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Abstract 

 

Complex chemical and biological microsystems have the potential to significantly impact 

point-of-care diagnostics, portable detection systems, and automated, high-throughput chemical 

processing.  The implementation of these systems, however, requires the development of a 

microvalve that can effectively control connectivity between microfluidic components.  Ideally, 

the valve should be fabricated with simple techniques at low temperature and ambient pressure to 

facilitate wide dissemination of the technology and also assure effective manufacturability.  In 

addition, the valve should be easily integrated with controls in a portable format. 

In this work, I report the development of an electrostatic microvalve that is fabricated 

with simple, soft-lithographic techniques.  An analytical model was developed to guide the 

fabrication process of the microvalves and also optimize the electrical potentials needed to 

actuate the microvalves.  Several methods were investigated for conferring conductivity to 

elastomeric membranes, including the patterning of nanoparticle/elastomer composites, the 

airbrushing of conducting nanoparticle suspensions, and the microtransfer printing of 

nanoparticle films formed by vacuum filtration.  The latter was used to integrate the conducting 

membranes into a fabrication process for microvalves, which included the incorporation of 

membrane support structures.  The fabrication process was optimized by exploring the design 

space identified by the model, and the optimization yielded microvalves that actuated with 

electrical potentials as low as 5 V.  The potentials required to operate the valve are low enough 

that the valve can be directly controlled by electrical integrated circuit chips.  Finally, I report the 

pressures that the microvalves can effectively isolate and the actuation of the microvalves in 

different liquid media, including fluorinated oils and water. 
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Chapter 1: Introduction 

 

1.1 Integrated Microchemical Systems 

In recent years, chemistry in miniaturized systems has been a topic of intense 

research because of several well-known advantages on the microscale, including 

enhanced heat and mass transfer (due to steep temperature and concentration gradients 

and small length scales), increased surface to volume ratio, and the existence of 

interesting phenomena unique to the microscale (e.g. electro-osmotic flow, which 

requires surface forces to dominate the normally prevalent inertial forces at the 

macroscale).  A number of microfluidic components have reached a high level of 

maturity, including mixers [1], separation units [2-4], pumps [5], reactors [6-9], heat 

exchangers [10], and  sensors [7, 11, 12].  However, the full potential of microfluidics 

lies in the ability to integrate these components into complete systems capable of 

performing complex chemical operations – essentially creating a “lab-on-a-chip”.  These 

integrated microchemical systems will demonstrate drastic improvements over their 

macroscale equivalents in terms of portability, automation, and parallel processing. 

Already, a number of impressive examples of integrated microchemical systems 

have been reported in literature, including chips designed to isolate and sequence DNA 

[13], screen for gene expression [14], perform multistep synthesis of a radioimaging 

probe [15], and screen for protein crystallization conditions [16-18].  All of these systems 

rely on means of directing the flow of chemical reagents from one microfluidic 

component to another.  While many of these applications require merely a continuous 

flow where solutions flow serially from one micro- unit operation to the next, clearly 
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there are many that require more complex connectivity.  The one microfluidic component 

that has made these more complex systems possible is the microvalve.   

 

1.2 Microvalves for Integrated Microchemical Systems 

There are several criteria that should ideally be met in a microvalve designed for 

integration into a microchemical system.  Firstly, the valve should be simple to fabricate.  

For this simple fabrication to be realized, the valve should be monolithic with the rest of 

the device.  The greater the number of components that require different materials, the 

higher the number of serial steps required to fabricate the system.  On the other hand, if 

the valve is composed of the same materials as the rest of device, the valve could be 

fabricated in-parallel with the other components.  In order for the valve to be easily 

manufactured, the fabrication should be performed at low temperatures, ambient 

pressures, and with non-specialized equipment (i.e. if possible, without the use of a clean 

room, high vacuum deposition tools, or high temperature annealing ovens).   Secondly, 

the valve should have a small footprint, allowing a high density of valves.  Thirdly, for 

most applications the valve should actuate rapidly.  For a number of applications, rapid 

actuation may not be necessary or even desirable, but generally the most versatile valves 

actuate quickly.  Lastly, the valve needs to be amenable to effective controls.  The 

controls must also be small and portable along with the rest of the device, and should 

interface conveniently with the valves.  For portable applications, the controls should 

consume little power to accommodate a portable power supply.   

There are numerous examples of microvalves that have been developed for 

microfluidic applications.  Among them are microvalves that are actuated with magnetic 
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forces, thermal expansion, volume-changing hydrogels, and electrostatics, which have all 

been thoroughly reviewed by Oh and Ahn [19].  Unfortunately, most of the microvalve 

examples do not meet all the criteria for valve integration mentioned previously.  Most 

commonly, the valves require intensive fabrication processes, or the valves are not 

compatible with a wide range of chemical environments (e.g. volume changing hydrogels 

which are sensitive to pH).   

One of the most widely implemented microvalves in integrated microchemical 

systems is a pneumatic microvalve fabricated entirely from polydimethylsiloxane 

(PDMS) using soft-lithographic techniques – specifically replica molding (Figure 1.1a) 

[20].  The fabrication is straightforward and meets most of the criteria for valve 

integration mentioned previously.  Firstly, two molds are made from silicon and 

photoresist using standard photolithographic techniques.  These molds may then be used 

numerous times thereafter.  One of the molds is fabricated with a positive resist, which is 

then heated and allowed to reflow, forming rounded channels.  The second mold is 

fabricated with a negative resist.  A thin layer of PDMS (deficient in cross-linker) is spin-

coated over the mold with rounded channels, while a thick layer of PDMS (excess cross-

linker) is poured over the mold with rectangular channels.  After curing, the thick layer is 

aligned over the thin layer, and the point of overlap between the upper channel and lower 

channel defines a valve with a thin membrane separating the two channels (Figure 1.1b).  

The layers seal together due to the mismatch in the amounts of cross-linker between the 

two PDMS layers.  When a pressure is applied to the channel on the top, the membrane 

presses down into the channel below, constricting the flow (Figure 1.1c).  While there are 

few examples in the literature of valve fabrication procedures that are as easy, the 
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pneumatic valves do suffer from one significant drawback, which is the bulkiness of the 

controls.  The valves require a pressurized gas source and an external array of solenoid 

valves.  Also, the interface between the external controls and microfluidic chip is 

complicated.    

