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AABBSSTTRRAACCTT  

 This dissertation investigates the functional benefits of utilizing radiation 

reconfigurable antennas in an adaptive array setting.  The work centers on arrays 

composed of a small number of widely spaced elements.  Such array configurations (1) 

mitigate the effects of mutual coupling between reconfigurable elements, thereby 

maximizing their individual performance potential, and (2) establish a platform for 

applications seeking portability and requiring a small system package as a design priority.  

One aspect of the research extends the early work of R.T. Compton Jr. and others in 

adaptive arrays by going beyond utilizing ideal, traditional, fixed-pattern antenna element 

patterns to include element patterns more relevant to pattern reconfigurable antennas.  

The results demonstrate that a practical pattern reconfigurable element can produce 

results comparable to that of the ideal element and maintain good adaptive array 

performance in terms of output signal-to-interference-noise ratio (SINR). 

Detailed analysis presents the limitations of Compton’s approach, which only 

specifies the requirements of the additional reconfigurable element based on the original 

set of two elements in the array.  This research overcomes these limitations by fully 

leveraging the capabilities of the available pattern reconfigurability. Therefore, using a 

systematic approach, the work integrates pattern variability directly into two different 

optimization routines, a convex and least mean square technique.  The methodology 

expands the available solutions by allowing the algorithm itself to determine the range of 

possible antennas states.  The developed framework incorporates an antenna pattern 

model with beam tilting characteristics, which is incorporated in each routine. The 

advantages and disadvantages of both methods are discussed in terms of pattern 

variability implementation through a number of adaptive array scenarios.  Results 

establish a roadmap for the specification of pattern reconfigurable antenna capability that 

promises to improve small adaptive array performance. In particular, the research shows 

that designers should focus on an element’s null steering capability rather than beam 

tilting capacity.     
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The journey of a thousand miles begins with the 

first step—even a slow walker will arrive. 
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CCHHAAPPTTEERR  11  

IINNTTRROODDUUCCTTIIOONN  

1.1 Background 

 Early work and activity in phased array technology began in earnest in the 1940s, 

and a large literature exists on phased arrays from various perspectives.  For example, the 

author in [1] provides a comprehensive discussion of all aspects of phased arrays, while 

[2] offers a collection of design data for radar and communication systems.  Furthermore, 

in [3], the basics of antenna array theory are outlined with attention on pattern analysis 

and synthesis for periodic linear and planar arrays.  In contrast, the author in [4] considers 

the array as a processor and thus analyzes a variety of characteristics from a signal 

processing perspective.  Simply put, utilizing multiple in situ elements with variable 

magnitude, phase- or time-delay control at each element has had an enormous impact on 

wireless communications.  The technology has developed from diverse military 

applications, but currently addresses a growing list of commercial requirements [5] as 

well, i.e., those desiring additional flexibility in more sophisticated radar and 

communications systems [6,7,8]. 

 Traditional phased arrays typically incorporate antenna elements with identical, 

fixed characteristics. This in turn may be one of the factors that limit phased arrays from 

meeting the increasing demands posed by future wireless communications systems.  

Reconfigurable antennas, on the other hand, offer dynamic behavior by being able to 

modify one or more of their fundamental operating characteristics (e.g., pattern, 

frequency, and polarization) via electrical, mechanical, or other means [9].  As a result, 

pattern reconfigurable antennas—the focus of this dissertation—along with other 

reconfigurable antenna types, possess an added degree of freedom that may enhance or 

expand system performance when incorporated into phased arrays.  Prior investigation, 

for example [10,11,12,13,14], has begun to examine the capabilities of pattern 

reconfigurable antennas with beam tilts.  However, questions still remain about the true 

benefits these antennas can offer in an array setting.  Therefore, the research presented in 
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this dissertation continues to explore the capabilities and limitations of radiation 

reconfigurable antennas in phased arrays—in particular, phased arrays utilized in the 

context of an adaptive array platform. 

      Adaptive antenna systems (e.g., self-adjusting, self-phasing) date back to the 

1950s.  Early advances in this field were well documented in a special issue of the IEEE 

Transactions on Antennas and Propagation for March 1964 [15] and subsequently 

another special issue for September 1976 [16].  In general, an adaptive array antenna 

system controls its pattern in response to the signal environment [17]. Such systems seek 

to automatically sense and suppress the presence of interference noise sources (friendly 

or hostile) while simultaneously enhancing desired signal reception without prior 

knowledge of the signal environment.  Therefore, they offer more flexibility, reliability, 

and improved reception performance compared to those of conventional arrays [18]. 

1.2 Research Overview 

 As discussed in [9], one of the key requirements for pattern reconfigurable 

antennas is to maintain their frequency characteristics over the parameter of 

reconfiguration. In an array setting composed of closely spaced elements, mutual 

coupling usually diminishes element performance from its single-element behavior—an 

effect typically predicated upon the antenna’s highly resonant nature.  Thus, this 

research’s focus includes utilizing radiation reconfigurable antennas not only with 

relatively large element spacing but also with a small number of antenna elements in the 

adaptive array.  Employing relatively wide (or large) element spacing can positively 

impact performance by diminishing the effects of mutual coupling and allowing 

additional space between array elements for supplementary RF electronics (e.g., biasing 

networks, etc.).  Likewise, a system package containing an adaptive array composed of a 

small number of pattern reconfigurable antenna elements could provide major benefits in 

military applications requiring a small footprint (minimal size and low weight for 

portability) while providing a tactical edge on the battlefield—a necessity in the Network 

Centric Warfare model [19]. Overall, the combination of wider element spacing with a 



 

3 

 

small number of array elements simplifies the design space and reduces the need for 

additional hardware. 

 The foundation of this research originates from early work in adaptive arrays 

spearheaded by R.T. Compton Jr.  In [20], he develops an adaptive array technique that 

allows for relatively wide spacing between antenna elements while maintaining good 

performance.  This aspect of having greater separation between reconfigurable antenna 

elements mitigates the effects of mutual coupling and falls well within the main 

objectives of the research.  However, in adaptive arrays, wider element spacing 

introduces the undesired effect of “grating nulls,” spurious nulls that degrade overall 

system performance.  The work presented in [21] discusses the circumstances behind 

grating nulls and methods to mitigate them in a linear array comprised of antenna 

elements with unequal element patterns. 

 Pattern reconfigurable antennas offer the potential to improve performance in 

adaptive arrays since their fundamental capability satisfies the criteria needed to mitigate 

grating nulls: element pattern reconfigurability.  The work presented in [20] indicates that 

grating null effects can be mitigated by using unequal element patterns.  However, the 

work uses ideal, traditional, fixed-pattern antennas with artificial beam tilts.  From a 

practical perspective, pattern reconfigurable antennas have an advantage since they can 

reconfigure their beam maximum in accordance to what the adaptive array requires to 

maintain and/or improve system performance.  Therefore, one aspect of this dissertation 

goes beyond utilizing ideal element patterns and employs procedures that incorporate 

element patterns more relevant to pattern reconfigurable antennas.  The results illustrate 

the functional benefits of utilizing radiation reconfigurable antennas in an adaptive array 

setting.   

 Another aspect of the research draws on the shortcomings of the aforementioned 

approach, which specifies the requirements for the additional reconfigurable element.  

The requirements are based on the original set of array elements, which in turn do not 

fully leverage the capabilities of the available pattern reconfigurability.  Thus the work 

presented in this dissertation reveals how to overcome this limitation in the following 

ways: (1) utilizing radiation reconfigurable antennas in an adaptive array setting not only 
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in terms of their beam tilting capability but their null-forming ability as well, and (2) 

determining the characteristics of the reconfigurable element patterns in a reverse fashion 

by integrating pattern variability into an adaptive algorithm.  This method presents a 

more systematic approach in which the algorithm itself then determines the range of 

possible solutions.   

 The algorithm approach consists of adopting two optimization routines, a convex 

optimization routine developed in [22,23] and the least mean square (LMS) algorithm (a 

commonly used method in adaptive arrays [17]).  Each routine differs by the array pattern 

objectives they seek to satisfy. The convex routine aspires to minimize sidelobe levels 

across the spatial range, while the LMS approach aims to directly satisfy the requirements 

of the signal environment. Due to the flexibility of the optimization methods, the present 

work develops an antenna pattern model with beam tilting characteristics that are 

incorporated in each routine.  The advantages and disadvantages of both will be 

demonstrated in terms of pattern variability implementation.  Even though the convex 

routine gives great insight into the model’s implementation, it turns out its objectives 

over-constrain the problem and do not meet the desired performance results. 

 However, the LMS approach does not over-constrain the minimization problem, 

and thus this research utilizes the LMS algorithm for further analysis and evaluation.  The 

performance evaluation is done in concert with a variety of qualifying adaptive array 

scenarios; here, the different scenarios provide the means to compare and contrast the 

results due to the varying parameters.  Applying the pattern reconfigurable model, the 

results will bring to fruition the underlying objective of this research, which is to 

characterize the necessary elements of reconfigurability and demonstrate the impact 

pattern variability in adaptive arrays can have in wireless communications. 

 This research establishes a platform for applications seeking portable system 

designs containing a small number of antenna elements with relatively wide element 

spacing.  By extending the early work of Compton in adaptive arrays by going beyond 

utilizing ideal antenna elements, the results of this research demonstrate that a practical 

pattern reconfigurable element can produce results comparable to that of the ideal 

element.  After ascertaining the limitations brought on by this approach (e.g., not fully 
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utilizing the available reconfigurability), the procedure integrates pattern variability 

directly into an optimization routine—allowing the algorithm to fully leverage the 

capabilities of the available reconfigurability. The implementation of this approach is 

based on the development of a pattern reconfigurable element model that uses a two-

element subarray topology in conjunction with the appropriate element weight 

constraints.  As a result, this work establishes a pathway specifying the design 

requirements for pattern reconfigurable antennas to improve small adaptive array 

performance, demonstrating that designers should focus on an element’s null steering 

capability rather than just its beam tilting capacity. 

1.3 Dissertation Outline 

 This dissertation proceeds as follows: The first section of Chapter 2 first 

exemplifies two pattern reconfigurable antennas, designed by past researchers in the 

Electromagnetics Lab at the University of Illinois at Urbana-Champaign.  The next 

section continues up with a brief investigation regarding the mutual coupling effects of 

these two pattern reconfigurable antennas in a small array setting.  Next, Chapter 3 gives 

an overview of adaptive arrays and then discusses the analytical relationships used in this 

research.  In addition to an alternate way to consider grating nulls, the chapter gives more 

detail behind the adopted technique.   The last section in this chapter outlines the steps 

taken in the analysis to explore the functional benefits of utilizing pattern variability in 

adaptive arrays.  Chapter 4 implements the technique and displays a number of graphical 

results related to several adaptive array scenarios, including those incorporating a 

practical pattern reconfigurable antenna element into the methodology. An analysis of the 

overall limitations of the approach follows.  

 Chapter 5 expands the potential use for radiation reconfigurable antennas by fully 

leveraging the capabilities of the available pattern reconfigurability. The chapter 

demonstrates that the advantages gained in pattern variability not only stem from the 

antenna’s beam tilting capability but also from its null-forming ability through simple, 

but illustrative examples utilizing the adaptive array platform.  Next, Chapter 6 follows 

along the task of fully leveraging the available reconfigurability and discusses a model 
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and method which integrates pattern variability into the algorithm, in this case the convex 

routine.  This method presents a more systematic approach in which the algorithm itself 

then determines the range of possible solutions.  The chapter includes the configuration 

details for each example operational scenario involved in the analysis, followed by 

graphical results pertaining to each scenario.   

 Making use of the knowledge gained from implementing the convex optimization 

routine, Chapter 7 utilizes the LMS technique with a solver that has more flexibility in 

terms of implementing the pattern reconfigurable model. Various qualifying adaptive 

array scenarios are analyzed using LMS.  The different scenarios provide the means to 

compare and contrast the results due to the varying parameters.  Evaluation of the 

individual element patterns will reveal the types of reconfigurability necessary to uphold 

the performance offered by adaptive arrays.  Chapter 8 concludes the dissertation with a 

summary and directions for future work. 
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CCHHAAPPTTEERR  22  

EEXXAAMMPPLLEE  RREECCOONNFFIIGGUURRAABBLLEE  AANNTTEENNNNAASS  AANNDD  

MMUUTTUUAALL  CCOOUUPPLLIINNGG  EEFFFFEECCTTSS  

2.1 Example Reconfigurable Designs  

 Since this dissertation’s research centers on pattern reconfigurable antennas, this 

section provides further insight into the basic operation of pattern reconfigurable 

antennas. First, two example pattern reconfigurable antennas, designed by past 

researchers in the Electromagnetics Lab at the University of Illinois at Urbana-

Champaign, are discussed.  The first one is a broadside-to-endfire reconfigurable antenna 

(BERA), and the second one is reconfigurable microstrip parasitic array (RMPA). Each is 

explained briefly, with more in-depth discussion and analysis of the antennas found in 

[14,24] and [12,13], respectively. 

2.1.1 Broadside-to-Endfire Reconfigurable Antenna (BERA) 

 The BERA operates as a bi-state, linearly polarized pattern reconfiguring radiator 

capable of switching its radiation patterns between a broadside (BS) state and an endfire 

(EF) state over a common impedance bandwidth. The broadside and endfire patterns are 

produced through switching elements located on the antenna structure.  Figure 2-1 

displays a layout of the antenna’s design, including the location of the two switches. 

 In order to attain pattern reconfigurability, the inline switching elements alter the 

current distributions to produce the desired far-field pattern. In reference to Figure 2-1, 

with switch 1 closed and switch 2 open, the antenna operates in endfire mode. 

Conversely, with switch 1 open and switch 2 closed, the antenna operates in broadside 

mode.  Figure 2-2 shows the resulting measured radiation patterns for both configuration 

states in the Eθ and Eφ polarizations.  The broadside/endfire radiation characteristics of 

the antenna is shown in the antenna’s primary polarization and plane of interest (Eθ and 

the φ = 0° plane, respectively). In this work, the switching elements are hardwired for  
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Figure 2-1: Reconfigurable antenna’s physical layout including switch position [24]. 

proof of concept. The authors in [14] analyze the process of integrating RF MEMS 

(microelectromechanical systems) switches on the antenna; their experimental results 

show radiation characteristics similar to the switches being hardwired. 

2.1.2 Reconfigurable Microstrip Parasitic Array (RMPA) 

 The RMPA, in its single-element form, consists of three parallel conducting strips 

(a probe fed center strip and two parasitics on both sides) set on a grounded dielectric 

substrate [12]. Each parasitic strip contains two gaps near the ends for switch placement. 

Figure 2-3 illustrates a physical layout of the antenna structure, including the location of 

the gaps for the switches.  The linearly polarized antenna is capable of reconfiguring its 

radiation pattern in the y-z plane (the H-plane) in three different modes: RD, DD, and 

DR, where R and D stand for “reflector” and “director,” respectively, in reference to the 

configuration of the two outer parasitic elements. Changing the electrical length of the 

parasitic elements via the switches creates the beam tilts.  

 The antenna operates similar to that of a Yagi-Uda antenna [25].  Leaving all gaps 

on the parasitic structure open configures the antenna in broadside mode (DD).  Closing 

the two gaps on the left parasitic element in conjunction with opening the two gaps on the 

right parasitic element produces a tilted pattern toward the positive y axis (RD mode).  

Conversely, opening the two gaps on the left parasitic element while closing the two gaps  
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Figure 2-2: Radiation pattern of the reconfigurable antennas in the elevation planes for the two 
configuration states: (a) and (b) broadside mode, (c) and (d) endfire mode [14]. 

on the right parasitic element provides a tilted pattern toward the negative y axis (DR 

mode).  All three pattern modes operate over a common impedance bandwidth. 

 Figure 2-4 shows a polar plot of the radiation patterns produced by the RMPA.  

The data traces represent the normalized magnitude co-polar electric field versus 

elevation angle (θ) for each of the three modes: a broadside pattern (DD mode), +25° 

tilted pattern (RD mode), and a −25° tilted pattern (DR mode).  These particular radiation 

patterns result from using electromagnetic simulation software, utilizing the design 

parameters indicated in [12]. 
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Figure 2-3: Layout of the reconfigurable microstrip parasitic array (RMPA). The antenna is capable 
of reconfiguring its radiation pattern in the y-z plane by means of the indicated switching  
elements [13]. 

 

 

Figure 2-4: Normalized radiation patterns for the co-polar field (in dB) produced by a single RMPA 
element. The curves represent the DD mode (broadside), DR mode (−25° tilt), and RD  
mode (+25° tilt). 
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2.2 Mutual Coupling Analysis 

 These pattern reconfigurable antennas operate under highly resonant conditions, 

and, as a result, their performance can suffer in an array setting with large amounts of 

mutual coupling, an effect primarily due to element proximity.  Given that one aspect of 

this research centers on implementing a small number of pattern reconfigurable elements 

in a linear array with relatively wide elemental spacing to help mitigate mutual coupling, 

it is instructive to evaluate these effects for the elements discussed in the previous 

chapter.  

 In order to illustrate the effects of mutual coupling on the two model antennas, 

each is placed in a uniform, linear, equally spaced array composed of two elements 

spaced a distance d2 apart.  Figure 2-5 displays an example array setup composed of 

BERAs (left graphic) and RMPAs (right graphic).  Since the transmission coefficients, 

i.e., Sij (i  ≠ j) parameters, give a good indication of the amount of mutual coupling 

between array elements, Ansoft Corporation’s HFSS [26] is used to simulate the two-

element array and calculate S21 for a range of element spacing: 0.6λ0 ≤ d2 ≤ 2.0λ0, where 

λ0 is the free space wavelength at an operational frequency of 5.8 GHz. Note, both 

antenna designs have been scaled from their nominal base frequency design to operate at 

the wireless local area network (WLAN) band of 5.8 GHz, and the overall operational 

behavior of each individual antenna remains the same. Figure 2-6 displays the S21 results. 

 As seen in Figure 2-6, the simulation results show the spacing effects for the two-

element array for all reconfigurable modes (uniform mode combinations only, no mixed-

mode scenarios).  Mutual coupling plays a more significant role for smaller element 

spacing.  For element spacing in this range, the variations in S21 are more pronounced, 

showing the highest values in some cases. At the smallest spacing, the RMPA in DD 

mode has the highest coupling, while another mode of configuration, DR, has the least.  

Note, the RMPA in the RD mode is not shown because it matches that of the DR mode 

due to symmetry.  Nevertheless, as the spacing increases, the curves stabilize and 

decrease in S21.  This indicates more isolation between the elements, and, as a result, the  
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Figure 2-5: Example array setup for the 2-element array mutual coupling analysis. In the graph on 
the left, the array is composed of two BERA elements, while the array on the right is composed of 
two RMPA elements. The graph shows the relative position of the elements and d2, the spacing 
between them. 

antenna’s operating characteristics will tend to more closely match their single-element 

behavior. 

 While Figure 2-6 captures mutual coupling effects via the S21 parameters, it does 

not indicate what effect coupling has on the individual element patterns. Consider the 

RMPA element in its DR and DD mode configurations, a scenario that would require 

switching the element patterns from a −25° tilt to a 0° tilt, respectively.  Figure 2-7 shows 

a combination of simulated co-polar radiation patterns for two-element spacings: d2 = 

0.6λ0 and d2 = 2.0λ0, for both the DR mode and DD mode configurations.   Within each 

of the four plots are three curves: the radiation pattern of the single element by itself 

(dark curve), the active element pattern (AEP) of antenna element 1 in the two-element 

array scenario (dotted curve), and the AEP of antenna element 2 in the two-element array 

scenario (gray curve).  Recall, the AEP of an array element means that particular antenna 

is actively fed, while all others are terminated in a matched load.  Cases (a) and (b) 

represent the RMPA in DR mode with d2 = 0.6λ0 in (a) and d2 = 2.0λ0 in (b). Likewise, 

cases (c) and (d) represent the RMPA in DD mode with d2 = 0.6λ0 in (c) and d2 = 2.0λ0 in 

(d). 
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Figure 2-6: S21 (dB) vs. element separation d2 (λ0) for a 2-element array composed of identical pattern 
reconfigurable elements. The curves are plotted at the center frequency of operation of 5.8 GHz.  

 The results in Figure 2-7 illustrate how mutual coupling can affect the individual 

antenna elements in the array. In case (a), the AEP of element 1 tends to follow the single 

element, but mutual coupling effects distort the AEP of element 2, to the extent that it is 

radiating in a broadside mode rather than in a tilted mode.  However, for wider element 

spacing, as in case (b), the AEP of element 2 returns to its tilted form.  The effects are 

even more pronounced for the DD mode scenario. In case (c), mutual coupling effects 

distort both AEPs 1 and 2; both patterns seem to tilt away from their single-element form.  

