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ABSTRACT 
 

 The physiological effects of natural and synthetic estrogens are mediated by 

estrogen receptor alpha (ERα), and estrogen receptor beta (ERβ).  Within the nucleus of 

target cells, ERα and ERβ serve as ligand-activated transcription factors to stimulate or 

repress the transcription of estrogen receptor regulated genes.  ERα and ERβ may be co-

expressed in estrogen-responsive cells, but may also be differentially expressed in a cell- 

and tissue-specific manner.  In addition, within a given context these two receptors have 

different ligand binding and transcriptional activities.  Taken together, these attributes 

underlie differences in target gene regulation, and overall, different physiological actions 

by ER subtypes.  The work described here is an attempt to understand the roles of ERα 

and ERβ in target tissues (e.g. bone, breast, uterus) including the gene networks and cell 

signaling pathways under ER regulation.  We have also characterized the regulation of 

one of the ER-regulated genes, Carbonic Anhydrase XII, and examined its regulation by 

ERα through use of a conserved distal enhancer.   

The work described here reports the characterization of individual gene regulatory 

actions of ERα and ERβ.  To investigate the individual actions of ERα or ERβ, we 

utilized Affymetrix oligonucleotide arrays to profile transcripts regulated by 17β-

estradiol (E2) in U2OS-ERα and U2OS-ERβ cells.  These cell lines were constructed by 

stable integration of ERα or ERβ into human osteoblast-like U2OS osteosarcoma cells 

and initially characterized for ER subtype expression, E2-binding, and cellular responses 

to E2, including proliferation, motility, and adhesion.  Cells expressing apo-ERα or apo-

ERβ did not show significant alteration in adhesion or proliferation after addition of E2, 
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however there was a significant stimulation of migration in E2-treated ERβ-expressing 

cells.  U2OS-ERα, and U2OS-ERβ cells were treated with 10 nM E2 for 0, 4, 8, 24, and 

48 hours and total RNA was collected and hybridized to Affymetryx U95Av2 GeneChips 

and subjected to a Confidence Score to determine E2-regulated RNAs.  Of the ca. 100 

stimulated or repressed genes identified, some were stimulated by E2 equally through 

ERα and ERβ, whereas others were selectively stimulated via ERα or ERβ.  The E2-

regulated genes showed three distinct temporal patterns of expression over the 48 hour 

time course studied.  Among stimulated genes, ERα-containing cells exhibited a greater 

number of regulated transcripts, and overall magnitude of stimulation was increased as 

compared those regulated by ERβ.  Of the functional categories of the E2-regulated 

genes, most numerous were those encoding cytokines and factors associated with 

immune response, signal transduction, and cell migration and cytoskeleton regulation, 

indicating that E2 can exert effects on multiple pathways in these osteoblast-like cell 

lines.  Of note, E2 up-regulated several genes associated with cell motility selectively via 

ERβ, in keeping with the selective E2 enhancement of the motility of ERβ-containing 

cells. On genes regulated equally by E2 via ERα or ERβ, the phytoestrogen genistein 

preferentially stimulated gene expression via ERβ.  These studies indicate both common 

as well as distinct target genes for these two ERs, and identify many novel genes not 

previously known to be under estrogen regulation.  

We have examined the ER regulation of the Carbonic Anhydrase XII (CA12) 

gene, a gene identified as E2-regulated in the studies described above.  We investigated 

the expression of CA12 and its and regulation of by 17β-estradiol and selective estrogen 

receptor modulators in breast cancer cells, and characterize the ER usage of a distal 
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enhancer necessary for CA12 gene regulation.   We find that CA12 expression is highly 

correlated with ERα expression in human breast tumors. We demonstrate that E2 and 

SERMS increase CA12 mRNA and protein in multiple breast cancer cell types expressing 

ERα, and that CA12 regulation by estrogen is a primary transcriptional response 

mediated by ERα.  By genome-wide chromatin immunoprecipitation (ChIP) and ChIP 

scanning of the CA12 locus, we find E2-occupied ERα is recruited to a distal region 6.1 

kb upstream of the CA12 transcription start site (TSS) in vivo.  We find that E2 treatment 

results in recruitment of RNA polymerase II and steroid receptor coactivators SRC-2 and 

SRC-3 to the CA12 genomic locus and is correlated with increased histone H4 

acetylation.  Mutagenesis of an imperfect estrogen-responsive element within this -6.1kb 

distal enhancer region abolishes estrogen-dependent heterologous reporter activity.  

Chromosome conformation capture (3C) and chromatin immunoprecipitation assays 

demonstrate that this distal enhancer communicates with the transcriptional start site of 

the CA12 gene via intra-chromosomal looping upon hormone treatment. This distal 

enhancer element is observed in the homologous mouse genomic sequence, and the 

expression of the mouse homolog, Car12, is rapidly and robustly stimulated by estradiol 

in the mouse uterus in vivo, suggesting that the ER regulation of CA12 is mechanistically 

and evolutionarily conserved. Our findings highlight the crucial role of ER in regulation 

of the CA12 gene, and provide insight into the transcriptional regulatory mechanism that 

accounts for the strong association of CA12 and ER in human breast cancers. In addition, 

our findings imply that involvement of long distance enhancers in regulation of estrogen-

responsive genes in breast cancer may be more frequent than previously appreciated. 
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CHAPTER 1 

INTRODUCTION AND SIGNIFICANCE 

 

Estrogen receptors as a window into a transcriptional basis for physiology 

The proper coordination of cell- and tissue-specific responses throughout 

development and normal homeostasis of metazoans is achieved, in part, by the dynamic 

control of gene expression by hormones.  This understanding stems directly from the 

pioneering studies of estrogen action by Jensen, Gorski, and others in the 1950’s and 

1960’s showed that hormonal effects could be elicited through regulation of gene 

expression (1-3).  In mammals, the effects of estrogenic steroid hormones are largely, if 

not exclusively, mediated by two members of the nuclear receptor superfamily, estrogen 

receptor alpha (ERα), and estrogen receptor beta (ERβ).   By binding and activation of 

these receptors, estrogens are potent modulators of the development, homeostasis, and 

pathophysiology of many tissues such as the breast, male and female reproductive tracts, 

adipose, and skeletal, cardiovascular, immune, and central nervous systems (4-8).   

 

Estrogen action and endocrine therapies for breast cancer 

While the diverse actions of estrogens are of great interest, the pathophysiological 

role of estrogen receptors in breast cancer has been an area of intense interest.  Breast 

cancer is the most common malignant diagnosis for women in the United States with 

approximately 190,000 diagnoses and 40,000 deaths estimated in 2009 (9).  

Unfortunately, the etiology of breast cancer is only partially understood, but the influence 

of estrogens on breast tumor growth has been known since the early 20th century.    
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Cumulative exposure of estrogens to the breast epithelium underlies the majority of 

known risk factors for breast cancer (10, 11).  Estrogens stimulate proliferation of normal 

mammary cells, providing increased cell mass and opportunities for accrual of gross 

chromosomal aberrations and point mutations (12, 13).  Once tumors are established, 

estrogens appear to stimulate breast cancer cell proliferation in most patients with 

primary breast tumors (11, 14). Preventive and adjuvant therapies targeting the actions of 

estrogens, either by lowering the available amount of endogenous estrogens or blocking 

estrogen receptor action, have contributed to the recent decline in breast cancer mortality 

(8, 15, 16).  The decision to employ these therapies is clearly influenced by the relative 

presence or absence of ERα expression in breast tumor samples (5, 17, 18).  ERα is 

expressed in approximately 70 percent of breast cancers, and unbiased clustering of 

tumor expression profiles reveals ERα expression status to be the foremost factor 

partitioning gene expression profiles (19-21).  Patients with tumors expressing ERα 

generally have a more indolent disease and ERα-expressing tumors are more often well-

differentiated and are associated with other favorable prognostic characteristics (18, 22).  

The expression of well-characterized ERα target genes such as Progesterone Receptor, 

pS2/Trefoil Factor1, and Cathepsin D have been used as markers of estrogen action in 

vivo, and thus surrogates for ERα expression, but their expression alone cannot fully 

predict ERα expression status or response to endocrine therapies.  Regardless, the use of 

RNA expression profiling and next-generation sequencing of individual breast tumors 

continues to evolve, providing better classifications of tumor behavior, a greater number 

of genetic determinants and downstream effectors, thereby providing a more 

sophisticated understanding of treatment decisions (19, 21, 23-28). 
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Unlike ERα, the roles of the more recently discovered ERβ in breast cancer cells 

are still being uncovered, and ERβ appears to negatively modulate the actions of ERα.  

When co-expressed in the same cell, ERβ appears to negatively influence ERα binding in 

a target gene-specific manner, as well as affect global gene expression profiles and cancer 

cell proliferation.  This is consistent with the relative decline of ERβ:ERα levels with 

disease progression, and is suggestive of an overall dampening effect of ERβ on ERα 

actions (29-35).    

 

Mechanisms of Classical Estrogen Receptor Action in a Target Cell 

ERα and ERβ are prototypic steroid hormone receptors, and like all nuclear 

receptor (NR) superfamily members, are intracellular ligand-regulated transcription 

factors which stimulate and repress expression of target genes by sensing classical 

hormones or other signaling mediators (36-38).   ERα and ERβ share a  modular domain 

structure with variable homologies of the respective domains between the ER subtypes.  

They share high homology between their DNA-binding domains which contain two zinc-

finger motifs (DBD; 95% amino acid identity), and substantial homology between their 

ligand-binding domains (LBD; 56% amino acid identity) (39-43).  The two receptor 

subtypes are expressed differentially in estrogen-target tissues and also differ in their 

abilities to bind certain ligands and activate specific responsive promoters or enhancers, 

suggesting that they may have widely-divergent biological actions in vivo (5, 41, 44). 

In the cell, unliganded ERα largely localizes to the nucleus and is complexed with 

chaperone proteins (45-48).  Upon binding of endogenous hormone (e.g. 17β-estradiol; 

E2), the ER undergoes conformational changes and exhibits protein surfaces allowing for 
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stable self-dimerization, as well as contact with specific regulatory regions of DNA 

termed estrogen-responsive elements (EREs)  (39, 49).   EREs were classically 

considered to be comprised of perfect or imperfect inverted palindromes of 5’-Pu-

GGTCA-3’ with three intervening nucleotides, however considerable diversity of ER 

binding elements have been described (50-53).  In addition, activated ER may also 

directly bind other DNA-bound proteins which then bind or “tether” ER to chromatin and 

(53-57).  Like other transcriptional regulators, the chromatin-bound ERα serves to recruit 

other transcription factors and RNA polymerase II to target genes in a response element- 

and signal-specific manner to regulate gene expression (38, 58, 59).   

ERα may be able to directly bind members of the general transcription machinery, 

but principally regulates transcription through the dynamic recruitment of coregulator 

protein complexes which may (1) have histone acetyltransferase, methyltransferase, or 

deacetylase activites, (2) act as ATP-dependent nucleosome remodeling proteins, or (3) 

mediate contacts with other coregulators and/or the general transcription machinery  (59-

64).  Ligand-bound ERα recruits these regulatory complexes by presentation of two 

activation domains, denoted as activation function 1 (AF1) and activation function 2 

(AF2) located on the N- and C- terminal portions of the receptor, respectively.   AF1 is 

constitutively active and may act independently or synergistically with AF2 when bound 

with agonist.  Importantly, AF1 is modulated by phosphorylation via growth factor-

mediated signaling cascades (65-67) and the relative strength of AF1 transactivation 

ability is dependent on both the context of coregulator proteins available to partner with 

and the promoter context of the target gene (68-70).  AF2 activity, located in the ligand 

binding domain, is ligand dependent and profoundly influenced by the nature of ligand 
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bound.  Estrogen-bound ER is able to present a binding surface for coactivators such as 

the p160 family of proteins which have both acetyltransferase activity and serve as 

scaffold proteins for recruitment of other transcription factors such as p300 or CBP, 

DRIP/TRAP complexes, and ultimately the general transcription machinery and RNA 

polymerase II.  Pure anti-estrogenic ligands, often referred to as selective estrogen 

receptor down-regulators (SERDS), such as the synthetic antiestrogen ICI 182,780 put 

the receptor into a conformation which fail to recruit coactivators to gene sites and also 

induce pronounced degradation of the receptor.  Mixed agonist/antagonists like the 

selective estrogen receptor modulators (SERMS) tamoxifen and raloxifene put the 

receptor into a range of conformations which are akin to antiestrogen-bound ER, but 

show a mixed ability to recruit coactivators and corepressors depending on the cell- and 

promoter context (71-74).  Thus, the estrogen receptor dynamically nucleates specific 

transcriptional regulatory complexes and displays a complex pharmacology which is 

influenced by the receptor itself (e.g. subtype, expression level, post-translational 

modifications), the nature of the ligand (agonist, antagonist, SERM, SERD), coregulatory 

effectors such as the type of DNA element bound, and coregulator proteins available for 

binding (38, 68, 71, 74-77). 

 

Estrogen Receptor Biology and Genomic Complexity 

While the biology of the estrogen receptor displays a relatively complex 

pharmacology involving the conformation, post-translational modification and location of 

the receptor, ligand, allosteric DNA response elements, and cofactor recruitment 

described above, this understanding is based on the investigation of relatively few 
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examples of known ERα-target genes studied in vitro and even fewer target genes studied 

in vivo.  The wider adoption of technological advances such as microarrays and next-

generation sequencing has allowed the examination of E2-responsive RNAs and ER 

binding sites on a genome-wide scale and has allowed a much greater understanding of 

estrogen receptor actions (53, 78-83).   

 mRNA expression profiling of breast cancer and human osteosarcoma cell lines 

expressing ERα, ERβ, or both subtypes has served to greatly expand our understanding 

of the ‘transcriptome’ under ER control (29, 78, 84-90).  Work from the 

Katzenellenbogen group has demonstrated that in ERα-expressing MCF-7 cells, E2 is 

able to regulate as many as ~1500 transcripts (5% of expressed transcripts), and the 

majority of regulated transcripts are actually down-regulated.  Consistent with E2-

induced proliferation of MCF-7 cells, bioinformatic analysis of biological processes (e.g. 

Gene Ontology) regulated by specific E2-regulated transcripts showed clear up-

regulation of pro-proliferation genes such as growth factors and cell cycle regulators, and 

down-regulation of pro-apoptotic and growth inhibitory factors (78).  When considering 

this work with other research groups, a picture of E2-regulated gene expression emerges.  

In general, E2-stimulated genes appear to be regulated early, within 8 hours, while down-

regulated genes appear to be regulated at later times.  Approximately 20% of all regulated 

transcripts in MCF-7 cells are considered direct targets as shown by co-administration of 

the translational inhibitor cycloheximide (78, 86).  Not surprisingly, there is divergence 

of E2-targets in ERα-expressing cell lines derived from different tissues or cell lineages 

(e.g MCF-7, T47-D, and U2OS-ERα), suggesting that expression programs underlie the 

divergent phenotypes (86, 90, 91).  This also underscores the necessity of different 
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cofactors (e.g. FOXA1) present within a given cell which influence ER activities (80, 91-

95).  In addition, expression profiling has uncovered the necessity of some DNA bound 

transcription factors such as AP-1 for ER-mediated gene regulation (89, 96).  ERα and 

ERβ appear to regulate a widely diverse set of genes (~70% divergent) when expressed in 

a given cell (29, 31, 84, 85, 87).  Again this highlights the differential abilities of ERα 

and ERβ to recruit requisite cofactors and underscores their different biological effects in 

tissues.  Expression studies have been extended to examine the activities of SERMs, 

which have both agonistic and antagonistic actions within a given cell.  The mixed 

agonist/antagonist trans-hydroxytamoxifen acted as a partial or full agonist for 

approximately 50% of E2-stimulated genes and 75% of down-regulated genes (79, 97).   