Several attempts have been made to simplify the controls of the pneumatic valves 

by switching to electrostatic actuation principles.  Conceptually, the electrostatic valve is 

the same as the pneumatic microvalve, but it contains an electrode embedded in the 

deflecting membrane and another electrode patterned on the bottom of the microfluidic 

channel.   The membrane is shut by applying an electric field rather than using pneumatic 

pressure.  The idea has been difficult to implement however.  Quake et al. attempted to 

pattern an electrode on a sheet of thermoplastic (polyimide), and set the electrode on top 

of the PDMS membrane used for deflection [21].  They only achieved actuation after 

applying more than a kilovolt of potential, however.  Maharbiz et al. fabricated 

electrostatic microvalves with a UV-curable form of PDMS and incorporated gold 

electrodes into the deflecting membrane [22, 23].  They were able to actuate their valves 

by applying potentials as low as 15 V, but the fabrication of the valves comprised many 

patterning, etching, and thermal annealing steps which significantly increased the 

complexity of fabrication.  Juncker et al. developed an alternative procedure for 

constructing the valves by first depositing gold electrodes onto a thin PDMS membrane 

and then laminating the membrane onto glass microchannels [24].  The fabrication 

procedure was also relatively intensive, however, compared to the pneumatic precedent. 
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1.3 Objectives 

In this work, I present an electrostatically actuated microvalve that is fabricated 

exclusively with soft-lithographic techniques.  The valve is composed only of PDMS and 

conducting nanoparticles, and should be amenable to integration and also accommodate 

effective electrical controls.  I report the development of an analytical model to guide the 

design of electrostatic microvalves, several methods that were investigated for 

embedding conducting nanoparticles in elastomeric membranes, and the subsequent 

fabrication of the microvalve.  Initial tests were performed to characterize the electric 

potentials needed to actuate the microvalve, and I compare these results with the 

analytical model developed in this thesis.  I also present a characterization of isolation 

pressures when the valves are actuated in air, and then preliminary results of actuation in 

oil and water.   
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1.4 Figures 

 

 

Figure 1.1  Pneumatic microvalves made with soft-lithographic techniques [20].  Shown schematically are 
(a) the fabrication procedure for the valve, (b) valve cross-sections, and (c) the actuation of the valve with 
pneumatic pressure. 

(a) (b)

(c)
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Chapter 2: Development of Design Rules for 
Electrostatic Microvalves 

 

2.1 Introduction 

The operation of electrostatic microvalves involves several physical phenomena – 

most importantly the coupling between mechanical deformation and electric fields.  The 

complex interplay of these phenomena necessitates a systematic model to describe the 

operation of the valve and guide the design process.  While early efforts were being made 

towards a fabrication procedure for the valves, Dr. Amit Desai developed an analytical 

mathematical model to guide the subsequent optimization of the valve design with the 

objective of minimizing actuation potentials while maintaining fabrication simplicity and 

feasibility.  The main conclusions from his analysis are presented in this chapter. 

Two approaches are most commonly used in the modeling of electrostatic 

actuation of microscale structures: (i) numerical techniques and (ii) analytical or semi-

analytical approaches.  In the former approach, finite element analysis or numerical 

analysis of the governing differential equations are used to examine the deflection of 

compliant structures due to electrostatic forces.  Using this approach, several studies have 

analyzed various phenomena during electrostatic actuation, including the dynamics of 

pull-in behavior [25, 26], the effect of large deformations and non-linear material 

properties [27], and Casimir forces [28].  However, the non-explicit representation of the 

design parameters and the complexity of these computational procedures limit the utility 

of these numerical models for the design of new electrostatic actuator configurations.  In 

contrast, analytical and semi-analytical approaches describe the physical relationships 

between all the geometrical, material, and operational parameters explicitly.  This 
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methodology has been used to model electrostatic actuation in various microscale 

applications, including actuation of micro-electromechanical systems in liquids [29] and 

electrostatic measurements of material properties [30].  It is also the methodology we 

decided would be most suitable for optimizing the microvalve geometry. 

 

2.2 Results and Discussion 

I first outline the main elements of Dr. Desai’s derivation of the model, and 

afterward, I highlight the most important design parameters that affect actuation potential 

and the design space appropriate for our particular objectives. 

 

2.2.1 Analytical Model 

The microvalve is modeled as a parallel-plate capacitor where the electrodes are 

separated by a distance g (Figure 2.1).  One plate is movable, representing a deflecting 

membrane, and is attached to a spring with spring constant k.  The parameter y represents 

the displacement of the membrane and the extension of the spring.  First, Dr. Desai 

derived expressions for the spring constant of the membrane based on plate theory [31].  

Next, he calculated the actuation potential for a parallel-plate capacitor system using the 

spring constant expressions and energy-balance equations. 

The derivation for the spring constant involves several expressions for the 

stiffness of a membrane.  These are derived based on the following assumptions: (i) the 

membrane is homogenous, uniformly thick, and perfectly clamped at the outer edges, 

(ii) the deformation of the membrane is elastic, and (iii) membrane displacement due to 

transverse shear is negligible.  The last assumption holds if the aspect ratio of the 
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membrane, i.e. the ratio of the diameter to the thickness, is greater than 5 [31].  For the 

microvalve discussed here, the aspect ratio will generally be greater than 10. 

When the deflection of a membrane exceeds half its thickness, in-plane stresses 

are induced in the membrane.  Membranes for microfluidic valves may deflect over 

distances significantly greater than their thickness.  These in-plane stresses cause the 

membrane to be stiffer than that predicted by standard expressions for membrane 

stiffness.  Hence, we introduce a correction factor, KMS, to account for these effects of 

membrane stresses based on an approximation by Timoshenko and Woinowsky-Krieger 

[31].  The expression for static stiffness of a circular membrane that is fixed or clamped 

along the outer edges under a uniformly distributed load is given by 
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KMS factor to account for membrane stresses and is given 

by
2
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In equation (1), the effect of stiffness of the conducting layer on the overall 

membrane stiffness is neglected, which is not necessarily true for the valves discussed 

here.  A correction factor needs to be introduced into the expression for membrane 

stiffness for a significantly stiff conducting layer.  The resulting expression for membrane 

stiffness is given by   
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where 

Kbilayer factor to account for bilayer configuration [32] 

Ebc  biaxial modulus of the conducting layer, given by 21 c

c
bc

E
E

ν−
=  

Ec  Young’s modulus of the conducting material 

νc  Poisson’s ratio of the conducting material 

tc  thickness of the conducting layer. 

After deriving an expression for the spring constant, it can be used to find an 

expression for the potentials needed to collapse the valve.  When considering the 

electrostatic component of the model, two main assumptions are made: (i) the fringing 

electric fields around the edges of the plates are assumed to be negligible, and (ii) the 
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electric field is assumed to be constant throughout the deformation of the membrane.  

Fringing electric fields do not significantly influence the capacitance between parallel 

plates when the electrode gap is small compared to the planar dimensions of the plate [33, 

34], which is true for the valves reported here.  The second assumption is valid only when 

the deflection of the membrane is insignificant compared to the electrode gap.  In our 

system, deflections are nearly as large as the entire initial electrode separation, so this 

discrepancy needs to be addressed.  Calculating the actual deflection profile of the 

membrane would entail numerical solution of non-linear partial differential equations or 

multi-physics simulations using finite element analysis (FEA).  Alternatively, the 

actuation potential value can be multiplied by a constant, Knonlinear, to capture the 

influence of the non-uniform electric field.  This Knonlinear can be estimated numerically or 

experimentally.  Osterberg et al. computed Knonlinear as 0.7545 using FEA simulations 

[30], while Rollier et al. assumed Knonlinear as 1 and observed a maximum difference of 

6% between analytical predictions and experimental observations for actuation potentials 

[29].  In this paper, we assume Knonlinear to be equal to 1, realizing that this assumption 

induces an error of 10% or less in the analytical predictions of actuation potentials. 