On the other hand, increasing the element spacing to d2 = 2.0λ0, (case (d)), brings both 

patterns back to a broadside radiation pattern, thereby mitigating the effects of mutual 

coupling. 
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Figure 2-7: Co-polar simulated radiation patterns of the RMPA in DR mode, cases (a) and (b), and in 
DD mode, cases (c) and (d); the mode pertains to select array states and element separations. In all 
plots the single-element (black [or dark] curve), active element pattern of element 1 (dotted curve), 
and active element pattern of element 2 (orange [or light] curve) are shown. In cases (a) and (c), d2 = 
0.6λ0; in cases (b) and (d), d2 = 2.0λ0. 
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 While these two pattern reconfigurable designs certainly do not represent all 

pattern reconfigurable antennas, they do provide insight into the complications that could 

arise if they were implemented in a half-wavelength-spaced linear array. By examining 

the mutual coupling effects through S21 and the active element patterns, insight is gained 

into how the spacing should be set for the general study in the following chapters.  The 

spacing also plays a role in constraining the number of pattern reconfigurable elements 

on an adaptive array system package.  For example, consider the RMPA previously 

discussed. In a military scenario, the system package could be mounted on a platform 

attached to the soldier’s back (e.g., a wearable vest).  In terms of physical size, the human 

body model in [27] gives the width and height dimensions of the upper back platform 

area of about 46 cm by 60 cm, respectively.  As discussed in [28], many engineering 

applications in this area have much interest in operating in the 2.45 GHz band. Thus, an 

example spacing of 1.5λ0 between RMPA elements operating at this frequency would 

allow two elements along the width and three along the height of the prescribed platform, 

which is a small footprint such as needed for portability. 
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CCHHAAPPTTEERR  33  

AADDAAPPTTIIVVEE  AARRRRAAYY  FFUUNNDDAAMMEENNTTAALLSS  

 This chapter gives an overview of adaptive arrays, first discussing some of the 

fundamental concepts and then the analytical relationships utilized in this research. 

Afterwards, a detailed account on the adopted grating null mitigation method by R.T. 

Compton Jr. is discussed.  The next sections present a flow chart illustrating how grating 

nulls occur, followed by an alternate, more intuitive, way to consider how they form.  

The last section details the methodology that is used in this dissertation and which will be 

used in later chapters for analysis and results.  

3.1 Overview 

 The multidisciplinary aspects of adaptive arrays closely correlate with the 

advancing interactions between electromagnetics and digital signal processing [29]. This 

is why they are the subject of great interest in a wide range of technological areas, e.g., 

radar and communication applications [30]. Fundamentally, an adaptive antenna system 

controls its pattern in response to the signal environment.  A performance index (PI) 

gauges the system’s ability to accomplish the task of enhancing the desired signal and 

rejecting the undesired interference signals (e.g., jammers).  Some example PIs include 

signal-to-interference plus noise ratio (SINR), mean square error, output noise power, and 

minimal signal distortion [18]. These PIs, as opposed to conventional antenna 

characteristics, lead to more convenient forms of feedback for control of the array pattern 

[17]. In this work, the PI of interest is the SINR. 

 Figure 3-1 illustrates a general layout of a linear N-element adaptive array, 

including the geometric layout and its principal components. These components consist 

of the antenna or sensor array, the beam former, and a real-time adaptive processor.  

Suppose desired and interference signals impinge upon on the array (shown in Figure 

3-1).  First, the signal processor collects two forms of data: (1) the signal information 

from each antenna before entering the beam former and (2) the output s(t) that feeds back 
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into the signal processor. Then, the processor’s job is to distinguish between the desired 

and interference signals using either a priori or learned knowledge about the signals. 

Next, the adaptive control algorithm adjusts the complex weight of each antenna, which 

determines how the radiation pattern receives the desired and interference signals. In 

effect, the array output s(t) changes through feedback until the system reaches steady 

state. 

 

 

Figure 3-1: Adaptive array block diagram illustrating the geometrical layout and the primary system 
components: antenna array, beam former, and adaptive processor. 

 A number of factors affect the performance of an adaptive array; these include 

array topology (the number of elements and element spacing) and the antenna elements 

themselves [17]. An N-element array has N minus 1 degrees of freedom to null out the 

interfering signals, and element location determines array resolution and interferometer 

effects.  In terms of the antenna element, its individual pattern, along with the complex 
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weights within the beam former, and the aforementioned element spacing dictate overall 

beam pattern sensitivity. These dynamic factors determine how well the specified 

requirements can be met for a given signal environment [18]. The fact that the individual 

element patterns play a major role in adaptive array performance lends itself well to the 

utility of pattern reconfigurable antennas in such a setting. 

3.2 Analytical Relationships 

 This section presents the analytical concepts outlining the framework used in 

future calculations.  In reference to Figure 3-1, assume a single desired and interference 

signal are incident on the N-element array—both continuous wave and time harmonic in 

nature. Also, the spacing between element 1 (the zero-phase, reference element) and 

element N is given by dN  (in wavelengths).  Then the summation of the desired, 

interference, and thermal noise vectors ( dX , iX , nX , respectively) generates the total 

signal vector X  [17] given as d i nX X X X= + + . Thus, thus the array output yields 
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( ) ( ) T
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= =∑ , (3.1) 

 

where w  is the weight vector with matrix element jw , and superscript T indicates 

transpose.  

 The adaptive processing unit takes on the task of computing the weight vector via 

an inversion of the covariance matrix, i.e., 1Sw −= Φ , where Φ  (given by the expectation 

of the total signal vector and its complex conjugate) is the covariance matrix and S  

relates to the reference correlation vector. The covariance matrix refers to a matrix 

containing the averaged cross-products of all the element signals.  Moreover, the weight 

vector is typically computed via an algorithm that aims to satisfy some criteria.  Two 

common techniques exist for computing the weight vector: (1) the least mean square 

(LMS) algorithm, which minimizes the error in the signal, and (2) the Applebaum 

approach, which maximizes the desired-to-undesired signal ratios at the array output [17]. 
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It is known that the LMS weights in an array yield the maximum SINR that can be 

obtained from a given set of signals [20]. 

 The array signal vector ( )U θ  contains the element pattern and phase shift 

information for each antenna element, given by 
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This array signal vector can be evaluated in two ways: (a) as the desired signal vector 

( )d dU U θ θ= = , where dθ  is the angle of arrival of the desired signal, and (b) as the 

interference signal vector ( )i iU U θ θ= = , where iθ  is the angle of arrival of the 

interference signal. Note, ( )Nf θ  is the amplitude pattern function of the Nth element. 

Additionally, for the PI of interest, SINR is given by the ratio of the received signal 

power in the desired signal to that of the power in the interference and noise signal. In 

general, it can be expressed as indicated in (3.3):  
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In this expression, Hw  represents the Hermitian of w , dΦ  is the desired signal 

covariance matrix, and uΦ  is the undesired signal covariance matrix.  Physically, the 

form of (3.3) represents a energy/power ratio ( w and 2w )   in relation to the ratio of the 

desired and undesired covariance matrix.  Compton [17] presents the SINR in a simpler 

form, i.e., in terms of the array signal vectors: 
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In (3.4), dξ translates to the desired signal-to-noise ratio (SNR), and iξ  translates to the 

interference signal-to-noise ratio (INR) per element, which are assumed equal for each 

element [17].  Finally, the array voltage pattern, another parameter of significance, is 

given by the dot product of the weight vector and the array signal vector, i.e.,  

 ( ) ( )Twp Uθ θ= . (3.5) 

3.3 Applied Technique 

 The present work adopts a technique realized by Compton [20], in which he 

derives a set of conditions required for the Nth + 1 element in an N-element linear 

adaptive array. Given a set of signal parameters, the conditions yield maximum SINR. 

The additional auxiliary element’s purpose is to enhance SINR performance compared to 

that of the original N-element array.  In fact, the auxiliary element functions to mitigate 

an undesirable effect in the SINR that occurs due to the arrangement of element pattern 

types and elemental spacing: grating nulls. 

 Grating nulls, as discussed by Ishide and Compton [21], occur when the desired 

and interference signal vectors are parallel, i.e., d iU kU= , where k is a constant. 

Effectively, the two signal vectors are electrically indistinguishable, and a weight vector 

chosen to null the interference signal will also null the desired signal. Two types of 

grating nulls exist: (a) conventional grating nulls (CGN), which can arise for equal 

element patterns, and (b) sign reversal grating nulls (SRGN), which can take place for 

unequal element patterns. The occurrence of CGNs parallels that of grating lobes in a 

standard array, and SRGNs occur when one element’s pattern changes its sign between 

dθ  and iθ  while another maintains the same sign at dθ  and iθ . In keeping with the 

research objective of using a small number of antenna elements, a two-element array with 

the addition of a third auxiliary element is evaluated as part of the initial investigation.  

Figure 3-2 clarifies the grating null adaptive process in a cause-and-effect type 
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relationship for this particular array topology.  For a two-element array, the grating null 

condition simplifies into the following form:  
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e e
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The “+” sign in (3.6) and (3.7) corresponds to CGNs and the “−” sign corresponds to 

SRGNs; both relationships must be satisfied for grating nulls to occur. 

 

 

Figure 3-2: Example flow chart diagram illustrating the grating null process. 
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3.4 Grating Nulls: Further Discussion 

 The grating null relationship expressed in (3.6) and (3.7) can be interpreted 

graphically using a traditional phasor-vector diagram, which in essence gives another 

perspective on how grating nulls formulate. As an example, consider the CGN case that 

specifies equal element patterns in the array. This result satisfies the amplitude condition 

in (3.6). Also, let the arguments in the exponentials translate from θ  space to ψ  space. 

For CGN, (3.7)  becomes  

 d ij je eψ ψ= , (3.8) 
 

where 2
0

2 sin( )x xdπψ θλ= . Instead of the traditional phasor diagram in a circular 

complex plane, Figure 3-3 shows an unwrapped rectangular complex phasor diagram 

with the horizontal axis representing iψ (in degrees) and the vertical axis representing the 

phasor amplitude. 

 

 

Figure 3-3: Illustration of the grating null occurrence using an unwrapped phasor diagram in 
rectangular format. 
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 In the figure, iψ +  and iψ −  are the limits in ψ  space within the desired viewable 

space (a correspondence to θ  = ±90°, respectively). Depending on the value of dψ , n  

number of 
ndψ phasors will exist within the iψ  limits (n is an integer).  Envision the iψ  

phasor starting at the iψ −  limit ( 90iθ = − ° ). As iθ  increases, iψ  traverses the horizontal 

axis until it reaches iψ + . Every time it aligns itself with a 
ndψ phasor, a CGN event 

occurs, which happens at every instance except for the case when n = 0. For n = 0, the 

desired and interference signals are coming from the same direction (i.e., iθ  = dθ ). A 

null does occur, but this is an expected result, since the adaptive array’s objective 

requires a null in the interference direction.  Also, for a grating null to occur, not only 

must the iψ  and 
ndψ  phasors line up in angle space, but they must match in amplitude as 

well. This condition makes it more difficult for SRGNs to occur, because now the 

amplitude values of the patterns factor play a role. 

3.5 Methodology 

 This section outlines the steps taken in the analysis that explores the functional 

benefits of utilizing pattern variability adaptive arrays. As a first step, consider the 

element patterns to be in functional form—those resembling tilted dipole patterns 

[20,21]. They are given by 

 ( )( ) cosj n jf θ θ θ= − , (3.9) 
 

where the main beam maximum resides at n jθ with 0n jθ =  corresponding to broadside. 

The basic constituents of the analysis involve evaluating the N = 2 array performance for 

a select number of beam tilts and then determining the third element (auxiliary element) 

parameters 3 3( , )n dθ  that improve SINR performance. 

 For this study, a pool of potential beam tilts, chosen from −60° to +60° in 15° 

increments (forming a 1 2{ , }n nθ θ pair) representing the reconfigurations in a conceivable 
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pattern reconfigurable antenna. Selecting from this pool, along with a set 2( , )d dθ in (3.6) 

and (3.7), determines what type of grating nulls exist and where they are located in terms 

of iθ .  Utilizing these parameters further, the next step in the methodology involves 

finding the third element properties, 3 3( , )n dθ . They can be found using the following 

relations given in [20]: 

 *
3 3( ) ( ) T

i id df f U Uθ θ =  (3.10) 

and 

 0 0

2 2sin sin3 3 *
3 3( ) ( )

j d j d id T
i id df e f e U U

π πθ θλ λθ θ π− = − . (3.11) 
 

A program written in Mathematica® calculates and displays the results, which include 

two key figures of merit for a given scenario: (1) the SINR versus interferer incident 

angle iθ  and (2) the voltage radiation pattern, p(θ) versus spatial angle θ , both on a dB 

scale. Note that all cases assume a signal environment encompassing strong interferers 

(i.e., iξ = 40 dB with dξ = 0 dB). 

3.6 Chapter Summary 

 This chapter first presented some of the fundamentals behind an adaptive array 

system, including the geometrical layout and the key analytical relationships involved.  

Subsequent sections discussed the occurrence of grating nulls and the overall 

methodology utilized in determining the necessary parameters required for grating null 

mitigation. In essence, the antenna array in conjunction with the real-time adaptive 

processor’s algorithm adjusts the weights toward optimizing the SINR output.  The 

system adapts to the total signal environment “seen” by the array of sensors, using all 

available degrees of freedom available to the algorithm in an optimum sense.  Utilizing 

radiation reconfigurable antennas in this setting potentially increases the number of 

degrees of freedom even further. The next chapter includes graphical results that 

demonstrate this concept.  
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CCHHAAPPTTEERR  44  

AADDAAPPTTIIVVEE  AARRRRAAYY  IIMMPPLLEEMMEENNTTAATTIIOONN  

 The previous chapter explained a number of analytical relationships pertaining to 

the adaptive array process.  It also outlined the adaptive array technique developed in 

[20,21] and the proceeding methodology to mitigate grating nulls with antenna elements 

via their beam tilting capabilities.  This chapter implements the technique and presents 

several graphical results related to a number of adaptive array scenarios. First, the 

different types of grating nulls are analyzed (e.g., conventional and sign reversal); then a 

brief discussion about an undesirable solution scenario follows. Finally, the last section 

moves away from using ideal elements in the solution set and incorporates a practical 

pattern reconfigurable antenna element into the methodology.  The analysis and results 

are presented similarly to the ideal element case.   

4.1 Conventional Grating Nulls 

 Recall that CGNs particularly arise for equal element patterns.  Consider 

Figure 4-1, which shows an interpretation of (3.6) and (3.7) in graphical form [21]. The 

θi-θd axes scale from −90° to +90°, and in this case d2 equals 2λ0, which is a favorable 

distance since it satisfies the goal of having a wider spacing between antenna elements to 

decrease mutual coupling.  A number of n-curves present themselves in the graphic, six 

within the spatial range. Along these curves, a grating null takes place.  Thus, for a 

particular θd, intersection with an n-curve gives the corresponding grating null (θCGN) 

located at θi.   The labeled example in Figure 4-1 details this. When θd = −60° along the n 

= 1 curve, θCGN = −22° due to the interference signal coming from that direction.  The 

number of n-curves depends on d2.  As d2 increases, more curves come into the spatial 

region of interest, thus increasing the opportunity for more grating nulls to occur.  
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Figure 4-1: Plot illustrating when CGNs occur for an element spacing of 2λ0.  The intersection of a 
specified θd and an n-curve results in a grating null at θi. 

 Even within the constraints of this initial investigation, numerous scenarios still 

present themselves. Thus, Table 4-1 displays the case results for a few example scenarios.  

In the table, the first three columns represent the specified parameter data (θd, d2, and the 

{θ n1 = θn2} pair). The fourth column corresponds to the resulting interferer incident angle 

at which a grating null occurs (i.e., θi = θCGN), and the last two columns list the 

parameters required of the third antenna element to mitigate the grating null and improve 

SINR performance, θn3 and d3.  The resultant third element parameters in the last two 

rows of Table 4-1 warrant further discussion.  In one case, d3 does not equal 4λ0; i.e., the 

three elements are not equally spaced.  In the other case, a no solution (NS) result exists 

for the third element parameters under the given signal characteristics.  The required 

beam tilt for grating null mitigation is not within the visible range. These types of events 

do happen for various scenarios and thus require further detailed analysis in order to 
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Table 4-1: Calculated CGN results based on specified parameters for select cases.  

θd (°) d2 (λ0) {θn1 = θn2} (°) pair θi = θCGN (°) θn3 (°) d3 (λ0) 

−15 2.0 

−60 

47.8 

−16.5 4.0 

−45 36.9 4.0 

−30 −18.1 3.5 

−15 NS - 

 

enhance the possibility of integrating pattern variability in adaptive arrays.  In particular, 

the NS result will be further discussed later in this dissertation. 

 Figure 4-2 provides the results of the data in the first row of Table 4-1 in 

graphical form (i.e., θd = −15°, d2 = 2λ0, θ n1 = θn2 = −60°, θi = θCGN = 47.8°, θn3 = 

−16.5°, and d3 = 4λ0).  The plot on the left depicts the SINR (dB) as a function of 

interferer incident angle θi, while the plot on the right shows the array voltage pattern 

(dB) as a function of spatial angle θ.  Within each plot, two curves represent the “before” 

and “after” conditions, i.e., before the addition of the third element and after the addition 

of the third element, respectively. It is important to recognize here that the SINR varies 

with θi, and the voltage pattern is plotted for one particular θi, θi = θCGN. Recall that the 

pattern depends on the element weights, which change as the signal environment 

changes. 

 The SINR plot details how, with only two antenna elements in the array, adaptive 

array performance degrades due to the presence of grating nulls.  With the addition of the 

third element (i.e., the appropriate beam tilt and element spacing) SINR performance 

improves at the target grating null location (i.e., θi = 47.8°). Not only is the SINR 

maximized at θi = 47.8°, but it improves at other grating null locations as well.  The 

SINR results correlate with the before- and after-voltage pattern plots. Since the voltage 

patterns are plotted for the target grating null, the pattern values suffer in the before case 

(indicated by the low dB values). After mitigating the grating null, the overall values in 

the after case curve increase substantially. Note that a null still exists in the pattern at  
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Figure 4-2: Resulting SINR (left) and voltage pattern plot (right) in a CGN scenario with the 
following parameters: θd = −15°, d2 = 2λ0, θ n1 = θn2 = −60°, θi = θCGN = 47.8°, θn3 = −16.5°, and d3 = 
4λ0.  The dashed light curve represents the 2-element array and the solid dark curve represents the 
addition of the third element. SINR and pattern performance (at θi = 47.8°) improve with the 
addition of the beam tilted third element. 

θ = 47.8°, an expected result since the interferer is coming from that direction. 

Altogether, the results show how adaptive array performance improves with the inclusion 

of pattern variability. 

4.2 Sign Reversal Grating Nulls 

 This section presents the SRGN results in a fashion parallel to the preceding 

subsection on CGNs.  Figure 4-3 shows another interpretation of (3.6) and  

(3.7), this time for SRGNs.  For the same element spacing, a total of seven n curves 

characterize the plot, as compared to six in the CGN plot. In this case, the n = 0 curve 

qualifies.  Since SRGNs take place for unequal antenna element patterns, they occur less 

frequently than CGNs. In addition to the n curves (solid), two auxiliary curves (one 

rectangular-dotted curve and one circle-dotted curve) overlay the plot, with each of these 

representing two solutions satisfying the relationship in (3.6). These curves represent a 

specific two-element beam tilt scenario, {θ n1, θn2} = {60°, 0°} for this plot. An SRGN 

occurs at the intersection of an auxiliary curve and an n curve. The intersection point 

specifies θd and the grating null location at θi required to produce the grating null, θSRGN.  
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Figure 4-3: Plot illustrating when SRGNs occur for an element spacing of 2λ0.  The intersection of an 
auxiliary curve and an n curve specifies θd and the grating null at θi. 

Again, the labeled example in Figure 4-3 details this. At the intersection of the lower 

auxiliary curve and the n = −3 curve, θd = 24° and θSRGN = −57.5°. 