Importantly, the identification of ER-regulated genes in these cell-based assays has been 

used to develop an outcome predictor able to define clinically relevant subgroups within 

clinically defined ER+ (21). 

The genome-wide identification of ER binding sites has allowed a refinement of 

the classical ERE, as well as additional genomic sequences associated with, and perhaps 

necessary for, ER binding and activity (53, 80, 81, 89, 91, 94, 95).   We now know that a 

majority of the ER binding sites in enhancers are a considerable distance (>5 kb) from 

known and putative ER-target genes (53, 80, 81, 98).  The concept that distant 

transcription factor binding sites can be physically close to their regulated promoters in 

‘cis’ or ‘trans’ is well-appreciated, but still poorly understood.   In fact, the three-

dimensional organization of genomes has been considered to be both functionally 

important for gene expression and relatively plastic in response to developmental or 

environmental cues (99-102).  The use of so called chromosome conformation capture 
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(“3C”) and variants of this technique have suggested mechanisms of intra- and inter-

chromosomal communication between these distal ER-binding enhancers and individual 

ER-regulated genes such as pS2/Trefoil Factor1, GREB1, Progesterone Receptor, and 

Carbonic Anhdrase XII (80, 103-106).   Coupling ChIP and chromatin conformation 

techniques with next-generation sequencing has further advanced the study of enhancers 

and their usage on a genome-wide scale (98, 107-110).  Specifically, the recent 

development of the chromatin interaction analysis by paired-end tag sequencing (ChIA-

PET) has allowed for an unbiased, genome-wide method for detecting protein-based 

chromatin interactions in vivo (98).  This technique has been used to examine both ERα 

binding sites with similar base-pair resolution as existing methods (e.g. ChIP-Seq), as 

well as interrogate the physical proximity of ER binding sites to one another and E2-

regulated genes regardless of genomic distance or position within a chromosome.  The 

work by Cheung and Ruan (98) found that activated ERα is recruited to multiple, often 

distal binding sites which physically communicate with each other in both simple duplex 

and complex looping of intervening chromatin.  ERα-bound loops are associated with 

binding of additional factors (e.g. FOXA1) and RNAPII, and appear to be “anchored” at 

E2-target genes, with intervening non-target genes looped out.    These interactions have 

been proposed to provide a physical partitioning of genes for differential regulation and 

act as centers to provide sufficient local concentrations of necessary factors for 

transcriptional regulation.  It is easy to anticipate that the further advancement of methods 

such as ChIA-PET coupled with cell-based imaging will allow for continued appreciation 

of the ability of estrogen receptors to physically and functionally coordinate genomic 

actions. 
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CHAPTER 2 

TRANSCRIPTIONAL PROFILING OF ESTROGEN-REGULATED GENE 

EXPRESSION VIA ESTROGEN RECEPTOR ALPHA OR ESTROGEN 

RECEPTOR BETA IN HUMAN OSTEOSARCOMA CELLS:  DISTINCT AND 

COMMON TARGET GENES FOR THESE RECEPTORS1 

 

Abstract 

Estrogens exert many important effects in bone, a tissue that contains both 

estrogen receptors alpha and beta (ERα and ERβ).  To compare the actions of these 

receptors, we generated U2OS human osteosarcoma cells stably expressing ERα or ERβ, 

at levels comparable to those in osteoblasts, and we characterized their response to 

estradiol (E2) over time using Affymetrix GeneChip microarrays to determine the 

expression of approximately 12,000 genes, followed by quantitative PCR verification of 

the regulation of selected genes. Of the ca. 100 regulated genes we identified, some were 

stimulated by E2 equally through ERα and ERβ, whereas others were selectively 

stimulated via ERα or ERβ.  The E2-regulated genes showed three distinct temporal 

patterns of expression over the 48 h time course studied.  Of the functional categories of 

the E2-regulated genes, most numerous were those encoding cytokines and factors 

associated with immune response, signal transduction, and cell migration and 

cytoskeleton regulation, indicating that E2 can exert effects on multiple pathways in these 

osteoblast-like cell lines.  Of note, E2 up-regulated several genes associated with cell 

motility selectively via ERβ, in keeping with the selective E2 enhancement of the 

                                                 
1 This work was originally published in Endocrinology 145(7):3473–3486, doi: 10.1210/en.2003-1682 
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motility of ERβ-containing cells.  Of genes regulated equally by E2 via ERα or ERβ, the 

phytoestrogen genistein preferentially stimulated gene expression via ERβ.  These studies 

indicate both common as well as distinct target genes for these two ERs, and identify 

many novel genes not previously known to be under estrogen regulation.  

 

Introduction 

Estrogen is a pleiotropic hormone with multiple actions in reproductive tissues 

(such as breast, uterus and ovary) and in many non-reproductive tissues including bone, 

the central nervous system and the cardiovascular system.  In the skeleton, estrogen 

effects range from regulation of bone growth during puberty to bone remodeling in the 

adult [reviewed in (1-4)].  The pivotal role of estrogens in the maintenance of bone tissue 

has long been known from clinical studies where estradiol (E2) deficiency in 

postmenopausal or ovariectomized women caused a rapid loss of trabecular bone; 

moreover, in both men and women, estrogen deficiency is associated with an age-related 

sustained bone loss that can lead to osteoporosis.  Both situations can be reversed by 

hormone replacement therapy (1-4).   

Estrogen exerts its effects on bone and other target tissues by interacting with two 

different members of the nuclear receptor superfamily of hormone-regulated transcription 

factors, named estrogen receptor alpha (ERα) and beta (ERβ) (5-7).  These two receptors 

are encoded by different genes, on human chromosome 6 and 14, respectively.  ERα and 

ERβ have similar modular domain structures and very high amino acid identity in their 

DNA-binding domains (97%), whereas they are more divergent in their N-terminal A/B 

domains (only 18% amino acid identity) and in their ligand-binding domains (59% amino 
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acid identity).  After the binding of hormone to these receptors, the hormone-receptor 

complexes bind to specific sequences on the DNA (EREs, Estrogen Response Elements) 

or interact with other transcription factors without direct ERα or ERβ binding to DNA 

(i.e., at AP-1, Sp1, and other sites) (8-13).  In both cases, liganded-ERs recruit 

coregulator proteins and components of the transcriptional machinery to regulate the 

transcription of target genes (14-16).  Recently, the importance of membrane-initiated 

signaling in the actions of estrogens has been highlighted by studies in vitro and in vivo, 

where membrane/cytoplasmic ERs as well as nuclear ERs seem to be involved in 

regulating E2 action and gene transcription in bone and other target cells (1, 17-19).   

In bone, ERs are present in osteoblasts and chondrocytes, and at somewhat lower 

levels in osteoclasts, bone marrow stromal cells, osteocytes and bone cell precursors (20, 

21).  The levels of ERs in bone are generally about 10-fold lower than in reproductive 

tissues, such as uterus, and their levels can be affected by many parameters including cell 

differentiation state (22-24).  Estrogen seems to act directly on osteoblasts and probably, 

as well, on osteoclasts and precursors of both cell types, and indirectly by regulating 

cytokine production in osteoblasts and bone marrow stromal cells, which in turn affects 

the actions and formation of osteoclasts (1, 25).   

The aims of this study were to determine the effects of E2 on gene expression in a 

human osteoblastic cell line and, via transcriptional profiling, to better understand the 

comparative roles of ERα and ERβ in mediating the effects of this hormone.  In 

particular, our interest was to elucidate whether the two receptors elicit the same and/or 

different transcriptional responses on a range of endogenous cellular genes.  For this 

purpose we have generated U2OS human osteosarcoma cells stably expressing either 
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ERα or ERβ and examined several clonal cell lines containing similar, relatively low, 

physiological levels of functional receptor. Using Affymetrix GeneChip microarrays, 

which allow the examination of >12,000 genes, we observed that the hormone-regulated 

genes divided into three distinct temporal patterns and into several functional categories, 

indicating that E2 exerts effects on multiple regulatory pathways in these cells.  In this 

study, we report the identification of genes that were commonly regulated by E2 through 

ERα and ERβ, as well as some that were preferentially or exclusively regulated by one or 

the other ER subtype, and many novel genes not previously known to be under regulation 

by this hormone.  We discuss the relationship of some of these genes to the biological 

effects of E2 we observed in these cells.   

 

Materials and Methods 

Cell culture 

U2OS human osteosarcoma cells were stably transfected with human ERα 

(encoding amino acids 1–595) or ERβ (encoding amino acids 1–530).  Each ER cDNA 

(26) was subcloned into the pcDNA3.1+ expression vector (Invitrogen, Carlsbad, CA) 

which contains a neomycin resistance gene.  Clones were selected with the antibiotic 

G418 (800 μg/ml) and 20 clones per ER subtype were screened for ER expression and for 

transactivation ability with an estrogen response element containing reporter gene 

(2ERE-tk-CAT).  Four clones of each (denoted as ERα clones 1-4 and ERβ clones 1-4) 

were chosen for further characterization and for the gene expression studies.  The U2OS-

ER cells were routinely grown in Minimal Essential Medium with phenol red (Sigma 

Chemical Co., St. Louis, MO) supplemented with 15% fetal calf serum (Hyclone, Logan, 
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UT), 100 units penicillin/ml, 100 μg streptomycin/ml and 400 μg G418/ml.  Before use 

in experiments, cells were grown in Minimal Essential Medium without phenol red and 

supplemented with 5% charcoal-dextran treated fetal calf serum for at least 4 days before 

the start of E2 treatment.  MCF-7 human breast cancer cells were grown as previously 

described (27).  

Hormone binding and Western immunoblot assays   

Whole cell extracts were prepared in cell lysis buffer (20 mM Tris pH 7.4, 0.5 M 

NaCl, 1 mM DTT, 10% glycerol, 50 μg/ml leupeptin, 50 μg/ml aprotinin, 2.5 μg/ml 

pepstatin A, and 0.2 mM phenylmethylsulfonyl fluoride) using freeze/thaw procedure.  

Total protein concentration was determined using the BCA kit (Pierce Biotechnology, 

Rockford, IL).  Whole cell extracts were incubated in duplicate with a range of 3H-E2 

concentrations alone or with 100-fold excess unlabeled E2 for 1 h on ice.  

Hydroxylapatite (HAP) slurry was added and incubated for an additional 15 min on ice.  

The slurry was washed twice and its radioactivity then determined by scintillation 

counting.  The amount of E2 binding in pmol was calculated per mg protein.  

Western blots of whole cell extracts used the ERα specific antibody H222 and the 

ERβ specific antibody UCG40 (kindly provided by Geoffrey L. Greene, University of 

Chicago) and were done as previously described (28).  

Hormone treatments, DNA microarrays, and analysis of microarray data 

U2OS-ERα or ERβ containing cells were maintained in culture for 48 h prior to 

cell harvest and RNA collection.  During this period, cells were treated with 10 nM E2 

(Sigma Chemical Co., St. Louis, MO) for 4, 8, 24 or 48 h, and three separate samples 

were collected for each time point.  Control cell samples were also treated with 0.1% 
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ethanol control vehicle for 48 h.  In this way, cell density was similar in all samples, 

consistent with our observations (as discussed in Results), that E2 does not affect 

proliferation of these cells.  Additional independent time course experiments were 

conducted to generate RNA samples for quantitative RT-PCR verification of gene 

regulation, as detailed in the next section below.  Total RNA was prepared using Trizol 

Reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions.  RNA 

was further purified using RNeasy columns (Qiagen, Valencia, CA) and treatment with 

RNase free-DNase I (Qiagen, Valencia, CA).   

Total RNA from each sample was used to generate cRNA, which was labeled 

with biotin as recommended by Affymetrix (Santa Clara, CA).  Each cRNA was then 

hybridized on an Affymetrix human Hu-U95A GeneChip, which contains oligonucleotide 

probe sets representing approximately 12,500 human genes and ESTs.  After washing, 

the chips were scanned and analyzed using MicroArray Suite 5.0 software (Affymetrix, 

Santa Clara, CA).  Average intensities for each GeneChip were globally scaled to a target 

intensity of 150.  Data were then analyzed using GeneSpring version 5.0.1 software 

(Silicon Genetics, San Carlos, CA). Data were first normalized on a per chip basis by 

dividing each measurement by the 50th percentile of all measurements on that chip, and 

then E2-treated samples were normalized to the mean of the vehicle treated control 

samples. 

We applied a confidence score (CS) to evaluate which genes were estrogen-

regulated (as described in (29); adapted from (30)).  The CS is based on four parameters: 

fold change (FC), p-value (PV), percentage of present calls (PC) and expression level 

(EL), (CS=FC+PV+PC+EL).  For each parameter, arbitrary scores were assigned.  For 
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fold change, a score of 5 was assigned if the fold change was greater than 1.95, 2 if the 

fold change was between 1.5 and 1.95 and a penalty of –0.5 if it was under 1.5.  For p 

value, a score of 3 was assigned if p-value was less than 0.05, 2 if was between 0.05 and 

0.1, and a penalty of –0.5 if it was greater than 0.1.  If present calls were assigned to more 

than 50% of the samples the score was 3, between 25-50% was 1, and if less than 25% a 

penalty of –0.5 was applied. For the expression level, a score of 3 was applied if it was 

greater than 30, a score of 1 if it was between 15 and 30 and a penalty of –0.5 if 

expression level was less than 15.  The confidence scores ranged from –2 to 14, and 

genes with a CS value of 11 or higher were considered to be significantly E2-regulated 

genes.  To determine ERα or ERβ preference in gene regulation, the average fold change 

for one of the receptors had to be 2.0 or greater, whereas fold change was less than 1.3-

fold for the other receptor at all time points.   

Estrogen-regulated genes were assigned to functional categories according to 

LocusLink, OMIM, PubMed (www.ncbi.nlm.nih.gov), GeneCards 

(bioinfo.weizmann.ac.il/cards) and GenMAPP databases.  The entire microarray data set 

will be available through the Gene Expression Omnibus (GEO 

[http://www.ncbi.nlm.nih.gov/geo]).  

Quantitative real-time PCR  

Real-time PCR was carried out on ca. 25 genes to verify E2 regulation as assessed 

by microarray data analysis, and to evaluate mRNA levels of ERα or ERβ in U2OS 

stably transfected cells.  Three independent time-course experiments using 3 separate cell 

samples each for ERα or ERβ containing cells either E2 or control vehicle treated at each 

time point, were conducted.  The primers used are listed in Table 2.1.  One μg of total 
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RNA from each sample was reverse transcribed in a total volume of 20 μl using 200 U 

reverse transcriptase, 50 pmol random hexamers and 1 mM dNTPs (New England 

Biolabs, Beverly, MA).  The resulting cDNA was then diluted to a total volume of 100 μl.  

Each real-time PCR reaction consisted of 5 μl of diluted RT product, 1x SYBR Green 

PCR Master Mix (Applied Biosystems, Foster City, CA), and 50 nM of forward and 

reverse primers.  Reactions were carried out in an ABI Prism 7700 Sequence Detection 

System (Applied Biosystems) for 40 cycles (95 °C for 15 sec, 60 °C for 1 min) following 

an initial 10 min incubation at 95°C.  The fold change in expression was calculated using 

the ∆∆ Ct comparative threshold cycle method (31) with the ribosomal protein 36B4 

mRNA as an internal control.  As described in (31), gene expression is normalized to an 

endogenous reference gene (36B4) and the fold change in gene expression is then 

determined relative to the vehicle treated control.  

