wk before being challenged with PRRSV. 

The basal diets (Table 4.1) were formulated to contain levels of all essential nutrients which 

met or exceeded the nutritional requirements of pigs during the nursery period (NRC, 1998). 

Treatment diets were formulated by supplementing the basal diets with 0.2% MOS 

throughout the experimental period. 

 

Experimental Procedures 

The experimental protocol was approved by the University of Illinois Institutional 

Animal Care and Use Committee and the Institutional Biosafety Committee. The procedures 

for this study were adapted from the method of Escobar et al. (2004) with modifications. 

Having been fed the experimental diets for 2 wk, pigs in one-half of the chambers were 

inoculated intranasally with 2 mL of high-virulence strain of PRRSV (Purdue isolate P-129 

containing 10
5
 50% tissue culture infective dose). Pigs in the remaining chambers received 2 

mL of sterile Dubelco‟s modified Eagle medium. One-half of the pigs (32 pigs) were 

euthanized at d 7 PI and the remainder at the end of the experiment (d 14 PI) for collection of 

PBMC and BALF cells.  In each of the 2 trials, one pig from each chamber of control, MOS, 

PRRSV, and MOS plus PRRSV was euthanized at d 7 and 14 PI. Before being euthanized, 

pigs were bled by jugular vein to obtain blood samples for isolation of PBMC. Then, pigs 

were euthanized to collect BALF cells. 
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Blood Collection and Isolation of PBMC  

Blood samples were collected from the jugular vein at d 7 PI. Six milliliters of blood 

from each pig were collected into a glass tube containing anticoagulant (heparin). Peripheral 

blood mononuclear cells from blood were isolated by gradient centrifugation using ficoll 

gradient (Histopaque 1077, density = 1.077 g/mL; Sigma Chemical Company, St. Louis, 

MO). Three milliliters of whole blood were carefully added on the top of 3 mL of Histopaque 

solution in a 15-mL conical tube. The tube was centrifuged at 400 x g for 30 min at room 

temperature. After centrifugation, the upper layer of the opaque interface containing 

mononuclear cells was aspirated and transferred to a new centrifuge tube. The cells were 

washed twice with 10 mL of Hank‟s balanced salt solution and centrifuged at 250 x g for 10 

min at room temperature. The cells were then washed with Roswell Park Memorial Institute 

1640, pelleted by centrifugation, and resuspended in 200 µL RNAlater (Ambion, Inc., 

Austin, TX). The cells were kept at -80
o
C until used. 

 

Collection and Isolation of BALF Cells  

Bronchoalveolar lavage fluid cells were isolated from pigs at d 7 PI. Pigs were 

anesthetized by intramuscular injection of a 1-mL combination of telazol, ketamine, and 

xylazine (2:1:1) per 23.3 kg BW. The final mixture contained 100 mg telazol, 50 mg 

ketamine, and 50 mg xylazine in one mL (Fort Dodge Animal Health, Fort Dodge, IA). After 

anesthesia, pigs were euthanized by intracardiac injection with 78 mg sodium pentobarbital 

(Sleepaway) per 1 kg of BW (Henry Schein Inc., Indianapolis, IN).  

Bronchoalveolar lavage fluid cells were collected by pulmonary lavage with 150 mL 

of PBS without Ca and Mg. Lavage fluid was filtered through a double layer of sterile gauze 
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and centrifuged at 400 x g for 15 min at room temperature. After centrifugation, lung lavage 

cells were washed twice with Hank‟s balanced salt solution. The cells were then washed with 

Roswell Park Memorial Institute 1640, pelleted by centrifugation, and resuspended in 200 µL 

RNAlater (Ambion, Inc., Austin, TX). The cells were kept at -80
o
C until used. 

 

Total RNA Extraction and Gene Expression by Microarrays 

Total RNA (3 pigs/treatment) from PBMC and BALF cells isolated at d 7 PI was 

extracted using TRIzol® plus PureLink
TM

 RNA Mini Kit according to the manufacturer‟s 

instructions (Invitrogen, Carlsbad, CA). The RNA quality and quantity was assessed using 

the Agilent 2100 Bioanalyzer and the ND-1000 Nanodrop spectrophotometer, respectively. 

All samples used for further analysis had an O. D. of 1.8 to 2.1 and an RNA integrity number 

of ≥ 7. Double-stranded cDNA was first synthesized, purified, and employed as a template 

for in vitro amplification and labeling by using the GeneChip® Expression 3‟-Amplification 

IVT Labelling Kit (Affymetrix Inc., Santa Clara, CA). Then, cDNA was used to synthesize 

cRNA which was hydrolyzed to produce fragmented cRNA in the 35-200 nucleotide size 

range for proper hybridization. The fragmented cRNA was labelled and further hybridized to 

the Affymetrix GeneChip® Porcine Genome Array. Each array consisted of 23,937 probe 

sets to interrogate 23,256 transcripts in pig, which represents 20,201 genes. Twenty four 

chips in total were used in this experiment. 

 

Analysis of Microarray Data 

Data from the PBMC samples and BALF cell samples were handled separately at all 

stages of the process. All quality control assessments, data processing, and statistical 
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analyses were done in R (R Development Core Team, 2008) using packages from the 

Bioconductor project (Gentleman et al., 2004) as indicated below.  

Quality Control Assessment. Quality control assessment (MacDonald, 2005) showed 

that all arrays were of acceptable quality except that one PBMC sample was an outlier by the 

principle component analysis method and so was excluded from further analysis. The 

remaining arrays were re-processed with the Guanine Cytosine Robust Multi-Array Analysis 

algorithm, which performs a GC-based background-correction, does a quantile normalization 

between arrays and summarizes the multiple probes into one probe set value using a median 

polish algorithm (Wu and Irizarry, 2005).  

Differential Gene Expression Analysis. Testing for differential gene expression was 

done by fitting a mixed linear model equivalent to a 2 x 2 factorial ANOVA using the limma 

package (Smyth, 2005), which uses an empirical Bayes correction that helps to improve 

power by borrowing information across genes (Smyth, 2004). Appropriate pairwise 

comparisons between tested groups and the overall interaction effect between MOS and 

PRRSV were pulled as contrasts from the model. There were 5 comparisons as follows: 

infected MOS (IMOS) vs. infected control (ICON), uninfected MOS (MOS) vs. uninfected 

control (CON), IMOS vs. MOS, ICON vs. CON, and MOS x PRRSV interaction. The limma 

model was fit and raw p-values were calculated using all 23,937 probe sets on the array, but 

the correction for multiple hypothesis testing using the false discovery rate (FDR) method 

(Benjamini and Hochberg, 1995) was applied as follows: First, we were particularly 

interested in the immune genes, so we generated one list of the immune genes based on the 

immune genes probe sets provided by Affymetrix‟s NetAffix Analysis Center on March 9, 

2009. For both the PBMC and BALF cell samples, all immune probe sets that were present 
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on at least one array in that tissue based on Affymetrix‟s Call Detection Algorithm were 

pulled as one list and corrected using the FDR method (Affymetrix, 2009). Second, the rest 

of the probe sets on the array that were present on at least one array were pulled as another 

list and corrected using the FDR method. The numbers of present immune and other probe 

sets for each tissue are listed in Table 4.2. 

Pattern Analysis of Gene Expression. In order to make biological sense of the 

analysis results, we used Ingenuity Pathway Analysis (IPA, version 7, Ingenuity® Systems, 

2009) on the combined list of present immune probe sets and present other probe sets for 

each tissue. Because IPA does not support Affymetrix‟s porcine array, we instead used the 

equivalent human probe set identification as provided by Tsai et al. (2006); only 679 out of 

17,167 (PBMC) and 698 out of 17,648 (BALF cells) porcine probe sets did not have a human 

probe set equivalent, and were discarded from the IPA analysis. We were interested in the 

following 3 comparisons: MOS vs. ICON, IMOS vs. MOS, and interaction. For each probe 

set, the fold change and FDR p-values for those 3 comparisons were input for each tissue for 

a total of 6 comparisons tested in IPA. We used the list of present probe sets as the 

background for testing over-representation in the significant lists. The criteria for calling a 

probe set “significant” changed slightly for each of the 6 comparisons but were determined in 

the following manner: First, in the case where more than one probe set mapped to the same 

gene, we told IPA to use the one with the largest fold-change value. Second, the cutoff for 

significance was originally set to FDR p-value < 0.05 and the number of genes that met this 

criterion and had information in Ingenuity‟s Knowledge Base was determined. The IPA 

recommends that no more than 800 significant genes be used for network construction, so we 

used a minimum fold change criterion to set to ~800 genes. For one comparison, the BALF 
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cells interaction, we increased the FDR p-value cutoff to 0.1 to have a larger number of genes 

to test. The specific FDR p-value and fold-change criteria for each comparison, plus the 

number of significant genes tested are present in Tables 4.3. 