 The auxiliary curves represent a specific {θ n1, θn2} configuration, in this case 

{60°, 0°}. Even though the auxiliary curves for only one {θ n1, θn2} pair are shown in 

Figure 4-3, the behavior of the curves tends to follow a trend as the beam tilt angle 

changes.  Due to the nature of the cosine functions used in (3.7), the auxiliary curves 

exhibit a sharp discontinuity.  For both solutions, the discontinuity occurs near θd = −48° 

in Figure 4-3. As the separation between θn1 and θn2 increases, the curves change in 

appearance (e.g., become wider at the base) and shift along the horizontal axis. The closer 

they come together, the gap between the discontinuity line and the continuous line 

becomes closer.  On the other hand, when both θn1 and θ n2 shift their beam tilts by the 

same amount, the auxiliary curves tend to maintain their shape and shift along the 
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horizontal axis. Irregular as it may seem, the discontinuous nature of the curves does 

provide useful insight into potential SRGN behavior.   

 For SRGNs, Table 4-2 shows the case results for several different {θ n1, θn2} 

pairs; the format parallels Table 4-1. As in Table 4-1, NS results still occur when 

determining the third-element parameters for select cases. However, d3 typically equals 

4λ0 for non-NS results. Similarly to Figure 4-2, Figure 4-4 illustrates the results for an 

SRGN scenario in graphical form, wherein the SINR and voltage pattern plots are 

displayed. The data curves in the plot result from the parameters listed in the last row of 

Table 4-2  (i.e., θd = 0°, d2 = 2λ0, θ n1 = 60°, θn2 = 0°, θi = θSRGN = −48.6°, θn3 = −18.6°, 

and d3 = 4λ0). Unlike CGNs, only one SRGN occurs for a set {θ n1, θn2} pair. 

Table 4-2: Calculated SRGN results based on specified parameters for select cases.  

θd (°) d2 (λ0) {θn1, θn2} (°) pair θi = θSRGN (°) θn3 (°) d3 (λ0) 

−60 

2.0 

{−45, −15} 62.1 −54.2 4.0 

−60 {60, −45} −6.7 NS - 

−45 {30, −45} −73.2 −58.2 4.0 

0 {60, 0} −48.6 −18.6 4.0 

 

 As expected, the grating null degrades performance in the before-SINR curve 

(dashed gray) in Figure 4-4. Adding the element with a beam tilt at −18.6° and a spacing 

of 4λ0 maximizes SINR at θi = -48.6°, as dictated by the after-SINR curve (solid black). 

Once more, performance improves not just at the grating null location but overall. A few 

interesting characteristics lie within the pattern plots as well.  In the pattern curve of the 

before case, two distinct nulls stand out: one at θ = θi = −48.6° and the other in the 

desired signal direction, θ  = θd.  As discussed before, the null at θ = −48.6° is expected 

because of the interferer. However, with the appropriate third-element parameters, the 

null at broadside is alleviated and the pattern in the after case along that direction reaches 

its maximum value. In reality, this in effect maximizes the SINR at θi = θSRGN. 

 



 

31 

 

 

Figure 4-4: Resulting SINR (left) and voltage pattern plot (right) in an SRGN scenario with the 
following parameters: θd = 0°, d2 = 2λ0, θ n1 = 60°, θn2 = 0°, θSRGN = −48.6°, θn3 = −18.6°, and  d3 = 4λ0. 
The dashed light curve represents the 2-element array and the solid dark curve represents the 
addition of the 3rd element. Clearly, SINR and pattern performance improve with pattern variability. 

4.3 Reconfigurable Pattern Implementation 

 In this section, the process of implementing patterns from radiation reconfigurable 

antennas into this work begins. The analysis and methodology will parallel that of the 

preceding sections, thus utilizing the relationships discussed in Chapter 3.  As an initial 

step, we will start by taking a simulated pattern of the RMPA and fit it into a functional 

form. Next, the occurrences of grating nulls are examined with the reconfigurable 

antenna’s pattern in mind. Finally, the adaptive array metrics of interest, namely the 

SINR and the voltage pattern, are illustrated making use of this pattern type. Throughout, 

comparisons to the case when the adaptive array antenna elements are tilted dipoles are 

made when appropriate. 

4.3.1 Reconfigurable Pattern 

 Despite their simple form, the dipole patterns belonging to the cosine variety used 

in this work thus far do not represent practical antenna patterns.  In this example, the 

work implements the simulated patterns of the RMPA in DD mode.  In order to take 

advantage of the adaptive array principles in the same manner as previously explained, 

the RMPA’s pattern must be cast into a functional form. One way of doing this involves 
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curve fitting the pattern with some common analytical functions. Using MATLAB®’s 

curve fitting toolbox, three candidate fits of various orders were considered for both the 

magnitude and phase of the pattern: Gaussian, polynomial, and Fourier. The relationship 

in (3.12) expresses the chosen magnitude fit (third-order Fourier series) and (3.13) 

conveys the chosen phase fit (fifth-order Fourier series): 

 

[ ] [ ]
[ ] [ ]
[ ] [ ]
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where wm = 0.01781, and 
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where wp = 0.9535 and SF = 104.4, all being factors belonging to the fit.  

 In both expressions, note the functional dependence on not only the spatial 

variable θ but also the parametric variable θn. Inclusion of this beam tilting parameter 

allows for rotation of the pattern from broadside to the angle θn.  So with this in mind, 

assume that the magnitude and phase of the individual antenna element tilt in parallel and 

that a practical reconfigurable antenna can produce the associated magnitude and phase in 

its radiation pattern.  Figure 4-5 compares the magnitude fit (dashed curve) while Figure 

4-6 compares the phase fit (dashed curves) to the actual simulated pattern (solid curves).  

The dipole pattern (dot-dashed curves) is included for reference; and for a fair 
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comparison, its magnitude has been scaled up to the maximum of the DD mode pattern.  

In all plots, θn = 0° (standard broadside mode), so there is no beam tilting depicted.  

 The results show that the fitted curves match well with the simulated patterns of 

the RMPA in DD mode.  Note that since the simulations present the magnitude pattern in 

terms of the rE (radial electric) field, the adopted units of measure are in dBV.  In reality 

the actual values do not matter as much as the curves’ relative differences. Nevertheless, 

the results also show the pattern differences compared to the ideal dipole pattern in (3.9), 

particularly in regard to its step-like phase behavior. Here the magnitude and phase have 

been separated, whereas before they were grouped solely within the single cosine 

function described in (3.9). 

 

Figure 4-5: Graph comparing the magnitude of the curve-fitted radiation pattern (dashed orange 
curve) to the RMPA magnitude pattern in DD mode (solid blue line). The dot-dashed curve 
represents the magnitude of the previously implemented dipole pattern scaled to the maximum of the 
fitted RMPA pattern. The fitted pattern stems from the expression in (3.12). 

 So in particular, why the chosen fits expressed in (3.12) and (3.13)?  As 

mentioned, a large number of different fit types of various orders were analyzed. The 

main criterion used to select the best fit related to statistical parameters specifying the 

goodness of the fit (i.e., SSE and R-squared value) and the number of terms and 

parameters in the fit expression. The SSE value measures the sum of the squares due to 

error, and the R-squared value measures how successful the fit is in explaining the 
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variation in the data [31].  For comparison purposes, a low SSE and an R-squared value 

close to 1 is best. The third-order Fourier series (comprised of eight parameters) 

representing the magnitude fit has a SSE = 12.04 and an R-squared value equal to 0.9988. 

Comparing this result to a third-order Gaussian series (comprised of nine parameters), for 

example—which has an SSE = 14.78 and R-squared equal to 0.9985—the Fourier fit has 

a better SSE value and one less parameter in the fit function. Similar conclusions hold for 

the phase fit. As a side note, the ability of the Fourier functions (positive and negative 

functions) to best represent the non-negative data of the RMPA dictates the functions’ 

effectiveness. Intuition might lead to thinking that a fit composed of non-negative 

functions would work best (e.g., polynomials); however, such is not the case as the 

polynomial fit performed worse. Later work detailed in Chapter 7 indicates that 

implementing curve fitting to characterize reconfigurable patterns will not be necessary. 

 

Figure 4-6: Graph comparing the phase of the curve-fitted radiation pattern (dashed orange curve) 
to the phase of the RMPA pattern in DD mode (solid blue line), in degrees. The dot-dashed curve 
represents the step-like phase of the previously implemented dipole pattern. The fitted phase stems 
from the expression in (3.13). 

4.3.2 Grating Nulls 

 Next, the focus of this work turns to examining the effects of implementing the 

curve-fitted radiation pattern on grating nulls. Before presenting the graphic results, this 

section discusses the changes to the grating null condition as applied to this 
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implementation—changes with respect to the definitions outlined with the dipole pattern 

representing the antenna elements.   

 Recall that the expressions given in (3.6) and (3.7) portray the grating null 

condition for the two-element array. Due to the nature of the cosine (dipole-like) function 

used to represent the antenna element’s radiation patterns, a separate pair of expressions 

exists for the CGNs and SRGNs. Given the fact that the simulated pattern has a separate 

magnitude and phase, the condition for grating nulls to occur can now be written as  

 

 1 1

2 2

( ) ( )
( ) ( )

d i

d i

f f
f f

θ θ
θ θ

=  (3.14) 

and 

 1 2 1 2( ) ( ) ( ) ( )i i id d df f f fj je eψ θ θ ψ θ θ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− ∠ + ∠ − ∠ + ∠= . (3.15) 
 

 Equation (3.14) represents the magnitude relationship and (3.15) characterizes the 

phase relationship. Note the additional phase terms in the argument of the exponential in  

(3.15). Moreover, since (3.14) and (3.15) present just one pair of conditions that must 

hold for grating nulls to occur, a different nomenclature will be devised when it comes to 

deciphering grating null types: Type I grating nulls (θgn1), for identical element patterns 

in the array (i.e., θ n1 = θn2); and Type II grating nulls (θgn2), for non-identical element 

patterns in the array (i.e., θ n1 ≠ θn2).  In fact, an SRGN, taken by its literal meaning, does 

not make sense here, because the magnitude of one of the element’s patterns will never 

change sign when going from θd to θi.    

 Finally, one more comment in regard to the overall approach taken to determine 

the results using the simulated radiation patterns. Before, the simple cosine relationship 

representing the dipole patterns manufactured nice, solvable, analytical forms when it 

came to determining grating nulls and the properties of the third element.  With the more 

complicated fit expressions, those detailed in (3.12) and (3.13), such is not the case. 

Therefore, the relationships used to determine the grating nulls and third-element 

parameters are solved numerically by comparing both sides of the equality to within a 
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tolerance value.  In determining the grating nulls, the error used in the phase expression 

of (3.15) is less than 0.05 and that of (3.14), the magnitude expression, is less than 0.25.  

To determine the third-element parameters described in (3.10) and (3.11), an error less 

than 1 is used to find θn3, and an error less than 0.1 is used to find d3.   

 Figure 4-7 illustrates the Type I grating null range plot that dictates the 

occurrence of grating nulls for equal element patterns in the two-element array (the 

“before” condition). The plot parallels the CGN plot in Figure 4-1.  Since the plot 

characterizes θi versus θd (θd ranging from −90° to +90° in 5° increments), every large 

dot along the vertical line represents a Type I grating null, i.e., θi = θgn1, for the 

corresponding θd. Interestingly, tracing these dots out reveals the n curves from before, 

thus the plot is more or less a discretized version of the one in Figure 4-1. Therefore, the 

locations of the grating nulls are the same for both the CGN and Type I GN scenarios, an 

expected result due to the two array elements having equal beam tilts. 

 

Figure 4-7: Plot illustrating the occurrence of Type 1 GNs for an element spacing of 2λ0.  The graph 
resembles the CGN plot in Figure 4-1, in this case simulated element patterns are incorporated into 
the methodology. For discrete values of θd, Type I GNs occur at the corresponding θi = θgn1, located at 
the points along each stem. 
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 Next, consider the two example plots in Figure 4-8. They illustrate a Type II GN 

scenario, in the same format as Figure 4-7 but somewhat different in presentation from 

the SRGN plot in Figure 4-3. Since the Type II GNs correspond to the array elements 

having different beam tilts (i.e., θ n1 ≠ θn2), each graph corresponds to a different {θ n1, 

θn2} pair.  In plot (a), {θ n1,θn2} = {60°, 0°}; and in plot (b), {θ n1,θn2} = {50°, 60°}.  Once 

again, in each plot the dot(s) along the vertical line represent a Type II GN for the 

corresponding θd (i.e., at that point θi = θgn2). Once again, the graphs illustrate the 

formation of n curves along the grating null locations. 

 The results in Figure 4-8 show some interesting findings with regard to grating 

null occurrence for unequal element patterns. When the beam tilts of the two array 

elements are identical, the Type I GNs results equate to CGN results (i.e., utilizing the 

dipole element patterns).  However, such is not the case when the array element’s beam 

tilts are not equal; the Type II GNs results do not equate to the SRGN results. This effect 

is due to the radiation reconfigurable antenna’s pattern magnitude and phase.  For 

example, plot (a) of Figure 4-8 utilizes the same beam tilt combination utilized to display 

the results presented in the SRGN plot of Figure 4-3.  Recall, in Figure 4-3, the SRGNs 

occurred at the intersection of the {θ n1,θn2} = {60°, 0°} auxiliary curve and an n curve. 

These points do not match in location and in number when compared to the Type II GNs 

displayed in Figure 4-8. 

 Next, consider plot (b) of Figure 4-8.  Recall that using the dipole patterns in the 

study revealed the fact that only one SRGN occurred for a θd and a {θ n1,θn2} pair. Apart 

from the fact that a large number of Type II GNs exist, the results in Figure 4-8 (b) stray 

from this occurrence by having at times three grating null events for a single θd and a set 

{θ n1,θn2}pair. True, this does give more chances for interference signals to degrade 

adaptive array performance; but at the same time, it also gives more opportunities to 

utilize pattern variability to mitigate the grating null effect. 
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Figure 4-8: Plots illustrating the occurrence of Type II GNs for an element spacing of 2λ0.  The 
format of the plots parallels the Type I scenario in Figure 4-7. For discrete values of θd, Type II GNs 
occur at the corresponding θi = θgn2, located at the points along each stem. In plot (a),  
{θ n1,θn2} = {60°, 0°}; and in (b), {θ n1,θn2} = {50°, 60°}. 

4.3.3 Signal to Interference Noise Ratio and Pattern Plots 

 This subsection discusses the effects of the grating nulls through the SINR and 

voltage pattern plots for several different parameter scenarios. The plots will once again 

compare the “before” condition (the two-element array) with the “after” condition 

(addition of the third element). When applicable, results will include the data plots 

pertaining to when the adaptive array antenna element’s patterns belong to the ideal 

dipole class.  The results will show the differences in performance when using more 

realistic antenna patterns and continue to demonstrate the usefulness of pattern 

reconfigurable antennas with beam tilts in this particular setting.  

 Figure 4-9 shows the SINR versus interference angle θi and the voltage pattern 

versus spatial angle θ for the two-element array,  the graph compares the dipole pattern 

results (solid line) and the RMPA in DD mode results (dotted curve).  In this scenario, the 

element patterns are equal, and thus the results present a CGN versus Type I GN 

comparison with the following common parameters: θd = –15°, θi = θCGN =θgn1 = –49.4°, 

θn1 = θn2 = 45°, and d2 = 2λ0.  In the SINR plot, the grating nulls match for both pattern 
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types, an expected result. The spike in the SINR dipole curve at around θi = –45° is due 

to the cosine function causing a null in the element patterns.  Also, the voltage pattern 

results show that when plotted at a grating null angle, the DD mode-based patterns do not 

bottom out as does the dipole-based pattern. Nevertheless, the patterns still suffer due to 

the effects of the grating null. 

 

 

Figure 4-9: Resulting SINR (left) and voltage pattern plot (right) in an equivalent CGN, Type 1 GN 
scenario with the following parameters: θd = –15°, θi = θCGN =θgn1 = –49.4°, θ n1 = θn2 = 45°, and d2 = 
2λ0.  Both cases represent the “before” condition (i.e., only the 2-element array). Utilizing the dipole 
patterns results in the solid curve, and using the RMPA in DD mode patterns give the dashed curve. 

 Figure 4-10 shows the results for the same two-element array parameters given 

for Figure 4-9, but with the addition of the third element whose tilted pattern aims to 

mitigate the target grating null at θi = –49.4°.  The third-element parameters for each case 

are as follows: when using dipole patterns, θn3 = 34.0° and d3 = 4.0 λ0, and when using 

the RMPA in DD mode patterns, θn3 = 28.5°, and d3 = 3.1λ0.  The SINR plot 

demonstrates that with the calculated beam tilt, the target grating null at θi = –49.4° in 

Figure 4-9 is now mitigated in Figure 4-10.  Note the increase in performance at other 

grating nulls with the DD mode patterns compared to using the dipole patterns in the 

adaptive array. In the voltage pattern plot, the two curves differ in distributing their 

energy across the spatial domain; both aim to null the interferer at θ = –49.4°and 

maximize the pattern in the desired signal direction, θd = –15°. 
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Figure 4-10: Resulting SINR (left) and voltage pattern plot (right) in an equivalent CGN, Type 1 GN 
scenario with the following parameters: θd = –15°, θi = θCGN =θgn1 = –49.4°, θ n1 = θn2 = 45°, and d2 = 
2λ0.  Now both cases represent the “after” condition (i.e., with the addition of the third element). 
Again, the solid curve represents using the dipole patterns (with θn3 = 34.0° and d3 = 4.0 λ0) and the 
dashed curve represents using the RMPA in DD mode patterns (with θn3 = 28.5°, and d3 = 3.1λ0). 

 Lastly, the SINR and voltage pattern plots displayed in Figure 4-11 show the 

“before” and “after” scenario for a Type II GN case—this time with no comparison to 

using dipole element patterns in the array. The parameters of interest in this case are θd = 

0°, d2 = 2λ0, θ n1 = –45°, θn2 = –30°, θi = θgn2 = –71.8°, θn3 = –9.6°, and d3 = 3.5 λ0. The 

SINR plots show that the before-curve (dashed) results exhibit three potential grating 

nulls, an unlikely result when the beam tilts of the two array elements were unequal for 

the dipole pattern-based study.  Nevertheless, utilizing pattern variability, the third 

element’s beam tilting capability mitigates the target grating null at θi = 71.8°. The after-

curve (solid line) result illustrates this effect.  Apart from maximizing the null in the 

desired signal direction, the voltage pattern in the “after” case has lower relative gain on 

average compared to the “before” case.  This is an interesting result, since previous 

scenarios (e.g., using dipole element patters) have illustrated poor overall pattern 

performance when evaluated at the grating null angle. 
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Figure 4-11: Resulting SINR (left) and voltage pattern plot (right) in a Type II GN scenario with the 
following parameters: θd = 0°, d2 = 2λ0, θ n1 = –45°, θn2 = -30°, θi = θgn2 = –71.8°, θn3 = –9.6°, and d3 = 
3.5λ0.  The dashed light curve represents the two-element array and the solid dark curve represents 
the addition of the third element. The graphs show how SINR performance improves with pattern 
variability. 

4.4 The No Solution Case: Further Discussion 

 The NS (no solution) results listed in Table 4-1 and Table 4-2 warrant further 

discussion.  Recall that they occur when the beam tilt required for the third element to 

mitigate the grating null effect is outside the visible range and thus does not exist. 

Examining the condition that determines θn3 from another perspective can perhaps give 

more insight into the matter.  Take, for example, the relationship in (3.10). Incorporating 

the dipole pattern given in (3.9), it can be expressed algebraically in a form described by 
1

3 cos ( )n xθ −= . The argument x functionally represents the following variables: θd, θi, θ n1, 

θn2, and d2.  The full 3nθ  expression can be written in two similar general forms, each 

given as 

 
2 2 2

1
3 2 2

2( )( ) 4( )( )
cos

2 ( )n

X B A B Y X X A Y Y B

A B X
θ −

⎡ ⎤⎡ ⎤+ − + ± − + +⎣ ⎦⎢ ⎥= ± ±⎢ ⎥⎡ ⎤− +⎣ ⎦⎢ ⎥⎣ ⎦

 (3.16) 

and 
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, (3.17) 

where in each expression cos cos , sin sin , =sin sind i d i d iA Bθ θ θ θ θ θ= = Χ , and 

[ ]( )2cos( ) cos( ) (sin1 exp 2 )(d n i n d iY j dθ θ θ θ π θ θ= − − + −  for 1 2n n nθ θ θ= =  (i.e., 

elements one and two having identical beam tilts).  The expressions in (3.16) and (3.17) 

offer 16 possible solutions for θn3 (most of which are extraneous) that can cause the NS 

results.  Restricting the observation and solution space makes deciphering the results 

easier.  