In parallel plate actuators, the system becomes unstable when the electrostatic 

forces and restoring mechanical forces are no longer in equilibrium [29].  Beyond a 

certain deflection, the membrane collapses suddenly or snaps in.  This phenomenon of 

snap-in is known as the pull-in instability.  The critical deflection is given by 

 ⎟⎟
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where εfluid and εm are the relative permittivity of the fluid and membrane, respectively, 

and hc is the thickness of the dielectric insulating layer between the upper electrode and 

the channel (Figure 2.1).  Depending on the relative magnitudes of the critical deflection 

and the initial gap between the plates, the operation of the electrostatic valve is either in 

the stable deflection regime (i.e. critical deflection is never reached) or governed by the 

aforementioned pull-in instability (i.e. the critical deflection is exceeded).  If ysnapin > g, 

the electrostatic valve is in the stable deflection regime and the actuation potential 

required to close the valve is given by 
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where ε0 is the permittivity of free space and the membrane stiffness k is given by either 

equation (1) or (2).  If ysnapin ≤ g, the actuation of the valve is governed by pull-in 

instability, and the potential required to close the valve is given by 
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2.2.2 Design Space 

To identify the design space for the electrostatic microvalves, equations (1), (2), 

(4), and (5) were first used to ascertain the scaling relations between actuation potential 

and model parameters, with higher order corresponding to greater influence.  The data in 

Table 2.1 show that the actuation potential is most sensitive to changes in membrane 
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diameter, D, membrane thickness, tm, and electrode gap, g, as expected.  Less intuitive is 

the relation between the actuation potential and the dielectric properties of the fluid.  

Based on data in Table 2.1, an increase in the dielectric constant of the fluid will not 

necessarily decrease the actuation potential.  This counter-intuitive observation is due to 

the non-negligible thickness of the dielectric insulating layer, hc, and finite value for the 

dielectric constant of this layer.   

After identifying the crucial parameters, the parameters were used to define the 

design space that would accommodate low actuation potentials accessible with compact 

power sources, such as a DC power supply or battery pack.  Figure 2.2 shows the design 

parameter space with respect to aspect ratio (D/tm) and relative gap (g/tm), for a valve 

actuated in air with actuation potentials lower than 50 V.  Values for non-variable 

parameters used in this analysis are listed in Table 2.2.  Figure 2.2 predicts that actuation 

potentials as low as 15 V can be obtained while maintaining dimensions for the 

membrane diameter, membrane thickness, and channel height that are feasible from a 

fabrication point of view.   Based on the model and also several known design 

constraints, the explicit design space is tabulated in the last column of Table 2.1. 

 

2.3 Conclusions 

Using a semi-analytical approach, we developed a model to predict actuation 

potentials for electrostatic microvalves.  The model identified valve diameter, membrane 

thickness, and electrode gap to be the most influential parameters affecting actuation 

potentials, and we were able to approximate the design space with these parameters that 

would lead to low actuation potentials of 50 V or less.  Other important phenomena are 
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also involved in the operation of electrostatic microvalves, such as squeeze-film damping 

and adhesion-driven valve collapse, and will be the subject of future modeling work. 
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2.4 Figures and Tables 

 

 

Figure 2.1  Schematic representation of the parallel plate actuator used to mathematically model the 
electrostatic microvalve. 

 
 

 

Figure 2.2  Design parameter space for electrostatic valves with actuation potentials below 50 V.  Each 
contour line corresponds to a different actuation potential, ranging from 15 to 50 V in 1 V steps. 
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Table 2.1  The most influential parameters affecting microvalve actuation potentials and the approximate 
design space leading to microvalves with actuation potentials below 50 V. 
 

Parameter Order of dependency Design range 
 Stable region Snap-in  

Diameter, D -2 -2 300-1000 µm 

Membrane thickness, tm 2.5 3 10-50 µm 
Electrode gap, g 0.5 1.5 1-15µm 

Dielectric constant of 
fluid, εfluid 

0.5 1 -- 

 

 

Table 2.2  Values of valve parameters used when defining the design space for the electrostatic valves. 
 

Parameter Value 
Em 0.7 [35] 
νm 0.5 [35] 
εm 2.75 [36] 

σ0 0.1 MPa [37, 38] 
1
shapeK  85.33 [39] 

2
shapeK  16 [40, 41] 

Ec 1.6 [42] 
νc ~ 0.5 
tc 0.1 µm 
hc 10 µm 
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Chapter 3: Design and Optimization of Conducting 
Elastomeric Membranes 

 

3.1 Introduction 

The central component of our microvalve design is a flexible, conducting, 

elastomeric membrane.  We chose to use PDMS as the elastomeric material because it is 

easily molded from liquid precursors via a platinum catalyzed vinyl addition and also 

extensively used in the literature.  However, conferring conductivity to PDMS is not 

always straightforward.  Metals are notoriously difficult to pattern on PDMS because 

most thermal and sputtering depositions heat the polymer and cause it to expand.  When 

the PDMS cools, the metallic films buckle [43].  Even if metallic films are patterned 

successfully onto PDMS without buckling, the films cannot sustain large strains without 

breaking.  Conducting polymers could be used instead of PDMS or in tandem with 

PDMS, but they are usually more difficult to process, and many exhibit plastic rather than 

elastomeric deformation [44].  Consequently, we decided to address the problem by 

embedding conducting nanoparticles into PDMS membranes, retaining the simple 

processing of PDMS but also enabling large deflections without loss of conductivity.  In 

all, we explored three different approaches for patterning conducting nanoparticles in 

PDMS: (i) directly mixing the nanoparticles into the elastomer precursors prior to 

processing, (ii) airbrushing nanoparticles onto a pre-existing membrane, and (iii) forming 

a film of nanoparticles by filtration and subsequently transferring the film to a PDMS 

membrane via microtransfer printing.   
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3.2 Results and Discussion 

3.2.1 Nanoparticle/Polymer Composites 

We initially attempted to embed nanoparticles in uncured PDMS and then process 

the slurry into a thin membrane suitable for deflection.  Some precedents for this 

approach were found in the literature, though mainly for the creation of elastomeric 

electrical sensors rather than actuators [45].  Liu et al. embedded multi-walled carbon 

nanotubes (MWNT) into PDMS precursors and then used the slurry to fill the gaps of a 

mold of photoresist [46].  Residual slurry was removed with a razor blade, and after 

curing, the photoresist was removed with a suitable solvent.  By using this “doctor-

blading” technique, the researchers were able to pattern micron-sized structures of the 

conducting elastomer.  The researchers found that MWNT possessed a favorable 

percolation threshold (concentration or particle loading at which electrical conductivity is 

established) compared with spherical conducting nanoparticles such as carbon black.  