 

Quantitative Real Time RT-PCR 

The same total RNA (3 pigs/treatment) from PBMC and BALF cells used to run the 

Affymetrix microarray was also employed for real time RT-PCR. First strand cDNA was 

produced from 3 µg of total RNA per sample using the SuperScript
TM

 First-Strand Synthesis 

System for RT-PCR (Invitrogen, Carlsbad, CA) in a total volume of 20 µL. Total RNA was 

denatured at 65
o
C for 5 min and annealed at 42

o
C for 2 min. Then, the reverse transcription 

reaction was carried out at 42
o
C for 50 min, followed by heat inactivation at 70

o
C for 15 min. 

The reaction was collected by centrifugation, incubated with 1 µL of RNase H at 37
o
C for 20 

min before amplification of the target DNA.     

 In order to verify the results from the microarray, quantitative analysis of IL-1β, IL-4, 

IL-6, macrophage inflammatory protein (MIP)-1β, monocyte chemotactic protein (MCP)-1, 

toll-like receptor (TLR) 4, mannose receptors (MR), major histocompatibility complex 

(MHC) II, and Arginase (ARG)-1 mRNA was assayed using RT-PCR. The primers and 

probes were synthesized by Applied Biosystems (Foster, CA). All probes for the target genes 

were designed to contain 6-carboxy-fluorescein (FAM) as a fluorescent reporter dye at the 5' 

end and 6-carboxy-tetramethyl-rhodamine (TAMRA) as a quencher-fluorescent dye at the 3' 

end. The 18S ribosomal RNA was used as a housekeeping gene and dual-labeled with a 5' 

reporter dye (VIC) and a 3' quenching dye (TAMRA). Primer and probe sequences were 

generated for the target genes using the available GenBank sequence. The probe/primer pair 
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sequences and the amplicon lengths are shown in Table 4.4. One hundred nanograms of total 

RNA were assayed for each sample in triplicate. The PCR reactions contained each primer 

and probe, Taqman® universal PCR master mix, cDNA, and RNase-free water in a total 

volume of 20 µL. The real-time RT-PCR analysis was done using the ABI PRISM 7900 

Sequence Detection System (Applied Biosystems, Foster, CA). Thermal cycling conditions 

were 50
o
C for 2 min and 95

o
C for 10 min, followed by 40 cycles with 15 sec at 95

o
C and 1 

min at 60
o
C. 

 

RESULTS 

Differential Nonimmune Gene Expression in PBMC and BALF Cells 

  Dietary MOS and PRRSV infection significantly changed the expression of 

nonimmune genes in PBMC and BALF cells at d 7 PI (Table 4.5). The interaction between 

MOS and PRRSV for the gene expression in PBMC was significant (P < 0.05) and 

upregulated the expression of 997 probe sets and downregulated the expression of 1,128 

probe sets. For BALF cells, the MOS x PRRSV interaction increased the expression of 117 

probe sets and decreased the expression of 78 probe sets (P < 0.05). The data indicate that the 

MOS x PRRSV interaction affected a greater number of probe sets in PBMC than in BALF 

cells. In addition, the number of probe sets affected by MOS varied dependent on the status 

of pigs. In uninfected pigs, dietary MOS induced the expression of many more probe sets (P 

< 0.05) in PBMC (938 upregulated and 998 downregulated) than in BALF cells (1 

upregulated and 1 downregulated). However, within the infected pigs, dietary MOS altered 

the expression of more probe sets (P < 0.05) in BALF cells (1,007 upregulated and 1,318 

downregulated) than in PBMC (164 upregulated and 237 downregulated). 
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Differential Immune Gene Expression in PBMC and BALF Cells 

 We found that there was a significant MOS x PRRSV interaction on the expression of 

immune genes in PBMC (P < 0.05), but not in BALF cells. Two probe sets were upregulated 

and 19 downregulated (Table 4.6). When comparing IMOS vs. ICON, more immune probe 

sets in PBMC and BALF cells were identified as downregulated (9 & 24, respectively) than 

as upregulated (3 & 1, respectively) (P < 0.05). Within the uninfected pigs, dietary MOS 

increased the expression of 14 probe sets and decreased the expression of one probe set in 

PBMC as compared to the control (P < 0.05). 

 The immune genes identified as significantly differentially expressed in PBMC are 

shown Table 4.7 and Figure 4.1. The MOS x PRRSV interaction affected key genes encoding 

inflammatory mediators. In uninfected pigs, the gene expression of cytokines, intracellular 

signaling molecules, and pattern recognition receptors (PRR) was increased in PBMC of the 

MOS-fed pigs as compared to the control-fed pigs (P < 0.05). Additionally, MOS tended to 

increase (P < 0.09) the gene expression of IL-1β, IL-1 receptor antagonist, IL-18, and 

alveolar macrophage-derived chemotactic factor-2 (data not shown). Within the infected 

pigs, however, MOS reduced the gene expression of important pro-inflammatory cytokines 

and chemokines in PBMC as compared to the control (P < 0.05).       

  With respect to the expression of immune genes in BALF cells, the MOS x PRRSV 

interaction was not significant (P > 0.05, Table 4.8). In uninfected pigs, there was no 

difference in the gene expression between MOS and CON (P > 0.05). Within the infected 

pigs, MOS downregulated the gene expression of several genes involved in inflammation and 

upregulated the expression of MHCI gene as compared to the control (P < 0.05).  
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Patterns of Gene Expression 

 To understand the effects of MOS and PRRSV on the pattern of gene expression, we 

used the IPA to categorize the significantly affected immune and nonimmune genes based on 

biological processes and molecular functions for both PBMC and BALF cells. We also 

examined the canonical pathways in which those genes were involved. The criteria for 

selection of genes to be included in the analysis were mentioned earlier. Biological functions 

and canonical pathways associated with the changes of gene expression in PBMC and BALF 

cells for 3 comparisons (interaction, IMOS vs. ICON, and IMOS vs. MOS) are presented. 

For each comparison, 12 biological processes and 4 canonical pathway are selectively shown. 

Interaction between MOS and PRRSV. Putative functional categories of 

significantly affected genes in PBMC are shown in Table 4.9. For PBMC, the MOS x 

PRRSV interaction affected the majority of expressed genes identified by 64 biological 

processes in PBMC of pigs. The genes expressed were involved in many important biological 

processes such as cell cycle, cellular growth and proliferation, cell interaction and movement, 

and many other immune-related functions. These samples were taken at a stage of acute 

infection during which most immune cells were produced from the central immune organs 

and recruited to the site of infection. Particularly, genes related to hematological system 

development and function, inflammation, cell to cell signaling, and immune cell trafficking 

were activated. For BALF cells, the interaction significantly affected 74 biological processes 

(Table 4.10). The top biological functions in which gene expression was substantially 

changed comprised lipid metabolism, cell death, hematological system development and 

function, and many other immune-related processes. 
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The canonical pathways associated with PBMC genes that were differentially 

expressed are shown in Table 4.11. The MOS x PRRSV interaction affected 214 pathways of 

which 38 were significant. Most biological pathways had more genes downregulated than 

upregulated. Notably, the interaction downregulated the hypoxia signaling and triggering 

receptor expressed on myeloid cells (TREM)-1 signaling. Reduced mRNA expression of key 

transcriptional factors, tumor protein 53 (p53) and hypoxia-inducible factor (HIF)-1 

indicated that the hypoxia signaling was downregulated. The significantly downregulated 

genes associated with TREM-1 signaling included cytokines (IL-1β, IL-6) and chemokines 

(IL-8, MIP-1β, MCP-1). With respect to BALF cells, of 173 pathways, 19 were significantly 

affected by MOS x PRRSV interaction (Table 4.12). More genes involved in these pathways 

were downregulated than upregulated. 

Infected MOS vs. Infected CON. The results obtained showed that MOS affected a 

number of biological processes in PBMC and BALF cells of the infected pigs. For PBMC, 76 

significant biological processes were found (Table 4.9). They included cell cycle, DNA 

synthesis and repair, cellular movement, hematological system development and function, 

and many other immune-related functions. For BALF cells, MOS significantly affected 71 

biological processes, including cell to cell signaling and interaction, hematological system 

development and function, tissue development, lipid metabolism, and many other immune-

related functions (Table 4.10). 