Cell motility and cell adhesion assays   

Cell motility assays used 48-well Boyden microchemotaxis chambers according to 

the manufacturer’s instructions (Neuroprobe, Cabin John, MD).  Briefly, the cells were 

grown in 5% CD-FCS MEM medium without phenol red for at least 4 days until ~70-

80% confluency.  Cells were treated for either 24 h or 48 h with E2 or control (0.1%) 

ethanol vehicle, harvested, and 50 μl of cell suspension (105 cells/50 µl serum-free MEM- 

minus phenol red and containing 0.5% BSA) were placed in the open-bottom wells of the 

upper compartment.  Each pair of wells was separated by a poly-vinylpyrrolidone-free 

polycarbonate porous membrane (8 µm pores) precoated with gelatin (0.2 mg/ml in PBS).  

28 μl of the chemoattractant (MEM with 5% FBS, and MEM with no FBS as control) 

were placed into the lower compartment wells of the chamber.  The Boyden chambers 
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were then incubated for 5 h at 37°C.  Cells were then fixed on the membrane with 

methanol, stained with Diff-Quick staining kit (Baxter Health Corp., McGraw Park, IL), 

mounted onto glass slides, and counted under a 100x microscope objective.   

Cell adhesion assays were performed in 96-well plates coated for 2 h at 37°C with 

20-40 μg/ml of different coating substrates (poly-L-lysine, BSA, collagen type I, 

fibronectin, or laminin).  Cells were treated with 10 nM E2 for 24 or 48 h, and after 

blocking non-specific sites with 1% BSA for 2 h at 37°C, cells were harvested, 

resuspended in MEM minus phenol red containing 0.1% BSA at 105 cells/ml, and 100 μl 

of cell suspension was seeded per well.  Cells were allowed to adhere for 30 min and then 

the medium was gently removed, the wells washed once with MEM minus phenol red 

and the cells then fixed with methanol.  Cells were stained with 0.1% crystal violet for 30 

min at room temperature and washed multiple times with double distilled water.  Stain 

was then extracted from the cells with 5% TritonX-100 overnight at room temperature 

and absorbance monitored at 570 nm.  

 

Results 

Generation and characterization of U2OS cell lines stably expressing ERα or ERβ 

U2OS human osteosarcoma cells, an ER-negative osteoblast-like cell line, were 

stably transfected with either ERα or ERβ using a pcDNA3.1+ plasmid containing a 

neomycin resistance gene as a vector for stable integration.  Positive clones were selected 

with G418 (800 μg/ml), and after two rounds of selection, various clones were tested for 

the presence of ER mRNA by real time PCR and for ER protein by Western blot with 

ERα-specific or ERβ-specific antibodies (Fig. 2.1).  The levels of ERα and ERβ mRNA 
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in U2OS-ER cell clones, as determined by real-time quantitative PCR using standard 

curves with known amounts of ERα and ERβ cDNA (Fig. 2.1A), were compared with the 

parental U2OS cells and with the ERα-containing human breast cancer cell line MCF-7.  

In the eight clones (ERα 1-4, ERβ 1-4) used for most of the studies reported in this paper, 

the number of copies of ERα and ERβ mRNA were similar: 8410±777 per 10 ng total 

RNA for ERα and 9112±1304 for ERβ.  These ERα mRNA levels are ca. 20% of that 

measured in our MCF-7 breast cancer cells.  In addition, as seen in Fig. 2.1A, no ERβ 

mRNA was detected in the ERα-expressing U2OS cells and likewise no ERα mRNA 

was present in the U2OS ERβ-expressing cells.  The parental U2OS cells lacked 

detectable levels of either receptor mRNA.   

Hormone binding (Scatchard) assays were performed on extracts from ERα clone 

1 and ERβ clone 1 cells to ensure the presence of receptor able to bind hormone. These 

assays demonstrated similar levels of 3H-E2 binding in these U2OS-ERα and U2OS-ERβ 

cells (~0.1 pmol/mg protein, Fig.2.1B).  These levels are about 20% of that found in 

MCF-7 cells.  Western blots (Fig. 2.1C) with H222 monoclonal antibody for ERα and 

UCG40 polyclonal antibody for ERβ showed ERα or ERβ of the correct size (ca. 65 and 

56 kDa, respectively), and the presence of only ERβ in the ERβ clones (β clones 1-4 

shown) and only ERα in the ERα clones (α clone 1 shown).  Further characterization by 

estrogen responsive ERE-tk-CAT reporter assays demonstrated that U2OS-ERα and ERβ 

cells possessed E2-dependent transcriptionally functional receptors (data not shown).  

The level of ERα and ERβ in these clones is consistent with previous reports indicating 

the ca. 10-fold lower ER level in bone versus uterine tissue (23, 24).  
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We examined whether E2 affected the motility and adhesion properties of the 

U2OS-ERα and ERβ-containing cells.  Motility was assessed using a Boyden chamber 

chemotactic assay and 5% FBS as a general chemotactic stimulus.  With E2 treatment for 

24 or 48 h, the ERβ-containing cells showed a 3-fold increase in motility; in contrast, 

although the ERα and ERβ-containing cells showed similar motility, E2 elicited no 

change in motility of the ERα-containing cells (Fig. 2.1D).  We also evaluated whether 

E2 treatment for 24 or 48 h affected the adhesive properties of these cells, and found that 

it did not.  An adhesion assay was employed that allows a comparison of the rapid 

adhesion (in 30 min) of the cells to various substrates (poly-L-lysine, BSA, collagen type 

I, fibronectin, or laminin).  Adhesion to collagen type I is shown as an example (Fig. 

2.1E), since it is a major component of bone matrix, and it is seen that E2 had no effect 

on the adhesion of the cells.  This was the case with all of the substrates tested, indicating 

that this property is largely E2-independent.   

Gene expression profiling and time courses of gene regulation using Affymetrix 

GeneChip microarrays 

To characterize changes in gene expression in response to E2 treatment, U2OS-

ERα (clone 1) and U2OS-ERβ (clone 1) cells were treated with 10 nM E2 for times from 

0 to 48 h, and RNA was harvested, purified, and derivatized for gene profiling.  

Affymetrix Hu-U95A GeneChips, which contain probes for approximately 12,000 human 

genes, were used.  As described in Materials and Methods, a confidence score (CS) was 

applied to discriminate genes robustly and reproducibly regulated by E2.  The CS takes 

into account several parameters for each gene and weights the fold change increase or 

decrease versus control, the reproducibility of the output (p-value), the expression level 

27



 
 

related to the intensity of the signal on the chip and a fidelity score based on a decision 

matrix which compares hybridization of the perfect match probes versus the mismatch for 

each probe set.   

We considered E2-regulated genes to be those with a confidence score equal to or 

greater than 11 (out of a maximum score of 14), and we included in our further studies 

only genes up- or down-regulated more than 2 fold.  Using these criteria, we identified 

105 genes that were E2-regulated through ERα and/or ERβ. This list of genes was 

subjected to gene tree cluster analysis using a standard correlation algorithm available in 

the GeneSpring software.   

In the gene cluster analysis (Fig. 2.2), up-regulated genes are shown in red, down-

regulated genes in blue and unchanging genes in yellow. We observed that many more 

genes were stimulated than inhibited (85 vs 20) in ERα- or ERβ-containing cells, and in 

further analyses, we focused on the up-regulated genes, since these were more numerous, 

were the most robustly regulated and gave good reproducibility of validation by real-time 

PCR.   

When the E2-regulated genes were categorized according to their time patterns of 

expression, three major groupings were identified: early (stimulated only at 4-8 h), early 

and late (stimulated from 4 through 48 h) and late (stimulated only at 24-48 h) (Fig. 2.3).  

For ERα-containing cells, the early and late pattern was the most frequently represented 

(49% of E2-stimulated genes through ERα), followed by the late (46%) and early (5%) 

patterns.  In U2OS-ERβ cells, the distribution was slightly different with 43%, 41% and 

16%, respectively, in these three time patterns.   
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Of the 85 up-regulated genes, 52 were commonly regulated by ERα and ERβ (Fig. 

2.4 top).  These genes, their functions, and their time patterns of regulation are listed in 

Table 2.2.  As shown in Fig. 2.4 top, 24 genes were stimulated selectively by ERα, 

whereas 9 genes were stimulated selectively by ERβ.  Thus, the two receptors showed 

substantial overlap in regulated genes (61% of the genes), but both also have some 

different target genes. The estrogen-stimulated genes regulated selectively through one of 

the two ER subtypes are listed in Table 2.3, along with their temporal pattern of 

regulation and their function.  Many new E2 target genes were also identified, as 

indicated in Tables 2.2 and 2.3.   

Of note, our method of analysis demonstrated E2 regulation of some known E2-

target genes (i.e. pS2/TFF1, PDZK1, GREB1, WISP2, keratin 19, angiotensinogen, 

NHERF/SLC9A3R2, BMP6, connexin 43/GJA1), suggesting the validity of our analyses.  

Further, regulation of several bone-related factors (BMP6, CD34, CD164, PTHLH) by 

E2 was observed (Tables 2.2 and 2.3).   

Functional classification of E2-regulated genes 

To classify E2 up-regulated genes into functional groups (Fig. 2.4) we chose eight 

categories: cytokines/immune response, signal transduction, cell motility/cytoskeleton 

regulation, growth factors/hormones, apoptosis/cell proliferation, housekeeping, nucleic 

acid processing, and other/unknown.  We then assigned each gene to one major category 

representing its primary function (even though many genes encode proteins that have 

several physiological functions), based on mining of several databases (LocusLink, 

PubMed, GeneCards, OMIM, GenMapp).   
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Many of the genes commonly regulated through ERα and ERβ encode proteins 

associated with cytokine/immune response, signal transduction, and cell motility and 

cytoskeleton regulation (56% of all genes). Several ERα-selective genes were associated 

with nucleic acid processing.  Very few genes regulated by the ERs were related to cell 

cycle, proliferation or apoptosis, supporting our observations (not shown) that E2 had no 

effect on the proliferation rate of these cells.   

Hormone-regulated genes encoding cytokines and factors associated with immune 

response 

Three members of the Natural Killer cell lectin-type receptors (NKG family), 

NKG2-C, -E and –F (KLRC2, KLRC3 and KLRC4) were robustly regulated by E2 

through both receptors (Table 2.2).  NKGs are activating receptors of natural killer cells 

that mediate HLA-E recognition (32-34).  CD34 (common to both ERα and ERβ up-

regulation, Table 2.2) and sialomucin/CD164 (ERα selective, Table 2.3) are cell surface 

antigens characteristic of human hematopoietic progenitors.  CD164 is an adhesion 

receptor that inhibits proliferation of CD34+ hematopoietic progenitors (35, 36).  

Interleukin-8 (IL-8), a cytokine known for its angiogenic and chemotactic properties, is 

thought to be involved in bone cell function under interleukin-1β and TNFα control in 

bone marrow stromal cells and osteoblasts (37, 38).  It was also regulated by E2 in both 

ERα and ERβ containing U2OS cells (Table 2.2).   

Cyclooxygenase-2 (Cox-2), a key enzyme regulating the production of 

prostaglandins, and also regulating angiogenesis, tumor cell invasion and inflammatory 

responses (39), was markedly up-regulated by E2 via both ERα and ERβ (Table 2.2).  
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Cox-2 has been shown recently to be under estrogenic regulation mediated through the 

PI3K/Akt pathway (40).  

Hormone regulated genes associated with cell motility and cytoskeletal function 

This category is of particular interest because, using cell motility assays, we 

observed an increase in motility of U2OS-ERβ containing cells after E2 treatment (Fig. 

2.1D).  Among the ERβ selectively regulated genes, there are two candidates that might 

be involved in this response.  The first is autotaxin (ENPP2), a known tumor autocrine 

motility factor that has been shown to stimulate the migration of melanoma cells via a G 

protein-coupled phosphoinositide 3-kinaseγ and Cdc42 and Rac1-dependent pathway.  

This regulation possibly involves Paxillin and FAK (focal adhesion kinase), two key 

players in cell adhesion and motility control (41, 42).  Autotaxin has 5-nucleotide 

pyrophosphatase and phosphodiesterase activity, and it acts in the extracellular space as a 

lysophospholipase D with production of lysophosphatidic acid (LPA), which seems to be 

the tumor cell motility inducer (43).  The experiments described in the section below 

demonstrate that autotaxin is very selectively regulated by ERβ.  Another candidate 

associated with the motility increase by ERβ might be Rap1GEF (GFR), a guanine 

nucleotide exchange factor that constitutively activates Rap1 (44) and has been shown to 

be involved in cell motility by modulating integrin function (45, 46).   

Quantitative real-time PCR validation and verification of gene expression regulation in 

multiple cell clones and using ER subtype-selective ligands 

 Table 2.1 shows the primers used, and Tables 2.2 and 2.3 show the ca. 25 genes 

that we verified for their E2 regulation by quantitative PCR (names in italics).  It is of 

note that many of these are genes newly identified as being regulated by E2.  In addition, 
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we verified their E2 regulation in several clones (4 each) of U2OS ERα and/or ERβ-

containing cells (clones 1-4) and used ER subtype-selective ligands to confirm common 

regulation by both ERs or selective gene regulation by ERα or ERβ.  The Tables indicate 

generally good correspondence in gene regulation between the microarray and the 

quantitative RT-PCR analyses using several ERα- or ERβ-containing cell clones.  RT-

PCR, however, is often more sensitive, with a greater dynamic range, such that fold 

changes found by RT-PCR were often greater than those obtained from microarray 

analysis.  

 Figure 5 shows real-time PCR validation of some genes that were commonly 

regulated by E2 through both ER subtypes.  The time course of stimulation for four of 

these genes (GREB1, oligophrenin-1, interleukin-24 and carbonic anhydrase XII) is 

presented.  All of these genes showed up-regulation by E2 by 4 h.  There were robust, 

and very similar fold changes in mRNA for GREB1 mediated via ERα or ERβ over time 

(Fig. 2.5).  Oligophrenin-1 also showed a pattern of mRNA change that was similar for 

ERα and ERβ in which a plateau in stimulation was achieved by 4 h for ERα and 8 h for 

ERβ.  Interestingly, IL-24 was preferentially up-regulated by ERα, with ERβ being a 

much less effective mediating receptor. In contrast, the stimulation via ERβ was 

substantially greater for the carbonic anhydrase XII gene than was the stimulation via 

ERα.  The ER mediation of all of these E2-induced changes is clearly suggested by the 

fact that the stimulation is fully reversed by an excess of the antiestrogen ICI182,780.  In 

addition, and as expected, no stimulation was observed with this pure antiestrogen alone 

(Fig. 2.5).  
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 Figure 2.6 shows the time course changes for two genes selectively regulated 

through ERβ, autotaxin and cystatin D.  Their expression was highly stimulated via ERβ, 

with no significant change being elicited via ERα. The ICI antiestrogen reversal of the E2 

stimulation of these genes supports the mediation by ER (Fig. 2.6).   

 To further examine the selectivity of gene regulation via ERα or ERβ, cells were 

treated with the ERα-selective ligand propylpyrazoletriol (PPT; (47-50)), the ERβ-

selective ligand diarylpropionitrile (DPN; (51, 52)), or the soy phytoestrogen genistein 

which has a higher affinity for ERβ than ERα (53) (Fig. 2.7).  The PDZK1 gene, which is 

equivalently stimulated by E2 via ERα or ERβ, showed stimulation by PPT in the ERα-

containing cells and by DPN in the ERβ-containing cells, as expected.  Interestingly, 

genistein, which has preferential binding affinity for ERβ (53), was considerably more 

effective in stimulating PDZK1 gene expression via ERβ (Fig. 2.7). At the cystatin D 

gene, E2 exclusively stimulated via ERβ, and the stimulation by genistein and DPN was 

only observed in the ERβ-containing cells, with no stimulation by PPT or genistein via 

ERα.  These findings confirm the common regulation of PDZK1 through ERα and ERβ 

observed with E2, and the ERβ selectivity for E2 regulation of cystatin D expression.   

 

Discussion 

 Estrogens exert profound effects on bone, a tissue that expresses ERα and ERβ.  