This lower percolation threshold is due to the large aspect ratio of the MWNT, which 

improves the probability of adjacent particles making contact.  Consequently, for most of 

the initial studies reported here, MWNT were used as the conducting material in our 

membranes. 

We adopted Liu’s approach and patterned photoresist around large rectangular 

regions on a silicon wafer, filled the recess with a MWNT/PDMS slurry (usually 10 wt% 

MWNT), and then slid a razor blade across the rectangular region, using the photoresist 

to effectively define the height of the MWNT/PDMS membrane.  Carbon nanotubes were 

>95 wt% purity, <1.5 wt% ash, and had 20-40 nm outer diameter and 10-30 µm length 

(Cheap Tubes Inc.).  While the resulting membranes were conductive, we encountered 
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several difficulties.  First, streaking caused non-uniformities in membranes.  This 

streaking may have been due to the large lengths of the nanoparticles compared to the 

thickness of the membrane (the MWNT we used were as long as 30 µm, which was about 

as thick as or thicker than the photoresist mold).  The streaking also could have been 

caused by the roughness of the razor blade, aggregates of the MWNT, or the speed at 

which the blade was drawn across the mold.  Second, the thickness of the membranes 

was difficult to control, perhaps due to uneven pressure applied by the blade.  Lastly, the 

concentration of nanoparticles in the slurry increased the stiffness of the membrane, and 

estimates from our model predicted that we would need to compensate by fabricating 

membranes significantly thinner than what was experimentally possible. 

It should also be noted that we tried to make membranes by pressing the 

MWNT/PDMS slurry onto a substrate rather than doctor-blading, but in this process, the 

MWNT tended to clump together and prevent thin, smooth films from forming.  From 

these initial observations, we decided that embedding MWNT directly into PDMS 

precursors was not advantageous and decided to direct efforts towards patterning MWNT 

thin films onto PDMS membranes that were already formed.   

 

3.2.2 Airbrushed Nanoparticle Films  

We next attempted to airbrush a solution of MWNT directly onto a PDMS 

membrane.  Conductive MWNT films have been airbrushed onto various surfaces such as 

glass and plastics for photovoltaic applications [47].  The films can be made thin enough 

to be transparent, in contrast to the doctor-blading approach where the membranes were 
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opaque.  Having transparent electrodes would be advantageous for several reasons, 

including visualizing flow inside the valves or taking optical measurements. 

MWNT were suspended in an aqueous solution with the aid of a surfactant, 

sodium dodecyl sulfate (SDS), and separately, PDMS was spin-coated onto a silicon 

wafer and fully cured.  Afterward, the aqueous solution of MWNT and SDS was 

airbrushed as evenly as possible onto the surface.  After certain threshold coverage was 

achieved, the films conducted, and if properly masked, we imagine that the films could 

be patterned.   

We also encountered difficulties with this approach, however.  When observed 

under the microscope, the films had noticeable surface heterogeneities.  Literature 

suggests that this is due to the rate of evaporation from the aerosols emitted from the 

airbrush [48].  If the solvent evaporates too quickly before the solution reaches the 

substrate, then the MWNT aggregate before being deposited.  Alternatively, if the 

solution does not adequately evaporate before reaching the substrate, then liquid droplets 

form on the surface of the substrate, leading to uneven deposition of MWNT. 

Another problem emerged when trying to encapsulate the MWNT film with a 

second layer of PDMS.  Surfactant that was deposited along with the MWNT prevented 

additional layers of PDMS from sealing to underlying layers, and the membranes easily 

delaminated. 

 

3.2.3 Microtransfer Printing of Nanoparticle Films 

In our experience, both doctor-blading and air-brushing failed to yield conducting 

MWNT/PDMS membranes that were sufficiently smooth and uniform for application in 
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the electrostatic microvalve.  Filtration of a MWNT suspension, however, was previously 

shown to yield highly uniform, conductive, and transparent films [48].  It was also shown 

that these films could be transferred to various substrates either by applying pressure and 

heat or by dissolving the filter with an appropriate solvent. 

To adopt the procedure for our purposes, MWNT were suspended in an aqueous 

solution, again with the addition of SDS.  Typically, solutions were made in a ratio of 1 

mg MWNT and 10 mg SDS per 1 mL water.  The solution was sonicated approximately 

30 min. to break up MWNT aggregates and subsequently centrifuged to isolate any 

bundles that could not be disintegrated.  The solution was then filtered through a 

membrane, typically with a pore size of 0.2 µm.  A uniform black film was formed on the 

filter resulting in a soapy, clear and colorless filtrate.  After the solution was completely 

filtered, the film was washed with alcohol (isopropyl alcohol, methanol, or ethanol) until 

the filtrate was free of any bubbles.  After drying, the MWNT film could be transferred 

directly to a pre-formed PDMS membrane.   

Several filter materials were investigated for suitability for transferring MWNT 

films.  Teflon® filters released MWNT films relatively easily; however, Teflon® filters 

with small pore sizes were delicate and were manufactured with a polyethylene support 

mesh on the underside.  This mesh produced a texture in the MWNT film, and in 

extremely thin films, the mesh caused discontinuities.  Nylon, cellulose, polycarbonate, 

and polyester filter membranes were also investigated.  However, none of these materials 

transferred MWNT films reliably, unless the film was thick and non-transparent.  

Usually, the top layers of the MWNT film would transfer, leaving a textured residual film 

behind.  Filter membranes that consistently yielded the best results were composed of 
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alumina (Whatman Anopore inorganic membranes).  MWNT films could be completely 

transferred, even if very thin, leaving behind hardly any visible residue.  It should be 

noted, however, that the inorganic membranes were brittle and had to be handled more 

carefully than the polymeric membrane filters. 

We performed several characterization studies of conducting PDMS membranes 

fabricated in the above manner.  Firstly, we quantified the dependence of resistivity on 

MWNT loading with no strain applied to the membrane (Figure 3.1a).  Resistivity 

decreased and converged to a value of ~1 Ohm-cm as MWNT loading increased and 

reached a value of ~0.5 mg/cm2.  The gradual conferral of conductivity with particle 

loading is a result of the large aspect ratio of the MWNTs.  There was no clearly defined 

percolation threshold, but we are confident that percolation occurs at or below 0.3 g/cm2, 

allowing us to fabricate functional electrodes that are semi-transparent.   