For PBMC, it was noted that the 4 major canonical pathways involved were 

communication between innate and adaptive immune cells, TREM-1 signaling, p53 

signaling, and protein ubiquitination (Table 4.11). The significantly affected genes 

participated in these pathways were more downregulated than upregulated, suggesting that 
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those pathways are not activated by MOS in infected pigs. Genes whose expression was 

repressed included IL-1β, IL-6, IL8, MIP-1α, MIP-1β, TLR9, p38 mitogen-activated protein 

kinase (p38 MAPK), cysteine-aspartic protease-6, baculoviral inhibitor of apoptosis repeat-

containing 5, ubiquitin-conjugating enzymes, ubiquitin ligase, and inducible heat shock 

protein 90. For BALF cells, MOS impacted several functional pathways, including 

macropinocytosis signaling, clathrin-mediated endocytosis signaling, antigen presentation 

pathway, virus entry via endocytic pathway, and IL-4 signaling (Table 4.12). The genes 

significantly repressed were MR, integrin-β, phosphoinositide 3-kinase (PI3K), protein 

kinase C, cell division control protein 42, activating protein 2, huntingtin interacting protein-

1, IL-13 receptor, corticosteroid receptor, and members of MHCII. Only CD14 mRNA which 

encodes a co-receptor along with TLR4 for the detection of bacterial lipopolysaccharide was 

upregulated. 

Infected MOS vs. Uninfected MOS. For PBMC, PRRSV infection significantly 

influenced 66 biological processes within the MOS-fed pigs (Table 4.9). These biological 

processes identified consisted of antigen presentation, cell to cell signaling and interaction, 

hematological system development and function, and many other immune-related functions. 

For BALF cells, 61 biological processes were significantly affected (Table 4.10). The 

biological functions affected included cellular movement, cell to cell signaling and 

interaction, hematological system development and function, cell death, and many other 

immune-related functions. The results from both types of cells indicated that the immune 

cells from the hematological system were recruited to the site of infection. 

In PBMC, the canonical pathways found were oxidative phosphorylation, dendritic 

cell maturation, communication between innate and adaptive immune cells, TREM-1 
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signaling, and other immune-related pathways (Table 4.11). The genes significantly 

downregulated in these pathways were TLR2, TLR4, IL-1α, IL-1β, IL-6, IL-8, MIP-1α, MIP-

1β, p38 MAPK, and cluster of differentiation (CD) 154. The infection increased the 

expression of fragment crystallizable of IgG, receptor, and transporter, signal transducer and 

activator of transcription 1, MHCII, myeloid differentiation factor (MyD)-88, and cysteine-

aspartic protease-1. For BALF cells, the canonical pathways affected included 

communication between innate and adaptive immune cells, the complement system, crosstalk 

between dendritic cells and natural killer cells, and many other immune-related pathways 

(Table 4.12). The downregulated genes included TLR4, TLR9, IL-1α, IL-1β, IL-6, IL-8, 

MIP-1α, MIP-1β, and MHCII. The upregulated genes included IFN-γ, IL-10, chemokine (C-

C motif) ligand 5, natural killer group 2D, and CD69.    

 

Validation of Gene Expression by Real Time RT-PCR 

Based on the microarray data, 9 immune-related genes were further analyzed to 

validate the result of gene expression by the microarray technique. The genes analyzed 

included IL-1β, IL-4, IL-6, MIP-1β, MCP-1, ARG-1, MHCII, TLR4, and MR. It was found 

that 8 of the selected genes analyzed by RT-PCR had similar levels of relative expression as 

those identified by microarray (Table 4.13). Although the magnitude of the responses of 

those genes varied from one method to another, it did not change the trend of the responses. 

In addition, the IL-4 gene, which was not expressed by microarray, was also not detected by 

RT-PCR. There was a significant MOS x PRRSV interaction for IL-1β (P < 0.01), IL-6 (P < 

0.01), MIP-1β (P < 0.01), MCP-1 (P = 0.06), TLR4 (P < 0.01), MR (P < 0.05), and ARG-1 

(P = 0.053). In brief, the results of gene expression analysis by both methods were consistent. 
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DISCUSSION 

Mannan oligosaccharide, when added to nursery diets, regulates the pig‟s immune 

responses (Che et al., 2009). Dietary MOS was associated with the rapidly increased WBC 

and lymphocytes in pigs during the first wk PI. However, the declined fever in the PRRSV-

infected pigs consuming MOS by d 7 PI suggested that the intensity of on-going 

inflammation was gradually reduced. These altered immune responses may be associated 

with changes in the expression level of immune-related genes, particularly inflammation-

regulating genes. Therefore, transcriptional profiling of PBMC and BALF cells by using the 

Affymetrix microarray and real time RT-PCR would help us better understand the host‟s 

immune response to PRRSV and the immunomodulatory role of MOS in relation to a viral 

infection.  

Dietary MOS, PRRSV infection, and their interaction regulated the transcriptional 

level of a great number of nonimmune and immune genes in both PBMC and BALF cells 

(Tables 4.5 and 4.6). The MOS x PRRSV interaction affected a greater number of genes in 

PBMC than in BALF cells. Notably, in uninfected pigs, MOS appeared to alter the 

expression of genes in PBMC only, indicating that under an unchallenged condition, MOS 

has a greater impact on PBMC than BALF cells. The MOS-induced changes of gene 

expression in PBMC are very important in prompt triggering of an immune response because 

those cells circulate around the body and encounter the endogenous and exogenous stimuli 

(Kohlmeier and Woodland, 2009). This is supported by the fact that changes in the gene 

expression in BALF cells were not found between MOS and CON, but between IMOS and 

ICON. Also, the number of genes differentially expressed in PBMC substantially varied 

between the infected pigs and the uninfected ones. Interaction of the MOS-primed PBMC 
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with other molecules and extracellular environments during differentiation and homing at a 

specific tissue is critical and would have a considerable impact on their subsequent reaction 

against an immunogenic agent (Lefrancois and Puddington, 2006). Clearly, these results 

strikingly demonstrated that MOS added to the pig‟s diet regulates the expression of genes in 

both PBMC and BALF cells, and this alteration may bring about further changes in immune 

responses and disease resistance of pigs.  

Among the differentially expressed genes in PBMC, many important immune genes 

involved in chemoattraction, inflammatory regulation, and pathogen detection were regulated 

by MOS (Table 4.7). Dietary MOS increased the mRNA expression of genes of the innate 

and adpative immunity, including IL-1α, IL-6, TLR4, dead box polypeptide (DDX) 58, 

CD1.1, MyD88, and MHCII in the uninfected pigs. The protein cytokines, IL-1α and IL-6, 

play a significant role in the host‟s defense mechanism. The IL-1α gene constitutively 

expresses in keratinocytes of the skin, epithelial cells of the cornea, granulosa cells of the 

ovary, and hypothalamic cells in the brain (Dinarello, 1994). The increased expression of IL-

1α gene in PBMC of the uninfected pigs fed MOS is a striking finding. After being secreted, 

IL-1α remains mainly intracellular, but has several biologically important functions. It 

activates growth and differentiation factors that initiate cellular proliferation and migration 

events in response to immunological insults (Dinarello, 1994; Gosselin and Rivest, 2007). 

Recently, it has been found that IL-1α induced an antiviral state and secretion of 2 

transferable antiviral factors, IFN-α and a soluble form of the low density lipoprotein 

receptor (Werman et al. 2008). The IL-6 cytokine has many pro-inflammatory and anti-

inflammatory effects. As it can cause inflammation and fever and it also reduces 

inflammation by inhibiting the production of IL-1β and TNF-α and inducing anti-
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inflammatory mediators such as acute phase proteins, IL-1 receptor antagonist, and IL-10 

(Tilg et al., 1997; Kishimoto, 2005). Thus, the MOS-induced expression of IL-1α and IL-6 

genes may enhance the pig‟s immunity to microbial infections and possibly provide some 

protection associated with IL-6 immunosuppressive effects.  

Upregulation of TLR4, DDX58, CD1.1, MyD88, and MHCII genes consolidated the 

host‟s immune defense against invading pathogens and immunologic challenges (Table 4.7). 