Yet the individual contributions of ERα and ERβ to gene regulation and physiological 

function in bone remain only partially understood.  In this study, we have characterized a 

model system for examining the actions of the ER subtypes, ERα and ERβ, in a human 
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osteoblast-like cell type.  These studies have enabled us to evaluate changes in the 

expression of ca. 12,000 genes by estradiol through ERα and/or ERβ.  We have 

identified novel estrogen-regulated genes and genes regulated commonly as well as 

exclusively or preferentially through ERα or ERβ.  Further, the identification of 

regulated genes allows some insight into the pathways and gene networks regulated by 

E2 through these two ERs.  

Estrogen regulation of genes associated with cytokines, motility, cytoskeleton, and bone 

remodeling 

 Because estrogen plays important roles in bone remodeling and the control of 

osteoblast and osteoclast numbers (1), it is of note that E2 showed significant regulation 

of cytokines and of genes encoding proteins associated with regulation of the immune 

response.  Our findings are consistent with the reports of estrogen regulation of genes 

encoding cytokines, growth factors and bone matrix proteins in wild type mouse 

trabecular bone and the importance of ERα and/or ERβ in the mediation of these effects, 

as evidenced by the use of ER knockout mice (54-56).  We observed E2 up-regulation of 

genes encoding three members of the Natural Killer cell lectin-type receptors (NKG 

family, KLRC2, KLRC3 and KLRC4).  These NKG family genes were all regulated by 

E2 at early as well as later times.  Other factors associated with cytokine/immune 

function observed to be under estrogen regulation included CD34 antigen, defensin β1, 

IL13 receptor α2, interleukin 8, phospholipase A2, selenoprotein P1, and 

sialomucin/CD164.  Many of these genes, as indicated in Tables 2.2 and 2.3, represent 

new E2-regulated genes not previously reported to be regulated by this hormone.   
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 Another category of genes in which many members were regulated by E2, were 

those associated with regulation of cell motility and the cytoskeleton.  We observed a 

three-fold increase in the motility of the ERβ-containing cells in response to E2 treatment.  

Hence, it is of note that two genes preferentially regulated by E2 via ERβ were autotaxin 

(ENPP2), a known tumor autocrine motility factor and phosphodiesterase, and Rap1 GEF, 

the guanine nucleotide exchange factor that constitutively activates Rap1 and is known to 

modulate integrin function (45, 46).  

 WISP-2, a connective tissue growth factor isolated from osteoblasts (57), was 

regulated by E2 via both receptor subtypes, and it might play a role in cytoskeletal 

regulation in these U2OS cells.  Its stimulation by E2 has been reported in MCF-7 breast 

cancer cells (29, 58).  In addition, oligophrenin-1, keratin 19, integrin α 6, cyritestin 1, 

connexin 43, and cadherin 19, all of which play roles in cell motility and the cytoskeleton, 

were for the most part not previously known to be regulated by estrogen in bone, 

although several are known to be under estrogen regulation in reproductive target cells 

(59, 60). 

 Bone morphogenetic protein 6 (BMP6), a potent osteogenic factor believed to 

play an important role in the bone-protective actions of estrogens, was observed to be up-

regulated through both ERs, as was parathyroid hormone-like hormone (PTHLH/PTHrP), 

a homolog of PTH that functions as an autocrine growth inhibitor for osteoblast-like cells 

and as an anabolic agent in osteoporosis (61, 62).  Neurotensin was another growth 

factor/hormone found to be up-regulated by E2 via ERα and ERβ.  Cystatin D, an E2-

responsive gene newly identified in these studies, was stimulated very preferentially via 
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ERβ.  As this gene encodes a protein that is a secreted inhibitor of cysteine peptidases 

(cathepsins S and H), it might function in several roles in bone physiology.  

ER regulation of other cellular functions: similarities and differences in estrogen target 

genes and temporal patterns of gene regulation in osteosarcoma and breast cancer cells 

 Estradiol up-regulated the expression of several genes encoding proteins 

associated with nucleic acid processing, such as the estrogen receptor coregulators 

RIP140 and TRAP240.  However, in these U2OS cells, E2 regulated very few genes 

associated with apoptosis or cell proliferation, consistent with our findings that E2 had no 

effect on the proliferation rate of either the ERα or ERβ-containing U2OS cells (data not 

shown).  In contrast, in a recently reported study in ER-positive human breast cancer cells, 

in which E2 stimulates cell proliferation, we observed that E2 stimulated the expression 

of positive proliferation regulators including multiple growth factors and genes involved 

in cell cycle progression, and E2 also down-regulated transcriptional repressors and anti-

proliferative and pro-apoptotic genes (29).  Hence, the categories of genes stimulated by 

E2 in the U2OS cells and in breast cancer cells are very different, and they reflect the 

quite different physiological effects of E2 on these target cells.  Further, E2 down-

regulated the expression of few genes in these ER-containing osteosarcoma cells, 

whereas E2 down-regulated the expression of more genes in ER-positive MCF-7 breast 

cancer cells than it up-regulated (29).  Despite these marked differences in genes 

regulated in these two different types of estrogen target cells, some genes were stimulated 

by E2 in both U2OS and MCF-7 breast cancer cells.  These included pS2, keratin 19, the 

sodium hydrogen exchanger regulatory factor (NHERF/EBP50), GREB1, PDZK1, 

RIP140, WISP2 and connexin 43, all previously shown to be under estrogen regulation, 
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as referenced in Tables 2.2 and 2.3.  Some have important roles in cell cytoarchitecture 

and cytoskeletal regulation (e.g., NHERF/EBP50, connexin43), supporting the known 

effects of estrogen on the cytoskeleton of both mammary (63) and bone cells.   

 It is of interest that our time-course analysis in the U2OS cells (Fig. 2.3) revealed 

that genes regulated by E2 divided into 3 temporal patterns, denoted E, E+L,or L in 

Tables 2.2 and 2.3:  those regulated at early times only (4 and/or 8 h), those regulated at 

both early and late times, and those showing increased expression only at late times (24 

and/or 48h). In both MCF-7 and in ER-containing U2OS cells, approximately equal 

numbers of stimulated genes fell into the early and late, and late-only categories, whereas 

relatively few genes showed early-only regulation in the U2OS cells compared with the 

breast cancer cells where ca. one-third of the total stimulated genes showed the early-

only expression pattern.  We have used the protein synthesis inhibitor, cycloheximide, to 

begin to distinguish primary versus secondary effects of E2-ER complexes on regulation 

of some of the interesting genes we have identified in the U2OS cells.  These studies 

reveal that some of the genes turned on early that show elevated expression over time and 

hence fall into the “early and late” category (such as GREB1, autotaxin, oligophrenin-1 

and KLRC4) likely represent primary estrogen response genes since their increase in 

mRNA expression is not prevented by cycloheximide.  In contrast, cycloheximide 

blocked the estrogenic stimulation of cystatin D and PDZK1, a late and an early and late 

gene, respectively, suggesting these are probably secondary response genes.  

Novel estrogen-regulated genes and genes regulated selectively by ERα or ERβ 

 These studies have enabled us to compare the actions of ERα and ERβ.  While 

the majority of E2-stimulated genes were regulated through both ER subtypes, we 
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identified a number of genes selectively regulated either by ERα or by ERβ, as well as 

many novel estrogen-regulated genes (64).  Most of the E2-regulated genes involved in 

cytoskeleton regulation and motility, signal transduction, cytokine and immune response 

and growth factors/hormones were commonly regulated through both receptors.  These 

included a marked up-regulation of cox-2, cyritestin 1, keratin 19, several interleukins 

and integrin α6.  The latter factor, integrin α6, forms laminin receptors when 

heterodimerized with integrin β1 or β4 subunits, and it is one of the factors involved in 

tumor invasion through basal membranes (65-67).  

Important growth factors and hormones regulated by E2 through both receptors 

included several that can act in either an autocrine or paracrine manner, including BMP6 

and PTHLH, to effect the bone-protective actions of E2 (68).  PTHLH, a homologue of 

PTH (parathyroid hormone), acts as an anabolic agent in osteoporosis (62), and its 

overproduction in breast and prostate cancers is associated with bone metastasis of these 

tumors (69, 70).  Hence, its up-regulation by E2 via either ERα or ERβ is of interest. Of 

the genes we observed to be selectively regulated by one ER subtype, nearly three-fourths 

were ERα-selective.  These ERα-regulated genes included several associated with 

nucleic acid processing, two zinc finger proteins, the coregulator TRAP240, and the 

cytochrome P450 family member 2B6 (CYP2B6).  Of the genes exclusively regulated by 

ERβ were autotaxin and cystatin D, factors associated with motility/cytoskeleton and 

cytokine/immune function.   

A recent report of related studies in U2OS cells identified some similar and some 

different gene targets for ERα and ERβ (71) as we observed in this report.  There are 

several important methodological differences between the two studies that could account 
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for some of the differences in findings.  First, the levels of ERα and ERβ in the U2OS 

cells used by Monroe et al (71) were very high, namely three times that of MCF-7 cells, 

whereas we chose to use cells that contained ER at levels more comparable to those in 

osteoblasts, about 20% that of MCF-7 cells.  Also, the studies in ref. 71 examined E2 

regulation only at 24 h, whereas we examined gene regulation over a time course of E2 

treatment up to 48 h, so that we identified both early, early and late, and late-only 

responding genes; hence, some different sets of genes would likely be identified in the 

two studies.  In addition, we used a confidence score that includes considerations of fold 

change, p-values, expression level and present calls in defining estrogen-regulated genes, 

whereas Monroe et al (71) used fold change only.  Further, the studies reported in ref. 71 

used an earlier version Affymetrix microarray chip that contains probes for about half of 

the genes on the U95A array we used, and also uses fewer and different probe sets per 

gene.  Hence, it is not surprising that there are some differences in the observed pattern of 

gene regulations between our study and that presented in ref. 71.   

 The differences in gene targets of ERα vs. ERβ, or of progesterone receptor-A vs. 

progesterone receptor-B (72), may reflect differences in the activation functions of these 

receptors, in particular their N-terminal activation regions, as well as the complexity of 

gene regulation by hormone occupied-nuclear receptors.  The latter involves a 

combination of aspects (7, 16, 73): the diverse nature of target gene promoters (with 

different response elements that may be simple or composite) where receptors may bind 

directly to the DNA or act through tethering to other DNA-bound transcription factors; 

the nature of the coregulators recruited to the hormone-receptor-gene promoter; and the 
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receptor protein conformations induced by different ligands in the context of associated 

coregulators and transcription factors.   

These studies, which have allowed a comparison of the gene regulatory activities 

of ERα and ERβ, should assist in the characterization of genes and cellular signaling 

pathways regulated by E2 through ERα and/or ERβ.  They highlight commonality but 

also significant differences in gene targets for these two ERs and have identified many 

novel genes not previously known to be under estrogen regulation.  Several of these are 

likely to play significant roles in the bone maintenance and anti-osteoporosis effects of 

estrogens. It will be of interest in subsequent studies to use the preferentially regulated 

genes we have identified to explore the molecular basis for the ER subtype-selectivity in 

the regulation of these genes. 
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Tables and Figures 

 

Table 2.1. Primers used for real-time PCR 

Gene Abbrev. Forward Primer Reverse Primer 

Acyl-CoA Oxidase 2 ACOX2 5'-TTACAGACCCTGACGCAATCC 5'-CCTTAGCAGCCTGGAGGTTGT

Adenosine Kinase ADK 5'-GGGCTGCACCTTTCCTGAGAA 5'-AGCAATTAGGGCAGTGTCTGC

Angiotensinogen AGT 5'-GCCCTTCACTGAGAGCGC 5'- TGAGACCCTCCACCTTGTCC

Autotaxin ENPP2 5'-CTCCTTCATCCTGCCTCACC 5'-TCACGCACCCTAGCTGTGTG 

Bone Morphogenetic 
Protein 6 BMP6 5'-CATCACGGCCACTAGCAATCT 5'-CATCCCTTGTCACCACGCT 

Carbonic Anhydrase XII CA12 5'-GCAGGTCCAGAAGTTCGATGA 5'-CAGACTCAGTCCTGCCGCA 

Connexin 43 GJA1 5'-GCCAAAGACTGTGGGTCTCAA 5'-CCAGGAGGAGACATAGGCGAG

Cystatin D CST5 5'-GACTTTGCCATCAGCGAGTACA 5'-TAGGCAGCCATCACCTGCA 

Estrogen Receptor α ERα/ESR1 5'-GAATCTGCCAAGGAGACTCGC 5'-ACTGGTTGGTGGCTGGACAC 

Estrogen Receptor β ERβ/ESR2 5'-TGTCTGCAGCGATTACGCA 5'-GCGCCGGTTTTTATCGATT 

GREB1 GREB1 5'-CAGGCTTTTGCACCGAATCT 5'-CAAAGCGTGTCGTCTTCAGCT

Integrin Alpha 6 ITGA6 5'-AGATCCCGGCCTGTGATTAA 5'-CCCCACACGCTGTTTTCTG 

Interleukin 24 / MDA-7 IL24 5'-ACTGGACACTTCACGCCCTT 5'-TCACTGGCGCTGCTTAAAGA 

Interleukin 8 IL8 5'-CCAGGAGAAACCACCGGA 5'-GGAAGGCTGCCAAGAGAGC 

Neurotensin NTS 5'-CCAGCTGAGGAAACAGGAGAA 5'-TGAAAAGCCCTGCTGTGACA 

NKG2F KLRC4 5'-AGCACGTCATTGTGGCCATT 5'-GAAGCACAGGCCAGCAAAC 

NOR1/CSMF/MINOR NR4A3 5'-ACCCCGACTACACCAAGCTG 5'-TTGCTCGAGTAGCCCTCCAC 

Oligophrenin 1 OPHN1 5'-GTGGGCTTCAAGTTTGTCAGG 5'-GTGCGGTACAACCCTTCTGTC

PDZK1 PDZK1 5'-CCACTTGACACCCCTCCAGAT 5'-TGTACTGTGGGCCCGTTCTT 

Phospholipase A2, IVA PLA2G4A 5'-TGGCCTTGGTGAGTGATTCAG 5'-TCAAGCCCAGCATGAAGTTG 

Trefoil Factor 1 / pS2 TFF1 5'-ATACCATCGACGTCCCTCCA 5'-AAGCGTGTCTGAGGTGTCCG 

RIP140 NRIP1 5'-AAGCGAAGCCCATTTGCA 5'-TTTGGGAGCTGGTAACTGCC 

SKI-like SKIL 5'-GGAAACTGGCAGTGCCTTTG 5'-CGGAGCATCAGGCTGAACATA

WISP2 WISP2 5'-GCACACCGAAGACCCACCT 5'-AGGTACATGGTGTCGGGCA 

36B4 36B4 5'-GTGTTCGACAATGGCAGCAT 5'-GACACCCTCCAGGAAGCGA 
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Table 2.2.  Genes up-regulated by estradiol through estrogen receptor alpha and 

estrogen receptor beta in U2OS cells.  Genes are organized alphabetically.  The Table 

lists genes determined to be E2-regulated based on a Confidence Score ≥11 and a fold 

change ≥2.0 from microarray analysis, as described in Materials and Methods, in ERα- or 

ERβ-containing cells with the other receptor giving gene stimulation ≥1.4 fold.  Gene 

names in bold appear to be novel and not previously reported to be regulated by E2(†).  

Those in italics have been verified by real-time PCR and the real-time PCR values are 

shown as entries in parentheses under the microarray values.  All values are mean ± SEM.  

Under Time Pattern, E, E+L, or L denote an early only, early and late, or late only time 

pattern of regulation by E2.  