 Consider the pair of plots in Figure 4-12. Each graphic plots the real (solid blue 

curve) and imaginary part (dashed orange curve) of the relationship described by (3.16) 

and (3.17) in degrees versus θ n1 and θn2, the beam tilt of the first and second elements, 

which are here assumed equal (i.e., a  CGN scenario).  Both θ n1 and θn2 are designated as 

just θn (horizontal axis).  Reducing the observation space in order to simplify the 

analysis, let θ n vary from –60° to 60° in each plot.  In (a), let θd = –15°, θi = θCGN = 

14.0°, and d2 = 2λ0, while in (b) let θd = –45°, θi = θCGN = 52.46°, and d2 = 2λ0.  The 

curves illustrate the regions of NS that exist for the given parameters as a function of 

beam tilt angle.  When the imaginary part of θn3 equates to 0, a real-valued beam tilt 

exists. As the plot dictates, within this region, the value of θn3 varies.  

 To gain further insight from another point of view, take note of Figure 4-13, 

which shows once again θn3 vs. θn.  The plots display the real values of θn3 that only exist 

when θd = –15° and d2 = 2λ0 for all three grating nulls that exist. Each curve within the 

plot corresponds to the θn3 value for each individual grating null (see the legend within 

the plot).  The gaps between like curves dictate beamsteering angles where a NS result 

occurs.  Moreover, each curve carries with it directional arrows and/or vertical hash 

marks. The arrows along with the numerical value signify the corresponding distance of 

the third element, d3, for all points indicated by the arrow directions.  The curves bring to 

light not only the NS regions but also, for the solutions that do exist, regions of continuity 
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for d3. In some cases, (e.g., θCGN = –49.4°), an inflection point exists where the value of 

d3 goes from 3.0λ0 to 4.0λ0. The next subsection discusses this particular result in further 

detail. Overall, the analysis demonstrates the behavioral existence of the third-element 

parameters, (θn3, d3), required to mitigate grating nulls.  The results provide valuable 

information regarding array design considerations and suggest steps toward alleviating 

the grating null effect.   

 

 

Figure 4-12: Graphs illustrating the real part (solid blue curve) and imaginary part (dashed orange 
curve) of the θn3 needed to mitigate the grating null vs. θ n, the beam tilts of both elements in the 2-
element array (CGN scenario).  Regional areas of NS exist only when the imaginary part is not equal 
to 0. In case (a), θd = –15°, θi = θCGN = 14.0°, and d2 = 2λ0.  In (b), θd = –45°, θi = θCGN = 52.46°, and  
d2 = 2λ0.   

4.5 Non-Uniformity in Spacing: Further Discussion 

 As with the NS result, the spacing of the third element (d3) also necessitates 

further discussion. Throughout the calculated results, there were examples in which the 

spacing of the third element departed from a uniformly spaced array (i.e., d3 ≠ 4.0λ0).  

Figure 4-13 clearly demonstrates this fact by displaying solution curves in regions where 

d3 ≠ 4.0λ0. Thus, it seems as though the applied technique pushes for a solution in which 

the array geometry is nonuniformly spaced. As indicated in [18], employing non-uniform 

spacing does indeed present an alternative method to GN mitigation, essentially 

disrupting the periodicity of the array structure.  Thus, the question of interest lies in how  
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Figure 4-13: Graph illustrating θn3 vs. θ n; the solution regions that exist for a CGN scenario in which 
θd = –15°, and d2 = 2λ0. The corresponding grating nulls exist at θCGN = –49.4°, –14.0°, and 47.8°, as 
indicated by the plot legend. Apart from the NS regions, the directional arrows indicate regions of 
continuity for d3  in units of wavelengths. 

this type of structure (i.e., a subset of aperiodic arrays) matches the current methodology 

of utilizing the pattern only to mitigate GNs. However, there exist some practical 

disadvantages with this line of thinking in the context of this work.  

 Due to their aperiodic spacing functions, aperiodic arrays with a large number of 

elements in general have no grating lobes (i.e., grating nulls).  They are mostly utilized in 

array thinning, beamwidth narrowing, and element-interaction reduction applications 

[32].  One of the main objectives in this type of array synthesis problem is to find an 

optimum set of element spacings and excitations that would minimize the highest 

sidelobe level in the entire visible region. However, [32] reports that the difficulty in 

solving the problem lies in the fact the sidelobe levels depend on the element spacings in 

a highly nonlinear manner. Therefore, non-uniformly spaced arrays would not be 

applicable to adaptive arrays because (1) overall low sidelobe levels are not the priority 

and (2) it is impractical to physically change element positions in order to adapt to an 

ever-changing signal environment.  Pattern reconfigurability offers a solution to the 
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grating null solution in a more practical way by employing a uniformly spaced array 

structure.  

4.6 Chapter Summary 

 This chapter presented a variety of graphic analyses involving numerous adaptive 

array scenarios.  The results were based on the analytical adaptive array methodologies 

outlined in Chapter 3.  After graphically illustrating the occurrence of different types of 

grating nulls, SINR and pattern plots displayed the effectiveness of pattern 

reconfigurability to mitigate grating nulls.  Section 4.3 implemented the RMPA radiation 

patterns into the adaptive array methodologies. The outcome of this implementation 

confirms that a practical pattern reconfigurable element can produce results comparable 

to those of the model dipole element. The final two sections discussed some of the 

byproducts of this implementation, namely the NS result and emerging cases of non-

uniform element spacing.  The analysis provided further insight into the behavior of 

solution parameters for the third element.   
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CCHHAAPPTTEERR  55  

NNUULLLL  RREECCOONNFFIIGGUURRAABBIILLIITTYY  

 Thus far, this research has illustrated one aspect of the functional benefits of 

utilizing radiation reconfigurable antennas with beam tilts in an adaptive array setting.  

The results demonstrate how performance potential increases with the inclusion of 

pattern variability using the adopted array technique.  However, the methodology only 

specifies the requirements of the additional third reconfigurable element’s properties 

based on prior knowledge of the original array elements.  This in turn can lead to a 

limited possible solution space; the discussion in Section 4.4 explains this point in terms 

of the no solution result.  Therefore, the focus of the dissertation turns to fully leveraging 

the capabilities of the available pattern reconfigurability by integrating pattern variability 

directly into an algorithm. In this way, the methodology is more systematic in its 

approach by allowing the algorithm itself to determine the range of possible solutions and 

antenna configurations. 

 A previous study [33] explored the performance benefits and tradeoffs in utilizing 

a linear equally spaced array composed of radiation reconfigurable antennas.  The 

premise of the work focused on the effects of reconfigurability on sidelobe level, gain, 

and excitation dynamic range of amplitude-tapered linear phased arrays. Array pattern 

comparisons were made between fixed-pattern broadside antenna elements and elements 

with tilted radiation patterns (e.g., those represented by the RMPA).   The results 

demonstrate that tilting all the pattern reconfigurable antenna elements in the direction of 

the steered main beam’s direction adds additional array pattern gain compared to an array 

composed of fixed-pattern elements.  A tradeoff in gain can then be applied in reducing 

the excitation dynamic range of an applied amplitude taper [33].   

 This chapter considers the potential use for radiation reconfigurable antennas in a 

way such that the benefits addressed in [33] are applicable in an adaptive array setting.  

The results will demonstrate that the advantages gained in pattern variability can stem not 

only from the antenna’s beam tilting capability but also from its null-forming ability as 
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well.  These simple, but illustrative examples lay the foundation for the algorithm 

integration and continue along the line of this dissertation’s research objectives.  

5.1  Overview and Methodology 

 Thus far, the implementation of pattern reconfigurable antennas has focused on 

tilting the maximum of the main beam in a specified direction.  Certainly this 

characteristic of the antenna’s element pattern can be of great importance to the 

functionality of the system.  However, just as important may be the null (or depression) 

the pattern reconfigurable antenna can offer in a specified direction apart from the 

pattern’s maximum.  Hence, the notion of pattern variability includes all the distinct 

features within the antenna element’s capabilities. 

 In order to illustrate some of the advantages, consider a scenario that has an 

adaptive array composed of isotropic elements (such benchmark elements are commonly 

used in the literature [17]) and an array composed of pattern reconfigurable antennas that 

have a specified maximum and null. To simplify the analysis, model these elements using 

a tilted dipole element of the cosine variety, essentially those represented by (3.9) in 

Section 3.5, where the main beam maximum resides at θnj, with  

θnj = 0° corresponding to broadside and a pair of nulls residing at θn j ± 90°. 

 The basic constituents of the analysis involve evaluating the adaptive array 

specific parameters in a static state utilizing the general adaptive array concepts presented 

by Compton in [17]. Comparisons between results are made for the isotropic array and 

the model reconfigurable antenna (RCFG) array for three different cases. In each case, 

the constants consist of the arrays having  N = 5 elements spaced d = 1λ0 apart, a strong 

interference environment (i.e., interference-to-noise ratio (INR) equal to 40 dB), and the 

signal-to-interference ratio (SNR) equal to 0 dB. Also, in the reconfigurable antenna 

array, let all element beam tilts, θnj, be identical (i.e., all the elements tilt their main beam 

maximum according to a single parameter, θn; the element pattern null tilts accordingly).  

The varying parameters in each case include the signal environment (θd and θi) and the 

pattern reconfigurable antenna beam/null tilting parameter, θn.  Finally, the SINR (dB), 
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voltage pattern (dB), and element weight profile (magnitude and phase) plots are given 

for each case in the next section. 

5.2 Case Study Results 

 Table 5-1 lists the parameters involved with the two case scenarios. In Case 1 the 

beam tilts are not directed toward the desired signal (θn ≠ θd)  and the interference signal 

falls into the null of the model RCFG pattern (θn = θi + 90°).  In Case 2, the 

characteristics resembles Case 1, but now the interference signal falls into a grating null 

(GN) (θn ≠ θd, θn = θi + 90°, and θi = θGN).   Case 1, represents a scenario when the 

RCFG can steer its pattern null into the direction of the interference source but may not 

necessarily be able to line up the main beam of the pattern along the desired signal 

direction.  Case 2 presents a similar situation such that the RCFG’s element pattern nulls 

out the interference signal; but at this occurrence, the interference signal happens to be 

coming from the grating null direction. Again, the isotropic array, which solely relies on 

its array factor, serves as a comparison basis.    

Table 5-1: Listing of the signal environment parameters and direction of the beam tilts for the model 
pattern reconfigurable element. Note, the element null lies at θn – 90°. 

Case θd (°) θn (°)  θi (°) θGN (°) 

1 25 45 –45 –35 

2 45 73 –17 –17 

 

 Figure 5-1 and Figure 5-2 depict the results of the case studies listed in Table 5-1. 

In each case, the first column of plots represents once again the SINR versus θi, and the 

radiation pattern versus θ, using isotropic elements. Similarly, the second column 

presents the same but utilizing the model RCFG elements. The third column shows a 

magnitude and phase weight profile computed by the adaptive array LMS algorithm for 

both types of antenna elements.  
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Figure 5-1: Adaptive array results (SINR, pattern, and weight profile) comparing an array composed 
of isotropic elements (dashed curves) to an array of model pattern reconfigurable elements (solid 
curves). The parameters of operation are indicated for Case 1 in Table 5-1. 

 

 

Figure 5-2: Adaptive array results (SINR, pattern, and weight profile) comparing an array composed 
of isotropic elements (dashed curves) to an array of model pattern reconfigurable elements (solid 
curves). The parameters of operation are indicated for Case 2 in Table 5-1. 

 The results for Case 1 (Figure 5-1) show how the adaptive algorithm adjusts the 

weights to place a null in the pattern at θ  = –45° and steers the overall pattern main beam 

to θ  = 25°, the incoming direction of the desired signal. However, the individual beam 
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tilts of the reconfigurable antenna elements are not directed toward the desired signal. 

The effect amounts to about 1 dB of loss in maximum SINR of the RCFG plot in 

comparison to the isotropic plot, essentially a scan loss effect from the beam tilt 

directions. Due to the null in the element factor, the RCFG array depicts an overall 

pattern with lower sidelobe levels compared to the isotropic array results. Unlike the 

isotropic array, having the interferer fall into the null of the element pattern allows the 

adaptive processor to manufacture weights with a uniform amplitude distribution and 

progressive phase—a result predicated upon being able to direct the nulls of the elements 

in the direction of the interferer. 

 Case 2 (Figure 5-2) considers the situation when the interference signal falls into 

the grating null (θGN at θi = –17°), which is no doubt an undesirable result as shown by 

the isotropic array pattern and weight plots. Since the interference signal falls into the 

grating null, the pattern suffers with values less than –30 dB. The source of the problem 

lies in the magnitude of the weights, which are effectively zero for each element. The 

adaptive algorithm in conjunction with the isotropic elements has no way of dealing with 

the interference signal coming from this direction, thus it resorts to basically shutting 

down the array by zeroing out the weights.  One way to deal with this problem is to 

configure the null of the reconfigurable antenna patterns along the same direction as the 

grating null (i.e., θn = θGN + 90° = 73°).  Doing this allows grating null alleviation in the 

SINR plot and again produces a desirable weight profile: a uniform amplitude and a 

progressive phase distribution.  

5.3 Discussion 

 The work presented in Chapter 3 and Chapter 4 centered on using pattern 

variability in conjunction with elements that can reconfigure their main beam to a 

prescribed spatial direction.  In this chapter, the analysis evaluated pattern variability in 

terms of null reconfiguration, which, as seen in Case 2, provides an alternative approach 

for grating null mitigation.  Overall, the results demonstrate the potential of null 

reconfigurability when used in an adaptive array setting.  Despite the fact that the dipole 

model represents an ideal element, it presents a starting point and provides an indication 
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of what characteristics practical radiation reconfigurable antennas must possess in small 

adaptive array scenarios. 

 In practice, the method could have significant implications in reducing constraints 

on the adaptive hardware components.  For example, by effectively capturing the null at 

the front end via the antenna’s nulling capability, the analog-to-digital converters inside 

the adaptive array processor do not have to work as hard.  Depending on the threat, an 

impinging jamming signal can have a very large INR, which could surpass the dynamic 

range of the analog-to-digital converters. This in turn makes it difficult for the adaptive 

processor to null out the interferer at the array output since it accomplishes this task by 

subtracting two or more of these signals from each other. Null reconfigurability 

effectively alleviates this issue because the pattern null minimizes the unwanted signal at 

the front end, independent of the interference signal’s amplitude.  
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CCHHAAPPTTEERR  66  

PPAATTTTEERRNN  VVAARRIIAABBIILLIITTYY  IINNTTEEGGRRAATTIIOONN  

 The preceding analysis in Chapter 5 set forth the concept and potential benefits in 

utilizing null reconfigurability in an adaptive array setting.  However, the method 

requires the reconfigurable solutions in a forward manner—forward in the sense that the 

beam tilt and null directions of the reconfigurable array elements are selected a priori 

based on the signal environment.  A more powerful approach would involve determining 

the characteristics of the reconfigurable element patterns in a reverse manner (i.e., 

inherently synthesizing the patterns). Therefore, in continuing with the idea to fully 

leverage the capabilities of the available reconfigurability, this chapter discusses a 

method that integrates pattern variability into the adaptive array algorithm.   This method 

presents a more systematic approach in which the algorithm itself then determines the 

range of possible solutions and, hence, specifies antenna element reconfigurability.   

 This chapter first presents the salient points behind the adopted routine and then 

discusses the framework behind incorporating the reconfigurable antenna (RCFG) 

element into the routine.  The next section discusses the configuration details behind each 

of the example operational scenarios involved in the analysis followed by graphs 

pertaining to each scenario and a discussion of the findings.  A thorough discussion 

summarizing the results will conclude this chapter. 

6.1 Convex Optimization Routine Description 

 This section gives a general overview of the optimization routine utilized in this 

work. The discussion outlines the technical details that will be applied in future sections 

to the pattern variability problem. In [22,23], the authors present a method of finding the 

optimum sidelobe-minimizing weights for an arbitrary linear array that holds for any scan 

direction, beamwidth, set of pattern nulls, and type of antenna element used.  The array 

problem is presented in convex form and thus can be cast into a convex optimization 

problem with various constraints.  In this form, the algorithm does not have to search 
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through the entire weight space, making the problem rapidly solvable in a straightforward 

manner.  Additionally, due to the characteristics of the convex functions, the solutions are 

guaranteed to be globally optimum [22].  Apart from these features, the routine is of 

interest to the research because of its ability to incorporate additional weight constraints.  

Utilizing this degree of freedom gives the research the means to integrate pattern 

variability directly into the optimization process.   

 The principal components of the convex routine include the following (see 

[22,23] for further details).  For the total radiation pattern of an N-element linear array 

along the z-axis, the relationship can be expressed in typical form as a function of the 

element weight vector ( w ) and spatial angle θ given by 

 
1 0

2( , ) ( ) exp[ cos ]
N

n n n
n

T w f j dπθ θ θ
λ=

= ∑w , (5.1) 

where wn are the weights attached to nth element, ( )nf θ is the each element’s radiation 

pattern, nd is the linear distance of each element from the reference location, and λ0 is the 

free space wavelength at the operational frequency.  Note that in this case the array 

geometry is set up such that broadside is at θ = 90°.  In the analysis, the element spacing 

is kept uniform, even though the routine allows for arbitrary element spacing.  The reason 

for this stems from the original array topology objectives and some of the impracticalities 

involved with non-uniform spacing in adaptive array applications that were discussed 

earlier.  

 The task of finding the optimum sidelobe-level minimizing weights is a solution 

to the optimization problem given by 
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The components of (5.2) require further detailed discussion.  The objective function is the 

sidelobe level (SLL), since it represents the spatial region of the radiation pattern outside 

the main beam.  It is desired to minimize the maximum value of this function in that 

spatial region outside the main beam (denoted by Θ) subject to the listed constraints.  As 

a result, the problem becomes a minimax optimization problem and the task amounts to 

determining the set of all N-element weight vectors with complex components, denoted 

by CN, that suppress the SLL region.  Furthermore, the constraints at θd require that the 

normalized radiation pattern be equal to unity and that the magnitude of the total 

radiation pattern is maximum; K specifies the number of nulls at an angle θi [22].   

 In order to formulate the problem into convex form, [22] writes the element 

weights and total radiation pattern given by (5.1) in terms of their real and imaginary 

parts, i.e.,  

 
( , ) Re{ ( , )} Im{ ( , )},

RE IM
n n nw w jw

T T j Tθ θ θ

= +

= +w w w
 (5.3) 

respectively.  To minimize the SLL, the next step requires partitioning Θ into M discrete 

sample points (1 m M≤ ≤ , m is an integer), each of which is called a suppression point.  

Thus, a suppression point will minimize the magnitude of the total radiation pattern at a 

fixed position θm.  Taking into account all suppression points, the multi-objective 

optimization problem can be written in compact minimax form given by  
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In (5.4), there exist a total M objective functions, 2 2
m mt s+ , one corresponding to each 

suppression point. They act like dummy variables and represent the radiation pattern in 

conjunction with the constraints.  Matrices A and B contain the linear inequality and 

linear equality constraints, respectively, and 0 is a vector of zeros.  Finally, the vector X 
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contains the unknowns variables: the weight variables and all the dummy variables.  

Specifically, the variable components of X resemble the listing given by  

 1 1 2 2 1 1 2 2..... ......T RE IM RE IM RE IM
N N M MX w w w w w w t s t s t s⎡ ⎤= ⎣ ⎦ . (5.5) 

The convex nature of the routine stems from the form of the objective functions, 2 2
m mt s+ , 

and thus it minimizes the array factor at all desired suppression points.  Since the 

constraints are written as a matrix set of linear equalities and inequalities, the fminimax 

function in MATLAB® offers one of many ways to solve the problem.  Note that the 

adaptive array concept still applies here because the goal of placing a maximum along the 

desired signal direction and placing a null along the interference direction does not 

change, which effectively enhances the SINR. 

6.2 Reconfigurable Model Integration 

 With a much better understanding of technical details driving the convex 

optimization routine, this work next turns to implementing model reconfigurable 

antennas into the procedure.  Utilizing this approach allows the optimization process to 

select the best set of solutions, giving insight into the needed elements of 

reconfigurability for small adaptive array scenarios.   

6.2.1 Subarray Model Description 

 Given the fact that the routine sets forth the weight vector w  as the unknown 

solution vector (its real and imaginary parts), the method of interest models each 

individual pattern RCFG element as a subarray of isotropic elements for the full N-

element array.  In particular, a single reconfigurable element is modeled as a two-element 

array.  As discussed in [2], subarrays exist as an array architecture design technique, 

residing at the aperture level, which dictates how array elements are to be grouped and 

fed.  Due to cost concerns, their primary use resides in applications utilizing a uniform 

illumination.  Apart from these implementation benefits, this model is chosen because 

each individual subarray can carry its own unique pattern in terms of the location of its 
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main beam maximum and null location(s). These are the two main radiation 

reconfigurable pattern characteristics the research seeks to characterize.  The goal is to 

integrate the subarray model into the optimization routine and have the routine output 

solutions portraying these individual pattern traits—traits that can then be used as 

specifications for pattern reconfigurable antennas. 