Toll-like receptor 4 recognizes lipopolysaccharide on various gram-negative bacteria, 

whereas DDX58 codes for a PRR called retinoic-inducible gene-1 protein that can detect 

viruses (Takeda et al, 2003; Luo et al., 2008; Takeuchi and Akira, 2008). The CD1.1 is an 

MHCI-like surface glycoprotein that can be recognized by T cells. It has been suggested to 

play an important role at the pre-adaptive phase of immune responses to some microbial 

pathogens (Roark et al., 1998; Moody and Porcelli, 2003). Remarkably, the adaptor protein, 

MyD88 is essential for the stimulation of pro-inflammatory cytokines such as TNF-α, IL-1, 

IL-6, etc., and the entire range of TLR family agonists (Finberg and Kurt-Jones, 2004; Netea 

et al., 2004). For example, lack of MyD88 mRNA expression inhibited the IL-1 and IL-18-

mediated functions (Adachi et al., 1998). Further, the MHCII which is found only on 

professional antigen-presenting cells, including macrophages, dendritic cells, and B cells was 

regulated by MOS. The increase in mRNA expression of MHCII in uninfected pigs fed MOS 

implies that dietary MOS is capable of promoting antigen presentation via inducing the 

expression of MHCII gene. Taken together with the expression of cytokine genes, it is 

apparent that MOS-induced upregulation of the gene expression of cytokines, intracellular 

signaling molecules, and PRR is immunologically very significant in recognition of 
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microbial pathogens, activation of the innate immune system, and initiation of a shift from an 

innate to adaptive immune response.  

In infected pigs, MOS downregulated the mRNA expression of cytokines and 

chemokines such as IL-1β, IL-6, IL-8, MIP-1α, MIP-1β, and MCP-1 in PBMC (Table 4.7). 

The cytokines, IL-1β and IL-6, are secreted primarily by macrophages/monocytes in 

response to immunological challenges and can induce fever by resetting the thermoregulatory 

center in hypothalamus (Turnbull and Rivier, 1999; Gosselin and Rivest, 2007). In addition, 

cytokines and chemokines are capable of activating adhesion molecules, inducing acute 

phase proteins, and attracting leukocytes, particularly monocytes (Menten et al., 2002; 

Petersen et al., 2004; Rot and Andrian, 2004). Hence, this suggests that the reduced mRNA 

expression of these inflammatory mediators in the infected pigs fed MOS may have 

contributed to the reduced inflammatory response.  

With regard to the BALF cells of infected pigs, MOS-modified molecules were 

associated with antigen presentation, the complement system, and 2‟,5‟-oligoadenylate 

synthetase (OAS)-1 (Table 4.8). It was shown that PRRSV downregulated both types of 

MHC in dendritic cells (Loving et al., 2006; Wang et al., 2007). However, our results showed 

that PRRSV downregulated the expression of MHCII genes and upregulated the expression 

of MHCI genes in BALF cells, regardless of diet type. Mannan oligosaccharide reduced the 

gene expression of MHCII, but increased the gene expression of MHCI in the infected pigs 

as compared to the control. This implies that MOS may facilitate a cytotoxic T cell response 

against a viral infection. Although enhancing MHCI mRNA expression, MOS decreased the 

expression of genes encoding fragment crystallizable of IgG, receptor, and transporter, 

complement component 1, and ficolin, which are important components of the complement 
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system. These molecules assist in lysis and opsonization of microbes or particular antigens, 

leading to the clearance of invading pathogens (Holmskov et al., 2003). For instance, 

complement component 1 and ficolin act as an opsonin in the classical and lectin pathway, 

respectively. They are synthesized by hepatocytes, but also produced by alveolar 

macrophages and PBMC in response to infections (Matsushita and Fujita, 2002). In addition, 

MOS reduced the mRNA expression of OAS-1 in the infected pigs. The OAS-1 is an IFN-

induced antiviral protein and expressed as an inactive enzyme, which requires double-

stranded RNA for activation (Justesen et al., 2000). The active OAS-1 is involved in the 

formation of the activated latent ribonuclease which can suppress protein synthesis and viral 

growth by degrading viral and cellular RNA (Eskildsen et al., 2003). It was found that there 

was no difference in the IFN mRNA expression in BALF cells between the infected pigs fed 

MOS and those fed CON. Thus, the decrease in OAS-1 may be associated with the 

intracellular level of PRRSV and the double-stranded RNA generated at some stage in its life 

cycle (Eskildsen et al., 2003). Also, the OAS-activated latent ribonuclease has been shown to 

mediate viral-induced apoptosis (Durand et al., 2009). In BALF cells MOS may promote a 

cytotoxic T cell immune response by enhancing MHCI mRNA expression, but reduce the 

expression of complement system-associated molecules and OAS-1 at d 7 PI. 

The prominent canonical pathways identified in PBMC are TREM-1 signaling and 

hypoxia signaling (Table 4.11). The TREM-1 is a cell surface receptor expressed on 

neutrophils and monocytes and may act as an amplifier of the immune response, promoting 

the secretion of inflammatory cytokines such as IL-1β, TNF-α, IL-6, and IL-8 (Bleharski et 

al., 2003). The activation of TREM-1 and TLR4 results in a greater increase in cytokine and 

chemokine production, compared to either stimulus alone (Sharif and Knapp, 2008). The 
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reduced mRNA expression of TLR4 accompanied by a reduction in mRNA expression of 

pro-inflammatory cytokines (IL-1β, IL-6, & IL-8) and chemokines (MIP-1α, MIP-1β, & 

MCP-1) in PBMC indicates that the PRRSV-induced inflammation is alleviated by MOS via 

downregulation of the TREM-1 pathway. Hypoxia is a pathological condition in which the 

infected pigs are deprived of an adequate supply of oxygen. The 2 important transcription 

factors of the pathway, p53 and HIF-1α, were downregulated, implying that the infected pigs 

fed the control diet experienced lack of oxygen supply and were under more severe oxidative 

stress as compared to those fed MOS (Acker and Plate, 2002; Sax and El-Deiry, 2003). The 

suppression of the hypoxia signaling pathway thus suggests a reduced intensity of PRRSV-

induced inflammation in the infected pigs consuming MOS.  

In BALF cells, the biological pathways of IL-4 and macropinocytosis signalings were 

perhaps of importance (Table 4.12). In infected pigs, MOS downregulated the IL-4 signaling 

pathway, suggesting that a shift from Th1 to Th2 immune response may be delayed in BALF 

cells in association with MOS. The downregulated genes involved in the IL-4 signaling 

pathway included IL-2 receptor γ, IL-4 receptor α, IL-13 receptor α, PI3K, and MHCII. The 

reduced expression of IL-4 receptors and PI3K causes a decreased IL-4-mediated signal 

leading to less transcription of IL-4 responsive genes such as IL-4 receptor α, MHCII, CD23, 

and IL-4 (Varin and Gordon, 2009). The reduced macropinocytosis signaling in the infected 

pigs was also found to be associated with MOS. Mannose receptors and β-integrin are 

important cell receptors, responsible for the uptake of microbial pathogens into a cell (Gazi 

and Martinez-Pomares, 2009). The decreased transcriptional expression of these receptors 

may confine the over-entry of viruses via endocytic pathways, thereby alleviating severe 

damage to the infected tissue.    
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Induction of alternative activation of macrophages in the infected pigs appeared to be 

associated with MOS. This functional pathway is induced by IL-4 and IL-13 (Gordon, 2003). 

The alternative activation of macrophages plays an important role in the protection of the 

host by decreasing inflammation and promoting tissue repair. Interleukin-4 inhibits 

expression of pro-inflammatory cytokines and chemokines and stimulates production of anti-

inflammatory cytokines (Martinez et al., 2009), thus reducing inflammation. Our results 

showed that MOS reduced the gene expression of IL-1α, IL-6, IL-8, MIP-1α, and MIP-1β. 

Although no difference in the mRNA expression of IL-10 was found, the increased serum IL-

10 in the MOS-fed pigs observed in the same study may reflect the involvement of this 

pathway (Che et al., 2009). The enhanced mRNA expression of ARG-1 in PBMC of the 

infected pigs fed MOS perhaps is a good indicator of the pathway and suggested initiation of 

tissue repair ensued (Table 4.13). Arginase 1 hydrolyzes L-arginine to urea and L-ornithine 

which is used to produce polyamines and proline to promote cell growth and collagen 

production (Varin and Gordon, 2009). One of the characteristic features of the alternative 

activation of macrophages is the increased expression of MR and MHCII, leading to 

increased antigen phagocytosis and presentation. Both MR and MHCII had greater 

expression in the infected pigs fed MOS than those that received the control. Mannan 

oligosaccharide fed to the infected pigs resulted in the expression of several marker genes 

associated with the alternative activation of macrophages. However, it is uncertain that MOS 

plays a crucial role in the induction of this pathway due to the lack of IL-4 mRNA 

expression. 