Name Abbrev. GenBank Fold ERα 
(mean±SEM) 

Fold ERβ 
(mean±SEM) 

Time 
Pattern 

(ERα,ERβ) 
Function 

E2- 
Reg. 
Gene 

Acyl-CoA Oxidase 2 ACOX2 X95190 6.72 ± 2.73 
(3.61 ± 0.03)

2.00 ± 0.22 
(2.32 ± 0.33) 

E+L, L housekeeping † 

Adenosine Kinase ADK U50196 2.75 ± 0.59 
(2.47 ± 0.33)

1.68 ± 0.31 
(2.07 ± 0.34) 

E+L, L signal 
transduction † 

Angiotensinogen AGT K02215 2.00 ± 0.49 
(4.41 ± 0.32)

2.13 ± 0.19 
(4.18 ± 0.50) 

L, L growth factors/ 
hormones (74) 

Baculoviral IAP-
containing 3 BIRC3 U45878 2.47 ± 0.32 3.01 ± 1.17 L, E+L apoptosis/ 

proliferation † 

Bone Morphogenetic 
Protein 6 BMP6 M60315 2.39 ± 0.41 

(2.84 ± 0.15)
2.17 ± 0.27 

(2.82 ± 0.09) 
L, L growth factors/ 

hormones (75) 

Cadherin 19, Type 2 CDH19 AF047826 6.49 ± 1.30 1.86 ± 0.48 E+L, E cell motility/ 
cytoskeleton † 

Carbonic Anhydrase XII CA12 AF037335 2.60 ± 0.24 
(5.08 ± 1.04)

2.40 ± 0.04 
(15.42 ± 4.22)

E+L, E+L unknown/other † 

CD34 Antigen CD34 S53911 1.94 ± 0.25 3.12 ± 1.05 L, E+L cytokine/immun
e function † 

Clone IMAGE 446411  AJ011980 4.67 ± 1.34 6.98 ± 2.73 L, L unknown/other † 
Coagulation Factor XIII, 
A1  F13A1 M14539 4.37 ± 1.08 5.54 ± 0.96 E+L, E+L unknown/other † 

Connexin 43 GJA1 X52947 2.39 ± 0.30 
(2.72 ± 0.13)

1.56 ± 0.06 
(2.21 ± 0.36) 

L, L cell motility/ 
cytoskeleton (60) 

Cyclooxygenase-2 PTGS2 U04636 31.5 ± 1.88 6.64 ± 2.01 E+L, E+L cytokine/immun
e function (40) 

Cyritestin 1 ADAM3A X89656 4.73 ± 0.20 4.64 ± 2.33 E+L, E cell motility/ 
cytoskeleton † 

Defensin Beta 1 DEFB1 AI309115 2.01 ± 0.21 1.54 ± 0.40 L, L cytokine/immun
e function † 

Glycerol Kinase GK X78711 3.57 ± 1.28 4.72 ± 0.14 L, E+L housekeeping (40) 
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G-protein Coupled 
Receptor Kinase 5 GPRK5 L15388 2.13 ± 0.03 2.00 ± 0.26 E, E signal 

transduction † 

GREB1 Protein GREB1 AB011147 2.74 ± 0.27 
(25 ± 3.65) 

4.86 ± 1.88 
(35.76 ± 4.22)

E+L, E+L unknown/other (76) 

Hevin SPARCL1 X86693 4.31 ± 2.37 3.22 ± 2.31 E+L, E+L unknown/other † 

Homeobox HB9 HLXB9 U07664 2.23 ± 0.22 1.63 ± 0.27 E, E nucleic acid 
processing † 

IL13 Receptor Alpha 2 IL13RA2 U70981 2.64 ± 0.39 1.80 ± 0.14 E+L, L cytokine/immun
e function † 

Integrin Alpha 6 ITGA6 S66213 3.77 ± 0.89 
(3.68 ± 0.36)

2.92 ± 0.12 
(2.28 ± 0.43) 

E+L, L cell motility/ 
cytoskeleton (77) 

Interleukin 8 IL8 M28130 2.13 ± 0.21 
(2.79 ± 0.52)

2.40 ± 0.02 
 (3.2 ± 0.40) 

L, E cytokine/immun
e function (78) 

Interleukin 24 / MDA-7 IL24 U16261 5.20 ± 1.25 
(10.12 ± 1.56)

1.70 ± 0.34 
(3.76 ± 0.92) 

E+L, E apoptosis/ 
proliferation † 

Keratin 19 KRT19 Y00503 8.99 ± 0.52 3.79 ± 1.32 E+L, L cell motility/ 
cytoskeleton (59) 

Leucine-rich and Ig 
Domain 1 LRIG1 AL039458 2.50 ± 0.16 1.47 ± 0.10 E+L, E signal 

transduction † 

Microseminoprotein Beta MSMB AA532495 14.0 ± 1.68 2.83 ± 0.74 E+L, L growth factors/ 
hormones (79) 

Neurotensin NTS U91618 4.95 ± 1.44 
(4.55 ± 0.15)

1.97 ± 0.97 
(3.07 ± 0.08) 

E+L, L growth factors/ 
hormones (80) 

NHERF SLC9A3R1 AF015926 1.97 ± 0.08 2.22 ± 0.10 L, E+L signal 
transduction (27) 

NKG2C KLRC2 AJ001684 8.13 ± 1.50 6.74 ± 1.08 E+L, E+L cytokine/immun
e function † 

NKG2E KLRC3 AJ001685 8.91 ± 0.54 7.14 ± 1.66 E+L, E+L cytokine/immun
e function † 

NKG2F KLRC4 AJ001683 2.94 ± 1.64 
(9.75 ± 1.62)

2.67 ± 0.01 
(14.42 ± 2.67)

E+L, E+L cytokine/immun
e function † 

NOR1/CSMF/MINOR NR4A3 X89894 1.38 ± 0.57 
(2.74 ± 0.11)

2.00 ± 0.22 
(4.17 ± 0.65) 

L, E nucleic acid 
processing † 

Oligophrenin 1 OPHN1 AJ001189 2.09 ± 0.37 
(2.48 ± 0.44)

1.99 ± 0.23 
(3.9 ± 1.03) 

E+L, E+L cell motility/ 
cytoskeleton † 

Parathyroid Hormone-like 
Hormone 

PTHLH/  
PTHrP M24351 2.29 ± 0.01 2.80 ± 0.35 E+L, E+L growth factors/ 

hormones (81) 

PDZK1 Protein PDZK1 AF012281 2.33 ± 0.77 
(7.96 ± 1.35)

5.76 ± 0.47 
(8.23 ± 1.31) 

E+L, E+L signal 
transduction (76) 

Phosphodiesterase 4B PDE4B L20971 2.10 ± 0.05 1.40 ± 0.06 E, E+L signal 
transduction † 

Phospholipase A2, IVA PLA2G4A M72393 2.91 ± 1.38 
(2.04 ± 0.12)

2.79 ± 1.90 
(4.31 ± 0.45) 

E+L, L cytokine/immun
e function † 

Protein Phosphatase 1, 
Subunit 12B PPP1R12B AB007972 2.97 ± 0.05 2.32 ± 0.11 E+L, E+L signal 

transduction (29) 

pS2 TFF1 AA314825 3.38 ± 0.21 
(20.35 ± 3.62)

3.17 ± 0.96 
(8.27 ± 1.55) 

L, L cytokine/immun
e function (82) 

Putative Tumor 
Suppressor FUS2 U73167 2.28 ± 0.15 2.17 ± 0.17 L, L signal 

transduction † 

Ras Protein Specific GRF 
1 RASGRF1 S62035 2.03 ± 0.04 1.94 ± 0.01 L, L signal 

transduction (29) 

Ras-like Protein A RALA M29893 2.04 ± 0.06 1.45 ± 0.28 L, L signal 
transduction † 

Ret/Ptc2 Fusion  HG4677-
HT5102 2.27 ± 0.13 2.03 ± 0.37 L, L unknown/other (29) 

Rho-related BTB 
Domain Containing 3 RHOBTB3 AB020685 2.06 ± 0.03 1.62 ± 0.36 E+L, L signal 

transduction † 

 

 

44



 
 

 

Table 2.2. (Cont.) 

RIP140 NRIP1 X84373 2.88 ± 0.12 
(3.35 ± 0.45)

1.54 ± 0.10 
(2.45 ± 0.18) 

E+L, L nucleic acid 
processing (83) 

Selenoprotein P1 SEPP1 Z11793 2.14 ± 0.17 2.18 ± 0.33 L, L cytokine/immun
e function † 

SKI-like SKIL X15217 2.51 ± 0.22 
(1.91 ± 0.20)

1.49 ± 0.51 
(2.4 ± 0.31) 

E+L, E nucleic acid 
processing † 

Transcobalamin 1 TCN1 J05068 5.83 ± 0.59 11.6 ± 1.25 L, L housekeeping † 

Transcortin SERPINA6 J02943 6.24 ± 0.25 2.63 ± 0.97 E+L, L growth factors/ 
hormones (84) 

Transducin-like, 
Enhancer of Split 3 TLE3 M99438 2.36 ± 0.29 2.28 ± 0.01 E, E unknown/other † 

UDP-
glycosyltransferase 2, 
B10 

UGT2B10 X63359 6.80 ± 2.32 2.25 ± 0.77 
E+L, E+L 

housekeeping † 

WISP2 WISP2 AF100780 3.89 ± 0.25 
(42.2 ± 7.59)

2.81 ± 0.26 
(14.19 ± 1.38)

L, L cell motility/ 
cytoskeleton (58) 
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Table 2.3. Estrogen-stimulated genes regulated selectively through one estrogen 

receptor subtype.  E2-up-regulated genes were classified as ER-subtype selective when 

the Confidence Score was ≥11 and the fold change as determined by microarray analysis 

was 2.0 or greater whereas fold change was less than 1.3 fold for the other receptor at all 

time points. Gene names in bold appear to be novel and not previously reported to be 

regulated by E2(†).  Those in italics have been verified by real-time PCR and the real-

time PCR values are shown as entries in parentheses under the microarray values.  All 

values are mean ± SEM.  Under Time Pattern, E, E+L, or L denote an early only, early 

and late, or late only time pattern of regulation by E2. 

Name Abbrev. GenBank Fold 
(mean±SEM) 

Time 
Pattern Function  E2- 

Reg. Gene 

ERα-selective       
 

    

Cytochrome P450, Family 2 B6 CYP2B6 M29874 6.10 ± 0.15 E+L housekeeping † 

Phosphodiesterase 3B PDE3B D50640 3.50 ± 0.83 E+L signal 
transduction † 

RIESKE Iron-Sulfur Protein   M23316 3.20 ± 0.72 E+L unknown/other † 
Chromosome 18, orf 1 C18ORF1 AF009426 2.65 ± 0.65 E+L unknown/other † 
Sodium Channel, Non-voltage 
Gated 1, β SCNN1B X87159 2.57 ± 0.27 

E+L signal 
transduction † 

Sialomucin CD164 D14043 2.50 ± 0.05 
L cytokine/immune 

function † 

Zinc Finger Protein 267 ZNF267 X78925 2.41 ± 0.17 
L nucleic acid 

processing † 

PCF11p Homolog PCF11 AB020631 2.42 ± 0.27 
L nucleic acid 

processing † 

Zinc Finger Protein 148 ZNF148 L04282 2.39 ± 0.28 
L nucleic acid 

processing † 

TR-associated Protein, 240 kDa TRAP240 AB011165 2.21 ± 0.23 
L nucleic acid 

processing † 

CD2-associated Protein CD2AP AL050105 2.17 ± 0.12 
L cell motility/ 

cytoskeleton † 

DKFZp586K1 Protein DKFZp586K1 AL049382 2.16 ± 0.21 L unknown/other † 

KIAA0626 Gene Product KIAA0626 AB014526 2.16 ± 0.35 L unknown/other † 
Bcl-2-associated Transcription 
Factor BTF D79986 2.13 ± 0.05 

L apoptosis/ 
proliferation † 

DKFZp434D193   U79263 2.13 ± 0.35 E+L unknown/other † 

Hbc647 mRNA hbc647 U68494 2.12 ± 0.06 L unknown/other † 

PKC Binding Protein 1 PRKCBP1 U48251 2.12 ± 0.37 
L signal 

transduction (85) 
ATPase, Lysosomal, V1 
Subunit D ATP6V1D AA877795 2.09 ± 0.13 

L 
unknown/other † 

KIAA0191 Protein KIAA0191 D83776 2.09 ± 0.03 E+L unknown/other † 
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Kinesin Family Member 5B KIF5B X65873 2.07 ± 0.58 
L cell motility/ 

cytoskeleton † 
PRP4 pre-mRNA Processing 
Factor 4B PRPF4B U48736 2.07 ± 0.01 

E+L nucleic acid 
processing † 

KIAA0372 Gene Product KIAA0372 AB002370 2.01 ± 0.15 L unknown/other † 

KIAA1033 Protein KIAA1033 AB028956 2.01 ± 0.22 L unknown/other † 

Clone wg82b12.x1   AI768188 2.00 ± 0.17 L unknown/other † 

ERβ-selective            

Clone 23892   AF035317 7.24 ± 1.24 E+L unknown/other † 

Autotaxin ENPP2 L35594 
5.73 ± 1.77 

(8.98 ± 0.78)
E+L cell motility/ 

cytoskeleton † 

Cystatin D CST5 X70377 
3.70 ± 1.27 

(8.17 ± 1.02)
L cytokine/immune 

function † 

HSU43279   U43279 3.53 ± 0.79 E+L unknown/other † 
RA-inducible Endogenous 
Retroviral DNA   M64936 3.37 ± 0.59 

E+L 
unknown/other † 

Rap1 GEF GFR D87467 2.41 ± 0.17 
E signal 

transduction † 

Stromal Antigen 2 STAG2 Z75331 2.28 ± 0.51 E+L unknown/other † 
Putative Mitochondrial Space 
Protein PSORT AF050198 2.2 ± 0.09 

E 
unknown/other † 

Hypothetical Protein FLJ31564 W27600 2.2 ± 0.38 E+L unknown/other † 
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Figure 2.1.  Characterization of U2OS human osteosarcoma cells stably expressing 

ERα or ERβ.  

(A) Estrogen receptor mRNA copy number/10 ng total RNA as assessed by real-time 

PCR in ERα clones 1-4 and in ERβ clones 1-4.  (B) E2 binding sites/mg protein 

evaluated by E2 binding assay in parental U2OS and U2OS-ER cell lines (ERα clone 1 
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Figure 2.1. (Cont.) 

and ERβ clone 1) in comparison with the MCF-7 breast cancer cell line. The mean of 

closely corresponding duplicate determinations is shown.  (C) Western blot for ERα and 

ERβ protein in different clones of stably transfected U2OS cells.  (D) Motility (Boyden 

chamber assay) of cells (ERα clone 1 and ERβ clone 1) was assayed with 5% FBS as a 

general chemoattractive factor. E2 treatment was for 48 h. Similar findings were obtained 

with 3 other ERα and ERβ clones. E) Adhesion assay was performed in 96-well plates 

coated with various substrates. Shown is 30 min adhesion on collagen type I measured as 

absorbance at 570 nm. E2 treatment was for 48 h. No effect of E2 on cell adhesion was 

also seen in repeat experiments with 3 other ERα and ERβ clones. *p<0.01 for E2-treated 

cells vs. cells treated with control vehicle. 
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Figure 2.2.  Cluster analysis of E2-regulated genes in U2OS-ERα or -ERβ 

containing cells.  

After applying normalization and confidence score analyses, all the E2-regulated genes in 

U2OS-ER containing cells (ERα clone 1 and ERβ clone 1) were clustered using a 

standard correlation algorithm (GeneSpring software). Up-regulated genes are shown in 

red, down-regulated genes in blue and non-changing genes in yellow. The color scale 

corresponding to fold change in gene expression is shown at the left. The different time 

points of the E2 (10nM) time-course treatment are indicated at the right. The gene 

expression values shown are the average fold change of independent samples, each run 

on a separate microarray chip, for each time point.  
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Figure 2.3.  Time-course patterns of E2-stimulated genes in U2OS-ERα and U2OS-

ERβ cells as identified from microarray analysis. 