      Figure 6-1 illustrates an example array geometry that includes a group of two-

element subarrays; each two-element subarray will represent each individual pattern 

RCFG element (a discussion on why two elements were chosen follows toward the end of 

this section).  In reference to Figure 6-1, dsub represents the distance between each 

subarray element and dMain represents the distance between each subarray (i.e., RCFG 

element).  In this work, dsub is identical for all subarrays.  Note that the complex weight 

nw  is attached to each individual element in the array. 

 

Figure 6-1: Diagram showing the array geometries utilized in the optimization routine. The array 
consists of N/2 subarrays (spaced dMain apart); each models a pattern RCFG element and contains 
two isotropic elements, spaced dsub apart.   

 For reasons that will become apparent later, a simple analysis on an individual 

subarray element is in order.  Figure 6-2 shows a single subarray in a two-dimensional 

geometry configured in a symmetrical fashion. Note how element 1 (the first element in 

the subarray) is deemed the nth element with weight nw  while element 2 is labeled the nth 

+1 element with weight 1nw + ; references to the first element of the subarray with nw  will 

be used throughout the rest of this work. Assuming that the first and second model 
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element in each subarray is isotropic, then (5.1) prescribes the radiation pattern for a 

single subarray as 

 
cos cos

2 2
1( ) .

d d

su

jk j

b

k

n nT w e w e
θ θ

θ
−

+= +  (5.6) 

 Given the optimized weights, the total pattern can be recovered in terms of 

subarrays (RCFG elements) utilizing array theory.  In this case, the subarray patterns 

become effectively single elements; summing each with the appropriate spatial phase 

shift gives the total pattern of the full array. In reference to Figure 6-1, the total pattern 

can be expressed as 
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where 
nsubT is the nth subarray pattern denoted by (5.6). Also, note the summation goes 

from n = 1 to N/2 (the number of RCFG elements). 

 

 

Figure 6-2: Geometry of a single 2-element subarray spaced dsub apart. 

6.2.2 Additional Constraint Implementation 

 Due to the flexibility of implementing constraints within the convex optimization 

routine, the next step involves applying additional constraints on the weights of each 

subarray. The constraints should address practical implementation concerns when 

associating the subarray elements to pattern reconfigurable antenna elements.  In addition 
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to the constraints imposed on the element weights via the optimization routine, as 

indicated in (5.4), the methodology imposes two additional linear constraints on the 

weights: (1) a complex conjugate constraint and (2) a beam tilt (beamsteer) constraint. 

The following subsections describe each constraint in more detail. 

6.2.2.1  Complex conjugate constraint 

 The complex conjugate (CC) constraint forces the pair of weights in each 

subarray to be complex conjugates of each other.  Mathematically, this equates to each 

individual subarray having *
1n nw w+ = .  Furthermore, in terms of the full N-element array, 

the conditions applies for n = 1, 3, 5, …, N-1 (i.e., odd numbered elements).   An 

alternative and more relevant translation equates to having 1
RE RE
n nw w+ =  and 1

IM IM
n nw w+ = − , 

i.e., identical real parts and opposite (in sign) imaginary parts of the subarrray weight 

pair.  The routine’s flexibility allows for implementation of these constraints; they can be 

added into the equality matrix in (5.4) along with those imposed by the routine by itself.  

For example, for the weights of a single subarray element, the equality can be expressed 

in matrix form as 
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 The importance for imposing this constraint stems from modeling the pattern 

RCFG elements as individual subarrays. In addition to the previous discussion, the 

constraint also forces the weights in each subarray to have identical magnitudes and 

opposite phases.  It would be complicated to model the RCFG element in terms of beam 

tilts (main beam maximums) without having identical weight magnitudes.  In the 

opposite case, main beam maximums are not well defined.  As previously discussed, 

subarrays are primarily used when utilizing a uniform illumination; the complex 

conjugate constraint realizes this characteristic and thus will assist in associating the 

subarray model patterns to the RCFG elements’ patterns. 
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 On the other hand, incorporating this type of constraint limits the number of array 

elements in the subarray to two.  Adding more elements reduces the subarray pattern’s 

beam width (increasing directivity) and increases the number of pattern nulls.  A more 

directive beam may or may not better represent a practical reconfigurable antenna’s 

radiation pattern.  However, as discussed, a well-defined beam tilt exists when all the 

elements in the subarray have identical magnitudes and some sort of progressive phasing. 

Under the guidelines, it becomes more difficult to institute a linear constraint relationship 

(i.e., a linear equality) in the routine with more than two elements.  The functionality of 

the routine thrives on the constrain matrices being written in linear equality/inequality 

form.  Without this attribute, the routine will not be able to freely select the desired 

pattern characteristics (e.g., beam tilt angle) based on the weight constraints.   

6.2.2.2 Beamsteering constraint 

 The beamsteering (BS) constraint, in conjunction with the complex conjugate 

constraint, addresses practical limitations on a pattern reconfigurable antenna’s 

beamsteering range.  Analogous to the difficulties phased arrays encounter when steering 

toward endfire (e.g., scan loss, beam broadening, etc.), pattern reconfigurable antennas 

also encounter pattern degrading effects when trying to tilt the pattern close to endfire. 

Trying to cover a large scan range makes the design very difficult, if not impossible, for a 

single radiating element.  Therefore, the beamsteering constraint places a limitation on 

the spatial location of the allowable main beam maximum (beam tilt angle) for each 

subarray.  Defining the beamsteering angle for each subarray as substeerθ , then let the upper 

limit be upperθ and the lower limit as lowerθ . For convenience, with broadside at 90θ = ° ,  

restrict the upper and lower limits to 0 90lowerθ° ≤ ≤ °  and 90 180upperθ° ≤ ≤ ° .  Then, the 

beamsteering constraint essentially restricts substeerθ to lower substeer upperθ θ θ≤ ≤ .  A detailed 

derivation describing how this constraint is invoked into the optimization routine follows. 

 Utilizing (5.6) in conjunction with the underlying conditions, the beamsteering 

constraints can be formulated in a way adaptable to the optimization program.  With the 

complex conjugate constraint (5.6) can be expressed as  
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From the expression, let the maximum (i.e., the beam tilt) of )(subT θ  occur at 

max( )subT θ θ= , where max substeerθ θ= .  This happens when 
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Using the bound restriction, lower substeer upperθ θ θ≤ ≤ , the constraint limits in terms of the 

weights can be derived as  
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Given the restrictions on the upper and lower limits themselves, the pair of linear 

inequality constraints exist as 
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As in the equality constraint cases, they are incorporated into the routine in matrix 

inequality form. 

 It is instructive to graphically analyze the constraints given by (5.11).  Consider 

Figure 6-3, which shows the region of constraint in terms of the wn plane (the real and 

imaginary parts of wn).   For demonstration purposes, let 60lowerθ = °  and 120upperθ = ° .  

The figure shows the regions satisfied by Constraint 1 in (5.11), indicated by the dark-

tiled grey shade, and the constraint region satisfied by Constraint 2 by bright orange. The 

dark orange region on the left, bounded by the red triangle, represents the overall 

constraint region as the intersection of the two individual equalities, marked by the 

direction of the larger arrows.  As upperθ increases and lowerθ decreases, the overlap region 

grows larger, thus giving the optimization routine a wider pool of beam tilts from which 

to choose when solving the array problem. 

 The linear equalities in (5.11) prescribes a scenario in which 0RE
nw ≤ ; Figure 6-3 

illustrates this scenario graphically.  It turns out the region occupied by the white triangle 

on the right is also a valid beamsteering solution due to the result in  (5.10).  Since this 

triangular region also serves as a potential beamsteering solution, the imposed constraints 

can be determined by inspection. They become   
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The result in (5.12) corresponds to when 0RE
nw ≥ , and the inequality pair differs from the 

pair in (5.11) by essentially an inequality sign flip.  Figure 6-4 shows the two solution 

regions, the 0RE
nw ≤  case (orange) and the 0RE

nw ≥  case (blue), together in graphical 
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form.  Again, to serve as an example, 60lowerθ = ° and 120upperθ = ° , i.e., the spatial region 

is set such that the individual beam tilts fall within 30± ° of broadside ( )90θ = ° . 

 

Figure 6-3: Graphic representation of the beamsteering constraint region in the wn plane. In this 
case, the two inequalities described by (5.11) are evaluated for 60° ≤ θsubsteer ≤ 120° . The optimization 
routine chooses the solution from the overlap region on the left.   

6.3 Convex Optimization Routine: Configuration Details 

 Before presenting the results, this section outlines the parameters involved in the 

analysis and discusses the different operational scenarios used in determining the 

upcoming results.  First, it is important to set out the different weight constraints involved 

for further clarification.  
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Figure 6-4: Graphic representation of the two beamsteering constraint regions when evaluated for 
60° ≤ θsubsteer ≤ 120° in the wn plane. The darker blue region on the right restricts solutions such that 
wn

RE ≥ 0, and the lighter orange region on the left applies to wn
RE ≤ 0.��

• Weight constraint Case 1: No additional weight constraint.  The only constraints 

imposed on the weights are those prescribed originally by the optimization 

routine. 

• Weight constraint Case 2: Complex conjugate (CC) constraint.  The wn and wn+1 

weight of each element in each subarray are complex conjugates of each other, 

i.e., *
1n nw w+ = . 

• Weight constraint Case 3: Beamsteering constraint (BS) with 0RE
nw ≤ . The 

allowable beam tilt for each model pattern RCFG element lies between 30± ° of 

broadside, i.e., 60 120substeerθ° ≤ ≤ ° . 

• Weight constraint Case 4: Beamsteering constraint (BS) with 0RE
nw ≥ . The 

allowable beam tilt for each model pattern RCFG element lies between 30± ° of 

broadside, i.e., 60 120substeerθ° ≤ ≤ ° . 
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  ��

Note how Case 3 and Case 4 characterize the weight constraint in terms of 

whether the real part of wn is greater than or less than 0. The ideal situation would be if 

both constraints were applied simultaneously in a Boolean OR type fashion.  However, it 

turns out that the solving routine, the fminimax function in MATLAB, can only apply 

these constraints in a Boolean AND type configuration, thereby leaving a null solution.  

Therefore, each of the two constraint cases will be analyzed independently, as indicarted 

in the last two items in the list. Unfortunately, this will reduce the solution space 

available to the optimization routine. However, it is informative to analyze the results to 

gain insight into the potential limiting effects of these contraints. 

 Each of the constraint cases discussed above will apply to a several operational 

scenarios, i.e., parameter variation in the signal environment and in the array topology.  

The goal here is to determine how well the convex optimization routine performs on a 

case-by-case constraint basis for a prescribed signal environment.  The different 

operational environments include 

Scenario 1. The desired signal impinges upon on the array at broadside. 

Scenario 2. The desired signal impinges upon on the array off broadside but within 

the beamsteer constraint region. 

Scenario 3. The desired signal impinges upon on the array off broadside but outside 

the beamsteer constraint region. 

In each scenario, the number of RCFG (subarray) elements equals 5, thus making N = 10, 

dsub = 0.5λ0, and dMain = 1.0λ0. The parameter definitions of  N and dMain comply with the 

initial goal of having a small number of array elements, each being spaced relatively far 

apart from each other; the significance of dsub will be discussed shortly.  Also, three 

clustered interference signals at iθ = {120°, 121°, and 122°} impinge on the array, and 

the null-to-null beamwidth is set to 30° (as a comparison, the null-to-null beamwidth of a 

uniform amplitude broadside array with 10 elements spaced a half-wavelength apart is 

about 25°).  One last note: the m suppression points utilized by the convex optimization 
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routine to suppress the sidelobe levels will be evenly distributed in 5° increments across 

the spatial range outside the main beam (denoted by Θ in (5.2)). Recall that the number 

of suppression points gives the number of objective functions the routine must try and 

minimize, as discussed in Section 6.1. 

 The spacing between each subarray element plays an important role in how 

accurately the subarray models the reconfigurable antenna’s element pattern. Tradeoffs 

ensue in the subarray patterns as the distance between the elements dsub changes.  For 

example, as dsub increases, more nulls and main lobes (grating lobes) come into the 

subarray’s visible region.  These pattern characteristics may not accurately represent what 

a practical pattern reconfigurable antenna can offer.  In this work, dsub is chosen to be a 

half-wavelength.  At this distance, one main beam maximum exists within the 

observation region, and the main beam carries a wide, broad beamwidth—similar to a 

microstrip patch antenna. These radiation characteristics closely resemble the patterns a 

single planar microstrip reconfigurable antenna can produce (e.g., the RMPA discussed in 

Chapter 2).             

6.4 Convex Optimization Routine: Results and Preliminary Analysis 

 In conjunction with the different weight constraint cases, this section graphically 

presents the preliminary results pertaining to the different scenarios outlined in the 

previous section.  Figure 6-5 and Figure 6-6 present results applied to Scenario 1 (when 

θd = 90°), Figure 6-7 and Figure 6-8 show results applied to Scenario 2 (when θd = 75°), 

and Figure 6-9 and Figure 6-10 show results applied to Scenario 3 (when θd = 45°).  In 

each operational scenario, the first figure of the pair compares the magnitude of the 

radiation pattern per weight constraint case, and the second compares the calculated beam 

tilting angles of each model RCFG element in the array for each of the cases. 

 In Figure 6-5, all curves (constraint cases) handle the signal environment well; 

i.e., the routine places a pattern maximum along the desired signal direction and nulls out 

the interferers along the specified direction.  Compared to the constrained cases, Case 1 

does a better job in establishing the required beamwidth and a lower average sidelobe 
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Figure 6-5: Scenario 1.  Magnitude of the radiation pattern vs. θ  for a 5-element model RCFG array 
spaced 1.0 λ0 apart; θd = 90° and θi = {120°, 121°, and 122°}. In concert with the convex optimization 
routine, Case 1: no additional constraints, Case 2: subarray complex conjugate constraint, Case 3: 
beamsteer constraint with wn

RE ≤ 0, Case 4: beamsteer constraint with wn
RE ≥ 0. 

level (SLL). Overall, the discrepancies between the cases stem from the additional 

constraints, namely the magnitude and phases of the weights.  Such constraints can make 

it difficult for the optimization routine to meet all the desired pattern characteristics. 

 Note, how the Case 2 (CC constraint) and Case 4 (BS constraint with wn
RE ≥ 0) 

curves are identical, while the comparative performance of Case 3 (BS constraint with 

wn
RE ≤ 0) degrades. The reasons for the similarity and degradation arise because the 

optimization routine chooses solution weights with wn
RE ≥ 0 when the CC is applied.  

This complies with the constraint region described by Case 4, thereby making the curves 

of Case 2 and Case 4 match.  On the other hand, the specified region of Case 3 does not 

comply with having wn
RE ≥ 0,  resulting in degradation in overall pattern performance.  In 

Figure 6-6, the beemsteer profile for Case 2 and Case 4 centers at about 90°, which is an 

expected result due to the desired signal’s angle of arrival. The profile varies greatly for 

Case 3 for the reasons previously discussed. 

 

Scenario 1 
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Figure 6-6: Associated beamsteer angles θsubsteer for each RCFG (subarray) element due to results 
from operational Scenario 1 (when  θd = 90°, which is at broadside and within the beamsteer 
constraint).  Only Cases 2 to 4 are shown because they apply to the subarray model concept.   

 When the desired signal arrives from 75°, the routine handles the problem 

somewhat differently compared to the previous broadside scenario, as shown in Figure 

6-7.  Again, the desired signal and null requirements are met, but the constrained cases 

exhibit regions of high sidelobe levels across the observation region compared to the 

unconstrained case.  Since the desired signal is off broadside, the complex conjugate 

constraint makes it more difficult for the routine to progressively phase the elements to 

meet the low SLL constraint and signal parameter requirements simultaneously.  As a 

result, variations in all three constrained cases (Cases 2–4) exist.   This scenario’s 

beamsteer profile, shown in Figure 6-8, varies more compared to the on-broadside results 

in Figure 6-6. The graphics show the beamsteering angles of a set of pattern 

reconfigurable antennas that would be required to realize this scenario’s pattern 

performance.  Due to the beamsteer constraint, a majority of the data points representing 

the profiles of Case 3 and Case 4 lie within 60° and 120°. 

In the last operational scenario (when θd = 45°), pattern performance changes for 

all constraint cases.  Figure 6-9 shows the results. The routine meets the requirement of 

having the main beam equal to 0 dB at θd and nulls along the specified interference 

direction in each constraint case.  However, the constrained cases suffer more in overall 

pattern performance.  In Case 1, the main beam maximum at θd represents the overall 
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pattern maximum. Such is not the outcome in Cases 2–4, where in certain instances the 

routine pushes the pattern far over the 0 dB mark.  This signifies the inability of the 

routine to minimize the pattern’s objective functions in these spatial regions.  The routine 

relies on element-to-element phasing to meet the desired goal of steering the overall main 

beam toward θd.  Unfortunately, the constraints make it more difficult for the 

optimization routine to accomplish this task concurrently with the others. 

    

 

 

Figure 6-7: Scenario 2. Magnitude of the radiation pattern vs. θ  for a 5-element model RCFG array 
spaced 1.0 λ0 apart; θd = 75° and θi = {120°, 121°, and 122°}. In concert with the convex optimization 
routine, Case 1: no additional constraints, Case 2: subarray complex conjugate constraint, Case 3: 
beamsteer constraint with wn

RE ≤ 0, Case 4: beamsteer constraint with wn
RE ≥ 0. 

Analogous to Figure 6-6 and Figure 6-8, Figure 6-10 displays the beamsteer 

profile for the model RCFG element.  Note the variation in the beam tilt values across the 

RCFG elements in Case 2. In spite of their individual pattern performance, the beamsteer 

constraint visibly becomes more evident in Cases 3 and 4.  The values are restricted to 

within ±30° of broadside (i.e., between 60° and 120°); unfortunately, overall pattern 

performance is the tradeoff. 

Scenario 2 
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Figure 6-8: Associated beamsteer angles θsubsteer for each RCFG (subarray) element due to results 
from operational Scenario 2 (when θd = 75°, which is within the beamsteer constraint).  Only Cases 2 
to 4 are shown because they apply to the subarray model concept. 

  

 

 

Figure 6-9: Scenario 3. Magnitude of the radiation pattern vs. θ  for a 5-element model RCFG array 
spaced 1.0 λ0 apart; θd = 45° and θi = {120°, 121°, and 122°}. In concert with the convex optimization 
routine, Case 1: no additional constraints, Case 2: subarray complex conjugate constraint, Case 3: 
beamsteer constraint with wn

RE ≤ 0, Case 4: beamsteer constraint with wn
RE ≥ 0. 

     

Scenario 3 
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Figure 6-10: Associated beamsteer angles θsubsteer for each RCFG (subarray) element due to results 
from operational Scenario 3 (when  θd = 45°, which is outside tbe beamsteer constraint).  Only Cases 
2 to 4 are shown because they apply to the subarray model concept. 

6.5 Discussion   

 The analysis presented in Section 7.4 merits further discussion.   One of the 

primary goals of the section was to illuminate the performance capability of the convex 

optimization routine in an adaptive array scenario, with and without the inclusion of the 

pattern reconfigurable beam tilt model. For the three example signal environments 

chosen, overall pattern performance with the unconstrained case exceeds that of the 

constrained cases, i.e., those that seek to incorporate pattern reconfigurability. Even 

though the desired signal and interference requirements are met, the results vary 

according to how well the optimization routine can satisfy the imposed constraints.   

 Under the constraints applicable to the pattern RCFG model, the resulting pattern 

of the subarray is a purely real cosine function, as seen from the two-element subarray 

expression derived in (5.9).  Without appropriate phasing, it is more difficult for the 

optimization routine to satisfy not only the complex conjugate and beamsteering 

constraints but also the general problem constraints (e.g., low SLL).  This result indicates 

one of the caveats when utilizing this model.  Nevertheless, the pattern results, in 

conjunction with the beam tilt profiles, clearly demonstrate the need for a mixture of 

main beam tilts to meet the specified requirements.  Pattern reconfigurable elements with 
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beamsteering capabilities provide a solution to meet these requirements in an adaptive 

environment.  