In summary, the functional analyses of gene expression show that dietary MOS has a 

greater impact on the expression of genes in PBMC than in BALF cells at d 7 PI. The 
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increased expression of genes encoding cytokines, intracellular signaling molecules, and 

PRR in PBMC of uninfected pigs consuming MOS enhances the host‟s ability to quickly 

detect and mount an immune response to microbial invaders. This finding supports the fact 

that MOS was associated with rapidly increased leukocytes at the early stage of PRRSV 

infection. Within infected pigs, however, MOS reduces the gene expression of major 

inflammatory mediators in PBMC, possibly explaining why fever was ameliorated in the 

infected pigs fed MOS by d 7 PI. In BALF cells, MOS may promote the destruction of a 

virus through the cell-mediated immunity rather than the activation of the complement 

system. Our findings can provide new insights into the immunomodulatory property of MOS. 

This functional carbohydrate perhaps provides benefits by enhancing immunity while 

preventing over-stimulation of the immune system. 
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FIGURES AND TABLES 

 

Table 4.1 Composition of basal diets fed to nursery pigs during the experiment (as-fed basis) 

Item 

Phase
1
 

I II III 

Ingredients, %    

  Corn 38.11 42.82 52.45 

  Dried whey 22.00 16.00 10.00 

  Soybean meal, 48% 10.00 18.00 24.00 

  Spray-dried animal plasma 8.00 4.00 0.00 

  Soy protein concentrate
2
 5.00 3.00 0.00 

  Select menhaden fish meal  4.01 5.49 6.25 

  Soybean oil 3.61 4.09 4.07 

  Lactose 5.60 2.80 0.00 

  Limestone 0.85 0.56 0.55 

  Dicalcium phosphate 0.67 0.92 0.48 

  Carbadox premix
3
 1.00 1.00 1.00 

  Zinc oxide 0.42 0.42 0.42 

  Mineral premix
4
 0.35 0.35 0.35 

  Vitamin premix
5
 0.20 0.20 0.20 

  Lysine-HCl 0.07 0.16 0.22 

  DL-met 0.11 0.10 0.08 

  L-thr 0.01 0.09 0.14 
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Table 4.1 (cont.)    

Item Phase
1
 

 I II III 

Calculated composition    

  ME, Mcal/kg 3.45 3.45 3.45 

  Standardized ileal digestible AA, %    

     Lys 1.45 1.45 1.30 

     Met 0.41 0.43 0.42 

     Thr 0.94 0.94 0.84 

     Tryp 0.29 0.27 0.23 

     Val 1.10 1.03 0.89 

     Ile 0.87 0.87 0.79 

  Ca, % 0.90 0.90 0.80 

  Available P, % 0.55 0.55 0.40 

  Lactose, % 21.00 14.00 7.00 

1
Phase I, II, and III diets were fed to nursery pigs for 7, 7, and 14 d postweaning, 

respectively. 
2
Soycomil, Archer Daniels Midland Company, Decatur, IL. 

3
Mecadox 2.5, provided 0.055 g of carbadox per kilogram of diet, Phibro Animal Health, 

Fairfield, NJ. 
4
Provided as milligrams per kilogram of diet: sodium chloride, 3,000; zinc, 100 from zinc 

oxide; iron, 90 from iron sulfate; manganese, 20 from manganese oxide; copper, 8 from 

copper sulfate; iodine, 0.35 from calcium iodide; selenium, 0.30 from sodium selenite. 
5
Provided per kilogram of diet: retinyl acetate, 2,273 µg; cholecalciferol, 17 µg; DL--

tocopheryl acetate, 88 mg; menadione sodium bisulfate complex, 4 mg; niacin, 33 mg; D-

Ca-pantothenate, 24 mg; riboflavin, 9 mg; vitamin B12, 35 µg; choline chloride, 324 mg. 
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Table 4.2 The total and detected numbers of probe sets in the Affymetrix‟s porcine arrays   

Tissue 

Immune probe sets Other probe sets 

Total
1
 Detected  Total Detected  

PBMC
2
 154 122 23773 17,167 

BALF cells
3
 154 110 23773 17,648 

1
Provided by Affymetrix‟s NetAffix Analysis Center on March 9, 2009.

 

2
Peripheral blood mononuclear cells. 

3
Bronchoalveolar lavage fluid.  
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Table 4.3 The number of genes in peripheral blood mononuclear cells (PBMC) and 

bronchoalveolar lavage fluid (BALF) cells used for pattern analysis of gene expression 

Item  IMOS
1
-ICON

2
 IMOS

1
-MOS

3
 Interaction 

PBMC 

Fold-change cutoff None None 2 

FDR p-value cutoff
4
 0.05 0.05 0.05 

Function/pathway eligible
5
 271 301 775 

Significant genes
6
 207 230 712 

BALF cells 

Fold-change cutoff 2.5 8 None 

FDR p-value cutoff
4
 0.05 0.05 0.1 

Function/pathway eligible
5
 573 638 543 

Significant genes
6
 517 591 491 

1
IMOS: infected mannan oligosaccharide-fed pigs.  

2
ICON: infected control-fed pigs, a baseline for that comparison. 

3
MOS: uninfected mannan oligosaccharide-fed pigs, a baseline for that comparison.  

4
FDR: false discovery rate. 

5
Biological and disease processes are most relevant to the genes detected; which well-

characterized cell signaling and metabolic pathways are most relevant to the data obtained 
6
Differentially expressed genes. 
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Table 4.4 Gene specific primer sequences and PCR conditions
1
 

Gene Acc. No
2
 Forward primer (5‟-3‟) Reverse primer (5‟-3‟) 

IL-1 M86725 TGCCAACGTGCAGTCTATGG TGGGCCAGCCAGCACTAG 

IL-4 NM_214123 TTCGTCCACGGACACAAGTG GCTCCATGCACGAGTTCTTTC 

IL-6 M86722 CTGGCAGAAAACAACCTGAACC TGATTCTCATCAAGCAGGTCTCC 

MIP-1
3
 EU364894 CATACACCGTGCGGAAGCTT CCCTTTTTGGTCTGGAATACCA 

MCP-1
3
 EU682382 CGGCTGATGAGCTACAGAAGAGT GCTTGGGTTCTGCACAGATCT 

TLR4
3
 AB188301 TGTGGCCATCGCTGCTAAC GGGACACCACGACAATAACCTT 

MR
3
 AY368183 AGGCGTGTCCACTTACCACAA TGCCTATGAGATCTTTCGTGTCA 

MHCII
3
 BX088590 CTGAATGCGTTGGCCACATA GGGTGTGTGTGGCACAGTTC 

ARG-1
3
 AY039112 AGAATCCAAGGTCTGTGGGAAA TGGTCTCCGCCCAGTACAAG 

1
Thermal cycling conditions were 50

o
C for 2 min and 95

o
C for 10 min, followed by 40 cycles with 15 sec at 95

o
C and 1 min at 60

o
C.  

2
Accession number to Genbank database. 

3
MIP-1β: macrophage inflammatory protein-1; MCP-1: monocyte chemotactic protein-1; TLR4: toll-like receptor 4; MR: mannose 

receptor; MHCII: major histocompatibility complex II; ARG-1: arginase-1. 
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Table 4.5 The number of nonimmune probe sets changed in peripheral blood mononuclear 

cells (PBMC) and bronchoalveolar lavage fluid (BALF) cells 

Comparison
1
 

PBMC
2
 BALF cells

2
 

Upregulation Downregulation Upregulation Downregulation 

IMOS
3
 vs. ICON

4
 164 (38%) 237 (62%) 1007 (43%) 1318 (57%) 

MOS
5
 vs. CON

6
 938 (48%) 998 (52%) 1 (50%) 1 (50%) 

IMOS
3
 vs. MOS

5
 256 (56%) 198 (44%) 3494 (45%) 4318 (55%) 

ICON
4
 vs. CON

6
 2243 (56%) 1791 (44%) 1083 (41%) 1585 (59%) 

Interaction
7
 977 (46%) 1128 (54%) 117 (60%) 78 (40%) 

1
Comparisons set up at a false discovery rate P-value cutoff of < 0.05.  

2
The number in parentheses is the percentage of upregulated or downregulated probe sets 

for each tissue.  
3
IMOS: infected mannan oligosaccharide-fed pigs.  