All E2 up-regulated genes were assigned to one of three categories. For “Early only” 

regulated genes (dotted broken line with diamonds), the fold change was 2-fold or greater 

at 4 and/or 8 h only. For “Early and Late” regulated genes (dashed line with triangles), 

the fold change was 2-fold or greater at 4 and/or 8 h and at 24 and/or 48 h. And for “Late 

only” regulated genes (solid line with squares), the fold change was 2-fold or greater at 

24 and/or 48 h only. Once genes were assigned to one of the three time-course patterns, 

the mean fold-change ± SEM was calculated and plotted for all genes in that pattern. On 

some points, error bars are too small to be visible.  

51



 
 

 

 

 

Figure 2.4.  Functional classification of E2-stimulated genes. 

E2 up-regulated genes were classified as ER-subtype selective when the fold change from 

the microarray data for one receptor was 2.0-fold or greater whereas for the other 

receptor it was less than 1.3-fold at all time points. All the genes identified were then 

categorized in functional groups according to their main known function based on 

LocusLink, OMIM, PubMed, GeneCards and GenMAPP databases.  

52



 
 

 

 

 

Figure 2.5.  Real-Time PCR validation of genes regulated commonly by both ERα 

and ERβ.  

Estradiol (10nM) time-course and ICI 182,870 (1µM) treatments were performed in three 

independent experiments to confirm DNA microarray data and assess the estrogen 

receptor-dependent mechanism of the gene regulation through reversal by a 100-fold 

excess of the antiestrogen (ICI+E2). Values are mean fold change + SEM. *indicates 

p<0.05 for gene stimulation by E2 vs. vehicle control.  
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Figure 2.6.  Real-Time PCR validation of genes regulated selectively through ERβ. 

Estradiol (10nM) time-course and ICI 182,870 (1µM) treatments were performed in three 

independent experiments to confirm DNA microarray data and assess the estrogen 

receptor-dependent mechanism of the gene regulation through reversal by a 100-fold 

excess of the antiestrogen (ICI+E2). Values are mean fold change + SEM. *indicates 

p<0.05 and † indicates p=0.06 for gene stimulation in ERβ- vs. ERα-containing cells.  
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Figure 2.7.  Real-Time PCR analysis of gene regulation by estradiol, the ERα-

selective ligand PPT, the ERβ-selective ligand DPN, and Genistein. 

Estradiol (10nM), PPT (100nM), DPN (100nM), and Genistein (1µM) treatments were 

performed for 48 h in three separate experiments to examine the ability of ER-subtype 

selective ligands to regulate gene expression in cells containing either ERα or ERβ. 

Values are mean fold change + SEM. *indicates p<0.05 and † indicates p=0.07 for gene 

stimulation in ERβ- vs. ERα-containing cells.   
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CHAPTER 3 

ESTROGEN RECEPTOR REGULATION OF CARBONIC ANHYDRASE XII 

THROUGH A DISTAL ENHANCER IN BREAST CANCER1 

 

Abstract 

The expression of carbonic anhydrase XII (CA12), a gene that encodes a zinc-

metalloenzyme responsible for acidification of the microenvironment of cancer cells, is 

highly correlated with estrogen receptor α (ERα) in human breast tumors. Here, we show 

that CA12 is robustly regulated by estrogen via ERα in breast cancer cells, and that this 

regulation involves a distal estrogen-responsive enhancer region.  Upon addition of 

estradiol, ERα binds directly to this distal enhancer in vivo, resulting in the recruitment of 

RNA polymerase II and steroid receptor coactivators SRC-2 and SRC-3, and changes in 

histone acetylation.  Mutagenesis of an imperfect estrogen-responsive element within this 

enhancer region abolishes estrogen-dependent activity, and chromosome conformation 

capture (3C) and chromatin immunoprecipitation assays demonstrate that this distal 

enhancer communicates with the transcriptional start site of the CA12 gene via intra-

chromosomal looping upon hormone treatment. This distal enhancer element is observed 

in the homologous mouse genomic sequence, and the expression of the mouse homolog, 

Car12, is rapidly and robustly stimulated by estradiol in the mouse uterus in vivo, 

suggesting that the ER regulation of CA12 is mechanistically and evolutionarily 

conserved. Our findings highlight the crucial role of ER in regulation of the CA12 gene, 

                                                 
1 This work was originally published in Cancer Research 68(9):3505-3515, doi:10.1158/0008-5472.CAN-
07-6151 

63



and provide insight into the transcriptional regulatory mechanism that accounts for the 

strong association of CA12 and ER in human breast cancers.  

 

Introduction 

 Estrogen receptor alpha (ERα), a hormone-regulated transcription factor and 

member of the superfamily of nuclear receptors (1, 2), is expressed in approximately 70 

percent of breast cancers (3).  As the major regulator of the phenotypic properties of these 

breast cancers, ERα markedly influences the pattern of breast cancer gene expression and, 

perhaps more than any other protein, it defines the distinctly different gene signatures of 

ER-positive and ER-negative breast cancers (4-7).   In our recent breast cancer gene 

expression profiling studies, we observed the carbonic anhydrase XII gene (CA12) to be 

robustly stimulated by estradiol (E2) in several ER-containing breast cancer cells (8, 9). 

Further, from our examination of transcriptional profiling data sets in ER-positive and 

ER-negative breast tumors, we found CA12 to show one of the most highly significant 

positive correlations with ER expression (10-12).  

Carbonic anhydrase XII is a transmembrane, extracellular enzyme and member of 

the family of zinc-metalloenzymes that catalyze the reversible hydration of CO2 to form 

bicarbonate (H2O + CO2  H+ +HCO3
-), thereby regulating the microenvironment 

acidity and tumor malignant phenotype (13-16).  CA12 was originally identified as a 

protein overexpressed in renal cancer cells (13), but is now known to be also 

overexpressed in some other cancers, including breast cancer (17, 18).  While both CA12 

and the closely related tumor-associated carbonic anhydrase IX (CA9) are thought to be 

regulated by hypoxia, only CA12, and not CA9, exhibits a strong positive correlation 
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with ER expression in breast tumors (4, 19) suggesting that CA12 might be under ER 

regulation. CA12 expression in breast tumors is associated with positive ERα status, 

lower grade disease, lower relapse rates, and better overall patient survival (20-22). 

To understand the mechanistic basis underlying this strong association between 

ER positivity and CA12 expression, we have in the work reported here, explored the 

regulation of CA12 by the ER. Our results document that the CA12 gene is under primary 

transcriptional up-regulation by the estrogen-occupied ER and that this regulation in 

breast cancer cells is mediated by ER action through a distal enhancer that we newly 

characterize. Upon estrogen stimulation, this enhancer binds ERα through an imperfect 

estrogen response element and recruits p160 coactivators.  Furthermore, by chromosomal 

looping this ER-dependent enhancer communicates with the promoter of the CA12 gene, 

markedly enhancing transcription of the CA12 gene.  Our findings define a mechanistic 

basis for the robust coexpression of CA12 and ER in breast cancer.    

 
 
Materials and Methods 

Cell Culture and Experimental Treatments 

 MCF-7 cells were maintained in Minimal Essential Medium (MEM) (Sigma 

Chemical Co., St Louis, MO) supplemented with 5% calf serum (HyClone, Logan, UT), 

100 µg/ml penicillin/streptomycin (Invitrogen, Carlsbad, CA), and 25 µg/ml gentamicin 

(Invitrogen).  T47D cells were routinely maintained in MEM and antibiotics 

supplemented with 5% fetal bovine serum (Atlanta Biologicals, Atlanta, GA) and bovine 

insulin (6 ng/ml; Sigma, St. Louis, MO).  All cells were grown in phenol red-free MEM 
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supplemented with 5% charcoal-dextran-treated serum for at least five days prior to use 

in experiments.  

Animal Care and Treatments 

 Eight week old ovariectomized C57BL/6 mice were obtained from Harlan Co. 

(Indianapolis, IN) and housed under controlled conditions of light and temperature with 

free access to standard chow and water. All experiments were conducted in accordance 

with the principles and procedures of the NIH Guide for the Care and Use of Laboratory 

Animals and were approved by the University of Illinois Institutional Animal Care and 

Use Committee. At 16 days after ovariectomy, mice were injected sc with E2 (0.5 

µg/animal) dissolved in DMSO then diluted 1:10 in corn oil or with control vehicle 

DMSO:corn oil alone.  At 4 or 24 h after hormone or vehicle injection, uteri were 

removed, weighed after removal of associated fat, and snap-frozen in liquid nitrogen for 

RNA isolation. 

RNA Isolation, Reverse Transcription, and Real-Time PCR 

Cell and whole uterine total RNA was prepared using TRIzol reagent (Invitrogen) 

according to the manufacturer’s recommendations.  RNA samples were reverse 

transcribed in a total volume of 20 µl using 200 units of reverse transcriptase, 50 pmol 

random hexamer, and 1 mM deoxynucleotide triphosphates (New England Biolabs, 

Beverly, MA). The resulting cDNA was then diluted to a volume of 500 µl nuclease-free 

water.  Real-time PCR was performed on an ABI Prism 7900HT instrument using SYBR 

Green PCR Master Mix (Applied Biosystems, Foster City, CA) according to the 

manufacturer’s recommendations. Briefly, each PCR contained: 1x master mix, 4 µl of 

the diluted cDNA reaction, and 50 nM forward and reverse primers designed to yield 80- 
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to 125-bp amplicons. PCR was carried out through 40 cycles (95°C for 15 sec, 60°C for 1 

min) following an initial 10 min incubation at 95°C. Relative expression levels were 

calculated as described previously, using acidic ribosomal protein 36B4 mRNA as an 

internal control (9).  Real-time PCR of ChIP samples was performed in a similar manner, 

with appropriate primers. 

Small Interfering RNA Studies 

siRNA duplexes targeting ERα (forward, UCAUCGCAUUCCUUGCAAAdTdT; 

reverse,  UUUGCAAGGAAUGCGAUGAdTdT, and control (GL3 luciferase, #D-

001400-01) were obtained from Dharmacon (Lafayette, CO) and transfected into cells at 

a final concentration of 20 nM using DharmaFECT transfection reagent as per the 

manufacturer’s recommendations at 72 h prior to ligand treatment.  

Immunoblotting 

Whole cell lysates of MCF-7 cells were prepared using 1x Cell Lysis Buffer (Cell 

Signaling Technology, Beverly, MA) in the presence of Complete Mini protease inhibitor 

cocktail (Roche Applied Science, Indianapolis, IN). Protein concentration of whole cell 

lysates was determined by BCA Protein Assay (Pierce, Rockford, IL). Proteins (20 μg) 

were boiled in 2x Laemlli buffer and separated by electrophoresis using 10% 

polyacrylamide gels containing sodium dodecyl sulfate (SDS-PAGE) at 150 volts for 50 

min and were then transferred to a nitrocellulose membrane (Pall Corp., Pensacola, FL), 

using the wet transfer method, at 100 volts for 90 min. Membranes were blocked with 5% 

milk in TBS. Rabbit-anti-human CA12 primary antibody (13) was incubated with 

blocked membrane overnight at 4°C. The blot was then washed with TBS containing 

0.1% Tween-20 prior to incubation with HRP-conjugated secondary antibody (Zymed 
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Antibodies, South San Francisco, CA). The blot was incubated with Super Signal West 

Femto ECL reagents (Pierce, Rockford, IL) and exposed to film in order to observe 

protein bands.  

Genomic Cloning, Mutagenesis, and Luciferase Reporter Assays 

The indicated genomic DNA associated with estrogen receptor binding and 

intervening regions was amplified by PCR from human genomic DNA (Roche Molecular 

Biochemicals, Indianapolis, IN) using specific primers and cloned into either pGL3-

Promoter or pGL3-Basic luciferase vectors (Promega, Madison, WI) using the MluI and 

BglII sites.  Site-directed mutagenesis was performed using QuikChange II kit 

(Stratagene, LaJolla, CA) as per manufacturer’s directions.  All constructs were 

sequenced to verify their correctness.  Briefly, 1000 ng pGL3 reporter vector and 25 ng 

pRL-SV40 were co-transfected into MCF-7 cells in 24-well plates using Lipofectamine 

2000 in OptiMEM as per manufacturer’s instructions (Invitrogen, Carlsbad, CA).   Cells 

were transfected for 6 h, washed, and treated with indicated ligands for 16 h prior to cell 

lysis in 1x passive lysis buffer (Promega, Madison, WI) and measurement of luciferase 

activity in MLX Microtiter Plate Luminometer (Dynex Technologies, Chantilly, VA).   

Chromatin Immunoprecipitation (ChIP) Assays 

 Whole-genome ERα binding sites were mapped in MCF-7 cells treated with 10 

nM E2 for 45 min using a chromatin immunopreciptation-Paired End diTag (ChIP-PET) 

cloning and sequencing strategy described previously (23), from which data was obtained 

on ERα binding sites near the CA12 gene. Standard ChIP assays were performed 

essentially as previously described (24, 25) with a few noted modifications.  Following 

the addition of ethanol vehicle or ligands for indicated times, MCF-7 cells were 
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crosslinked using 1% formaldehyde at 37°C for 10 min, washed twice with PBS, and 

harvested in ice-cold PBS plus 1x protease inhibitor cocktail (Roche) and 10 mM DTT. 

Cell pellets were first resuspended in nuclei isolation buffer (50 mM Tris-HCl, pH 8.0. 60 

mM KCl, 0.5% NP40, protease inhibitor and 10 mM DTT), centrifuged at 1000 g for 3 

min, and resuspended in lysis buffer (0.5% SDS, 10 mM EDTA, 0.5 mM EGTA, 50 mM 

Tris-HCl, pH 8.0, protease inhibitor and 10 mM DTT).  Nuclei were sonicated (Fisher 

Scientific, Sonic Dismembrator Model 100) at 80% maximum power three times for 10 

seconds and the sonicate was centrifuged at 14,000 g. The supernatant was 1:4 diluted by 

dilution buffer (1% Triton X-100, 2mM EDTA, 150mM NaCl, 20 mM Tris-HCl, pH 8, 

protease inhibitor and 10 mM DTT ) and precleared with 15 μl preimmune IgG (Santa 

Cruz Inc.), 2 μg salmon sperm DNA, 50 µl 25% protein A-agarose slurry (Santa Cruz 

Inc.). Complexes were incubated at 4°C overnight with 2-5 μg antibody, then pulled 

down at 4°C for 1 h with 60 µl of 25% protein A-agarose slurry and 2 μg salmon sperm 

DNA.   Antibodies used were: for ERα (HC-20, Santa Cruz Biotech), RNA Polymerase 

II (N-20, Santa Cruz Biotech), SRC-2 (M-343, Santa Cruz Biotech), SRC-3 (H-270,  

Santa Cruz Biotech) and acetylated histone H4 (07-329, Upstate Biotech).  Precipitates 

were sequentially washed with 1 ml washing buffer (0.1% SDS, 1% Triton X-100, 2 mM 

EDTA, 20 mM Tris-HCl (pH 8.0), 150 mM NaCl ), 1 ml washing buffer II (0.1% SDS, 

1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl (pH 8.0), 500 mM NaCl), 1 ml 

washing buffer III (0.25 mM LiCl, 1% NP40, 1% sodium deoxycholate, 1 mM EDTA, 10 

mM Tris-HCl (pH 8.0)) and twice with 1 ml TE (1 mM EDTA, 10 mM Tris-HCl [pH 

8.0]). Chromatin complexes were incubated at room temperature for 20 min with 100-300 

µl elution buffer (1% SDS, 0.1 M NaHCO3). The crosslinking was reversed by 
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incubating at 65°C overnight with 200 mM NaCl and 200 mg/ml proteinase K 

(Invitrogen Corp.). DNA was purified with QIAquick columns (Qiagen) and amplified by 

real-time PCR. 