 Given the results in the previous section, it appears that the convex optimization 

routine can at times encounter difficulties in meeting the requirements of the signal 

environment under the imposed constraints.  As a result, pattern performance degrades.  

For example, the off-broadside scenario produced regions of high sidelobe level in the 

array radiation pattern—in some instances, greater than the pattern in the direction of the 

desired signal.  Thus, it has been determined that two main factors contribute to the 

routine’s limitations in performance under the imposed constrains: (1) the inability of the 

solving engine to encompass the full range of beamsteering solutions and (2) over-

constraining the problem in terms of the suppression points.  A discussion of each factor 

follows.   

 Subsection 6.2.2 presented the beamsteering constraint as a subdivided pair of 

inequalities, one imposing wn
RE ≤ 0 and the other wn

RE ≥ 0, which are the expressions in 

(5.11)  and  (5.12), respectively.  As discussed earlier in this chapter, the solver in 

MATLAB takes in the constraints in matrix inequality form.  Unfortunately, the solver 

cannot satisfy both sets of constraints in an OR like fashion, i.e., the routine can only 

choose element weights with either wn
RE ≤ 0 OR wn

RE ≥ 0.  Instead, the solver evaluates 

them in an AND type fashion, and then when implementing them simultaneously, the 

solution is null; hence, the reason they must be analyzed individually.  While this 

approach has given much insight into weight and pattern behavior, the limited solution 

space does inhibit the optimization routine’s potential.     

 The success of the convex optimization routine to meet the low sidelobe 

requirements stems from a spatial periodic set of suppression points outside the main 

beam. Each suppression point requires an objective function making this a multi-

objective optimization problem.  Again, within the additional specified constraints, trying 

to minimize the sidelobe levels across the spatial region seemingly over-constrains the 

problem.  Recall, an adaptive array enhances a performance index, in this case, the SINR.  

As a matter of fact, [17] points out that conventional characteristics such as antenna gain, 

beamwidth, or sidelobe levels, are not useful as performance indicies in the adaptive 
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array problem.   Having low sidelobe levels would be an additional benefit—which could 

very well improve adaptive array implementation on some levels, but one can only expect 

tradeoffs in performance when trying to meet such requirements.   

 Thus, the impact on the output results imposed by two factors discussed above 

gives reason to seek out methods to alleviate the difficulties associated with them.  These 

include relaxing the sidelobe level criteria and specifying the optimization criteria as the 

minimum mean square error between the actual array output and the ideal array output.  

Such difficulties lead back to the least mean square (LMS) technique, which was 

implemented in the early chapters of this dissertation.  In conjunction with this step, the 

approach suggests moving away from MATLAB as the programming routine and 

implementing the LMS technique in Mathematica®.  Mathematica has greater flexibility 

in terms of Boolean constraints; and thus the beamsteering constraints can be 

implemented in the desired OR fashion.  The invaluable insight gained by utilizing the 

convex optimization routine with MATLAB can now be applied using the LMS 

technique in Mathematica.  This approach will lead to more favorable pattern 

reconfigurable antenna solutions.        
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CCHHAAPPTTEERR  77  

PPAATTTTEERRNN  VVAARRIIAABBIILLIITTYY::  LLMMSS  IIMMPPLLEEMMEENNTTAATTIIOONN  

 This chapter makes use of the knowledge gained from implementing the convex 

optimization routine with MATLAB as the solver.  Instead of seeking to minimize the 

sidelobe level across the spatial range with MATLAB as the solver, the focus turns to 

utilizing the least mean square (LMS) technique with Mathematica.  In this way, the 

optimization problem is not overly constrained, and this solver has more flexibility in 

terms of fulfilling the imposed constraints.  Nevertheless, the objective remains the same: 

allowing the optimization routine to select the best solution set.  After the routine returns 

the solution weights, the task is to analyze the resulting pattern for each subarray and link 

it to the patterns of the pattern reconfigurable element.  In this way, element pattern 

reconfigurability will be specified. 

 This chapter will first put into form an assortment of LMS analytical 

relationships. Each is described in the context of applying them in a minimization 

routine.  The next section analyzes and evaluates the performance of the LMS approach 

with a variety of qualifying adaptive array scenarios.  Here, the different scenarios 

provide the means to compare and contrast the results due to the varying parameters.  The 

last section takes some of the preceding examples and examines them in further detail to 

determine what requirements are necessary for the pattern reconfigurable element design.  

7.1 Least Mean Square Technique: Algorithm Details 

 Chapter 3 discussed some of the fundamentals of adaptive arrays, which included 

details involving the least mean square technique. Recall, the LMS algorithm aims to 

minimize the error in the signal at the array output by finding the array weights that yield 

maximum SINR from a given set of signals.  In that chapter, a variety of analytical 

relationships were given; this chapter draws from those relationships and applies them in 

the context of having the LMS algorithm select the required beam tilts in each model 

pattern reconfigurable element.  This section reintroduces the analytical relations, but 
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does so in terms of applying them to a minimization routine.  Prior to analyzing and 

displaying future results using the LMS technique, a cross-check of the results using the 

LMS technique with convex method is made.  

7.1.1 Objective Function Realization 

 As mentioned, an adaptive array using the LMS technique, as reported by 

Compton [17], is based on the minimum mean square error concept.  An error signal ( )tε  

is obtained by subtracting the array output s(t) from another signal called the reference 

signal r(t).  In reference to Figure 3-1, the array output contains a desired signal, 

interference, and thermal noise: d(t), i(t), and n(t), respectively.  The minimum mean 

square error criterion adjusts the weights in the array to maximize the desired signal and 

minimize the interference and thermal noise at the array output.  Let the reference signal 

r(t) be a replica of the desired signal. (This is a suspicious result from an information 

theory point of view, but Compton [17] states that r(t) does not have to be a perfect 

replica of d(t); it is only necessary that r(t) be correlated with d(t).  A suitable r(t) can be 

obtained from processing at the array output [17]).  Also, as before assume the desired 

signal, interference, and thermal noise are all zero-mean processes uncorrelated with each 

other. This implies cross-product terms in subsequent calculations are zero. 

 Note that relationships governing the adaptive array fundamentals, those 

presented in Section 3.2, are given in complex form.  Following the same ideology as in 

previous chapters, the LMS expression presented in this section will be kept in terms of 

real-valued weights and signals.  Compton defines the weights and signals in terms of an 

in-phase and quadrature component (I and Q); the following definitions will adhere to 

this nomenclature.  When it comes to determining the final result, the unknown weight 

vector in I–Q form easily equates to its equivalent complex form.  Compton defines the 

complex weight in term of I–Q components as 
n nn I Qw w jw= −  [17].   

 The objective function now becomes the mean square error, 2 ( )E tε⎡ ⎤ =⎣ ⎦  

( )2( ) ( )E r t s t⎡ ⎤−⎣ ⎦ which can be written in compact matrix form given by [17] as 
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 2 2( ) ( ) 2 T
r

T
r r r rE t E r tε⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦ S W ΦW W , (6.1) 

where [ ]E  is the expectation operator and rW is the unknown weight vector of size 

2 1N × , i.e.,  

 
1 1 2 2

.....
N N

T

r I Q I Q I Qw w w w w w⎡ ⎤= ⎣ ⎦W . (6.2) 

The reference correlations vector rS is also of size 2 1N × and is expressed as 

 

1

1

2

2

( ) ( )
( ) ( )
( ) ( )
( ) ( )

I

Q

r I

Q

x t r t
x t r t

E x t r t
x t r t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

S . (6.3) 

Lastly, the total covariance matrix rΦ  is of size 2 2N N×  and accounts for the 

correlations between the signal components from each of the N elements in the linear 

array.  The relationship in (6.4) expresses an expanded version of the matrix. 

 

1 1 1 1 1 2 1 2

1 1 1 1 1 2 1 2

2 1 2 1 2 2 2 2

2 1 2 1 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )...
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )...
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )...
( ) ( ) ( ) ( ) ( ) ( ) ( )

I I I Q I I I Q

Q I Q Q Q I Q Q

r I I I Q I I I Q

Q I Q Q Q I Q

x t x t x t x t x t x t x t x t
x t x t x t x t x t x t x t x t

E x t x t x t x t x t x t x t x t
x t x t x t x t x t x t x t x

=Φ

2
( )...Q t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (6.4) 

In the above definitions, x(t) is the signal from the array element composed of a linear 

combination of the desired signal, interference, and thermal noise components (i.e., d(t), 

i(t), and n(t), respectively).  Utilizing this relationship and the statistical assumptions, the 

total covariance matrix in (6.4) equates to a sum of individual covariance matrices; i.e., 

d i nr r r r= + +Φ Φ Φ Φ , one for the desired, interference, and noise components of the 

signal.  Each individual matrix takes on the same form as in (6.4) but with the either the 

variables d(t), i(t), or n(t) replacing x(t).   
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 To give further insight into the components of these matrices, take the desired 

signal covariance matrix as an example.  It follows from (6.4) and can be expressed as 

(without the time dependence)    

 

1 1 1 1 1 2 1 2

1 1 1 1 1 2 1 2

2 1 2 1 2 2 2 2

2 1 2 1 2 2 2 2

...
...
...
...

d

I I I Q I I I Q

Q I Q Q Q I Q Q

r I I I Q I I I Q

Q I Q Q Q I Q Q

d d d d d d d d
d d d d d d d d

E d d d d d d d d
d d d x d d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Φ , (6.5) 

where ( )cos
j jdI d dd A tω ψ φ+ +=  and ( )sin

k kdQ d dd A tω ψ φ+ +=  [17]. In these 

expressions, Ad is the desired signal amplitude, dψ is the carrier phase angle at the 

antenna element (assumed to be a uniformly distributed random variable) and 
,j kdφ is the 

inter-element phase shift. For the given array topology, define 2( 1) cos
nd dn dπφ θ

λ
= −  

analogously to the relationship in (3.2).  With these definitions, the matrix elements of 

dr
Φ contain the following: 
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. (6.6) 

 The makeup of the interference covariance matrix follows suit; the elements of 

ir
Φ thus contain 

 

( )
( )

( )

2

2

2

cos

sin

sin

j k j j k

j k

j k

k

j k

j k

I I Q Q i

I

i

Q i

i

i

i

I i iQ

i

E i i E i i A

E i i A

E i i A

φ φ

φ φ

φ φ

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

⎡ ⎤ = −⎣ ⎦ −

⎤ =⎣ −⎡
⎦

−

, (6.7) 
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where Ai is the interference signal amplitude and 2( 1) cos
ni in dπφ θ

λ
= −  is the inter-

element phase shift.  In the case of multiple interferers, multiple 
ir

Φ matrices will exist—

one for each interference signal—and the sum of them represents the total 
ir

Φ matrix. As 

far as the noise matrix, the thermal noise components are assumed to be zero-mean 

random processes. Each of the components are (1) statistically independent of each other, 

(2) statistically independent of the desired signal, and (3) statistically independent of the 

interference signal. This makes 2
j j j jI I Q QE n n E n n σ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ , where 2σ  is the noise 

power on each element [17].  The noise covariance matrix then becomes  

 2
nr rσ=Φ I , (6.8) 

where rI is a 2 2N N× identity matrix. 

 Next, the reference correlation vector stems from letting the reference signal be a 

CW signal, correlated with the desired signal, and statistically independent of the 

interference signal and noise.  Define it as ( )( ) cos dtr t R ω ψ+= , where R is the reference 

signal amplitude [17].    The expression in (6.3) becomes 
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1
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2

( ) ( )
( ) ( )
( ) ( )
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Q
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d t r t
d t r t

E d t r t
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⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

S , (6.9) 

where the elements of rS  include ( ) ( ) cos
j jI d dE d t r t A R φ⎡ ⎤ =⎣ ⎦ and 

( ) ( ) sin
j jQ d dE d t r t A R φ⎡ ⎤ =⎣ ⎦ .  As utilized by Compton in [17], it is common when 

computing the results to let the ratio Ad/R = 1.  Similarly to the earlier work in this 

dissertation, the covariance matrices and correlation vector will be analyzed in 

normalized form—normalized with respect to the noise power 2σ . Where 
2

2
d

d
Aξ
σ

=  and 
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2

2
i

i
Aξ
σ

= translate into the previously discussed signal-to-noise ratio (SNR) and 

interference-to-noise (INR), respectively.  The same numerical values apply considering 

a strong interference environment, i.e., SNR is equal to 0 dB and INR is equal to 40 dB. 

 Last, the relationship in (3.3) expressed the SINR in general form. It will be of 

great interest to once again use the SINR as a comparison metric for adaptive array 

performance.  After determining the LMS weights and converting both the weights and 

the covariance matrices into complex form as defined in [17], the SINR can be 

determined with the following: 

 

1
2

1 1
2 2

H
d

H H
i n

d

i n

PSINR
P P

=
+

=
+

W Φ W

W Φ W W Φ W
, (6.10) 

where the superscript H signifies the Hermitian and the tilde indicates the variables are in 

complex form.  The expression states the SINR equates to the ratio of the output desired 

signal power to the sum of the output interference and noise power.  Each power term is 

normalized, since the covariance matrices are normalized to the noise power 2σ as 

previously defined. 

7.1.2 Method Comparison: Example Plots  

 With all the components of (6.1) defined, the mean square error 2 ( )E tε⎡ ⎤⎣ ⎦

becomes the objective function, and the goal is to minimize this function subject to the 

various weight constraints discussed in Chapter 6.  The mean square error is already in 

quadratic form; i.e., a quadratic function of the weights, which makes the extremum of 

the function’s surface a minimum.  Hence, the minimization routine in Mathematica can 

be utilized to solve the problem without much concern in regards to the routine finding a 

local rather than a global minimum.  

  Before continuing with further analysis using the LMS algorithm in concert with 

Mathematica’s minimization routine, it is important to graphically compare the LMS 

technique with the convex optimization routine.  Consider the following figures.  
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Figure 7-1 incorporates the no additional constraint case, while Figure 7-2 implements 

the complex conjugate constraint.  In each figure, the curves compare the LMS and 

convex routines.  Let the particulars in each scenario equate to those in the example 

presented in Figure 6-9: 5 RCFG (subarray) elements in an off-broadside situation with 

dθ  = 45° and a small cluster of interference signals at iθ = {120°, 121°, and 122°}. 

 

 

Figure 7-1: Adaptive array pattern in a scenario that encompasses a 5-element model RCFG array 
spaced 1.0 λ0 apart; θd = 45° and θi = {120°, 121°, and 122°}.  The graph compares the previously 
utilized convex optimization routine (solid curve) to the least mean square technique (dashed curve).  
In this case, both methods adhere to the no additional constraint on the weights and demonstrate the 
pattern objectives of each method.  

 In Figure 7-1, both methods satisfy the signal environment requirements by 

placing a pattern maximum along the desired signal direction and nulls along the 

interference signals.  Even though both curves have similar trends, notice how the convex 

routine (solid curve) tries to establish sidelobe maximums at an equal level across the 

spatial range, which is part of its objective.  On the other hand, the LMS routine (dashed 

curve)—whose objective is to satisfy the desired and interference signal requirements 

only—does not have equal sidelobe levels across the spatial range.  Additionally, with the 

desired signal being incident 45° from broadside, the LMS technique provides lower 

sidelobe levels than the convex optimization routine. 
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Figure 7-2: Adaptive array pattern in a scenario that encompasses a 5-element model RCFG array 
spaced 1.0 λ0 apart; θd = 45° and θi = {120°, 121°, and 122°}. The graphic compares the previously 
utilized convex optimization routine (solid curve) to the least mean square technique (dashed curve).  
In this case, the weights are subject to the complex conjugate constraint; again the curves 
demonstrate the objectives each method aims to accomplish. 

 Application of the complex conjugate constraint in Figure 7-2 illustrates much 

more disparity between the two methods.  The results confirm the decision to utilize the 

LMS routine in concert with the pattern reconfigurable antenna model (i.e., the subarray 

model in conjunction with the necessary weight constraints).  Since the convex routine 

has tendencies to over-constrain the array problem, it does not allow a pattern maximum 

along dθ .  Instead, pattern regions above the target 0 dB mark ensue.  Such regions are 

not evident in the LMS routine, which displays a true pattern maximum.  The one minor 

caveat is that under the given signal environment and weight requirements, the LMS 

curve presents a main beam maximum slightly shifted from the desired signal direction 

(several degrees at best).       

 The preceding figures serve to demonstrate the effectiveness of the LMS 

technique over the convex optimization routine within the context of the research.  It is 

apparent from the results that the methodology behind using the LMS technique gives the 

best option for effectively implementimg the subarray as a model pattern reconfigurable 

antenna in the adaptive array.   
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7.2 LMS Approach: Analysis and Results 

 This section evaluates the performance of the LMS approach with a variety of 

different scenarios.  Some scenarios qualify as potential adaptive array scenarios (e.g., 

different signal environments), while others aim to demonstrate the effects due to 

changes in the adaptive array geometry (e.g., number of subarray elements or subarray 

spacing).  In all, the different scenarios will provide the means to compare and contrast 

the results across the varying parameters.  The figures pertaining to each analysis will 

include one or a combination of the following performance metrics: the SINR as defined 

by (6.10), the magnitude of the radiation pattern ( ( , )T θw ) for a particular adaptive array 

instance, and a table listing the required beam tilt angle for each model RCFG element in 

the array.  Recall, the beam tilts stem from the corresponding radiation pattern of the 

array.  

 Before moving on to the subsections describing each scenario, the different 

weight constraint cases introduced earlier in Chapter 6, which are used again here, are 

listed below.  Note the addition of Case 5, a combination of Case 3 and Case 4 from 

above, which stems from the constraint implementation capabilities of Mathematica. 

• Weight constraint Case 1: No additional weight constraints, essentially weight 

constraint free.   

• Weight constraint Case 2: Complex conjugate constraint.  The wn and wn+1 

weight of each element in each subarray are complex conjugates of each other, 

i.e., *
1n nw w+ = . 

• Weight constraint Case 5: Beamsteering constraint with both 0RE
nw ≤  and 

0RE
nw ≥ , a combination of Case 3 and Case 4 from above. The allowable beam 

tilt for each model pattern RCFG element lies between 30± ° of broadside, i.e., 

60 120substeerθ° ≤ ≤ ° . 
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7.2.1 Constraint Comparison: Desired Signal Within Beamsteer Range 

 This scenario analyses the three different constraint cases with the desired signal 

falling within the specified beamsteer range as defined in Case 5.  Thus, let θd = 70° and 

the other parameters consist of having N/2 = 5 RCFG elements, dMain = 1.0λ0, and a small 

cluster of interference signals arriving from θint = {θi, 120°, and 122°}.  Note that the 

inclusion of the θi variable in the interference listing means that the SINR will be plotted 

against this interference angle (i.e., SINR versus θi).  In this scenario and the one to 

follow, multiple interference signals impinge on the array. Therefore, the interference 

angle of all incident values, except the θi variable, are held constant. Only the θi will vary 

over the spatial range.   

 Also, since the adaptive array radiation pattern corresponds to a θi instance, it will 

be plotted with the other interferers for a particular θi value: in this scenario θi = 60°.  

The objective of this analysis is to demonstrate what effects ensue when implementing 

the weight constrained cases (Cases 2 and 5) versus the unconstrained case (Case 1) 

utilizing the LMS routine.  Figure 7-3 displays the results in a three graphic 

configurations: (a) SINR, (b) ( , )T θw , and the (c) beamsteer table. 

 The resulting curves for the unconstrained case in Figure 7-3(a) and (b) serve as 

benchmarks for the other cases.  As seen, the SINR and pattern plots along with the 

beamsteer table for Case 2 and Case 5 are practically identical.  Since the beam tilts for 

Case 2 fall within the beamsteer region, the revised constraint Case 5 follows suit.  As 

always in SINR plots, the “standard null” at θd arises in all the curves.  Even though the 

constrained cases do not maintain the same performance level as the unconstrained case 

across the θi spatial range (just less than 10 dB outside of the standard null region), 

regions of comparable performance do exist indicating the feasibility of the constrained 

routines.  Note, the spikes occur in the SINR plot near the θi = 60° and 120° regions—

these  result from the interferer falling into a pattern null and correspond to the notion of 

null reconfigurability discussed in Chapter 5. 
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Figure 7-3: Adaptive array scenario encompasses a 5-element model RCFG array spaced 1.0 λ0 
apart; θd = 70° and θint = {θi, 120°, and 122°} utilizing the LMS optimization technique. The SINR vs. 
θi plot in (a) compares the performance of the three weight constraint cases: Case 1 (dotted), Case 2 
(solid), and Case 5 (dot-dashed). The pattern plot in (b) does the same but with θi = 60°, and the 
θsubsteer table in (c) compares the beam tilt angle for each RCFG (subarray) element associated with 
the pattern for constraint Cases 2 and 5.   