4
ICON: infected control-fed pigs; a baseline for that comparison. 

5
MOS: uninfected mannan oligosaccharide-fed pigs; a baseline for that comparison.  

6
CON: uninfected control-fed pigs; a baseline for that comparison. 

7
Interaction = (IMOS-ICON) - (MOS-CON). 
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Table 4.6 The number of immune probe sets changed in peripheral blood mononuclear cells 

(PBMC) and bronchoalveolar lavage fluid (BALF) cells 

Comparison
1
 

PBMC
2
 BALF cells

2
 

Upregulation Downregulation Upregulation Downregulation 

IMOS
3
 vs. ICON

4
 3 (25%) 9 (75%) 1 (4%) 24 (96%) 

MOS
5
 vs. CON

6
 14 (93%) 1 (7%) 0 (0%) 0 (0%) 

IMOS
3
 vs. MOS

5
 9 (28%) 23 (72%) 15 (25%) 46 (75%) 

ICON
4
 vs. CON

6
 13 (93%) 1 (7%) 8 (33%) 16 (67%) 

Interaction
7
 2 (10%) 19 (90%) 0 (0%) 0 (0%) 

1
Comparisons set up at a false discovery rate P-value cutoff of < 0.05.  

2
The number in parentheses is the percentage of upregulated or downregulated probe sets 

for each tissue.  
3
IMOS: infected mannan oligosaccharide-fed pigs.  

4
ICON: infected control-fed pigs; a baseline for that comparison. 

5
MOS: uninfected mannan oligosaccharide-fed pigs; a baseline for that comparison.  

6
CON: uninfected control-fed pigs; a baseline for that comparison. 

7
Interaction = (IMOS-ICON) - (MOS-CON).   
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Table 4.7 Differentially expressed genes in peripheral blood mononuclear cells of pigs 

Genes 

Fold-change
1
 

MOS
2
-CON

3
 IMOS

4
-ICON

5
 IMOS

4
-MOS

2
 ICON

5
-CON

3
 Interaction

6
 

IL-1α +7.4 N.S. -11.2 N.S. -15.9 

IL-1 N.S. -4.2 -15.9 N.S. -11.6 

IL-6 +6.9 -7.2 -17.0 N.S. -49.8 

IL-8 N.S. -7.4 -40.1 N.S. -24.6 

MIP-1
7
 N.S. -8.2 -19.9 N.S. -11.2 

MIP-1
7
 N.S. -3.1 -5.1 N.S. -4.3 

MCP-1
7
 N.S. -3.7 -9.4 N.S. -11.1 

MyD88
7
 +2.9 N.S. N.S. +4.9 -2.7 

MHCII
7
 +2.0 N.S. N.S. N.S. N.S. 

TLR4
7
 +6.5 N.S. -4.5 N.S. -8.6 

DDX58
7
 +2.5 N.S. N.S. +2.3 -3.1 

CD1.1
7
 +2.4 N.S. +2.3 +4.3 N.S. 

PEC-60
7
 N.S. +17.0 +11.8 N.S. N.S. 

ARG-1
7
 N.S. +35.0 N.S. N.S. N.S. 

1
Genes identified as > 2 fold change up or down & a false discovery rate P-value cutoff of < 

0.05; N.S.: the expression level of genes which did not meet those criteria was not shown. 
2
MOS: uninfected mannan oligosaccharide-fed pigs, a baseline for that comparison.  

3
CON: uninfected control-fed pigs, a baseline for that comparison. 

4
IMOS: infected mannan oligosaccharide-fed pigs.  

5
ICON: infected control-fed pigs, a baseline for that comparison. 

6
Interaction = (IMOS-ICON) – (MOS-CON). 

7
MIP-1: macrophage inflammatory protein-1; MIP-1: macrophage inflammatory 

protein-1; MCP-1: monocyte chemotactic protein-1; MyD88: myeloid differentiation 

factor 88; MHCII: major histocompatibility complex II; TLR4: toll-like-receptor 4; 

DDX58: dead box polypeptide 58; CD1.1: cluster of differentiation 1.1; PEC-60: peptide 

with N-terminal glutamic acid, C-terminal cysteine, and a total of 60 residues; ARG-1: 

arginase-1.  
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Table 4.8 Differentially expressed genes in bronchoalveolar lavage fluid cells of pigs 

Genes 

Fold-change
1
 

IMOS
2
-ICON

3
 IMOS

2
-MOS

4
 ICON

3
-CON

5
 

APRIL
6
 -7.4 -19.4 N.S. 

FCGRT
6
 -2.4 -4.1 N.S. 

C1QA
6
 -10.9 -39.1 N.S. 

Ficolin -6.0 -8.3 N.S. 

TLR4
6
 -2.7 -13.5 -4.5 

MHCII
6
 -5.6 -25.0 -4.9 

OAS-1
6
 -6.1 -16.2 N.S. 

DDX58
6
 -3.5 -12.9 -3.6 

MHCI
6
 +2.1 +2.8 N.S. 

1
Genes identified as > 2 fold change up or down & a false discovery rate P-value cutoff of < 

0.05; N.S.: the expression level of genes which did not meet those criteria was not shown. 

No genes were differentially expressed for MOS x PRRSV interaction as well as between 

MOS and CON. 
2
IMOS: infected mannan oligosaccharide-fed pigs.  

3
ICON: infected control-fed pigs, a baseline for that comparison. 

4
MOS: uninfected mannan oligosaccharide-fed pigs, a baseline for that comparison.  

5
CON: uninfected control-fed pigs, a baseline for that comparison.  

6
APRIL: a proliferation inducible ligand; FCGRT: fragment crystallizable of IgG, receptor, 

and transporter; C1QA: complement component 1, qsubunit, alpha chain; TLR4: toll-like 

receptor 4; MHCII: major histocompatibility complex II; OAS-1: 2‟,5‟-oligoadenylate 

synthetase-1; DDX58: dead box polypeptide 58; MHCI: major histocompatibility complex 

I.  



140 

 

Table 4.9 Putative functional categories of significantly affected genes in peripheral blood 

mononuclear cells of pigs 

Biological Function
1
 

Number of Molecules
2
 

Interaction
3
 IMOS

4
-ICON

5
 IMOS

4
-MOS

6
 

Cell cycle 139 (1) 49 (1) 50 (10) 

DNA replication, recombination, & repair 70 (4) 36 (2) N.D.(12)
7
 

Cellular movement 129 (10) 26 (3) 32 (8) 

Hematological system development & function 132 (2) 29 (4) 57 (3) 

Immune cell trafficking 56 (7) 14 (5) 41 (4) 

Inflammatory response 51 (8) 13 (6) 44 (7) 

Cardiovascular system development & function 58 (9) 12 (7) 25 (11) 

Cell to cell signaling & interaction 93 (6) 24 (8) 47 (2) 

Cellular growth & proliferation 239 (5) 31 (9) 87 (9) 

Antigen presentation 49 (11) 12 (10) 43 (1) 

Cell-mediated immune response 86 (3) 16 (11) 50 (5) 

Humoral immune response 47 (12) 6 (12)  41 (6) 

1
Data were filtered with 2 criteria: Ingenuity pathway analysis threshold P-value (P < 0.05) 

and the corresponding microarray P-value. 
2
The number in parentheses represents the ranking of biological functions based on the P-

value. 
3
Interaction = (IMOS-ICON) - (MOS-CON). 