Chromosome Conformation Capture (3C) Assays 

MCF-7 cells were grown as per protocol for ChIP assay above and treated with 

indicated ligands for 45 min prior to fixation in 2% formaldehyde at 37°C for 10 min. 

The formaldehyde was quenched with addition of 0.125 M glycine and cells were lysed 

in lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2% NP-40, 1X Complete 

Protease Inhibitors (Roche) at 4°C for 90 min.   Nuclei were resuspended in 1X New 

England Biolabs Buffer 2, 0.3 % SDS and incubated at 37°C for 60 min while rotating. 

Triton-X was added to a final concentration of 1.8 % to sequester the SDS and incubated 

at 37°C for 60 min while rotating.  The chromatin was then digested overnight using 

MseI (New England Biolabs) or BtgI (New England Biolabs) at 37°C while rotating.  

SDS was added to a final volume of 1.6% and the samples were heated at 65°C for 20 

min.  Two μg aliquots of the chromatin samples were diluted in ligation buffer containing 

1% Triton-X and incubated at 37°C for 1 h.  The temperature was lowered to 16°C and 

T4 Ligase (New England Biolabs) was added and samples were incubated overnight.  

The ligated DNA was purified using phenol/chloroform extraction and analyzed using 

PCR amplification.  Resulting PCR products were sequenced and mapped back to the 

USCS Genome Browser for verification.   
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Results 

CA12 Regulation by Estrogen is a Primary Transcriptional Response Mediated by the 

Estrogen Receptor 

In our prior transcriptional profiling microarray analyses of gene expression 

stimulation by E2 in ER-positive breast cancer and osteosarcoma cells (8, 9, 26), we 

observed a very marked up-regulation of CA12 gene expression by E2. To investigate 

CA12 regulation by estrogen in breast cancer in greater detail, and to elucidate the 

mechanism underlying this regulation, we first examined the time course of CA12 

mRNA and protein increases in response to E2 and SERMs in ERα-positive MCF-7 and 

T47D breast cancer cells.  CA12 RNA was significantly stimulated after 2 h of E2 

exposure and continued to rise to maximal stimulation levels by 4 and 8 h in MCF-7 and 

T47D cells, respectively, and remained greatly elevated throughout the 48 h of treatment 

in both cell lines (Fig. 3.1A).  Increases in CA12 protein levels were detected as early as 

2-4 h, and continued to rise throughout the time course of treatment (Fig. 3.1B), 

consistent with the early and sustained stimulation of CA12 RNA by E2.  The SERMs, 

trans-hydroxy-tamoxifen (Tam) and raloxifene (Ral), induced CA12 RNA 3-4 fold, 

approximately 40% that obtained with E2 (Fig. 3.1C), and in like manner, Tam and Ral 

stimulated CA12 protein to approximately one-third that of E2 (Fig. 3.1D).  The ER full 

antagonist and Selective Estrogen Receptor Down-regulator (SERD), fulvestrant (ICI 

182,780), had no stimulatory effect on CA12 RNA, and it was able to inhibit the E2-, 

Tam-, and Ral-mediated stimulation of CA12 (Fig. 3.1C). Of the other steroid receptor 

ligands examined, only dihydrotestosterone was able to mildly stimulate CA12, possibly 
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through androgen receptor or because of its low affinity for ER (27), whereas the 

glucocorticoid receptor and progesterone receptor agonists, hydrocortisone and 

medroxyprogesterone acetate, respectively, did not regulate CA12 expression (Fig. 3.1C). 

We next examined the requirement of the estrogen receptor itself for E2-mediated 

stimulation of CA12 mRNA.  MCF-7 cells were pre-treated for 60 min with vehicle or a 

two log molar excess of fulvestrant prior to treatment with E2, and CA12 mRNA, and 

protein levels were assessed after 2 or 8 h, respectively (Fig. 3.2A and 3.2B).  Fulvestrant 

did not increase CA12 mRNA or protein, but it was able to fully inhibit the E2-mediated 

up-regulation.  We also examined the requirement of ER in CA12 mRNA stimulation by 

siRNA-mediated depletion of ERα from MCF-7 cells.  MCF-7 cells were transfected 

with siRNA demonstrated to deplete cells of >95% of ERα (data not shown).  Loss of ER 

at 72 h post-transfection reduced the basal CA12 mRNA level, likely due to possible 

ligand-independent ER transactivation activity, and abolished the E2- and SERM-

mediated stimulation of CA12 (Fig. 3.2C).  These results indicate that ER is required for 

and SERM regulation of the CA12 gene. 

In addition to the ER itself, we also determined the requirement of on-going 

transcription and translation for E2 stimulation of CA12.  MCF-7 cells were pre-treated 

for 60 min with the RNA polymerase inhibitor actinomycin D or the translational 

inhibitor cycloheximide for 4 h prior to treatment with E2 (Fig. 3.2A).  The E2-mediated 

stimulation of CA12 mRNA (or Tam- or Ral-mediated increase in CA12 mRNA, not 

shown) was inhibited by actinomycin D, but not cycloheximide, suggesting that on-going 

transcription, but not synthesis of new protein factors, is necessary for CA12 mRNA 

72



stimulation by the ER.  Taken together, these results suggest that CA12 regulation by 

estrogen is a primary transcriptional response mediated by the ER. 

 Because of our observations of the requirement for ER for CA12 regulation, we 

examined CA12 expression in primary ER-positive breast tumors by analysis of several 

gene expression data sets from ER-positive breast tumors (Fig. 3.2D). These analyses 

reveal a very positive correlation of CA12 expression with ERα expression in primary 

breast tumors, shown in the scatter plots in Fig. 3.2D. Our findings highlighting the 

crucial role of ER in CA12 up-regulation may account for the robust coexpression of 

CA12 and ERα observed in human breast cancers.  

E2-Bound ER is Recruited to a Distal Region Upstream of the CA12 Transcription Start 

Site In Vivo 

The ER primarily functions as a signal-activated transcriptional transactivator 

through direct binding to DNA response elements or other protein transcription factors 

(24, 28).  To examine the role of ER in regulating CA12 mRNA, we utilized a series of 

chromatin immunoprecipitation (ChIP) experiments to interrogate the recruitment and 

binding of ER to chromatin.  Genome-wide chromatin immunoprecipitation paired-end 

ditag (ChIP-PET) experiments using an antibody against ERα to capture DNA loci bound 

by ER after 45 min of E2 exposure in MCF-7 cells showed a cluster of ER binding DNA 

fragments approximately 6 kilobases upstream from the transcriptional start site of the 

CA12 gene (Fig. 3.3A and 3.3B).   Further examination of this ChIP-PET cluster of 

bound DNA fragments at ~ 6 kb revealed a cluster of five overlapping fragments, and 

two single upstream ChIP-PET DNA fragments considered to be experimental noise (Fig. 

3.3B; (23)).   
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To validate and further examine the extent of ER binding within the CA12 

genomic region, we performed ChIP scanning for ERα in MCF-7 cells treated for 45 min 

with vehicle or 10 nM E2 and amplified recovered ChIP DNA fragments using 100 bp 

primer sets tiled approximately every 500 bp from -6.5 kb to the transcriptional start site 

of the CA12 gene (Fig. 3.3C).  Of note, within this region there are four predicted 

imperfect EREs and multiple response elements for factors to which ERα is known to 

tether (e.g. AP-1), suggesting multiple putative ER binding sites.  ChIP scanning for ERα 

binding revealed robust E2-induced binding at the ~-6 kb binding region previously 

shown to bind ERα through the genome-wide ChIP-PET experiments, and low-level 

binding of ERα at the proximal promoter region, but near-background level binding at 

intervening positions (Fig. 3.3C).  These ChIP assays further define the one robust ERα 

binding region at a distal region approximately 6 kb upstream from CA12.  

E2- and SERM-Induced Transcription Factor Recruitment and Chromatin Modifications 

to CA12 Genomic Regions In Vivo 

To better understand the regulation of the CA12 gene, we further examined the 

recruitment of ER, coactivators, RNAPII, and permissive histone modifications at the 

enhancer, proximal promoter, and additional loci in MCF-7 cells treated with vehicle, 10 

nM E2, or 100 nM trans-hydroxy-tamoxifen.  ChIP experiments coupled with qRT-PCR 

showed specific and robust recruitment of both E2- and Tam-bound ERα at the enhancer 

region after 45 min, with minimal binding to a region upstream of the enhancer or to an 

intermediate position (denoted Middle) at approximately -4 kb (Fig. 3.4).  The binding of 

ER to the enhancer region in E2- or Tam-treated cells remained elevated over vehicle at 4 

and 24 h of exposure.  At the proximal promoter (TSS), the largest subunit of RNA 
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polymerase II was bound to a certain degree in the absence of hormone, but increased 

seven-fold after 45 min of E2, consistent with a well-established role of E2-mediated 

formation of productive transcriptional complexes.  Consistent with the lower potency of 

Tam in stimulation of CA12 gene expression, Tam-treated cells showed less RNAPII 

recruitment at the TSS.  RNAPII was not appreciably recruited to areas upstream of the 

TSS with either E2 or Tam treatments.    

We also examined the recruitment of both of the coregulators SRC-2 and SRC-3 

to the enhancer region in the presence of E2 (Fig. 3.4), and found a large change in 

recruitment of both at 45 min, and also at the 4 h and 24 h times monitored.  In the 

presence of Tam, coactivator recruitment at the enhancer was comparable with that of 

vehicle, suggesting that the Tam-bound ER does not efficiently recruit p160 coregulators, 

as others have observed (29).  To determine the degree of chromatin modifications 

consistent with gene activation, we also examined the level of histone H4 tail acetylation 

(AcH4), considered to be a general marker of acetylated, “relaxed” histones permissive of 

transcriptional regulation.  We observed a marked increase of AcH4 at the enhancer 

region in both E2 and Tam-treated cells (E2 > Tam), which was greatest at 45 min and 

decreased at later times.  This E2- and SERM-mediated increase in AcH4 was noted at 

the TSS and also, interestingly, at the middle and particularly at the upstream regions 

shown not to bind ER.   These are supportive of findings by others showing a high level 

of histone lysine acetylation, consistent with chromatin remodeling, at the active 

enhancer and promoter of stimulated genes (30), as well as more broadly in nearby 

regions. 
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Estrogen Regulation of the Cloned CA12 Enhancer Is Mediated By An Imperfect 

Estrogen-Response Element 

The in vivo recruitment of agonist-bound ERα and coactivator proteins, and 

histone modifications associated with transactivation, suggest that the identified region 

~6 kb upstream of the TSS is an enhancer for the CA12 gene.  Sequence analysis of 

putative transcription factor binding sites revealed one imperfect ERE with a 1 bp 

mismatch at approximately -6047 (relative to TSS; Fig. 3.5A).  To understand the cis 

elements involved in recruiting ERα and facilitating transactivation of CA12, we cloned 

the approximately 6.9 kb fragment of genomic DNA containing the putative upstream 

enhancer spanning a region approximating the captured DNA fragments binding ERα 

(ChIP-PET experiment, Fig. 3.3B) to just upstream of the CA12 TSS (-6832 – +46, 

Chr15:61461083-61467960).   In addition, we also cloned a truncated 1.8 kb fragment 

approximating the overlapping ChIP-PET cluster of ERα binding fragments (-6832 – -

4999), and both full-length (-6832 – +46) and truncated (-6832 – -4999) genomic 

fragments were then subcloned into luciferase reporter vectors to assay putative estrogen 

responsiveness (Fig. 3.5A).   After transfection into MCF-7 cells and exposure to 10 nM 

E2 for 16 h, the full-length reporter was stimulated approximately 8x over vehicle-treated 

transfectants or empty vector (Fig. 3.5B).  In addition, the truncated reporter 

approximating the greatest overlap of ChIP-PET fragments (-6832 – -4999) was able to 

stimulate reporter activity upon treatment with E2 comparable to that of the full-length 

reporter (-6832 – +46; Fig. 3.5B), implying that the E2-responsive region is located in the 

far-upstream genomic region.   
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As noted above, the ER-binding region at ~ -6 kb has one imperfect ERE (Fig. 

3.5A), which seemed a likely putative cis-regulatory element to direct ERα-dependent 

transactivation.  To examine this, we mutated both the single consensus half-ERE (Mut. 

1.0), or both the consensus half-ERE and imperfect arm of the ERE (Mut. 1.1). As seen 

in Fig. 3.5A and 3.5B, mutation of either one or both arms of the ERE abolished the 

ability of E2 to stimulate the -6832 – -4999 reporter, strongly suggesting that ER 

regulation of the cloned CA12 enhancer is dependent on an imperfect (1 mismatch) ERE 

at -6047 relative to the TSS. 

The ER-binding Distal Enhancer Communicates With the Transcriptional Start Site of the 

CA12 Gene via Intra-Chromosomal Looping Upon Estrogen Treatment In Vivo  

The observed in vivo recruitment of E2-bound ER to a putative distal enhancer 

region, and the E2- and ERE-dependent activation of the cloned ER-binding enhancer in 

transiently-transfected MCF-7 cells together suggest that the E2-mediated stimulation of 

CA12 is via an ER-dependent upstream enhancer approximately 6 kb upstream from the 

CA12 gene.  To test the in vivo utilization of this enhancer, we employed chromosome 

conformation capture (3C) assays to examine the putative communication of the -6 kb 

enhancer and the CA12 proximal promoter.  Briefly, after 45 min of 10 nM E2 treatment, 

MCF-7 cells were fixed with formaldehyde and chromatin was isolated, digested with 

Mse I, and subjected to dilute intramolecular ligation before de-crosslinking, DNA 

isolation, and PCR amplification of DNA fragments of interest.  Chromatin regions 

which are in close proximity with each other at the time of fixation were interrogated 

using PCR primers complementary to genomic DNA from the enhancer or proximal 

promoter regions.  Specifically, primers were used in variable combinations to examine 
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the presence of enhancer DNA only, proximal promoter DNA only, or all possible DNA 

species only produced by intramolecular ligation of DNA derived from the respective 

enhancer and promoter regions after fixation and digestion (Fig. 3.6, top).   

As shown in Figure 3.6A (middle), we observed a ligase- and E2-dependent 780 

PCR product amplified using the “A” forward primer from the enhancer region and “F” 

reverse primer from the proximal promoter region of CA12 (Fig. 3.6A and 3.6B).  

Normally separated by approximately 6 kb, the DNA amplified in the resulting PCR 

fragment was purified, sequenced, and mapped via BLAT to the UCSC human genome 

browser, and resulting sequence analysis indicated the E2- and ligase-dependent product 

was derived from both CA12 enhancer and promoter regions (Fig. 3.6A, bottom).  The 

estrogen-enhanced communication of the distal enhancer and proximal promoter in the 

3C assay strongly suggests that this ER-binding enhancer is functionally active in vivo.  

Taken together with the ChIP assays in which we did not observe appreciable in vivo 

recruitment of ERα or RNAPII in the intervening regions between the ER-binding 

enhancer and RNAPII-binding promoter, these 3C data suggest that the ER-binding 

enhancer transactivates the CA12 gene via intrachromosomal looping. 

Conservation of the CA12 Enhancer in Mammalian Genomes and of CA12 Regulation by 

Estrogen Receptor 

Analysis of the upstream region of CA12 by Vertebrate Multiz Alignment reveals 

a high degree of multi-species conservation within the newly-described, ERE-containing 

enhancer region (Fig. 3.6B, left).  Within the enhancer region (Fig. 3.6B), there is only 

one bp mismatch between the human and mouse 15-mer ERE.  To determine whether 

there is estrogen regulation of Car12, the mouse ortholog of the CA12 gene, 
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ovariectomized female mice were treated with E2 or vehicle, and uteri were collected at 4 

or 24 h post-injection (Fig. 3.6B, right).  At both time points examined, Car12 gene 

expression was robustly stimulated by E2.   These results provide strong evidence that the 

ER regulation of CA12 is both mechanistically and evolutionarily conserved.   