Next, we applied a slow, periodic strain (60%, 2 hrs/cycle) to the membrane and 

observed the change in resistance (Figure 3.1b).  The resistance increased as strain 

increased, but remained conductive until rupture.  We did not observe any mechanical or 

electrical hysteresis during the stretch tests.  These data demonstrate the advantage of 

using polymer/nanoparticles composites compared to metallic films on polymer, because 

significantly higher strains are accessible without compromising electrode integrity. 

We also applied rapid strains to the membrane and observed that after an initial 

increase, the resistance undergoes a transient reduction proportional to the induced strain 

and then levels off (Figure 3.1c).  We assume that this behavior is due to the reorientation 

of the MWNT in the polymer after a rapid deformation.  At this point, it is not clear 
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whether this will either benefit or detract from the quality of operation of the valve, but it 

is an interesting observation.   

After finding a suitable technique of conferring conductivity to elastomeric 

membranes, the next challenge was to develop a way to pattern the conducting areas.  

Microcontact printing proved to be an easy yet highly effective solution [49].  After 

MWNT were filtered to form a thin film, a patterned PDMS stamp (20 PDMS monomer: 

1 PDMS cross-linker weight ratio, hereafter referred to as 20:1 PDMS) was brought into 

conformal contact with the film, slight pressure was applied by hand, and then the stamp 

was removed along with the selected areas of the film.  When the stamp was pressed onto 

a PDMS membrane, the MWNT were transferred onto the new substrate.  For the transfer 

to happen reliably, the PDMS membrane was also made of 20:1 PDMS, although it was 

not cured to the same degree, ensuring that the receiving surface was tackier than the 

stamp.  Membranes or slabs of PDMS with different weight ratios of cross-linker were 

also capable of receiving the MWNT film from the PDMS stamp, but again, the 

substrates were under-cured so that they were tackier than the stamp.  If the receiving 

PDMS membrane was too tacky, the stamp and membrane tended to adhere too strongly 

to be separated.  We were able to create patterns as small as 50 µm wide, although we 

believe smaller features are possible.  With this particular technique, we can make the 

complex circuitry needed for arrays of independently operated valves. 

 

3.3 Conclusions  

Overall, filtration and microtransfer printing produced a conducting membrane 

that proved most amenable for adaptation into an electrostatic microvalve.  We can tune 



24 

 

the loading of nanoparticles to control the conductivity of the film and make electrodes 

that are semi-transparent.  The film retains conductivity over large deflections, and there 

is little observable mechanical or electrical hysteresis due to the PDMS deformation.  

Transparent films should be beneficial for visualizing fluid flow through microvalves or 

detecting analytes. 
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3.4 Figures 

 

 

Figure 3.1  Characterization of PDMS membranes with MWNT electrodes.  (a) Measured resistivity as a 
function of MWNT loading in an unstrained membrane.  (b) Electrical response of a membrane undergoing 
a 60% strain at a rate of 0.5 cycle/second.  (c) Electrical response of rapidly strained membranes. 
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Chapter 4: Design and Optimization of Arrays of  
Electrostatic Microvalves 

 

4.1 Introduction   

After devising an appropriate means of fabricating conducting membranes with 

patterned electrodes, the next challenge was to integrate the membranes into complete 

microvalve assemblies.  However, the fabrication entailed more than a simple lamination 

of the membrane on top of microfluidic channels.  We developed a fabrication procedure 

that allowed us to create microfluidic channels (and in the future, other microfluidic 

components) in parallel with the microvalves by implementing simple replica molding 

techniques along with the microtransfer printing.   

Following the fabrication, our main objective was to minimize the actuation 

potential of the microvalve, assuring that microvalve could be implemented in portable 

microchemical systems.  Towards this end, we used Dr. Desai’s mathematical model to 

identify the design space that would be appropriate and then varied several of the design 

parameters to optimize the actuation potentials.  Before this could be accomplished 

however, we had to address several unseen issues, including the sagging of membranes. 

In this chapter, I first give a detailed procedure for the fabrication of the 

microvalves followed by a discussion of support structures that were implemented to 

prevent membranes from collapsing prematurely.  I then discuss the process whereby 

actuation potentials were minimized to values as low as 5 V.  The chapter concludes with 

cursory studies of valve isolation pressures and actuation in liquid media.   
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4.2 Experimental Methods 

4.2.1 Microvalve Fabrication  

Figure 4.1 shows a schematic diagram of the fabrication process flow.  Molds for 

microfluidic channels and the supporting layers of the devices were made from patterned 

photoresist on silicon.  Masks were designed with Adobe® Illustrator® and printed onto 

film with a high resolution printer (5080 dpi) from University of Illinois printing services.  

Typically, negative photoresist was processed according to manufacturer specifications 

(SU8-5 and SU8-50 for fluid layers and support layers, respectively; Microchem Corp.)  

To systematically fabricate microvalves with different channel heights, we needed to 

adjust the height of the features on the microfluidic channel mold, but the manufacturer 

did not provide spin-curves with the range of heights we required.  Our own spin-curve 

calibration data for SU8-5 are presented in Figure 4.2.  Features on the molds for the 

microfluidic channels were typically 1-10 µm tall, and features for the support layers 

were 50 µm tall.  After development, the mold was treated with a vapor of (tridecafluoro-

1,1,2,2-tetrahydro octyl)-1-trichlorosilane (United Chemical Technologies, Inc.) by 

placing the wafer in a vacuum desiccator for four hours with several drops of the silane.  

The vacuum line passed through a column of solid sodium hydroxide pellets to neutralize 

gaseous hydrochloric acid resulting from the reaction.   

To create the upper portion of the electrostatic microvalve, liquid PDMS 

precursors (GE RTV 615, purchased through Hisco-Schaumburg) were dispensed in a 

ratio of 20:1 base/curing-agent by weight (20:1 PDMS), and after mixing, the PDMS was 

degassed in a vacuum desiccator for several minutes until no bubbles were visible.  A 

thin layer of PDMS was spin-coated onto the mold for microfluidic channels at 10,000 
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rpm.  This layer formed the insulating layer of the membrane between the channel and 

electrode to be deposited later.  The thickness of this layer depended on the height of the 

mold features and the length of spin-coating.  In our preliminary work, we used spin-rates 

that were slower than ideal, typically around 7000 rpm, which resulted in thick insulating 

layers of ~10µm (and consequently higher actuation potentials).  A calibration for mold 

features 2.1, 4.0, and 6.4 µm high is presented in Figure 4.3.  We found that the thinnest 

insulating layer that could be fabricated for all three channel heights was 2 µm, and this 

height was used for our latest results for actuation potential optimization.  The initial 

PDMS layer was cured in an oven at 70oC for 30 min before applying the MWNT 

electrode. 