4
IMOS: infected mannan oligosaccharide-fed pigs.  

5
ICON: infected control-fed pigs, a baseline for that comparison. 

6
MOS: uninfected mannan oligosaccharide-fed pigs, a baseline for that comparison.  

7
N.D.: Not detected. 
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Table 4.10 Putative functional categories of significantly affected genes in bronchoalveolar 

lavage fluid cells of pigs 

Biological Function
1
 

Number of Molecules
2
 

Interaction
3
 IMOS

4
-ICON

5
 IMOS

4
-MOS

6
 

Cell to cell signaling & interaction 63 (5) 87 (1) 124 (2) 

Hematological system development & function 66 (4) 67 (2) 133 (3) 

Immune cell trafficking 39 (6) 58 (3) 88 (4) 

Tissue development 32 (8) 70 (4) 73 (7) 

Inflammatory response 53 (7) 56 (5) 107 (8) 

Lipid metabolism 52 (1) 72 (6) 81 (12) 

Cardiovascular system development & function 9 (10) 46 (7) 61 (11) 

Antigen presentation 48 (2) 55 (8) 101 (6) 

Cell death 151 (3) 150 (9) 205 (5) 

Cellular movement 31 (11) 106 (10) 134 (1) 

Cell-mediated immune response 54 (9) 50 (11) 119 (9) 

Humoral immune response  53 (12) 47 (12) 99 (10) 

1
Data were filtered with 2 criteria: Ingenuity pathway analysis threshold P-value (P < 0.05) 

and the corresponding microarray P-value. 
2
The number in parentheses represents the ranking of biological functions based on the P-

value. 
3
Interaction = (IMOS-ICON) - (MOS-CON). 

4
IMOS: infected mannan oligosaccharide-fed pigs.  

5
ICON: infected control-fed pigs, a baseline for that comparison. 

6
MOS: uninfected mannan oligosaccharide-fed pigs, a baseline for that comparison.  
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Table 4.11 Ingenuity pathway analysis of microarray data identifies canonical pathway 

associated with peripheral blood mononuclear cell genes that are differentially expressed 

Item
1
 Canonical pathway

2
 Score

3
 

Number of genes, % 

Significant
4
 Down

5
 Up

5
 

Interaction 

Hypoxia signaling 4.53 26 49 23 

TREM-1 signaling
6
 3.72 29 41 14 

Protein ubiquitination 3.03 15 46 32 

Integrin signaling 2.79 15 40 30 

IMOS - ICON 

Immune cell communication 3.13 17 33 12 

TREM-1 signaling
6
 2.37 14 32 22 

p53 signaling
6
 2.15 10 44 25 

Protein ubiquitination 1.97   5 45 32 

IMOS - MOS 

Oxidative phosphorylation 10.90 19  7 55 

Dendritic cell maturation 8.31 19 32 21 

Immune cell communication 7.05 29 36 10 

TREM-1 signaling
6
 6.62 26 36 19 

1
Interaction = (IMOS-ICON) - (MOS-CON); IMOS: infected mannan oligosaccharide-fed 

pigs; ICON: infected control-fed pigs, a baseline for that comparison; MOS: uninfected 

mannan oligosaccharide-fed pigs, a baseline for that comparison; CON: uninfected control-

fed pigs, a baseline for that comparison. 
2
Data were filtered with 2 criteria: Ingenuity pathway analysis threshold P-value (P < 0.05) 

and the corresponding microarray P-value; n = 3. 
3
The pathways were ranked by the score (score = -log(P-value)). 

4
Compared to the total number of upregulated and downregulated genes involved in that 

pathway. 
5
Compared to the total number of genes involved in that pathway. 

6
TREM-1: triggering receptor expressed on myeloid cells-1; p53: tumor protein 53. 
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Table 4.12 Ingenuity pathway analysis of microarray data identifies canonical pathway 

associated with bronchoalveolar lavage fluid cell genes that are differentially expressed 

Item
1
 Canonical pathway

2
 Score

3
 

Number of genes, % 

Significant
4
 Down

5
 Up

5
 

Interaction 

IL-4 signaling 3.76 23 42 19 

LPS/IL-1 mediated inhibition of 

RXR function
6
 

2.08 15 27 23 

Antigen presentation  2.07 24 41 13 

Pattern recognition receptors 1.90 17 33 19 

IMOS - ICON 

Macropinocytosis signaling 4.27 24 36 28 

Clathrin-mediated endocytosis  2.93 14 37 28 

Antigen presentation  2.69 29 38 15 

Virus entry via endocytosis 2.60 16 35 29 

IMOS - MOS 

Immune cell communication 4.36 41 20 16 

Complement system 3.93 32 28 42 

Crosstalk: dendritic & NK
6
 cells 3.80 32 26 16 

Pattern recognition receptors 2.99 23 28 25 

1
Interaction = (IMOS-ICON) - (MOS-CON); IMOS: infected mannan oligosaccharide-fed 

pigs; ICON: infected control-fed pigs, a baseline for that comparison; MOS: uninfected 

mannan oligosaccharide-fed pigs, a baseline for that comparison; CON: uninfected control-

fed pigs, a baseline for that comparison. 
2
Data were filtered with 2 criteria: Ingenuity pathway analysis threshold P-value (P < 0.05) 

and the corresponding microarray P-value; n = 3. 
3
The pathways were ranked by the score (score = -log(P-value)). 

4
Compared to the total number of upregulated and downregulated genes in that pathway. 

5
Compared to the total number of genes involved in that pathway. 

6
LPS: lipopolysaccharide; RXR: retinoid X receptor; NK: natural killer. 
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Table 4.13 Verification of gene expression in peripheral blood mononuclear cells by real time RT-PCR
1
 

Genes
2
 

Fold change 

MOS
3
 - CON

4
 IMOS

5
 - ICON

6
 IMOS

5
 - MOS

3
 ICON

6
 - CON

4
 

Microarray RT-PCR Microarray RT-PCR Microarray RT-PCR Microarray RT-PCR 

IL-1β +2.5 +7.0 -4.6 -5.7  -15.9 -13.1 +1.1 +3.1 

IL-6 +6.9 +12.0 -7.2 -12.9 -17.0 -14.0 +2.9 +11.1 

MIP-1β +1.4 +3.2 -3.1 -2.8 -5.1 -2.3 +1.2 +3.8 

MCP-1 +3.0 +3.1 -3.7 -3.9 -9.4 -2.7 +1.2 +4.4 

TLR4 +6.5 +5.1 -1.6 -2.1 -4.5 -3.6 +1.9 +2.9 

MR 1.0 -1.9 +1.9 +1.7 +1.9 +1.9 1.0 -1.6 

MHCII +1.8 +1.9 +1.7 +1.3 +1.7 +1.4 +1.9 +2.0 

ARG-1 +4.7 +3.9 +35.0 +12.2 +4.7 +5.6 +1.6 +1.8 

1
The total RNA samples (3 pigs/treatment) that were used to run Affymetrix‟s porcine microarray were employed for RT-PCR. 

2
The average threshold cycle values for IL-1β, IL-6, macrophage inflammatory protein (MIP)-1β, monocyte chemotactic protein 

(MCP)-1, arginase (ARG)-1, major histocompatibility complex (MHC) II, toll-like receptor (TLR) 4, and mannose receptor (MR) 

were 22.0, 28.5, 21.7, 30.4, 25.0, 24.3, 26.7, and 31.5, respectively; Eukaryotic 18S rRNA was used as an endogeneous control. 
3
MOS: uninfected mannan oligosaccharide-fed pigs, a baseline for that comparison. 

4
CON: uninfected control-fed pigs, a baseline for that comparison. 

5
IMOS: infected mannan oligosaccharide-fed pigs.  

6
ICON: infected control-fed pigs, a baseline for that comparison. 
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Figure 4.1 The MOS x PRRSV interaction on the expression of immune probe sets in 

PBMC of pigs; Levels of expression: relative to the overall mean.
 
False discovery rate p-

value cutoff: P < 0.05; CON: uninfected control-fed pigs; MOS: uninfected mannan 

oligosaccharide-fed pigs; ICON: infected control-fed pigs; IMOS: infected mannan 

oligosaccharide-fed pigs. 
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CHAPTER 5 

GENERAL RESEARCH SUMMARY 

 

Different products extracted from the yeast cell wall of Saccharomyces cerevisiae 

may have diverse immune-related properties, as each fraction differs in proportions of 

functional carbohydrates (mannan and β-glucan). The important aim of these studies was to 

determine effects of mannan oligosaccharide (MOS) on immune function and disease 

resistance in pigs. The research addressed 3 issues: (1) the in vivo and in vitro 

immunomodulatory properties of MOS on cytokine production of alveolar macrophages 

(AM) in response to in vitro models of microbial challenges; (2) the effect of different 

levels of dietary MOS on serum cytokine concentrations and growth performance in pigs 

reared under regular housing conditions; and (3) the effect of dietary supplementation of 

MOS on immune responses and gene expression profile in pigs infected with porcine 

reproductive and respiratory syndrome virus (PRRSV). 