 

Discussion  

 Our studies reveal that the ER robustly up-regulates CA12 gene expression in 

breast cancer cells and that this transcriptional regulation is mediated by a hormone-

responsive enhancer located approximately 6.5 kb upstream of the start site of 

transcription of the CA12 gene. This marked regulation of CA12 by the ER may account 

for the strong coexpression of ER and CA12 that is observed in breast tumors.  

 Dynamic signal-specific assembly of transcription factors at enhancers is an 

increasingly recognized aspect of biological control of genes essential for developmental 

and hormonal response programs. Recent studies have suggested that the majority of 

estrogen-responsive genes may be under the control of ER-binding sites at a considerable 

distance (>5 kb) from the target RNA-coding loci (23, 31, 32), but there has been only 

limited evidence that they function as genomic regulatory elements for these relatively 

distant hormone-regulated genes. Here we describe regulation of the Carbonic Anhydrase 

XII (CA12) gene by agonist bound ER through a long-range distal enhancer that we have 

characterized through in vivo ChIP-scanning across  the CA12 genomic region and ChIP-

Paired End Ditag analysis, and by the ability of this element to strongly activate hormone 

dependent expression of a reporter.  This enhancer contains an imperfect estrogen 

response element which we show to be essential for its ER regulation through 
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mutagenesis and transfection studies.  Chromosome conformation capture (3C) and ChIP 

assays demonstrate a physical interaction between this distal enhancer and the CA12 

promoter in breast cancer cells upon E2 treatment, indicating a direct role for the 

enhancer in CA12 expression.   

 Associated with the recruitment of ligand-occupied ER to hormone-dependent 

enhancers is the recruitment of coregulators (2, 33, 34), some with histone acetyl 

transferase activity, resulting in distinct changes in histone acetylation status and 

chromatin conformational changes.  In the case of CA12 gene regulation, we observed 

markedly increased recruitment to the enhancer of the p160 coregulators, SRC2 and 

SRC3 that have HAT activity.  Of note, increased histone H4 acetylation status was 

observed not only at the enhancer and promoter regions, but also broadly throughout the 

upstream 5’-flanking region from the promoter to the enhancer and even at a more 

upstream region, suggesting that chromatin changes are effected over a broad region after 

receptor occupancy by ligand.  As expected, RNA polymerase recruitment was only 

observed at the promoter.   

 Selective estrogen receptor modulators (SERMs) such as tamoxifen and 

raloxifene, shown to be effective in both the prevention and the treatment of breast cancer 

(35, 36) often have mixed agonist-antagonist activities on estrogen-regulated genes in 

breast cancer (26, 37, 38).  Tamoxifen was a weak stimulator of CA12 RNA and protein 

expression compared to E2.  In keeping with this, tamoxifen was less effective in 

increasing recruitment of ER to the enhancer, in recruiting RNA polymerase II to the 

CA12 promoter, and in augmenting the acetylation of histone H4.  As observed 

previously for estrogen-regulated gene expression by SERMs (29), tamoxifen did not 
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recruit the SRC coregulators, suggesting that other coregulators are likely involved in 

eliciting the weak agonistic activity of tamoxifen on this gene.   

 Interestingly, the distal enhancer element displays synteny with the homologous 

mouse genomic sequence, and its robust stimulation by E2 in the mouse uterus highlights 

that ER regulation of CA12 is mechanistically and evolutionarily conserved.  Other 

approaches, including bioinformatic coupled with genome-wide nuclear receptor binding 

site analyses, have suggested the likely conservation of gene regulatory mechanisms at 

other estrogen responsive genes across mammalian species (23, 32). 

 Gene regulation by long distance enhancers has been observed recently for other 

nuclear receptors, such as the androgen receptor in its control of the prostate-specific 

antigen (PSA) gene (39).  Also, recent reports have documented long distance enhancer 

regulation of GREB1 (gene regulated in breast cancer- 1), encoding a protein with an 

unknown function but suggested to contribute to the enhancement of proliferation of 

MCF-7 cells by E2 (40, 41).  In the case of GREB1, its stimulation by E2 is mediated by 

the binding of ER to three consensus EREs spread over approximately 20 kb of upstream 

flanking sequences (41, 42).   

 CA12 is a membrane zinc metalloenzyme that is present in a variety of normal 

tissues but is overexpressed in some cancers (13, 20, 21, 43-47).  In MCF-7 cells, we find 

that CA12 and CA9 are the only carbonic anhydrases that are expressed (DH Barnett and 

BS Katzenellenbogen, data not shown).  CA12 and CA9 mRNA and protein levels are 

stimulated by hypoxia in a variety of cancer cell lines, and their expression is down-

regulated by return to normoxia (13, 17, 47, 48).  Of note, however, we find that only 

CA12, and not CA9, is regulated by estrogen, and likewise, only CA12, and not CA9, 
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exhibits a strong positive correlation with ER expression in breast tumors (4, 19).  The 

activity of CA12 as a metalloenzyme, catalyzing the reversible hydration of carbon 

dioxide to form bicarbonate, is likely involved in modulating a variety of physiological 

processes including transport of carbon dioxide and other solutes, as well as acidification 

of microenvironments that can modulate the tumor malignant phenotype (16, 49, 50).  

That CA12 expression in breast tumors is associated with lower grade disease, positive 

ERα status, and lower relapse rates and better overall patient survival (20-22), suggests 

that the estrogen receptor regulation of CA12 expression may be an important parameter 

in this more optimal breast tumor phenotype. 

 Gene expression microarray profiling has documented that ERα is a master 

transcriptional regulator of the phenotype and behavior of approximately 70 percent of 

human breast cancers, and that the gene expression signatures in ERα-positive and ERα-

negative breast tumors are profoundly different (5-7, 19). CA12 is one of the genes 

whose expression is most highly correlated with ERα in breast cancer.  In fact, for 

comparison with the correlations shown in Fig. 3.2D for CA12 and ERα, we examined 

the association of ERα with progesterone receptor, a well-characterized ER target gene 

and useful clinical marker, in the same three studies of primary breast cancer gene 

expression.  Interestingly, the correlation of progesterone receptor with ER in the studies 

by van de Vijer (0.296), Miller (0.287), and Wang (0.374) is considerably less than the 

correlation of CA12 with ER in the same data sets (Fig. 3.2D), highlighting the robust 

association of CA12 and ER expression.  Our findings reveal a transcriptional regulatory 

mechanism that likely underlies this robust coexpression of CA12 and ERα in human 

breast cancers. In addition, our findings imply that involvement of long distance 
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enhancers in regulation of estrogen-responsive genes in breast cancer may be more 

frequent than previously appreciated.  
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Figures 

 

 

 

Figure 3.1.  Various Estrogen Receptor Ligands Increase CA12 Levels in Breast 

Cancer Cells 

(A) CA12 mRNA is induced in a time-dependent manner by estradiol (E2) in ERα 

-expressing MCF-7 and T47D breast cancer cells. Cells were treated with 10nM E2 for 0-

48 h.  RNA was isolated, reverse transcribed, and cDNA measured by quantitative PCR 

(qPCR) using primers for CA12 and internal control 36B4 mRNA.  (B) CA12 protein 

levels are induced by E2 in a time dependent manner.  MCF-7 cells were treated with 10 

nM E2 for 0-24 h and total cellular lysates were used for CA12 immunoblotting.  (C) 

CA12 mRNA is induced by ER agonists.  MCF-7 cells were treated for 8 h with vehicle 

(0.1% EtOH) or with intracellular receptor ligands E2 (10 nM), fulvestrant (ICI 182,780, 

Ful; 1 uM),  Ful + E2, trans-hydroxytamoxifen (Tam; 100 nM), Ful + Tam, raloxifene  
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Figure 3.1. (Cont.) 

(Ral; 100 nM), Ful + Ral, dihydrotestosterone (DHT; 10nM), hydrocortisone (HC, 10 

nM), or medroxyprogesterone acetate (MPA; 10 nM).  Cells were then harvested and  

qRT-PCR performed as above.  (D) E2 and the SERMs induce CA12.  MCF-7 cells were 

treated for 8 h with 10nM E2, 100 nM Tam, or 100 nM Ral and CA12 protein levels 

assessed by immunoblotting as above.    
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Figure 3.2.  E2 Stimulation of CA12 Gene Expression is Sensitive to Actinomycin D 

and Fulvestrant (ICI 182,780), but not Cycloheximide, and requires ERα. Strong 

Association of CA12 and ERα in breast tumor data sets.  

(A) CA12 mRNA induction by E2 is blocked by pre-treatment with the transcriptional 

inhibitor actinomycin D, or the pure ER antagonist fulvestrant, but not the translational 

inhibitor cycloheximide.  MCF-7 cells were pre-treated for 60 min. with 0.1% DMSO,  
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Figure 3.2. (Cont.) 

1 uM Ful, 10 ug/mL cycloheximide (CHX), or 5 uM Actinomycin D (Act.D) and then 

0.1% EtOH or 10 nM E2 was added for 2 h.  qRT-PCR for CA12 mRNA was performed.  

(B) ER antagonist Fulvestrant blocks E2 stimulation of CA12.  MCF-7 cells were treated 

for 8 h with 0.1% EtOH, 10 nM E2, 1 uM Ful, or both E2 and Ful prior to cell lysis and 

immunoblotting for CA12.  (C) CA12 mRNA induction is ER-dependent.  MCF-7 cells 

were transfected with 5 nM siControl or 5 nM siRNA against ERα for 72 h.  Cells were 

then treated for 4 h with 0.1% EtOH, 10 nM E2, 100 nM Tam, or 100 nM Ral prior to 

RNA isolation and qRT-PCR analysis.  (D) Scatter plots and correlation between CA12 

and ERα RNA expression in breast tumors from the indicated studies. The plots were 

generated from the Oncomine Database. The x and y axes represent fold change in 

expression for CA12 and ERα (ESR1), respectively.  
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Figure 3.3.  E2-Occupied ER is Recruited to a Distal Region 6.5 kb Upstream of the 

CA12 Transcription Start Site In Vivo.  

(A) Whole-genome ERα binding sites were mapped in MCF-7 cells treated with 10 nM 

E2 for 45 min using ChIP-PET strategy (23) and mapped to the CA12 genomic region in 

the UCSC Genome Browser (Hg17).  A singular ChIP-PET cluster approximately 6 kb 5’ 

to CA12 transcriptional start site (top) is shown, with a higher resolution map with 

individual fragments indicated (bottom).  (B)  and (C)  ChIP scanning of the CA12  
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Figure 3.3. (Cont.) 

genomic region in vivo validates ChIP-PET identification of putative CA12 enhancer.  

(B)  A schematic representation of Chromosome 15 and primer set locations (A-L) 

immediately 5’ to the CA12 transcriptional start site.  (C)  E2-occupied ERα is recruited 

to an upstream region ca. 6 kb 5’ to the CA12 gene.  MCF-7 cells were treated for 45 min 

with control 0.1% EtOH or 10 nM E2, subjected to ERα ChIP, and immunoprecipitated 

DNA amplified using PCR primers as denoted in (B) and recovered DNA represented as 

percent of input.  
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Figure 3.4.   
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Figure 3.4. (Cont.) 

E2- and SERM-Induced Transcription Factor Recruitment and Chromatin 

Modifications to the CA12 Genomic Region In Vivo 

E2- and Tam-treated MCF-7 cells were examined for recruitment of ERα, RNA 

Polymerase II, SRC-2, and SRC-3 binding and acetylated H4 modifications within the 

CA12 genomic region using various primer sets at denoted positions (Top, schematic).  

Immunoprecipitated DNA, expressed as % input, from experiments using specific 

indicated antibodies (left) and amplified using primer sets as denoted above.  
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Figure 3.5.  Estrogen Regulation of the Cloned CA12 Enhancer Is Mediated By An 

Imperfect Estrogen-Response Element  

 (A)  A schematic representation indicates genomic regions identified as binding ERα by 

ChIP scanning and ChIP-PET analysis (ChIP-PET moPET5) and cloned genomic regions 

used for cis-element reporter assays.  Indicated at the open triangle position is the wild 

type imperfect ERE with sequence shown above (above, left), as well as mutated 

sequences used (above, right;  mutated nucleotides underlined and bases differing from 

wild type in lower case).   
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Figure 3.5. (Cont.) 

(B)  Cloned CA12 enhancer reporter activity is dependent on an imperfect ERE.  

Indicated full length, truncated, mutated, and empty reporter plasmids (left, 1 μg ea.) 

were cotransfected with pRL-SV40 (25 ng) into MCF-7 cells in 24-well plates.  At 24 h 

after transfection, cells were treated for 16 h with 0.1% EtOH or 10 nM E2, lysed, and 

assayed for Firefly and Renilla luciferase activities (right).    Open triangle indicates wild 

type imperfect ERE ca. 6 kb upstream of CA12 TSS, grey triangle indicates mutant 1.0, 

and black triangle indicates mutant 1.1. 
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Figure 3.6.   
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Figure 3.6. (Cont.) 

ER-binding Distal Enhancer Communicates With the Transcriptional Start Site of 

the CA12 Gene via Intra-chromosomal Looping Upon Estrogen Treatment In Vivo, 

and Enhancer Shows Conservation Between Humans and Mice.   (A)  Top, 

Schematic of the CA12 genomic region, Mse I restriction enzyme cut sites, and primer 

positions for chromosome conformation capture (3C).  Middle, CA12 enhancer and 

promoter show enhanced communication upon E2 treatment in MCF-7 cells in vivo.  

Cells were treated for 45 min with 0.1% EtOH or 10 nM E2, cross-linked, and subjected 

to 3C analysis using indicated primer pairs.  Bottom, E2- and ligase-dependent 3C PCR 

product was purified, sequenced, and mapped to the human genome by UCSC BLAT 

indicating proximal and distal DNA communication.  (B) Vertebrate Multiz Alignment 

shows conservation of the -6 kb CA12 ERE-containing enhancer region.  (C)  Car12 

mRNA is induced by E2 in the mouse uterus.  Eight week-old female mice were 

ovariectomized and at 16 days post-ovariectomy, they were injected with vehicle or E2.  

Uteri were collected 4 or 24 h later and total RNA was isolated and subjected to qRT-

PCR for Car12 mRNA. 
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Named to “Teachers Ranked as Excellent" for University of Illinois College of Medicine (2008) 
Carle Foundation / University of Illinois at Urbana-Champaign Thomas A. Buetow Memorial Grant (2007) 
The Endocrine Society Fellows and Students Workshop Award (2007) 
NIH Reproductive Biology Pre-Doctoral Training Fellowship (T32HD07028, 2004-2006) 
The Endocrine Society Travel Grant Award for Exceptional Research (2004) 
University of Illinois at Urbana-Champaign Graduate College Travel Grant (2004) 
NIH Reproductive Biology Training Grant Travel Award (2003) 
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PROFESSIONAL and COMMUNITY SERVICE 

  
Member, Psychiatry Clerkship Curriculum Review Committee                 2009  

University of Illinois College of Medicine, Urbana-Champaign 
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Chairperson, American Cancer Society Man-to-Man Prostate Cancer Support Group          2008 – Present 
Institutional Representative, American Physician Scientists Association           2007 – 2009 
Student Member, HeRMES Student-Operated Free Clinic, Champaign-Urbana, IL      2007 – Present 
Chair (2005) and Vice-Chair (2006 – Present), Physicians for Social Responsibility      2005 – Present 
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