 The plots in Figure 7-3(b) detail the radiation patterns for θi = 60°, thereby 

making θint = {60°, 120°, and 122°}, a multiple interference environment.  The LMS 

algorithm accomplishes the task of maximizing at the desired signal and nulling out the 

interference in all three cases; hence, the high SINR value at θi = 60° in Figure 7-3(a).  

Nevertheless, the SINR and pattern variation are no doubt a product of the additional 

weight constraints, which is an acceptable tradeoff in order to implement pattern 

variability with the RCFG model.   
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7.2.2 Constraint Comparison: Desired Signal Outside Beamsteer Range 

 In comparison to the previous scenario, the one presented in this subsection 

differs by the desired signal arriving at an angle outside the specified beamsteer range, θd 

= 45°.  All other parameters remain the same (i.e., N/2 = 5 RCFG elements, dMain = 1.0λ0, 

and θint = {θi, 120°, and 122°}) and the graphic representation of Figure 7-4 is similar to 

that of Figure 7-3.  The analysis once again aims to illustrate the weight constrain effects; 

this time however, with the desired signal located outside the constraint region of Case 5.  

Figure 7-4 displays the results in three graphic configurations: (a) SINR, (b) ( , )T θw , 

and the (c) beamsteer table.  In the previous scenario, the pattern performed well in terms 

of establishing a main beam maximum at  θd  with θi  being 10° away from θd; in this 

scenario, the patterns are plotted with θi = 40°, much closer to θd.  

 Compared to the unconstrained case, the average SINR levels in Case 2 and Case 

5 perform well, only being about 5 dB below the benchmark.  Small but noticeable 

differences exist between the two constrained cases in both the SINR and selected pattern 

plot.  The beamsteer constraint contributes to this effect as seen in the table.  The results 

of Case 2 place θsubsteer angles outside the 60 120substeerθ° ≤ ≤ ° range, while those of Case 

5 keep the results within the range.  Notice the lower-than-maximum SINR values for the 

constrained cases near θi = 40°; these results correlate to the pattern curves in which the 

algorithm cannot place a full main beam maximum in the θd direction. These results 

further exemplify the effect of having the interference signal near the desired signal. 

7.2.3 Constraint Comparison: Interference Signals Spread, Not Clustered 

 In the previous two scenarios, two of the non-varying interference signals were 

clustered together (i.e., {120°, and 122°}). This scenario simulates when these 

interference signals arrive spread apart from each over the spatial range (at least one on 

each side of the intended main beam direction). With the addition of the variable 

interferer, they exist as θint = {θi, 60°, and 30°}.  Figure 7-5 presents the SINR and 

pattern plots along with the beamsteer table in the typical configuration scheme with the 

signal arriving within the specified beamsteer range, θd = 110°. All other parameters 
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remain the same (i.e., N/2 = 5 RCFG elements, dMain = 1.0λ0).  The analysis intends to 

illustrate how performance is affected when the interference signals are spread over the 

spatial range; i.e., the performance is compared to the previous scenarios in which the 

angles of arrival of the interference signals were grouped closer together. 

 

 

Figure 7-4: Adaptive array scenario encompasses a 5-element model RCFG array spaced 1.0 λ0 
apart; θd = 45° and θint = {θi, 120°, and 122°} utilizing the LMS optimization technique. The SINR vs. 
θi plot in (a) compares the performance of the three weight constraint cases: Case 1 (dotted), Case 2 
(solid), and Case 5 (dot-dashed). The pattern plot in (b) does the same but with θi = 40°, and the 
θsubsteer table in (c) compares the beam tilt angle for each RCFG (subarray) element associated with 
the pattern for constraint Cases 2 and 5. 

 The constrained SINR curves in Figure 7-5(a) demonstrate that having interferers 

spread over the spatial range has a much greater effect compared to a clustered group. For 

this particular setting, the maximum SINR values are about 10 dB below the benchmark 
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case.   The radiation patterns in Figure 7-5(b) show an interesting result seen in the 

convex optimization routine.  When θi = 40°, Cases 2 and 5 reveal regions of high 

sidelobes that are greater than the maximum of the main beam.  The algorithm places 

priority in nulling out the interference signals, and consequentially, high sidelobe regions 

result due to their spacing.  One other interesting artifact to notice lies in the beamsteer 

table.  Notice in Case 2 all values except θsubsteer for subarray #1 are within the beamsteer 

constraint range; enforcing the constraint in Case 5 pushes the beam tilts of subarray 

elements 1 and 3 to 60° and 120°, respectively.  This case gives one illustration of how 

the routine compensates the beam tilting angles when implementing the beamsteer 

constraint.  

 

Figure 7-5: Adaptive array scenario encompasses a 5-element model RCFG array spaced 1.0 λ0 
apart; θd = 110° and θint = {θi, 60°, and 130°} utilizing the LMS optimization technique. The SINR vs. 
θi plot in (a) compares the performance of the three weight constraint cases: Case 1 (dotted), Case 2 
(solid), and Case 5 (dot-dashed). The pattern plot in (b) does the same but with θi = 40°, and the 
θsubsteer table in (c) compares the beam tilt angle for each RCFG (subarray) element associated with 
the pattern for constraint Cases 2 and 5. 
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 The results graphically convey the effects when multiple interferers spread over 

the spatial range impinge on the adaptive array.  Compared to the clustered examples, the 

adaptive array performance in terms of SINR decreases.  Even though the scenario 

exemplifies only three interferers, further in-depth analysis verifies further performance 

degradation for an increasing number of interferers.  Overall, the results indicate that the 

constraint cases perform better when a cluster of interference signals impinges upon the 

array.  This is an important discovery when considering the limitations and capabilities 

involved upon integrating a pattern reconfigurable antenna with beam tilts in the process.  

7.2.4 Element Number Comparison: Larger Number of Interferes 

 The previous scenario provided insight into the effects on adaptive array 

performance in terms of the spatial distribution of the interference angles.  Even though 

the results utilized a small number of interferers, it was mentioned that a larger number of 

interferers diminishes performance.  Along this train of thought, this scenario will 

investigate performance in terms of SINR for a large number of interferers while 

increasing the number of the subarray elements in the array.  The analysis aims to 

illustrate how the SINR changes with the addition of more model RCFG elements—

utilizing only the complex conjugate constraint (enforcement of Case 2).  It is sufficient 

to use this constraint because, as seen in the previous scenarios, the results of Case 5 

compare well to Case 2, especially when θd is within the beamsteer constraint range, as 

will be the case here: θd = 75°.   

 Furthermore, keeping the distance between model RCFGs the same (i.e., dMain = 

1.0λ0) means that as the number of model RCFGs increases, the array aperture size 

increases.  In general, this will not detract from the research’s focus of having a small 

number of elements in the array because the number remains small compared to large 

scale adaptive array systems. Thus, let N/2 = {5, 8, 11, 15} RCFG elements, a total of 

four cases, each represented by its own curve in the SINR plots contained within Figure 

7-6.  A total of seven interferers impinge on the array, Figure 7-6(a) demonstrates a 

spatial spread (i.e., θint = {θi, 30°, 45°, 60°, 110°, 125°, and 140°}), while Figure 7-6(b) 

exemplifies a cluster of two group (i.e., θint = {θi, 55°, 57°, 60°, 110°, 112°, and 114°}).  
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Figure 7-6: Adaptive array scenario comparing SINR vs. an increasing number of model RCFG 
elements (N/2 = {5, 8, 11, 15}) in an environment consisting of a large number of interferers. In (a) 
the interferers are spread about, e.g., θint = {θi, 30°, 45°, 60°, 110°, 125°, and 140°} and in (b) two 
clustered groups exist, i.e., θint = {θi, 55°, 57°, 60°, 110°, 112°, and 114°}. The scenario imposes 
constraint Case 2 in both (a) and (b).  

 The results in both graphs clearly show that as the number of model subarray 

elements increases, the effectiveness of the routine in terms of SINR increases as well.  

Taking the N/2 = 15 curve as the limiting case, the characteristics of the other curves 

approach this case as the number of elements increases. Note the diminishing return 
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effect as N/2 increases in terms of average gain in SINR (dB); for example, about a 10 dB 

increase when the maximum value of the N/2 curve increases from 5 to 8 (three 

elements), in contrast to only about a 3 dB increase when the maximum value of the N/2 

curve increases from 11 to 15 (four elements).  It is important to note the trend of the 

curves since increasing the elements also increases the maximum SINR value; in a 

situation where all the elements are isotropic, the SINR goes as 10 log10 (N). 

 Also, for the same number of interferes, Figure 7-6(a) shows once again the 

difficulty in handling a large number of widely distributed interferers compared to a 

clustered group as in Figure 7-6(b).  Comparing curves in each graph with the same 

number of subarray elements, the clustered region curves have a smoother representation 

and/or higher SINR values opposed to the widely distributed interference curves.   The 

outcomes signify that under the constraints it is easier for the LMS algorithm to adapt to a 

local group of interferes versus interferes spread over the spatial range.  Altogether, the 

results of this scenario indicate that in order to handle an environment consisting of a 

large number of interferers, more elements are required—a factor that is associated with 

the number of degrees of freedom offered by the array.    

7.2.5 Element Separation Comparison 

 The last scenario characterizes the effects that occur when the spacing between 

model RCFG elements changes uniformly.  All the results presented thus far kept dMain 

constant at 1.0λ0, in turn leaving the edge-to-edge spacing between adjacent subarrays at 

0.5λ0.  It is instructive to analyze spacing effects since placing the elements in a relatively 

large spacing configuration is one of this dissertation’s main objectives.  This subsection 

intends to describe this effect by comparison with the scenario presented in Section 7.2.1 

wherein θd = 70°, N/2 = 5 RCFG, and θint = {θi, 120°, and 122°}.  The analysis once 

again imposes a complex conjugate constraint (Case 2) and the varying parameter is 

dMain.  Let dMain = {1.0λ0, 1.25λ0, 1.5λ0, and 2.0λ0}, which in turn corresponds to an 

edge-to-edge adjacent subarray spacing of {0.5λ0, 0.75λ0, 1.0λ0, and 1.5λ0}, respectively.  

Figure 7-7 presents the SINR and pattern plots along with a beamsteer table in the 
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Figure 7-7: SINR (dB) in (a), radiation pattern with θi = 118° in (b) and θsubsteer table in (c) comparing 
adaptive array performance vs. subarray element spacing. In this scenario dMain = {1.0λ0, 1.25λ0, 
1.5λ0, and 2.0λ0}, the other parameters encompass 5-element model RCFGs, θd = 70° and θint = {θi, 
120°, and 122°}. The results utilize the weight constraint Case 2—the complex conjugate case. 

configuration scheme used previously; each curve and table listing applies to a particular 

dMain value.    

 Figure 7-7(a) demonstrates the variability in the SINR results for different 

subarray spacings.  Interestingly, a spacing of 1.5λ0 provides the best overall 

performance with close-to-maximum SINR levels across the spatial range apart from the 

standard null. While dMain at 1.0λ0 and 1.25λ0 display fewer regions of lower dB level 

null activity, dMain at 2.0λ0 exhibits more regions of higher dB null activity.  With θi = 

118°, the interference configuration becomes a small clustered group; the LMS algorithm 
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handles these nulls well, as indicated in the pattern results of Figure 7-7(b) for all element 

spacings. The difference, which in turn affects the SINR, lies in the ability of each 

spacing case to line up the main beam maximum along the desired signal direction. For 

example, when dMain = 1.0λ0, the routine does a poor job of lining up the main beam at 

70°.  As a result poor, SINR performance occurs near θi = 118°.  Similarly, the θsubsteer 

values in Figure 7-7(c) show the varying nature for each dMain considered.  When dMain = 

1.0λ0 and 1.5λ0, the required beamsteering angles do not vary much from their respective 

mean, while those of 1.25λ0 and 2.0λ0 vary more from their respective means. 

7.2.6 Summary 

 This section illustrates adaptive array performance using the LMS technique 

under the different weight constraints for several different scenarios.  Utilizing the 

constrained cases allows for further implementation of the pattern reconfigurable antenna 

model, while the unconstrained case serves as a comparison.  The different scenarios 

entailed variations of one or more parameter while keeping the others constant.  In this 

way, inferences (or general trends) can be made about the behavior of combinations not 

considered; it is not feasible to analyze every parameter combination.  Nevertheless, the 

SINR and radiation pattern plots along with the beamsteer table allow for comparison and 

contrast between the varying parameters.  The results for each scenario can be 

summarized as follows. 

• Scenario 1: Highlights overall LMS performance per weight constraint case and 

serves as a basis for comparison of future scenarios. 

o Desired signal falls within the beamsteer range constraint case. 

o  As a result, for a small cluster of interferers, the constraint cases exhibit 

identical performance.    

o Tradeoffs result in SINR performance when implementing the constrained 

cases instead of the unconstrained cases. 

• Scenario 2: Direct comparison with the first scenario; this time the desired signal 

falls outside the beamsteer range constraint.   
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o Compared to imposing only complex conjugate constraints (Case 2), SINR 

results do not contrast much.   

o Differences, however, can arise in the specified beam tilts for the pattern.   

 In general, the beamsteer constraint tries to match the results of 

Case 2. 

 It compensates by varying its own beam tilt parameters within the 

specification to obtain similar performance when Case 2 places the 

beamtilts outside the constraint region. 

• Scenario 3: Evaluates when multiple interferers impinge on the adaptive array in a 

widespread formation (in contrast to a clustered group). 

o Results demonstrate better SINR output for a clustered group 

o It is more difficult for the LMS algorithm to meet maximum performance 

when trying to null out static interferers spread relatively far apart. 

• Scenario 4: Evaluates SINR output versus an increasing number of subarray 

elements for a large number of interferers. 

o Results show that, in either a spatially spread or clustered section 

interference configuration, each additional subarray element improves 

SINR levels. 

o Improvements toward maximum levels increasingly diminish for an 

increasing number of elements over a particular threshold, which depends 

on the number of interference signals. 

• Scenario 5:  Evaluates performance effects versus various distances between 

model RCFG elements. 

o Output results for SINR, pattern, and associated beamsteer angles differ 

for separations ranging from 1.0λ0 to 2.0λ0. 

o Results for one particular spacing (1.5λ0) provides better performance 

overall compared to the rest with close-to-maximum SINR levels.  

o The cause for this occurrence depends on the signal environmental, 

indicating that further optimization analysis is necessary to determine the 

best-case spacing. 
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7.3 Elements of Reconfigurability 

 The previous section illustrated, by way of a variety of scenarios, adaptive array 

performance using the LMS technique under different weight constraints.  Among the 

other metrics, the total radiation pattern was one way to gauge performance.  Since the 

goal of this work is to specify the type of element reconfigurability necessary, this section 

presents the individual model reconfigurable element patterns composing the full array.  

In other words, it evaluates what kind of pattern reconfigurability necessitates the 

functionality demonstrated in the previous section that utilized the subarray model.   

 Similarly to the presentation in Section 7.2, this section details results pertaining 

to several example signal environment scenarios, each in its own subsection.  The 

analysis is set up such that the parameters related to the signal environment (e.g., θd, and 

θint) will vary and the array geometry will remain static.  Changes due to geometry can be 

inferred from the results in Section 7.2.  Therefore, in the upcoming subsections, the 

array is composed of N/2 = 5 RCFG elements, each spaced a distance dMain = 1.0λ0 apart.  

As before, the LMS technique utilizes the complex conjugate weight constraint case, i.e., 

Case 2.  Each scenario will display a polar plot containing the individual model RCFG 

element patterns and a table with information regarding their associated beam tilts, 

pattern null, and phase data. 

 Before proceeding, a description on the general phase characteristics of each 

model RCFG element is in order.  Due to the nature of the subarray being used to model 

the pattern reconfigurable element, the phase lies exactly at either 0° and 180° with a 

jump discontinuity at a value between them, defined as θphase.   This characteristic 

resembles a shifted unit step function; the following expressions define it more explicitly: 
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The expressions are defined over the spatial observation range (i.e., 0 180θ° ≤ ≤ ° ) and 

essentially  state that in ( )subT θ+∠  the phase starts out at 0° and jumps to 180° at θ  =  

θphase.  While in ( )subT θ−∠ , the opposite happens.  A discussion on the implications on 

this type of phase behavior will be addressed at the conclusion of this section.   

7.3.1 Signal Environment 1 

  In this scenario, a signal environment composed of multiple interference signals 

clustered together, let θd = 45° and θint = {118°, 120°, and 122°}.  Figure 7-8 details the 

LMS results.  Figure 7-8(a) shows the magnitude of the radiation pattern of each model 

RCFG element in polar form.  The quantities are represented in dB, and thus the 

importance lies not in the absolute values of the patterns but their values relative to each 

other.  Also note how the polar plot displays the patterns only from 0° to 180°.  This 

display style is predicated on practical antennas in the adaptive array being planar in 

nature, backed by a ground plane.  It is anticipated that the full array resides on a 

platform that renders backplane radiation to negligible amounts.  For comparison, the thin 

light gray curve shows the total pattern of the array.  

 The table in Figure 7-8(b) captures supplementary information pertaining to each 

model RCFG element.  The last three columns detail for each RCFG element the beam 

tilt angle θsubsteer, the location of the null in the pattern (θnull ), and which phase function it 

adheres to, respectively.  The phase characteristics can take on either one of the functions 

described by (6.11) and (6.12).  In either case, the column also tabulates the theta value in 

which the phase changes, described by θphase.     

 The results of Figure 7-8 present some interesting findings for this scenario.  As 

noted in the beam tilt column, θsubsteer for certain RCFG elements strays farther away 

from θd compared to others—an occurrence seen previously in Section 7.2.  Here the 

individual subarray plots put this into perspective.  Along the desired signal direction, the 
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relative value of ( )subT θ  varies for each RCFG element.  The values of ( )dsubT θ for 

RCFG elements 1, 2, and 3 dominate compared to RCFG elements 4 and 5.  On the other 

hand, the nulls of each subarray pattern tend to congregate around each other.  As a 

matter of fact, they congregate near the location of the interference signals; this is an 

interesting result, which indicates that the LMS algorithm is directing the nulls of 

individual model pattern reconfigurable elements in the direction of the interference.  

This in turns places the expected null region in the total pattern as shown.  Note also how 

the point of phase change (given by θphase) matches the spatial location of the pattern null 

for each RCFG element.    

 

Figure 7-8: Model pattern reconfigurable characteristics as a result of signal environment 1 in which 
θd = 45° and θint = {118°, 120°, and 122°}.  In (a) the radiation pattern of each subarray element is 
displayed with the total pattern (thin light gray curve), while (b) tabulates each element’s beam tilt, 
pattern null, and phase information. The results give insight into the candidate patterns necessary 
for pattern reconfigurability. 

7.3.2 Signal Environment 2 

 Here, the interference environment stays the same, i.e., θint = {118°, 120°, and 

122°}, but the desired signal changes its arrival angle, θd = 75°.  Figure 7-9 details the 

results in the same dual-graphic configuration.  Even with a change in the desired signal 
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direction, the results in Figure 7-9(a) and Figure 7-9(b) emulate those in Figure 7-8. 

Along θd, RCFG elements 3, 4, and 5 this time have more dominate ( )dsubT θ values 

compared to elements 1 and 2.  Similarly, the nulls of the each RCFG element once again 

group about the θint region, overlaying the null region of the total pattern.  The point of 

phase change follows accordingly, as indicated in the table, and as before the routine 

chooses the phase function, either ( )subT θ+∠  or ( )subT θ−∠ , that provides the best fit to 

satisfy the signal environment requirements.  

  

 

Figure 7-9: Model pattern reconfigurable characteristics as a result of signal environment 2 in which 
θd = 75° and θint = {118°, 120°, and 122°}.  In (a) the radiation pattern of each subarray element is 
displayed with the total pattern (thin light gray curve), while (b) tabulates each element’s beam tilt, 
pattern null, and phase information. The results emulate those in the previous scenario. 

 Comparing the magnitudes of the subarray patterns and the total pattern reveals 

that more information is needed in order to match the two. For example, consider a null 

occurrence in the total pattern.  The polar plot dictates one occurrence in the interference 

region and another at θ  = 60°.  Gauging from the RCFG plots, it is apparent that the 

collection of nulls in each subarray near the interference region leads to a null in the 

overall pattern.  Such is not the case for the null at θ  = 60°; here the value of 
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( )60subT θ = ° varies per RCFG element. At first glance, this makes unclear the source of 

the total pattern null. To comprehend the reason for the null requires knowledge of the 

pattern phase of each RCFG element and the phase contribution due to the element 

spacing.  At this spatial angle, deconstructive interference of the signals causes the null to 

occur.  