Mannan oligosaccharide in both in vivo and in vitro systems regulated cytokine 

production by AM in response to in vitro microbial challenge models. Alveolar 

macrophages were collected and stimulated in vitro with a bacterial challenge model, 

lipopolysaccharide (LPS) or a viral challenge model, polyinosinic:polycytidylic acid (Poly 

I:C). The LPS-stimulated AM from pigs fed 0.2% or 0.4% MOS produced less tumor 

necrosis factor (TNF)-α and more IL-10 than those from pigs fed the diet without MOS. 

Similarly, when directly applied in vitro, MOS suppressed LPS-induced TNF- and 

enhanced LPS-induced IL-10. Further, TNF- production by AM stimulated with LPS or 

Poly I:C was also suppressed in vitro by a mannan-rich fraction (MRF) which contains more 
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mannan than MOS. These results establish that both MOS and MRF reduce LPS-activated 

inflammatory response possibly by changing the expression of pattern recognition receptors 

(PRR) leading to modulation of activation signals and resultant immune responses. We then 

determined if MOS interacts with LPS receptors by culturing AM with Polymyxin B, an 

inhibitor of LPS-activated toll-like receptor (TLR) 4. Although Polymyxin B completely 

inhibited AM-produced TNF- induced by LPS, it did not affect the ability of MOS to 

regulate cytokine production in the absence of LPS. It may be suggested that mannose 

receptor (MR) which can interfere with function of other cell receptors, e.g TLR4, may play 

a role in those immune responses. With regard to in vitro Poly I:C stimulation, MOS did not 

affect TNF-α secretion, but MRF reduced the Poly I:C-induced TNF-α. This brings up an 

interesting question whether more mannan in MRF contributes significantly to a much 

greater influence on MR expression and function, thereby affecting consequent responses of 

AM to Poly I:C. Antigens or other molecules can be endocytosed by MR. It may be 

postulated that because of MRF-reduced endocytic activity of MR, less uptake of Poly I:C 

results in a reduction in inflammatory signaling transduction mediated by TLR3, an 

intracellular receptor specific to Poly I:C. Generally, these data establish that MOS is a 

potent immunomodulator in both in vitro and in vivo systems as determined by reducing 

TNF- and enhancing IL-10 synthesis after ex vivo challenge of porcine AM with bacterial 

endotoxin. However, MRF-mediated specific involvement of MR on the suppression of 

TLR3 activation-induced inflammation is beyond the scope of this study. 

In addition, MOS and other yeast-related components were found to be able to 

regulate constitutive production of TNF-α in the absence of LPS or Poly I:C. Production of 

TNF-α by AM was greatest at 0.5 mg/mL of MOS and decreased when the stimulating 
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concentrations of MOS increased up to 3 mg/mL. A MRF, containing more mannan than 

MOS, was shown to have a weaker activating effect on AM. In contrast to MRF, glucan 

fraction which has much less mannan and more β-glucan than MOS activated AM to secrete 

TNF-. The direct activation of AM by MOS in vitro indicates that it is recognized by AM 

extracellular receptors and this recognition leads to TNF-α induction. Mannose receptors, 

TLR4, and dectin-1 are likely potent receptors involved in the recognition of the tested yeast 

components because those receptors have been shown to recognize mannan and β-glucan 

molecules. This aspect therefore should be further investigated to understand more details 

about the binding of yeast components by PRR on AM activation. In brief, the ability of 

mannan-containing products such as MOS to constitutively regulate AM-produced TNF- 

in the absence of pathogen-associated stimulation is very important in maintaining and 

boosting the host‟s disease resistance. 

Although MOS had a major impact on the in vitro cytokine production by AM under 

various conditions, it did not seem to influence serum cytokine levels and growth 

performance in nursery pigs. The differences in growth and serum levels of TNF-α and IL-10 

were not significant between pigs fed 0.2% or 0.4 % MOS diets and those fed the control. 

However, serum cytokines varied during the course of the experiment. The serum TNF-α was 

greater at d 7 and 28 postweaning (PW) than at d 14 and 21 PW, whereas serum IL-10 was 

increased at d 14 and 28 PW compared to d 7 and 21 PW. Cytokines not only regulate the 

body‟s immune response but also affect nutrient utilization. Thus, cytokine secretion is 

closely controlled in order to uphold disease resistance, but prevent any tissue damage due to 

over-production of pro-inflammatory cytokines. The interesting finding of this MOS feeding 
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experiment is that under regular housing conditions, changes in serum cytokine levels may be 

expected and reflect the host‟s reaction to any surrounding immunological stimuli.  

 Furthermore, feeding MOS to nursery pigs enhanced immunity while preventing 

over-stimulation of the immune system in response to a viral infection. Weaned pigs fed 

control or 0.2% MOS diets for 2 wk were intranasally inoculated with PRRSV or a sterile 

medium at 5 wk of age. The PRRSV infection decreased pig performance during the 

experimental period and the numbers of white blood cells (WBC) and lymphocytes through 

d 7 postinfection (PI). The infected pigs also had a febrile response and elevated levels of 

inflammatory mediators. In contrast, feeding MOS prevented leukopenia and lymphopenia at 

d 3 and 7 PI, tended to improve pig performance, and reduced fever at d 7 PI and TNF-α at d 

14 PI. Rapidly increased numbers of WBC and lymphocytes at the early stage of infection 

demonstrate that the immune system of MOS-fed pigs is ready to react to a viral infection. 

This also points out that MOS enhances disease resistance, but further evaluation on 

increased subpopulations of lymphocytes will provide more details about specific types of 

lymphocytes involved in the early immune response. Additionally, decreases in fever and 

serum TNF-α observed in the infected pigs consuming MOS suggest that MOS is associated 

with reduced inflammation and may speed recovery. The increased level of serum IL-10 in 

MOS-fed pigs would indicate a shift from T helper (Th) 1 to Th2 lymphocyte response or 

increases in T regulatory cells and type II macrophages. Cytokines and chemokines secreted 

by these cells are negative regulators of Th1 responses and promote anti-inflammation.    

The gene expression analysis of peripheral blood mononuclear cells and 

bronchoalveolar lavage fluid cells further strengthened the observations of the immune 

responses discussed above. In peripheral blood mononuclear cells, dietary MOS affected the 
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expression of immune genes encoding key inflammatory mediators. In uninfected pigs, MOS 

increased the mRNA expression of genes involving immune regulation, intracellular 

signaling molecules, and PRR. This suggests that MOS enhances the host‟s immune defense 

and supports the fact that MOS induced a rapid increase in leukocytes at the initial stage of 

infection. Within infected pigs, however, MOS reduced the mRNA expression of major 

cytokines (e.g., IL-1β, IL-6), chemokines (e.g., IL-8, MIP-1α, MIP-1β, and MCP-1), and 

TLR4. The decreased mRNA expression of these inflammatory regulators is likely to account 

for the ameliorated fever in the infected pigs fed MOS by d 7 PI. The downregulation of 

inflammatory responses regulated by MOS was associated with several important canonical 

pathways such as TREM-1 signaling, hypoxia signaling, IL-4 signaling, macropinocytosis 

signaling, and perhaps the alternative activation of macrophages. In bronchoalveolar lavage 

fluid cells MOS may promote a cytotoxic T cell immune response by enhancing MHCI 

mRNA expression, but downregulate the expression of molecules involved in the 

complement system in infected pigs at d 7 PI. It is apparent that dietary MOS changes the 

expression of immune genes in leukocytes of the PRRSV-infected pigs, perhaps providing 

benefits by enhancing immunity while preventing over-stimulation of the immune system.      

 In general, MOS added to nursery diets is not used to treat diseases, but should be 

considered a strategic feed additive that may provide some protection to pigs. Changes in 

PRR of leukocytes by MOS probably result in regulation of cellular activation and pathogen-

induced responses. Those receptors participate in intracellular signaling, leading to target 

gene expression. Increased gene expression of cytokines and pathogen detection facilitates 

the pig‟s innate immune system to quickly mount an immune response against an infection 

and toward clearance of pathogens. However, MOS also suppresses over-reaction of the 
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immune system via stimulating the production of anti-inflammatory molecules and inhibiting 

the production of pro-inflammatory cytokines and chemokines. Thus, MOS may help prevent 

severe damage to infected tissues. Future research should be directed to examine gene 

expression of key receptors and their interaction in response to MOS and microbial 

challenges in vitro, and immune responses and performance of PRRSV-infected pigs during 

the recovery phase. Combined infections of bacterial and viral pathogens should be evaluated 

as MOS appears to reduce the intensity of inflammation due to a secondary bacterial 

infection. 
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