To form the electrode, a MWNT film was patterned onto the insulating PDMS 

layer via microcontact printing.  A stock solution of MWNT was made in a ratio of 1 mg 

MWNT / 10 mg SDS / 1 mL 18 MΩ water.  MWNT were >95 wt% purity, <1.5 wt% ash, 

and had 20-40 nm outer diameter and 10-30 µm length (Cheap Tubes Inc.).  Both MWNT 

and SDS (Fisher Scientific) were used without further purification.  The solution was 

placed in an ultrasonic bath for 30 min. and then centrifuged at 4000 rpm for 15 min. to 

remove unwanted aggregates.  Between 1-3 mL of the MWNT solution was vacuum 

filtered through an alumina membrane filter with 0.2 µm pore size (Anopore inorganic 

membranes, Whatman).  In the latest iteration of this fabrication process, the MWNT 

solution was first diluted with 50 mL 18 MΩ water prior to filtration, leading to more 

uniform films.  Following filtration, the resulting MWNT film was washed with 

methanol, ethanol, or isopropanol until the filtrate was clear, colorless, and without 
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bubbles.  The film was allowed to dry for several minutes under ambient conditions, and 

then transferred with a PDMS stamp. 

The stamp was made by pouring 20:1 PDMS over a silicon/photoresist mold and 

curing at 70oC for at least one hour, but usually overnight.  To transfer the MWNT film, 

the stamp was brought into conformal contact with the film and slight pressure was 

applied by hand.  When removed, the stamp picked up the selected areas of the MWNT 

film, and this MWNT pattern was aligned and set onto the previously formed PDMS 

layer.  Again, pressure was applied by hand, and the stamp was peeled off the PDMS 

layer, leaving the MWNT film behind.   

A homogeneous slurry of MWNT and 5:1 PDMS (~10 wt% MWNT) was made 

by repeatedly drawing the mixture over a surface with a razor blade.  The slurry was then 

applied onto peripheral regions of the exposed MWNT film to serve as electrical 

contacts.  The high concentration of curing-agent in the PDMS served to minimize curing 

time, which was ~5 min. at 70 oC. 

Next, a layer of 20:1 PDMS was spin-coated onto the MWNT film typically at 

2400 rpm for 30 s with a 10 s ramp.  This increased the membrane thickness by ~30 µm, 

but the spin-rate and spin time could be varied to yield membranes of different 

thicknesses.  This layer served both as an encapsulating layer for the MWNT electrode 

and as an adhesion layer for the support layer.  To properly adhere to the support layer, 

the adhesion layer was heated at 70 oC for 20-30 min. or until just slightly tacky.  The 

support layer was formed by pouring liquid 5:1 PDMS over a mold and curing at 70 oC 

for at least 15 min.  (Longer cure times up to an hour also gave good results.)  After, both 

layers were aligned and brought into conformal contact.  If certain regions were 
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misaligned, the layers could be de-sealed and then realigned without negative effects.  

Surplus vinyl groups in the adhesion layer reacted with excess silicon hydrides in the 

support layer during the final cure of at least 60 min. at 70 oC.  During this step, extra 

liquid PDMS was poured around the support layer and over the electrical contacts to fill 

in any gaps.  The device was removed from the mold by cutting around the appropriate 

areas with a scalpel.   

When quantifying the actuation potential required to close the valves, we used a 

lower electrode made of a thin film of indium tin oxide (ITO) on glass.  For studies of 

fluid flow in the valves, however, the lower electrode was fabricated out of PDMS and 

sealed permanently to the upper electrode. 

The substrate used for creating the lower PDMS electrode was a polished silicon 

wafer treated with (tridecafluoro-1,1,2,2-tetrahydro octyl)-1-trichlorosilane in the same 

manner as the molds.  A slurry of 20:1 PDMS and MWNT (~10 wt% MWNT) was 

mixed together with a razor blade and small amounts were dispensed on the silicon to 

serve as electrical contacts.  A ~0.5 cm thick layer of 20:1 PDMS was poured onto the 

substrate and heated in an oven at 70 oC for 20-30 min until the PDMS was slightly 

tacky.  The slab of PDMS was cut out with a scalpel, and a MWNT film was 

microtransfer printed onto the underside (the side originally oriented against the silicon).  

Care was taken to insure that the MWNT film overlapped with the electrical contacts in 

the PDMS slab.  The slab was then pressed down into the silicon substrate so that the 

MWNT film was directly against the silicon.  When pressure was applied, the MWNT 

film appeared to turn darker, indicating that the PDMS slab was sufficiently sealed 

against the silicon surface.  The slab was fully cured by heating at 70 oC for at least one 



31 

 

hour without any applied pressure.  When ready for use, the slab was simply peeled off 

the substrate.  

To seal the upper electrode and lower PDMS electrode together permanently, both 

elements were treated with plasma and then aligned together.  First, access holes were 

punched to the microfluidic channels with a sharpened needle.  Both the upper and lower 

electrode were placed onto frosted glass slides and set in a plasma cleaner (Harrick 

Plasma, Extended model).  Glass slides provided a rigid support for the PDMS 

components to rest on while the roughness of the surface prevented the glass from sealing 

to the PDMS.  The chamber was evacuated to 500 mTorr of atmospheric gases, and 

exposed to plasma under the “high” setting for 90 s.  After exposure, the two halves were 

aligned, gently brought into contact, and then heated at least one hour at 70 oC.   

 

4.2.2 Microvalve Characterization  

To actuate the microvalves, the electrodes were attached to a high voltage DC 

power source with the lower electrode positively polarized and the membrane negatively 

polarized.  For lower electrodes comprising ITO on glass, the electrode was directly 

attached to the power source with an alligator clip and lead wire.  PDMS electrodes were 

attached by stabbing a wire into the PDMS/MWNT contacts and then attaching an 

alligator clip to the wire.  The potential was gradually increased until valves collapsed.  

Valve collapse was observed visually under a microscope.   
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4.3 Results and Discussion  

4.3.1 General Observations of Microvalve Actuation 

Figure 4.4 shows both schematics and micrographs of valves before and after 

being actuated with an electrostatic force.  In most of our experiments, we tested an array 

of microvalves with diameters ranging between 200-1000 µm in diameter with 100 µm 

increments.  As the potential between the electrodes was gradually increased, the 

membrane of a valve deflected until it reached a critical deflection.  After surpassing a 

threshold potential, the valve immediately snapped shut within milliseconds.  For the 

quantification of actuation potentials, most of the channels had rectangular cross-sections, 

and there was a noticeable region around the peripheries of the valve where the 

membrane did not seal completely.  In separate experiments with channels that had 

rounded cross-sections, however, we observed that the valves sealed hermetically. 

In the initial study of actuation potentials, an ITO/glass lower electrode was used.  

The adhesion energy between smooth oxide surfaces and PDMS is strong, and after 

actuation, most of the valves remained shut even after the electric potential was released.  

In some cases, however, the elastic energy stored in the membrane was enough to peel 

the membrane off the lower electrode and return it to the rest state.   