7.3.3 Signal Environment 3 

 In this scenario, let θd = 110° and θint = {80°, and 140°}; this is still a multiple 

interference signal environment, but the two interferers are spread around the desired 

signal’s angle of arrival (i.e., θint = θd ±  30°).  Assessing the results from the analysis in 

subsection 7.2.3, lower performance is anticipated compared to a clustered group of 

interference signals.  Figure 7-10 displays the results for this scenario, showing the 

effects on the available pattern reconfigurability.   

 

 

Figure 7-10: Model pattern reconfigurable characteristics as a result of signal environment 3 in 
which θd = 110° and θint = {80° and 140°}.  In (a) the radiation pattern of each subarray element is 
displayed along with the total pattern (thin light gray curve), while (b) tabulates each element’s beam 
tilt, pattern null, and phase information. In this case, the interferers are spread around the desired 
signal’s arrival angle, and thus the results differ from the previous signal environment scenarios.  
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 Due to the interferers being spread out, the results of this scenario differ compared 

to the previous scenarios in subsections 7.3.1 and 7.3.2.  In this case, the nulls of the 

individual RCFG elements are spread out over the spatial range. Thus, the LMS 

technique chooses the RCFG patterns in a way such that deconstructive interference 

places nulls in the total pattern.  This is indeed an interesting result. Since each RCFG 

element only has one pattern null available, the optimization routine cannot place all their 

nulls near a single interferer because two of them impinge on the array spread apart from 

each other.  Instead, the routine utilizes the magnitude and phase of the pattern along with 

the spatial phasing to null out the interference.    

7.3.4  Signal Environment 4 

 The last scenario demonstrates the effects on the available pattern 

reconfigurability when the interference signal comes close to the desired signal.  Let the 

parameters of this signal environment correspond similarly with those in signal 

environment 3, i.e., θd = 75° and θint = {80°, and 82°} (the desired signal being 5° away 

from θint).  Recall that subsection 7.2.2 highlighted a similar scenario; Figure 7-11 shows 

the effect on each RCFG element pattern in this scenario. 

 As expected, due to the close proximity of the desired signal with the interference, 

a main beam maximum cannot be established in the total pattern curve along θd in Figure 

7-11(a). This occurs in spite of the θsubsteer of RCFG elements 2 to 5 attempting to align 

their main beams along the desired signal direction.  Nulling out the interference takes 

precedence, and in turn SINR performance suffers.  Additionally, the characteristics of 

this scenario cause θnull to align themselves far from the θint region for those same RCFG 

elements (2 to 5).  As a matter of fact, their nulls range from 120 143θ° ≤ ≤ ° without an 

emerging null in the array pattern. This is a consequence of the main beam maximum of 

RCFG 1 being directed toward θ  = 136° and having sufficient magnitude to prevent a 

total pattern null from occurring.  Essentially, the results of this subsection demonstrate 

the effects on the type of element reconfigurability when the desired and interference 

signals are within close proximity of each other. 
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Figure 7-11: Model pattern reconfigurable characteristics resulting from signal environment 4 in 
which θd = 75° and θint = {80° and 82°}.  In (a) the radiation pattern of each subarray element is 
displayed along with the total pattern (thin light gray curve), while (b) tabulates each element’s beam 
tilt, pattern null, and phase information.  In this case, the interferers are close to the desired signal’s 
arrival angle. Close proximity of both signal types causes degradation in main beam performance of 
the total pattern and misalignment of the RCFG nulls with the interference region. 

7.3.5 Discussion 

 One of the main objectives of this research includes specifying what requirements 

in the element design are necessary for pattern reconfigurable antennas to have an impact 

utilizing the adaptive array platform.  The main characteristic centered on the element 

pattern’s beam tilt, i.e., its beamsteering capability.  Thus, it was initially desired to let 

the LMS algorithm find the optimal set of beam tilts in the array using the subarray 

model.  In terms of the type of reconfigurability needed, the results of this section instead 

indicate that what is needed in pattern reconfigurable element design is a reconfigurable 

null and not necessarily a reconfigurable beam tilt.  This concept of null reconfigurability 

is exactly what Chapter 5 illustrated using adaptive array scenarios to determine the 

pattern reconfigurable solutions. 

  As demonstrated in signal environment 1 and 2, the LMS selects the optimal 

scenario by steering the nulls of the model RCFG elements into or near the interference 
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region.  When this happens, the interference signals are mitigated directly by the 

reconfigurable element pattern nulls, instead of being mitigated by the array, which 

utilizes the principle of deconstructive interference.  The latter can be more difficult to 

accomplish in concert with the adaptive array hardware and may lead to fewer degrees of 

freedom, i.e., opportunities to formulate the null(s) over an adaptive array span.    

 Also note that in all of the signal environment scenarios presented, the main beam 

magnitudes of each subarray vary along the desired signal direction.  In some instances, 

only two or three of the five elements have appreciable magnitudes that contribute to the 

main beam of the total pattern.  This of course exactly happens with the appropriate 

phasing; in this case, the principles of constructive interference apply.  Referring back to 

a topic discussed in Section 5.3, a greater emphasis should be put on nulling out the 

interference because it has a greater impact on SINR performance due to the fact that the 

interference effect is in the denominator of the SINR relationship.  In practice, the 

accompanying system hardware tracks the desired signal; it can be expected that the 

amplitude of the signal stays relatively constant since its origins are known.  On the other 

hand, interference signals are unknown in origin, leaving the possibility of them 

impinging on the adaptive array at very high amplitudes.  Even with higher amplitudes, a 

collection of nulls in the element patterns steered toward the interference can provide the 

warranted mitigation.     

 Overall, the findings signify what kind of pattern reconfigurability is necessary to 

obtain the functionality offered by small adaptive array systems.  The results illustrated 

the assorted pattern types for the various signal environments, patterns which fall within 

plausible bounds of what a single, planar, practical pattern reconfigurable antenna can 

provide: one main lobe region and a few nulls (or pattern depressions).  Recall that the 

phase profile for each element exhibited a discontinuous jump point; in reality, this in an 

impractical development.  Even though it would be difficult for a practical pattern 

reconfigurable antenna to obtain such phase characteristics, the magnitude and phase 

profiles provide antenna designers a goal in order realize the performance benefits 

reconfigurable adaptive arrays offer.  
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8.1 Summary  

 This dissertation assesses the functional benefits of utilizing radiation 

reconfigurable antennas in an adaptive array setting, ultimately specifying the 

requirements the element design must meet in order to improve adaptive array 

performance.    

 The dissertation focused on arrays composed of a small number of relatively 

widely spaced elements.  Such array configurations (1) mitigate the effects of mutual 

coupling between reconfigurable elements, thereby maximizing their individual 

performance potential, and (2) establish a platform for applications seeking portability 

and a small-scale system package as a design priority.  The work extends beyond the 

techniques of R.T. Compton Jr. and others to demonstrate how radiation reconfigurable 

antennas with beam tilting capability affect adaptive array performance.  Using ideal 

element patterns as a basis for comparison, the methodology incorporates more relevant 

reconfigurable antenna patterns. A diverse set of illustrations shows the resulting effects, 

mainly using the SINR performance index.  Consequently, the analysis also sheds light 

on the limitations of this particular technique, specifically the requirement of constraining 

the additional reconfigurable element on the basis of the original set of elements in the 

array.  The dissertation then pursued ways to overcome these limitations by fully 

leveraging the capabilities of the available pattern reconfigurability.  

 Using a systematic approach, the work integrates pattern variability directly into 

two different optimization routines, the convex and least mean square (LMS) algorithms.  

Instead of finding reconfigurable solutions by means of solutions based on a priori 

information, the present methodology uses the algorithm itself to determine the range of 

possible solutions. The framework behind this realization stemmed from (1) developing a 

pattern reconfigurable element model using isotropic radiators in a two-element subarray 
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topology and (2) integrating the model in the optimization routine with the appropriate 

element weight constraints. 

 While a great deal of insight was gained through implementation of the convex 

optimization routine, it over-constrained the problem, leading to less-than-satisfactory 

results. The LMS technique, on the other hand, provided satisfactory results.  Utilizing 

the technique under the prescribed weight constraints, a number of adaptive array 

scenarios utilizing the LMS approach were evaluated.  Each scenario varied a number of 

parameters related to the signal environment and the array geometry.  The results 

demonstrate the tradeoffs that arise in terms of SINR and pattern performance and give 

the designer details on what to expect in each particular situation.   

 Drawing on these findings, the work goes into further depth and evaluates what 

kind of pattern reconfigurability is necessary to obtain the functionality displayed when 

utilizing the subarray model.  In this case, however, the optimization routine leverages all 

the available pattern reconfigurability when selecting the element patterns. The displayed 

pattern profiles (patterns that fall within the capabilities of a single, planar, practical 

pattern reconfigurable antenna) give reconfigurable antenna designers optimum criteria 

that will realize the performance benefits reconfigurable adaptive arrays offer.  The 

results point to the importance of having null reconfigurability in the element design. 

That is, a designer should aim for elements with null steering capabilities and not 

necessarily beam steering capabilities.   

The implications of null reconfigurability can have a substantial impact in the 

implementation of future cognitive radio systems. As reported in [34], research in 

cognitive radio aims to develop efficient wireless communication strategies to make use 

of the unused allocated spectrum (e.g., white space). The challenge for antenna engineers 

lies in designing antennas that can learn, adapt, or reconfigure themselves (i.e., possess 

the elements of cognition and reconfigurability).  Since sensing and detecting the RF 

environment is a crucial system requirement, being able to dynamically reconfigure the 

null of the antenna array can mitigate interference from signals that are not of interest.  
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8.2 Research Contributions 

This dissertation research has made the following contributions:   

• Investigated the utility of incorporating radiation reconfigurable antennas in an 

adaptive array setting. 

• Established a platform for applications seeking portable system designs 

containing a small number of antenna elements spaced with relatively wide 

element spacing, thereby reducing the effects of mutual coupling and allowing 

additional space between array elements for supplementary RF electronics.  

• Extended the early work of R.T. Compton Jr. and others in adaptive arrays by 

going beyond utilizing ideal, traditional, fixed-pattern antenna element patterns. 

• Employed the procedures of Compton’s work and assimilated element patterns 

more relevant to pattern reconfigurable antennas, demonstrating that a practical 

pattern reconfigurable element can produce results comparable to that of the ideal 

element (e.g., maintain good adaptive array performance and mitigate grating 

nulls).   

• Ascertained the limitations in terms of the available solution space for this 

particular methodology in conjunction with pattern variability, a factor introduced 

by Compton’s approach but not fully utilizing the available reconfigurability. 

• Integrated pattern variability directly into an optimization routine, a more 

systematic approach that allows the algorithm to fully leverage the capabilities of 

the available reconfigurability and determine the range of possible solutions. 

• Developed a pattern reconfigurable element model based on a two-element 

subarray topology in conjunction with appropriate element weight constraints. 

• Established a pathway specifying the design requirements for pattern 

reconfigurable antennas to improve small adaptive array performance, 

demonstrating that designers should focus on an element’s null steering capability 

rather than its beam tilting capacity. 
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8.3 Future Work 

 At the conclusion of this dissertation, many directions for further improvement 

and development present themselves.  The following topics provide potential short-term 

and long-term directions for future work.  

 

Additional elements in the pattern RCFG model    The content of Subsection 

6.2.2 briefly discussed the advantages and disadvantages of increasing the number of 

antenna elements in the subarray model.  One such effect pertained to the additional nulls 

that occur in the subarray pattern.   In light of this work’s most recent developments, it is 

worth investigating the improvements in adaptive array performance for impinging 

interference signals spread out in the spatial range.  It was determined that performance 

degrades when this scenario takes place. Giving the optimization routine more nulls to 

choose from in the subarray model could better mitigate widely spaced interferers.  As 

mentioned, the subarray has a well-defined mainbeam and null(s) when the amplitudes 

are identical and the element phasing is progressive.  The difficulty lies in determining a 

weight constraint in conjunction with an optimization routine to incorporate the mulit-

element subarray model while at the same time not overstepping the bounds of practical 

pattern reconfigurability.  Realizing these conditions would be beneficial, but at the same 

time, challenging task. 

 

Subarray element model refinement    The isotropic elements utilized in the 

subarray model dictate the patterns of each model pattern reconfigurable antenna.  

Placing the two elements in an array setting gives the pattern more defined pattern 

characteristics.  Future work should look into further refining this model by incorporating 

windowing-type element factors into the optimization routine, that is, element factors that 

would be applied to each isotropic element (e.g., the model dipole element used earlier in 

this work). This approach may produce model patterns better suited for practical pattern 

reconfigurable element design.  The flexibility of the optimization routines allows for 

implementation of this feature.  
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Quantifying the proximity effect between impinging signals on the array    

The contents of the analysis presented in Section 7.2 showed the effect on the SINR 

whenever the interference signal comes into close angular proximity to the desired signal. 

This effect results in a degradation of SINR performance. Future work should investigate 

quantitatively the tolerance and sensitivity of this effect, detailing the impact on the other 

performance metrics (e.g., array main beam alignment with the desired signal or the 

individual element patterns themselves).  If the adaptive array system has this sort of 

information at its disposal, it may be able to readjust to a different configuration when 

realizing a particular signal environment. 

   

Weighing the tradeoffs between null depth and null beamwidth    This 

dissertation demonstrated the importance of a pattern reconfigurable antenna’s ability to 

steer its null, a design requirement necessary to increase small adaptive array 

performance.  The results in Section 7.3 detail this effect by showing how the optimal 

LMS solution places the null of each individual pattern RCFG element in the vicinity of 

the interference signal.  Future work should investigate what additional benefits ensue 

when the interference signals arrive at large angles (e.g., angles of arrival between 10° 

and 45°) with respect to the incoming desired signal direction.   

When this scenario presents itself, adaptive array performance can be enhanced 

by reducing pattern gain over a spatially wide interference region at the expense of the 

null depth.  In other words, tradeoffs between null depth and null beamwidth should be 

analyzed. With the null depth relaxed to a certain performance constraint, the individual 

antenna elements may be able to have a wider pattern depression region to handle a larger 

spread of interferers. These factors should be incorporated into the optimization analysis 

with the performance constraint and the resulting outcome being probabilistic in nature. 

This approach will weigh the tradeoffs accordingly; the results can very well add another 

element to pattern reconfigurable antenna design.   
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Potential application to other synthesis techniques   The pattern reconfigurable 

model utilized in this work has the potential to extend beyond the adaptive array 

platform.  There exist a number of classical periodic phased array synthesis techniques 

that aim to meet a specified array pattern goal (e.g., sidelobe level, main beamwidth, null 

placement, etc.).  Traditionally, the elements of choice in the analysis are isotropic, and 

the results return the necessary weights required to meet the desired characteristics.  With 

the element weights being the unknown quantity of interest, the pattern reconfigurability 

model can be applied in a similar fashion.  The added component of pattern variability 

may increase the functionality of the synthesis methods (e.g., being able to reconfigure to 

multiple pattern goals). Tradeoffs in performance will ensue compared to the static case 

due to weight constraints, but the task is worth pursuing; it could very well demonstrate 

another benefit of antenna pattern reconfigurability.  

 

Pattern association to a set of signal environments    Consider the results from 

any one of the signal environment scenarios in Section 7.3.  Given that the set of 

reconfigurable antennas in the array can provide the specified pattern characteristics for 

each element, then, when connected to the beamformer, the adaptive weights would only 

require a uniform distribution in amplitude.  As the signal environment changes, the 

system adapts and, thus, the optimal element patterns change.  Future work should 

consider a collection of patterns that works best for an assortment of scenarios and weigh 

the tradeoffs between performance and the range of patterns a reconfigurable antenna can 

provide (e.g., a continuous versus discrete beam/null tilt range).  Exchanges between the 

applied element weights and the magnitude and phase of the patterns can be utilized as an 

additional working degree of freedom.  

The analysis could eventually progress to providing insight into questions 

regarding fault and failure effects.  For example, what happens when one or more 

elements become dysfunctional?  Since the remaining antenna elements have the means 

for pattern reconfigurability, can they compensate for the failed elements and maintain 

performance to a limited degree? Questions along these lines will address practical 

system-level concerns such as sensitivity and robustness.  
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Association with adaptive array systems    This work aims to improve adaptive 

array functionally at the front end, i.e., the antenna array.  Apart from the antenna array, a 

complete adaptive array system encompasses various other hardware components 

involving detection and estimation, gain and phase adjustment, feedback and control 

circuitry, etc.  From a much broader perspective, future work should investigate the 

means of imbedding a pattern reconfigurable antenna array in such a system.  As 

mentioned in the beginning of the dissertation, Section 2.1, a majority of pattern 

reconfigurable antennas utilize switching devices that allow for the available 

reconfigurability. The adaptive system must know what kind of reconfigurability it has 

available at its disposal and how to control it. Thus, a separate control system should be 

devised for the pattern reconfigurable elements that work hand in hand with the adaptive 

feedback and control system.     

A step in that direction might include creating a mini-adaptive array experiment 

that comprises a small pattern reconfigurable antenna array with a switching network to 

control the pattern variability.  The array would be situated in an adaptive array scenario 

wherein the signal environment includes a moving jammer and/or static desired signal.  

Previous work (e.g., [17,35] ) reports on adaptive array measurements, thus providing 

some schemes and direction for implementation.  

 

Optimizing element spacing for aperiodic array applications    The method 

presented in this work concentrates on reconfigurable antenna array elements that are 

periodically spaced, with a fixed element distance analyzed in the optimization.  The 

convex and LMS algorithms determined the best possible solution for the given adaptive 

array scenario based upon that distance.  Future work should investigate any additional 

performance benefits when the individual element spacing between pattern 

reconfigurable elements is allowed to vary and thus create an aperiodic array.  Since it is 

not feasible to reconfigure physical distance on the fly, a set configuration may work 

better for a select group of scenarios.   As mentioned in [22], various methods can be 

utilized in the analysis, including particle swarm optimization. Even if the analysis 
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indicates increased performance in certain circumstances, tradeoffs must be weighed due 

to the added complexity in implementation.  

 

LMS comparison and array reconfiguration response time    This work 

utilizes the convex and LMS optimization routines in conjunction with the RCFG models 

to choose the optimal set of reconfigurable patterns associated with each antenna element 

in the array for a given adaptive array scenario. On one hand, the LMS technique is a 

gradient-based algorithm, which seeks out the minimum of the performance surface.  In 

particular, the algorithm applies the method of steepest descent to the minimum square 

error performance measure to obtain a simple implementation that is well suited to 

continuous signal communication systems.  The LMS algorithm contrasts to other 

algorithms that are applied to pulsed radar and sonar systems to deal with clutter and 

interference rejection (e.g., Howells-Applebaum adaptive processor) [18].   

The results demonstrate the advantages of using LMS and its ease of 

implementation from an analytical point view.  However, disadvantages may arise from a 

system-level perspective when compared to other classes of adaptation algorithms.  Each 

has different performance characteristics that are of critical importance because the 

algorithm influences the speed of array reconfiguration and the complexity of the 

circuitry required in hardware implementation [18]. In terms on implementation, these 

hardware components include down converters, analog-to-digital converters, and the 

digital processing unit (e.g., field programmable gate arrays and a central processing 

unit).   

Even though this dissertation focuses on the adaptive array steady-state response, 

another important factor worth mentioning for future work is in the system’s transient 

behavior.  For example, during a weight transient, the weight vector in an LMS algorithm 

is a sum of exponentials.  The time constant in the argument of these exponentials 

depends on the eigenvalues of the covariance matrix.  Thus, changes in the eigenvalues 

cause the array response speed to vary, and convergence speed is degraded as a result. 

Advanced weight control techniques exist to increase the convergence rate by reducing 

the eigenvalue spread. One particular version is the recursive least squares algorithm 
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(RLS) [17].  Despite the fact that the RLS has a faster convergence rate compared to 

LMS, it requires more computations. In FPGA implementation, the circuit scale and 

complexity increase along with the computational load, which eventually results in a 

lower maximum operating frequency due to the increase in overall circuit size [36]. 

Furthermore, it has been discussed in [37] that the eigenvalues not only depend on signal 

power, the number of incident signals, and the element spacing but also the element 

patterns.  Again, since the element patterns play a role, future work should investigate the 

benefits that pattern variability can have in increasing the array response speed. 
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