4.3.2 Implementation of Membrane Support Structures  

Initially, the valve membranes had the tendency to sag after being removed from 

their molds, and this often led to premature valve collapse before actuation potentials 

were applied.  Additionally, the sag in the membranes probably contributed to the issue 

of valves staying shut.  Above a certain aspect ratio, elastomeric membranes will collapse 

naturally [50], but we observed that normally stable aspect ratios still led to collapse.  
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This result is probably related to the mismatch between thermal expansion coefficients in 

the PDMS and MWNT layers of the membrane.  We attempted to cure all the membrane 

layers at room temperature, but our initial attempt did not completely eliminate the 

problem.   

As an alternate means of preventing premature membrane collapse, support 

structures were molded into the support layer for the valves and sealed to the top side of 

the membranes during fabrication.  Several different geometries were tested for the 

support structures, including posts, spirals, and triangular beams.  Usually, larger valves 

were still prone to premature collapse ( ≥ 700 µm diameter), but the structures did 

ameliorate the problem partially. 

Actuation potentials that correspond to several different support structures are 

shown in Figure 4.5.  (Channel height was ~2 µm; the insulating layer of PDMS in the 

membrane was ~10 µm; the encapsulating layer was ~40 µm; and the total thickness of 

the membrane was ~50 µm).  Currently, there are not adequate data to clearly distinguish 

the effects of different geometries of the support structures.  However, the actuation data 

show a general trend that was typical for most of the experiments reported here.  As the 

diameter of the microvalve increased, the actuation potential tended to decrease and 

converge asymptotically to a minimal actuation potential.   

We performed a more systematic study of one particular support structure 

geometry – a single post.  We varied the width of the post in comparison with the 

diameter of the microvalve, ranging from 50-100% of the diameter.  All of the posts were 

50 µm tall.  Figure 4.6 shows that as the post size increased, so did the actuation potential 

needed to close the valve.  With posts widths that were 50% of the diameter of the valve, 
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valves actuated with as little as 20V.  However, larger posts were most effectual in 

preventing premature collapse of the membranes.   

 

4.3.3 Effect of Elastic Modulus of Support Structures on Actuation Potentials 

To implement large support structures but also achieve low actuation potentials, 

we attempted to decrease the elastic modulus of the support structures above the 

membranes.  We created a support layer with a support post 100% the diameter of the 

valve – essentially a solid slab of PDMS.  We used different ratios of monomer to cross-

linker in the support layers and found, predictably, that less cross-linked layers led to 

lower actuation potentials (Figure 4.7).  Valves with a support slab fabricated out of 5:1 

PDMS actuated in the proximity of 300 V.  By increasing the amount of monomer 

relative to cross-linker, we achieved actuation with as little as 40 V for a valve with 40:1 

PDMS in the support layer.  However, with ratios higher than 20:1, the support layer 

became increasingly tacky.  After valves actuated, adjacent channels would close as well.  

In addition, if the support layer did not contain an excess of cross-linker, the support 

layer could not be effectively sealed to the membrane.   

After investigating the geometry and elasticity of the support structures, we 

decided to use a post 20% the diameter of the valve and fabricated out of 5:1 PDMS for 

further work since it reduced the likelihood of premature membrane collapse, led to the 

lowest actuation potentials for all the geometries tested, and could still be sealed easily to 

the underlying membrane. 
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4.3.4 Optimized Actuation Potentials and Comparison with Model  

To simultaneously optimize the actuation potential of the microvalve and 

investigate the accuracy of our model, we systematically varied several parameters in the 

valve fabrication.  We made arrays of microvalves with channel heights of 2.1, 4.0, and 

6.4 µm and tested two membrane thicknesses of ~20 and ~40 µm.  The insulating layer of 

PDMS between the upper electrode and the microfluidic channel was ~2 µm thick for all 

valves.   

Results of our investigation are shown in Figure 4.8.  As expected, smaller gaps 

between electrodes, thinner membranes, and larger diameters all led to lower actuation 

potentials.  Our model is accurate within a factor of two, but tends to underestimate the 

potential needed to actuate the valves.  This could be due to several reasons, including the 

effect of support structures on the membrane stiffness, greater residual stresses in the 

membrane than predicted, or variations in the thickness of the insulating layer of the 

membranes.  Especially for larger valves, the first layer of spun-on PDMS tended to 

bulge up near the center of mold structures, effectively increasing the distance between 

electrodes.   

More importantly, the optimization of the valve design yielded actuation 

potentials as low as 5 V.  With potentials this low, it may eventually become possible to 

directly integrate the microvalves with electrical integrated circuits (ICs) rather than 

having to operate the valve and its controls with different potentials.   
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4.3.5 Isolation Pressures  

In the results presented in Figure 4.8, only three of the valves tested were able to 

reopen.  The two valves with 200 µm diameters and 6.4 µm channel heights reopened as 

well as the valve with 200 µm diameter, 4.0 µm channel height, and 40 µm membrane 

thickness.  All these valves were actuated with a potential of at least 150 V.  We 

hypothesized that switching to a PDMS/MWNT lower electrode would decrease the 

surface adhesion between the membrane and the lower electrode and allow valves to 

reopen.  Using a PDMS/MWNT lower electrode also enabled us to seal the two 

electrodes together permanently and flow fluids through the channels.  We anticipated 

that the fluids would help lubricate the surface or at least be able to push the valves open 

if an external pressure was applied.   

The new surface did not greatly decrease the propensity of the valves to remain 

shut, but we were able to open the valves when applying pressure to the air in the 

channels.  Figure 4.9 shows the pressure needed to reopen a 500 µm wide valve (2 µm 

tall channel, 10 µm insulating layer of PDMS, ~50 µm thick membrane) in relation to the 

applied potential.  The valve reopened with very little applied pressure, which suggests 

that the adhesion energy between the membrane and lower electrode is far from 

insurmountable.  However, the valves are currently not optimized for applications that 

require high isolation pressures.   

 

4.3.6 Actuation with Fluids  

We also actuated the valves with fluorinated oil (3M™ Fluorinert™ FC-40) and 

18 MΩ water in the channels.  Valves reopened more easily when they contained FC-40 
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as opposed to air (e.g. valves with diameters larger than 200 µm were able to open), but 

isolation pressures were much lower.  (We were unable to accurately measure the 

pressures with our current equipment).  The lowest actuation potential for a valve that 

reopened with the MWNT/PDMS lower electrode and containing FC-40 was 150 V.   

With water, we were unable to completely close the valves.  This may have been 

due to dilute ions in the water that assembled at the electrode surfaces when a potential 

was applied and screened the electric field.  Others have circumvented this problem by 

using high frequency AC potentials [22, 51], and we are currently investigating the 

efficacy of using these AC potentials with our system.  

 

4.4 Conclusions  

In summary, we developed a simple procedure to fabricate arrays of microvalves 

using only replica molding and microtransfer printing.  To prevent membrane sagging, 

we incorporated support structures into the valve design and investigated the effects of 

geometry and elastic modulus of these structures on actuation potential.  After optimizing 

the valve design parameters, we were able to achieve actuation potentials as low as 5 V, 

and our results agree well with the predictions from the analytical model.  Valves reopen 

when fluids in the channels are pressurized beyond a certain threshold.  In the case of 

water, valves do not actuate completely because charged solutes assemble at the 

electrodes and screen DC electric fields.  This electrode screening may be prevented by 

rapidly switching the polarity of the electric field, but several obstacles need to be 

addressed first and will be the focus of future work. 
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4.5 Figures 

  

 

Figure 4.1  Schematic diagram of the reported soft-lithographic approach of fabricating electrostatic 
microvalves. 

 
Figure 4.2  Spin curves for SU8-5 negative photoresist. 

 

Dwell time (s)
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Figure 4.3  Calibration of PDMS film thickness above SU8 structures after spin-coating at 10,000 rpm for 
different times. 

 
 
 

 
 

Figure 4.4  Microvalve actuation with electrostatic forces.  (a) Schematic illustration of membrane collapse 
due to an applied potential.  (b) Micrographs of microvalves in the open state initially and then in the 
closed state after applying a 55 V potential. 

Channel height (µm)
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Figure 4.5  Actuation potentials corresponding to valves with different support structures.   Channel height 
was ~2 µm; the insulating layer of PDMS in the membrane was ~10 µm; the encapsulating layer was ~40 
µm; and the total thickness of the membrane was ~50 µm. 

 

 
 

Figure 4.6  Actuation potentials corresponding to valves with a single post as a support structure.  The 
diameter of the post is recorded as a certain percentage of the width of the valve. 
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Figure 4.7  Actuation potentials corresponding to valves with support layers made of different ratios of 
PDMS monomer to crosslinker.  The support structure was a solid slab of PDMS that completely covered 
the top side of the membrane. 
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Figure 4.8  Systematic variation of electrode separation, membrane thickness, and valve diameter and the 
effect on actuation potential.  (a) Valves with ~20 µm thick membranes.  (b) Valves with ~40 µm thick 
membranes.  Each set of valves had an insulating layer of PDMS ~2 µm thick between the top of the 
channel and the upper electrode.  Experimental results are shown as points and model predictions are 
shown as lines.  Scale bars represent one standard deviation. 

(a) 

(b) 
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Figure 4.9  Isolation pressures for a 500 µm diameter valve.  The actuation potential of 
the valve under atmospheric pressure was 75 V.  The valve contained a 2 µm tall channel, 
10 µm insulating layer of PDMS, and ~50 µm thick membrane.  A potential was applied 
to close the valve, then pressure was gradually increased until the valve reopened.  After, 
the pressure was decreased until the valve re-shut. 
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Chapter 5: Concluding Remarks 

 

5.1 Summary 

In conclusion, we developed an electrostatically actuated microvalve fabricated 

solely with the soft lithographic techniques of replica molding and microtransfer printing.  

The fabrication can be performed under ambient conditions, and no specialized 

deposition or etching tools are required.  The valves are monolithically integrated with 

the rest of the device, and valves as small as 200 µm in diameter were created.  For larger 

valves that were prone to premature collapse, we investigated a number of different 

support structures and eventually implemented a single post that held the membrane up 

prior to actuation but still allowed for low actuation potentials.   

Our analytical model accurately predicted actuation potentials within a factor of 

two and also identified the most important parameters influencing valve actuation.  By 

optimizing these parameters, we were able to construct valves that actuated with as little 

as 5 V.  Though the valves tended to remain shut after actuation, especially on ITO/glass 

lower electrodes, they could be easily reopened by pressurizing the air or fluid in the 

channel.  We were able to actuate the valves in air and oil, but dilute ions in aqueous 

media screened the electrical potential between the electrodes and prevented actuation 

with DC fields. 

 

5.2 Future Work 

Several aspects need to be addressed before the microvalve reaches its full utility 

and can be effectively integrated into complete microchemical systems.  First of all, the 
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inability of the microvalve to return to the open state without external pressure being 

applied is a noticeable disadvantage.  One way to address this problem would be to 

pattern raised structures on the valve seat that would either reduce the contact area 

between the elastomeric membrane and the lower electrode or add additional strain to the 

membrane, thus conferring greater restoring force.  There is also the possibility of 

performing a surface modification to the membrane, the valve seat, or both that would 

decrease the adhesion between them.  Several fluorinated compounds, such as Cytop®, 

have been used to treat PDMS channels and may help improve membrane release.   

The problem of membrane stiction is only exasperated by the sag in the 

membranes, particularly in membranes larger than 500 µm in diameter.  There is still 

potential that this problem could be solved by curing the membrane completely at room 

temperature, giving no occasion for the PDMS to expand under elevated temperatures.  

However, more scrutiny should be lent to the thickness of the various layers composing 

the membrane in addition to the stresses induced during spin-coating.   

The residual stresses in the membrane may also decrease the model’s accuracy in 

predicting actuation potentials.  If this is the case, then a procedure needs to be developed 

to directly measure these stresses so that more accurate assumptions can be incorporated 

into the model.   

Finally, the inability of the valve to operate in aqueous environments with DC 

potentials needs to be addressed.  Electric fields with rapidly oscillating polarity need to 

be implemented to prevent the screening of electrodes, but several criteria need to be met 

by the circuit.  The capacitance of the microvalve must be relatively small so that charges 

can quickly saturate the surfaces of the electrodes and create a substantial electrostatic 
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force.  At the same time, the resistance of the circuit must be low so that charges can 

move quickly between electrodes.  Currently, the resistance of the MWNT electrodes is 

too high, so different conducting nanoparticles with higher conductivity need to be used.  

We are currently investigating gold nanoparticles as an alternative, but there are several 

challenges associated with patterning gold nanoparticles via microtransfer printing.  

Carbon nanotubes are hydrophobic and adhere well to PDMS stamps, but gold 

nanoparticles are naturally hydrophilic, and cannot be picked up reliably with PDMS 

stamps.  Surface treatment of the PDMS stamp or the nanoparticles may be necessary to 

print with the same reliability as MWNT.  In addition, there are only a few publications 

that report the fabrication of gold nanoribbons or nanobelts that are similar to MWNT in 

terms of aspect ratios [52, 53].  Spherical nanoparticles require significantly higher 

particle loadings to achieve the percolation threshold, so we are currently investigating 

gold nanoplates and gold nanorods.  The effort is necessary, however, since the most 

relevant media for biological applications tend to be aqueous media with high ionic 

content. 

Following the completion of the valve, we anticipate that the societal benefit of 

the proposed technology will be especially valuable if the microvalves can be integrated 

into point-of-care diagnostic systems.  A future manifestation of the technology might 

include a hand-held device capable of processing patient blood or DNA in automated 

fashion, eliminating the need for a highly trained technician or specialized facilities.  

Since the valves consume little power, they could also be integrated into long term 

wireless chemical detection systems to augment public security.   
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